1
|
Zhao Y, Xu T, Wu Z, Li N, Liang Q. Rebalancing redox homeostasis: A pivotal regulator of the cGAS-STING pathway in autoimmune diseases. Autoimmun Rev 2025; 24:103823. [PMID: 40286888 DOI: 10.1016/j.autrev.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Autoimmune diseases (ADs) arise from the breakdown of immune tolerance to self-antigens, leading to pathological tissue damage. Proinflammatory cytokine overproduction disrupts redox homeostasis across diverse cell populations, generating oxidative stress that induces DNA damage through multiple mechanisms. Oxidative stress-induced alterations in membrane permeability and DNA damage can lead to the recognition of double-stranded DNA (dsDNA), mitochondrial DNA (mtDNA) and micronuclei-DNA (MN-DNA) by DNA sensors, thereby initiating activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. While previous reviews have characterized cGAS-STING activation in autoimmunity, the reciprocal regulation between redox homeostasis and cGAS-STING activation remains insufficiently defined. This narrative review examines oxidative stress-mediated DNA damage as a critical driver of pathological cGAS-STING signaling and delineates molecular mechanisms linking redox homeostasis to autoimmune pathogenesis. Furthermore, we propose therapeutic strategies that combine redox restoration with the attenuation of aberrant cGAS-STING activation, thereby establishing a mechanistic foundation for precision interventions in autoimmune disorders. METHODS: The manuscript is formatted as a narrative review. We conducted a comprehensive search strategy using electronic databases such as PubMed, Google Scholar and Web of Science. Various keywords were used, such as "cGAS-STING," "Redox homeostasis," "Oxidative stress," "pentose phosphate pathway," "Ferroptosis," "mtDNA," "dsDNA," "DNA damage," "Micronuclei," "Reactive oxygen species," "Reactive nitrogen species," "Nanomaterial," "Autoimmune disease," "Systemic lupus erythematosus," "Type 1 diabetes," "Rheumatoid arthritis," "Multiple sclerosis," "Experimental autoimmune encephalomyelitis," "Psoriasis," etc. The titles and abstracts were reviewed for inclusion into this review. After removing duplicates and irrelevant studies, 174 articles met inclusion criteria (original research, English language).
Collapse
Affiliation(s)
- Yuchen Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tianhao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Zhaoshun Wu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
2
|
Costa ACM, Dpf N, Júlio PR, Marchi-Silva R, De Aquino BM, de Oliveira Andrade S, Pereira DR, Mazzola TN, De Souza JM, Martinez ARM, França MC, Reis F, Touma Z, Niewold TB, Appenzeller S. Neuropsychiatric manifestations in systemic lupus erythematosus and Sjogren's disease. Autoimmun Rev 2025; 24:103756. [PMID: 39863044 DOI: 10.1016/j.autrev.2025.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Autoimmune diseases often present in a systemic manner, affecting various organs and tissues. Involvement of the central and peripheral nervous system is not uncommon in these conditions and is associated with high morbidity and mortality. Therefore, early recognition of the neuropsychiatric manifestations associated with rheumatologic diseases is essential for the introduction of appropriate therapies with the objective of providing a better quality of life for individuals. OBJECTIVE To provide a literature review of the neuropsychiatric manifestations related to Systemic Lupus Erythematosus (SLE) and primary Sjögren's Disease (pSD), through the description of signs, symptoms, and immunological variables associated with these conditions. METHODS A literature review was conducted by searching for national and international articles available in the SciELO and PubMed databases related to the description of neurological and psychiatric manifestations in patients with the rheumatologic diseases of interest in this study. RESULTS The main NP manifestations presented in SLE and pSD are discussed, focusing on clinical presentation and etiology. Treatment option are, however, mainly based on expert opinion, since a few randomized controlled trials have been done. CONCLUSIONS There is a high prevalence of neuropsychiatric manifestations associated with SLE and pSD. The variety of physiopathology pathways may explain the variety of symptoms, however pathological findings are rare. Multicenter studies on attribution protocols and treatment are necessary to address the current gaps.
Collapse
Affiliation(s)
| | - Nunes Dpf
- Department of Orthopedics, Rheumatology and Traumatology-School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil
| | - Paulo Rogério Júlio
- Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil; Child and Adolescent Graduate Program, School of Medical Sciences, University of Campinas, Brazil
| | - Rodrigo Marchi-Silva
- Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil; Medical Pathophysiology Graduate Program, School of Medical Sciences, Universidade Estadual de Campinas, Brazil
| | - Bruna Martins De Aquino
- Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil; Medical Pathophysiology Graduate Program, School of Medical Sciences, Universidade Estadual de Campinas, Brazil
| | - Samuel de Oliveira Andrade
- Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil; Medical Pathophysiology Graduate Program, School of Medical Sciences, Universidade Estadual de Campinas, Brazil
| | - Danilo Rodrigues Pereira
- Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil; Medical Pathophysiology Graduate Program, School of Medical Sciences, Universidade Estadual de Campinas, Brazil
| | - Tais Nitsch Mazzola
- Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil; Center for Investigation in Pediatrics, School of Medical Sciences, University of Campinas, Brazil
| | - Jean Marcos De Souza
- Department of Medicine, School of Medical Sciences, University of Campinas, Brazil
| | | | | | - Fabiano Reis
- Department of Anestiology and Radiology, School of Medical Sciences, University of Campinas, Brazil
| | - Zahi Touma
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Canada; University of Toronto Lupus Clinic, Centre for Prognosis Studies in Rheumatic Diseases, Toronto Western Hospital, Shroeder Arthritis Institute, Toronto, ON, Canada
| | - Timothy B Niewold
- Hospital of Special Surgery, Department of Medicine, New York, NY, USA; Weill Cornell Medicine, Department of Medicine, New York, NY, USA
| | - Simone Appenzeller
- Department of Orthopedics, Rheumatology and Traumatology-School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil.
| |
Collapse
|
3
|
Dai X, Fan Y, Zhao X. Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther 2025; 10:102. [PMID: 40097390 PMCID: PMC11914703 DOI: 10.1038/s41392-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China
- Department of Gastroenterology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China.
| |
Collapse
|
4
|
Jayasinghe M, Rashidi F, Gadelmawla AF, Pitton Rissardo J, Rashidi M, Elendu CC, Fornari Caprara AL, Khalil I, Hmedat KI, Atef M, Moharam H, Prathiraja O. Neurological Manifestations of Systemic Lupus Erythematosus: A Comprehensive Review. Cureus 2025; 17:e79569. [PMID: 40151747 PMCID: PMC11947500 DOI: 10.7759/cureus.79569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Neurological involvement in systemic lupus erythematosus (SLE) poses significant challenges, impacting patient morbidity, mortality, and quality of life. This narrative review provides an update on the pathogenesis, clinical presentation, diagnosis, and management of neurological SLE. The multifaceted pathophysiology involves immune-mediated and vascular mechanisms such as autoantibodies, neuroinflammation, complement dysregulation, and genetic factors. Neuropsychiatric SLE (NPSLE) manifests in a variety of ways, including cognitive dysfunction, mood disorders, psychosis, cerebrovascular disease, demyelinating syndromes, and neuropathies. Diagnosing neurological SLE is complicated by nonspecific and fluctuating symptoms, requiring comprehensive neurological examination, neuroimaging, autoantibody profiling, and cerebrospinal fluid analysis. Current management strategies include corticosteroids, immunosuppressive agents, and emerging biologics targeting specific immune pathways. Managing neuropsychiatric symptoms, seizures, and neuropathic pain remains a complex aspect of treatment. This review highlights the importance of early recognition and tailored management approaches to improve patient outcomes in neurological SLE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ibrahim Khalil
- Neurological Surgery, Faculty of Medicine, Alexandria University, Alexandria, EGY
| | - Khalil I Hmedat
- Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, EGY
| | | | | | | |
Collapse
|
5
|
Cyr P, Fader LD, Burch JD, Pike KA, Sietsema DV, Boily MO, Ciblat S, Sgarioto N, Skeldon AM, Gaudreault S, Le Gros P, Dumais V, McKay DJJ, Abraham NS, Seliniotakis R, Beveridge RE. Discovery of Potent and Orally Bioavailable Pyrimidine Amide cGAS Inhibitors via Structure-Guided Hybridization. ACS Med Chem Lett 2024; 15:2201-2209. [PMID: 39691514 PMCID: PMC11647726 DOI: 10.1021/acsmedchemlett.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Using a high-throughput screening (HTS) approach, a new GTP-site binding pyridine-carboxylate series of cGAS inhibitors was discovered. The biochemical potency of this new pyridine carboxylate series was improved 166-fold from the original hit to double-digit nanomolar levels using structure-based design insights, but the series was found to suffer from low permeability and low bioavailability. A structure-based hybridization of the metal-binding motifs of the pyridine carboxylate series and our previously disclosed tetrahydrocarboline GTP-site ligand 23 identified pyrimidine amide compound 36. Compound 36 is potent against both human and mouse cGAS isoforms and has a favorable pharmacokinetic (PK) profile in mice. Additionally, compound 36 displayed a dose-dependent reduction in cGAMP production in a ConA pharmacodynamic mouse model of acute liver injury, demonstrating potential utility as an in vivo tool compound for further investigation of the cGAS pathway.
Collapse
Affiliation(s)
- Patrick Cyr
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Lee D. Fader
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Jason D. Burch
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Kelly A. Pike
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Daniel V. Sietsema
- Ventus
Therapeutics, 100 Beaver
St, Suite 201, Waltham, Massachusetts 02453, United States
| | - Marc-Olivier Boily
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Stéphane Ciblat
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Nicolas Sgarioto
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | | | - Samuel Gaudreault
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Philippe Le Gros
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Valérie Dumais
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Daniel J. J. McKay
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Nathan S. Abraham
- Ventus
Therapeutics, 100 Beaver
St, Suite 201, Waltham, Massachusetts 02453, United States
| | - Ria Seliniotakis
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Ramsay E. Beveridge
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| |
Collapse
|
6
|
Lamas A, Faria R, Marinho A, Vasconcelos C. The mosaic of systemic lupus erythematosus: From autoimmunity to autoinflammation and immunodeficiency and back. Autoimmun Rev 2024; 23:103675. [PMID: 39481623 DOI: 10.1016/j.autrev.2024.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
The concept of an "immunological continuum model," introduced by McGonagle and McDermott in 2006, redefines the traditional dichotomy between autoimmunity and autoinflammation, proposing a spectrum where innate and adaptive immune dysregulation can co-occur, reflecting a more nuanced understanding of immune disorders. Systemic lupus erythematosus (SLE) exemplifies the complexity of this continuum, often displaying manifestations of autoimmunity, autoinflammation, and immunodeficiency. The interplay between genetic, epigenetic, hormonal, psychological, and environmental factors contributes to its distinctive immunopathological signatures. Historically recognized as a systemic disease with diverse clinical manifestations, SLE is primarily a polygenic autoimmune condition but can, however, present in monogenic forms. Examining SLE through the lens of the immunological continuum model allows for emphasis on the contributions of both innate and adaptive immunity. SLE and primary immunodeficiencies share genetic susceptibilities and clinical manifestations. Additionally, autoinflammatory mechanisms, such as inflammasome activation and interferonopathies, can play a role in SLE pathogenesis, illustrating the disease's position at the crossroads of immune dysregulation. Recognizing the diverse clinical expressions of SLE and its mimickers is critical for accurate diagnosis and targeted therapy. In conclusion, the immunological continuum model provides a comprehensive framework for understanding SLE, acknowledging its multifaceted nature and guiding future research and clinical practice toward more effective and individualized treatments. After the Mosaic of Autoimmunity, it is now the time to focus and attempt to solve the intricate mosaic of SLE.
Collapse
Affiliation(s)
- António Lamas
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal.
| | - Raquel Faria
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - António Marinho
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Carlos Vasconcelos
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| |
Collapse
|
7
|
Khedr S, Dissanayake LV, Alsheikh AJ, Zietara A, Spires DR, Kerketta R, Mathison AJ, Urrutia R, Palygin O, Staruschenko A. Role of cGAS/STING pathway in aging and sexual dimorphism in diabetic kidney disease. JCI Insight 2024; 10:e174126. [PMID: 39589791 PMCID: PMC11721291 DOI: 10.1172/jci.insight.174126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic renal pathology. Understanding the molecular underpinnings of DKD is critical to designing tailored therapeutic approaches. Here, we focused on sex differences and the contribution of aging toward the progression of DKD. To explore these questions, we utilized young (12 weeks old) and aged (approximately 50 weeks old) type 2 diabetic nephropathy (T2DN) rats. We revealed that the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway was upregulated in T2DN rats compared with nondiabetic Wistar rats and in type 2 diabetic human kidneys. The activation of the cGAS/STING signaling pathway exhibited distinct protein expression profiles between male and female T2DN rats, with these differences becoming more pronounced with aging. RNA-Seq analysis of the kidney cortex in both male and female T2DN rats, at both younger and older ages, revealed several key molecules, highlighting crucial genes within the cGAS/STING pathway. Thus, our study delved deep into understanding the intricate sexual differences in the development and progression of DKD and we propose the cGAS/STING pathway as an essential contributor to disease development.
Collapse
Affiliation(s)
- Sherif Khedr
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lashodya V. Dissanayake
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Ammar J. Alsheikh
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Adrian Zietara
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Denisha R. Spires
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Romica Kerketta
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Angela J. Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA
- James A. Haley Veterans’ Hospital, Tampa, Florida, USA
| |
Collapse
|
8
|
Hofer MJ, Modesti N, Coufal NG, Wang Q, Sase S, Miner J, Vanderver A, Bennett ML. The prototypical interferonopathy: Aicardi-Goutières syndrome from bedside to bench. Immunol Rev 2024; 327:83-99. [PMID: 39473130 PMCID: PMC11672868 DOI: 10.1111/imr.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Abstract
Aicardi-Goutières syndrome (AGS) is a progressive genetic encephalopathy caused by pathogenic mutations in genes controlling cellular anti-viral responses and nucleic acid metabolism. The mutations initiate autoinflammatory processes in the brain and systemically that are triggered by chronic overproduction of type I interferon (IFN), including IFN-alpha. Emerging disease-directed therapies aim to dampen autoinflammation and block cellular responses to IFN production, creating an urgent and unmet need to understand better which cells, compartments, and mechanisms underlying disease pathogenesis. In this review, we highlight existing pre-clinical models of AGS and our current understanding of how causative genetic mutations promote disease in AGS, to promote new model development and a continued focus on improving and directing future therapies.
Collapse
Affiliation(s)
- Markus J. Hofer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; NHMRC Ideas Grant to MJH APP2001543
| | - Nicholson Modesti
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Nicole G. Coufal
- Department of Pediatrics, University of California, San Diego CA 92093, Rady Children’s Hospital, San Diego CA 92123. Sanford Consortium for Regenerative Medicine, San Diego CA 92037
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213
| | - Sunetra Sase
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Jonathan Miner
- Departments of Medicine and Microbiology, RVCL Research Center, and Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| |
Collapse
|
9
|
Li T, Yum S, Wu J, Li M, Deng Y, Sun L, Zuo X, Chen ZJ. cGAS activation in classical dendritic cells causes autoimmunity in TREX1-deficient mice. Proc Natl Acad Sci U S A 2024; 121:e2411747121. [PMID: 39254994 PMCID: PMC11420187 DOI: 10.1073/pnas.2411747121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Detection of cytosolic DNA by the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway provides immune defense against pathogens and cancer but can also cause autoimmunity when overactivated. The exonuclease three prime repair exonuclease 1 (TREX1) degrades DNA in the cytosol and prevents cGAS activation by self-DNA. Loss-of-function mutations of the TREX1 gene are linked to autoimmune diseases such as Aicardi-Goutières syndrome, and mice deficient in TREX1 develop lethal inflammation in a cGAS-dependent manner. In order to determine the type of cells in which cGAS activation drives autoinflammation, we generated conditional cGAS knockout mice on the Trex1-/- background. Here, we show that genetic ablation of the cGAS gene in classical dendritic cells (cDCs), but not in macrophages, was sufficient to rescue Trex1-/- mice from all observed disease phenotypes including lethality, T cell activation, tissue inflammation, and production of antinuclear antibodies and interferon-stimulated genes. These results show that cGAS activation in cDC causes autoinflammation in response to self-DNA accumulated in the absence of TREX1.
Collapse
Affiliation(s)
- Tong Li
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan410078, China
| | - Seoyun Yum
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Junjiao Wu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan410078, China
| | - Minghao Li
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yafang Deng
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lijun Sun
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Xiaoxia Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan410078, China
| | - Zhijian J. Chen
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
10
|
Menzel K, Novotna K, Jeyakumar N, Wolf C, Lee-Kirsch MA. Monogenic lupus - from gene to targeted therapy. Mol Cell Pediatr 2024; 11:8. [PMID: 39264482 PMCID: PMC11393215 DOI: 10.1186/s40348-024-00181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by loss of tolerance to nuclear antigens. The formation of autoantibodies and the deposition of immune complexes trigger inflammatory tissue damage that can affect any part of the body. In most cases, SLE is a complex disease involving multiple genetic and environmental factors. Despite advances in the treatment of SLE, there is currently no cure for SLE and patients are treated with immunosuppressive drugs with significant side effects. The elucidation of rare monogenic forms of SLE has provided invaluable insights into the molecular mechanisms underlying systemic autoimmunity. Harnessing this knowledge will facilitate the development of more refined and reliable biomarker profiles for diagnosis, therapeutic monitoring, and outcome prediction, and guide the development of novel targeted therapies not only for monogenic lupus, but also for complex SLE.
Collapse
Affiliation(s)
- Katharina Menzel
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Kateryna Novotna
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Nivya Jeyakumar
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany.
- University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Leipzig/Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Thuner J, Cognard J, Belot A. How to treat monogenic SLE? Best Pract Res Clin Rheumatol 2024; 38:101962. [PMID: 38876818 DOI: 10.1016/j.berh.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Systemic lupus erythematosus is a rare and life-threatening autoimmune disease characterized by autoantibodies against double-stranded DNA, with an immunopathology that remains partially unclear. New insights into the disease have been provided by the discovery of key mutations leading to the development of monogenic SLE, occurring in the context of early-onset disease, syndromic lupus, or familial clustering. The increased frequency of discovering these mutations in recent years, thanks to the advent of genetic screening, has greatly enhanced our understanding of the immunopathogenesis of SLE. These monogenic defects include defective clearance of apoptotic bodies, abnormalities in nucleic acid sensing, activation of the type-I interferon pathway, and the breakdown of tolerance through B or T cell activation or lymphocyte proliferation due to anomalies in TLR signalling and/or NFκB pathway overactivation. The translation of genetic discoveries into therapeutic strategies is presented here, within the framework of personalized therapy.
Collapse
Affiliation(s)
- Jonathan Thuner
- Internal Medicine Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Jade Cognard
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Belot
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France; CNRS, Centre National de La Recherche Scientifique, UMR5308, Lyon, France.
| |
Collapse
|
12
|
Hwang J, Dzifa Dey I, Ayanlowo O, Flower C, King A, Johnson N, Ima-Edomwonyi U, Olasebikan H, Falasinnu T, Durairaj Pandian V, Blazer A. Addressing the research gap: access to care hinders genetic discovery in systemic lupus erythematosus patients throughout the African diaspora. Front Genet 2024; 15:1414490. [PMID: 39211738 PMCID: PMC11358083 DOI: 10.3389/fgene.2024.1414490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune condition that disproportionately impacts non-White ethnic and racial groups, particularly individuals in the African diaspora who experience heightened incidence, prevalence, and adverse outcomes. Genetic and epigenetic factors play significant roles in SLE risk, however these factors neither explain the whole of SLE risk nor the stark racial disparities we observe. Moreover, our understanding of genetic risk factors within African ancestry populations is limited due to social and environmental influences on research participation, disease presentation, and healthcare access. Globally, the African diaspora faces barriers in accessing essential SLE diagnostic tools, therapeutics, healthcare practitioners, and high-quality clinical and translational research studies. Here, we provide insights into the current state of genetic studies within African ancestry populations and highlight the unique challenges encountered in SLE care and research across countries of varying income levels. We also identify opportunities to address these disparities and promote scientific equity for individuals affected by SLE within the global African diaspora.
Collapse
Affiliation(s)
- Jihwan Hwang
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ida Dzifa Dey
- Department of Medicine, Division of Rheumatology, University of Ghana, Accra, Ghana
| | - Olusola Ayanlowo
- Department of Dermatology, College of Medicine University of Lagos, Lagos, Nigeria
| | - Cindy Flower
- Department of Medicine, Division of Rheumatology, The University of the West Indies, Cave Hill, Saint Michael, Barbados
| | - Amanda King
- Division of Rheumatology, Bay Medical Centre, Castries, Saint Lucia
| | - Nicole Johnson
- Department of Pediatrics, Division of Rheumatology, University of Calgary, Calgary, AB, Canada
| | - Uyiekpen Ima-Edomwonyi
- Department of Medicine, Division of Rheumatology, College of Medicine University of Lagos, Lagos, Nigeria
| | - Hakeem Olasebikan
- Department of Medicine, Division of Rheumatology, College of Medicine University of Lagos, Lagos, Nigeria
| | - Titilola Falasinnu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, Stanford, CA, United States
| | - Vishnuprabu Durairaj Pandian
- Department of Medicine, Division of Rheumatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ashira Blazer
- Department of Medicine, Division of Rheumatology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
14
|
Yang K, Jeltema D, Yan N. Innate immune sensing of macromolecule homeostasis. Adv Immunol 2024; 161:17-51. [PMID: 38763701 DOI: 10.1016/bs.ai.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors to recognize molecular patterns initially thought to be unique to microbial invaders, named pathogen-associated molecular patterns. The concept was later further developed to include similar molecular patterns originating from host cells during tissue damage, known as damage-associated molecular patterns. However, recent advances in the mechanism of monogenic inflammatory diseases have highlighted a much more expansive repertoire of cellular functions that are monitored by innate immunity. Here, we summarize several examples in which an innate immune response is triggered when homeostasis of macromolecule in the cell is disrupted in non-infectious or sterile settings. These ever-growing sensing mechanisms expand the repertoire of innate immune recognition, positioning it not only as a key player in host defense but also as a gatekeeper of cellular homeostasis. Therapeutics inspired by these advances to restore cellular homeostasis and correct the immune system could have far-reaching implications.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
15
|
Zhang ZD, Shi CR, Li FX, Gan H, Wei Y, Zhang Q, Shuai X, Chen M, Lin YL, Xiong TC, Chen X, Zhong B, Lin D. Disulfiram ameliorates STING/MITA-dependent inflammation and autoimmunity by targeting RNF115. Cell Mol Immunol 2024; 21:275-291. [PMID: 38267694 PMCID: PMC10901794 DOI: 10.1038/s41423-024-01131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
STING (also known as MITA) is an adaptor protein that mediates cytoplasmic DNA-triggered signaling, and aberrant activation of STING/MITA by cytosolic self-DNA or gain-of-function mutations causes severe inflammation. Here, we show that STING-mediated inflammation and autoimmunity are promoted by RNF115 and alleviated by the RNF115 inhibitor disulfiram (DSF). Knockout of RNF115 or treatment with DSF significantly inhibit systemic inflammation and autoimmune lethality and restore immune cell development in Trex1-/- mice and STINGN153S/WT bone marrow chimeric mice. In addition, knockdown or pharmacological inhibition of RNF115 substantially downregulate the expression of IFN-α, IFN-γ and proinflammatory cytokines in PBMCs from patients with systemic lupus erythematosus (SLE) who exhibit high concentrations of dsDNA in peripheral blood. Mechanistically, knockout or inhibition of RNF115 impair the oligomerization and Golgi localization of STING in various types of cells transfected with cGAMP and in organs and cells from Trex1-/- mice. Interestingly, knockout of RNF115 inhibits the activation and Golgi localization of STINGN153S as well as the expression of proinflammatory cytokines in myeloid cells but not in endothelial cells or fibroblasts. Taken together, these findings highlight the RNF115-mediated cell type-specific regulation of STING and STINGN153S and provide potential targeted intervention strategies for STING-related autoimmune diseases.
Collapse
Affiliation(s)
- Zhi-Dong Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Chang-Rui Shi
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fang-Xu Li
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Hu Gan
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanhong Wei
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qianhui Zhang
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xin Shuai
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Min Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu-Lin Lin
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tian-Chen Xiong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xiaoqi Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
16
|
Hurabielle C, LaFlam TN, Gearing M, Ye CJ. Functional genomics in inborn errors of immunity. Immunol Rev 2024; 322:53-70. [PMID: 38329267 PMCID: PMC10950534 DOI: 10.1111/imr.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Inborn errors of immunity (IEI) comprise a diverse spectrum of 485 disorders as recognized by the International Union of Immunological Societies Committee on Inborn Error of Immunity in 2022. While IEI are monogenic by definition, they illuminate various pathways involved in the pathogenesis of polygenic immune dysregulation as in autoimmune or autoinflammatory syndromes, or in more common infectious diseases that may not have a significant genetic basis. Rapid improvement in genomic technologies has been the main driver of the accelerated rate of discovery of IEI and has led to the development of innovative treatment strategies. In this review, we will explore various facets of IEI, delving into the distinctions between PIDD and PIRD. We will examine how Mendelian inheritance patterns contribute to these disorders and discuss advancements in functional genomics that aid in characterizing new IEI. Additionally, we will explore how emerging genomic tools help to characterize new IEI as well as how they are paving the way for innovative treatment approaches for managing and potentially curing these complex immune conditions.
Collapse
Affiliation(s)
- Charlotte Hurabielle
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Taylor N LaFlam
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Melissa Gearing
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Institute of Computational Health Sciences, UCSF, San Francisco, California, USA
- Gladstone Genomic Immunology Institute, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, California, USA
- Arc Institute, Palo Alto, California, USA
| |
Collapse
|
17
|
Federici S, Cinicola BL, La Torre F, Castagnoli R, Lougaris V, Giardino G, Volpi S, Caorsi R, Leonardi L, Corrente S, Soresina A, Cancrini C, Insalaco A, Gattorno M, De Benedetti F, Marseglia GL, Del Giudice MM, Cardinale F. Vasculitis and vasculopathy associated with inborn errors of immunity: an overview. Front Pediatr 2024; 11:1258301. [PMID: 38357265 PMCID: PMC10866297 DOI: 10.3389/fped.2023.1258301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/29/2023] [Indexed: 02/16/2024] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are disorders of innate immunity, which are characterized by unprovoked recurrent flares of systemic inflammation often characterized by fever associated with clinical manifestations mainly involving the musculoskeletal, mucocutaneous, gastrointestinal, and nervous systems. Several conditions also present with varied, sometimes prominent, involvement of the vascular system, with features of vasculitis characterized by variable target vessel involvement and organ damage. Here, we report a systematic review of vasculitis and vasculopathy associated with inborn errors of immunity.
Collapse
Affiliation(s)
- Silvia Federici
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST-Spedali Civili Brescia, Brescia, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics, Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonella Insalaco
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Gattorno
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|
18
|
Liu A, Ying S. Aicardi-Goutières syndrome: A monogenic type I interferonopathy. Scand J Immunol 2023; 98:e13314. [PMID: 37515439 DOI: 10.1111/sji.13314] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Aicardi-Goutières syndrome (AGS) is a rare monogenic autoimmune disease that primarily affects the brains of children patients. Its main clinical features include encephalatrophy, basal ganglia calcification, leukoencephalopathy, lymphocytosis and increased interferon-α (IFN-α) levels in the patient's cerebrospinal fluid (CSF) and serum. AGS may be caused by mutations in any one of nine genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, IFIH1, LSM11 and RNU7-1) that result in accumulation of self-nucleic acids in the cytoplasm or aberrant sensing of self-nucleic acids. This triggers overproduction of type I interferons (IFNs) and subsequently causes AGS, the prototype of type I interferonopathies. This review describes the discovery history of AGS with various genotypes and provides the latest knowledge of clinical manifestations and causative genes of AGS. The relationship between AGS and type I interferonopathy and potential therapeutic methods for AGS are also discussed in this review.
Collapse
Affiliation(s)
- Anran Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Jia X, Tan L, Chen S, Tang R, Chen W. Monogenic lupus: Tracing the therapeutic implications from single gene mutations. Clin Immunol 2023; 254:109699. [PMID: 37481012 DOI: 10.1016/j.clim.2023.109699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Monogenic lupus, a distinctive variant of systemic lupus erythematosus (SLE), is characterized by early onset, family-centric clustering, and heightened disease severity. So far, over thirty genetic variations have been identified as single-gene etiology of SLE and lupus-like phenotypes. The critical role of these gene mutations in disrupting various immune pathways is increasingly recognized. In particular, single gene mutation-driven dysfunction within the innate immunity, notably deficiencies in the complement system, impedes the degradation of free nucleic acid and immune complexes, thereby promoting activation of innate immune cells. The accumulation of these components in various tissues and organs creates a pro-inflammatory microenvironment, characterized by a surge in pro-inflammatory cytokines, chemokines, reactive oxygen species, and type I interferons. Concurrently, single gene mutation-associated defects in the adaptive immune system give rise to the emergence of autoreactive T cells, hyperactivated B cells and plasma cells. The ensuing spectrum of cytokines and autoimmune antibodies drives systemic disease manifestations, primarily including kidney, skin and central nervous system-related phenotypes. This review provides a thorough overview of the single gene mutations and potential consequent immune dysregulations in monogenic lupus, elucidating the pathogenic mechanisms of monogenic lupus. Furthermore, it discusses the recent advances made in the therapeutic interventions for monogenic lupus.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Li Tan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Sixiu Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruihan Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| |
Collapse
|
20
|
Queiroz MAF, Moura TCF, Bichara CDA, Lima LLPD, Oliveira AQTD, Souza RGD, Gomes STM, Amoras EDSG, Vallinoto ACR. TREX1 531C/T Polymorphism and Autoantibodies Associated with the Immune Status of HIV-1-Infected Individuals. Int J Mol Sci 2023; 24:ijms24119660. [PMID: 37298611 DOI: 10.3390/ijms24119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Autoimmune diseases can develop during HIV-1 infection, mainly related to the individual's immune competence. The study investigated the association of the TREX1 531C/T polymorphism and antinuclear antibodies (ANA) in HIV-1 infection and the time of antiretroviral therapy (ART) used. Cross-sectional and longitudinal assessments were carried out in 150 individuals, divided into three groups: ART-naïve, 5 years and 10 years on ART; ART-naïve individuals were evaluated for 2 years after initiation of treatment. The individuals' blood samples were submitted to indirect immunofluorescence tests, real-time PCR and flow cytometry. The TREX1 531C/T polymorphism was associated with higher levels of TCD4+ lymphocytes and IFN-α in individuals with HIV-1. Individuals on ART had a higher frequency of ANA, higher levels of T CD4+ lymphocytes, a higher ratio of T CD4+/CD8+ lymphocytes and higher levels of IFN-α than therapy-naïve individuals (p < 0.05). The TREX1 531C/T polymorphism was associated with better maintenance of the immune status of individuals with HIV-1 and ANA with immune restoration in individuals on ART, indicating the need to identify individuals at risk of developing an autoimmune disease.
Collapse
Affiliation(s)
- Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Tuane Carolina Ferreira Moura
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Carlos David Araújo Bichara
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | - Allysson Quintino Tenório de Oliveira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Ranilda Gama de Souza
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | | | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
21
|
Baglaenko Y, Wagner C, Bhoj VG, Brodin P, Gershwin ME, Graham D, Invernizzi P, Kidd KK, Korsunsky I, Levy M, Mammen AL, Nizet V, Ramirez-Valle F, Stites EC, Williams MS, Wilson M, Rose NR, Ladd V, Sirota M. Making inroads to precision medicine for the treatment of autoimmune diseases: Harnessing genomic studies to better diagnose and treat complex disorders. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e25. [PMID: 38550937 PMCID: PMC10953750 DOI: 10.1017/pcm.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2024]
Abstract
Precision Medicine is an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle. Autoimmune diseases are those in which the body's natural defense system loses discriminating power between its own cells and foreign cells, causing the body to mistakenly attack healthy tissues. These conditions are very heterogeneous in their presentation and therefore difficult to diagnose and treat. Achieving precision medicine in autoimmune diseases has been challenging due to the complex etiologies of these conditions, involving an interplay between genetic, epigenetic, and environmental factors. However, recent technological and computational advances in molecular profiling have helped identify patient subtypes and molecular pathways which can be used to improve diagnostics and therapeutics. This review discusses the current understanding of the disease mechanisms, heterogeneity, and pathogenic autoantigens in autoimmune diseases gained from genomic and transcriptomic studies and highlights how these findings can be applied to better understand disease heterogeneity in the context of disease diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Graham
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Kenneth K. Kidd
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Michael Levy
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew L. Mammen
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, USA
| | - Victor Nizet
- School of Medicine, University of California San Diego, San Diego, CA, USA
| | | | - Edward C. Stites
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Michael Wilson
- Weill Institute for Neurosciences, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Noel R. Rose
- Autoimmune Association, Clinton Township, MI, USA
| | | | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| |
Collapse
|
22
|
Huang SUS, Kulatunge O, O'Sullivan KM. Deciphering the Genetic Code of Autoimmune Kidney Diseases. Genes (Basel) 2023; 14:genes14051028. [PMID: 37239388 DOI: 10.3390/genes14051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Autoimmune kidney diseases occur due to the loss of tolerance to self-antigens, resulting in inflammation and pathological damage to the kidneys. This review focuses on the known genetic associations of the major autoimmune kidney diseases that result in the development of glomerulonephritis: lupus nephritis (LN), anti-neutrophil cytoplasmic associated vasculitis (AAV), anti-glomerular basement disease (also known as Goodpasture's disease), IgA nephropathy (IgAN), and membranous nephritis (MN). Genetic associations with an increased risk of disease are not only associated with polymorphisms in the human leukocyte antigen (HLA) II region, which governs underlying processes in the development of autoimmunity, but are also associated with genes regulating inflammation, such as NFkB, IRF4, and FC γ receptors (FCGR). Critical genome-wide association studies are discussed both to reveal similarities in gene polymorphisms between autoimmune kidney diseases and to explicate differential risks in different ethnicities. Lastly, we review the role of neutrophil extracellular traps, critical inducers of inflammation in LN, AAV, and anti-GBM disease, where inefficient clearance due to polymorphisms in DNase I and genes that regulate neutrophil extracellular trap production are associated with autoimmune kidney diseases.
Collapse
Affiliation(s)
- Stephanie U-Shane Huang
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia
| | - Oneli Kulatunge
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia
| | - Kim Maree O'Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
23
|
Foddis M, Blumenau S, Holtgrewe M, Paquette K, Westra K, Alonso I, Macario MDC, Morgadinho AS, Velon AG, Santo G, Santana I, Mönkäre S, Kuuluvainen L, Schleutker J, Pöyhönen M, Myllykangas L, Pavlovic A, Kostic V, Dobricic V, Lohmann E, Hanagasi H, Santos M, Guven G, Bilgic B, Bras J, Beule D, Dirnagl U, Guerreiro R, Sassi C. TREX1 p.A129fs and p.Y305C variants in a large multi-ethnic cohort of CADASIL-like unrelated patients. Neurobiol Aging 2023; 123:208-215. [PMID: 36586737 DOI: 10.1016/j.neurobiolaging.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and retinal vasculopathy with cerebral leukodystrophy and systemic manifestations (RVCL-S) are the most common forms of rare monogenic early-onset cerebral small vessel disease and share clinical, and, to different extents, neuroradiological and neuropathological features. However, whether CADASIL and RVCL-S overlapping phenotype may be explained by shared genetic risk or causative factors such as TREX1 coding variants remains poorly understood. To investigate this intriguing hypothesis, we used exome sequencing to screen TREX1 protein-coding variability in a large multi-ethnic cohort of 180 early-onset independent familial and apparently sporadic CADASIL-like Caucasian patients from the USA, Portugal, Finland, Serbia and Turkey. We report 2 very rare and likely pathogenic TREX1 mutations: a loss of function mutation (p.Ala129fs) clustering in the catalytic domain, in an apparently sporadic 46-year-old patient from the USA and a missense mutation (p.Tyr305Cys) in the well conserved C-terminal region, in a 57-year-old patient with positive family history from Serbia. In concert with recent findings, our study expands the clinical spectrum of diseases associated with TREX1 mutations.
Collapse
Affiliation(s)
- Marco Foddis
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sonja Blumenau
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manuel Holtgrewe
- Berlin Institute of Health, BIH, Core Unit Bioinformatics and Charité - Universitätsmedizin Berlin, Berlin Germany
| | - Kimberly Paquette
- Department for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| | - Kaitlyn Westra
- Department for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| | - Isabel Alonso
- CGPP and UnIGENe, Instituto Biologia Molecular Celular, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Maria do Carmo Macario
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Sofia Morgadinho
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Graça Velon
- Department of Neurology, Centro Hospitalar Trás-os-Montes e Alto Douro, Portugal
| | - Gustavo Santo
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Centro de Neurociências e Biologia Celular da Universidade de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal; Centro de Neurociências e Biologia Celular da Universidade de Coimbra, Coimbra, Portugal
| | - Saana Mönkäre
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland; Turku University Hospital, Laboratory Division, Genomics, Department of Medical Genetics, Turku, Finland
| | - Liina Kuuluvainen
- Department of Clinical Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland; Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Johanna Schleutker
- Turku University Hospital, Laboratory Division, Genomics, Department of Medical Genetics, Turku, Finland
| | - Minna Pöyhönen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland; Department of Clinical Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Aleksandra Pavlovic
- Clinic of Neurology, University of Belgrade, Belgrade, Serbia; Faculty for Special Education and Rehabilitation, University of Belgrade, Belgrade
| | - Vladimir Kostic
- Clinic of Neurology, University of Belgrade, Belgrade, Serbia
| | | | - Ebba Lohmann
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mariana Santos
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Gamze Guven
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Bilgic
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Jose Bras
- Department for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Dieter Beule
- Berlin Institute of Health, BIH, Core Unit Bioinformatics and Charité - Universitätsmedizin Berlin, Berlin Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rita Guerreiro
- Department for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Celeste Sassi
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
24
|
Colorimetry-Based Phosphate Measurement for Polymerase Elongation. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8296847. [PMID: 36726843 PMCID: PMC9886478 DOI: 10.1155/2023/8296847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/13/2022] [Accepted: 11/21/2022] [Indexed: 01/24/2023]
Abstract
DNA detection, which includes the measurement of variants in sequences or the presence of certain genes, is widely used in research and clinical diagnosis. Both require DNA-dependent DNA polymerase-catalyzed strand extension. Currently, these techniques rely heavily on the instruments used to visualize the results. This study introduced a simple and direct colorimetric method to measure polymerase-directed elongation. First, pyrophosphate (PPi), a by-product of strand extension, is converted into phosphate (Pi). Phosphate levels were measured using either Mo-Sb or BIOMOL Green reagent. This study showed that this colorimetry can distinguish single-base variants and detect PCR products in preset stringent conditions, implicating the potential value of this strategy to detect DNA.
Collapse
|
25
|
The DNA damage induced immune response: Implications for cancer therapy. DNA Repair (Amst) 2022; 120:103409. [DOI: 10.1016/j.dnarep.2022.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022]
|
26
|
Skopelja-Gardner S, An J, Elkon KB. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol 2022; 18:558-572. [PMID: 35732833 PMCID: PMC9214686 DOI: 10.1038/s41581-022-00589-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/21/2022]
Abstract
Cells are equipped with numerous sensors that recognize nucleic acids, which probably evolved for defence against viruses. Once triggered, these sensors stimulate the production of type I interferons and other cytokines that activate immune cells and promote an antiviral state. The evolutionary conserved enzyme cyclic GMP-AMP synthase (cGAS) is one of the most recently identified DNA sensors. Upon ligand engagement, cGAS dimerizes and synthesizes the dinucleotide second messenger 2',3'-cyclic GMP-AMP (cGAMP), which binds to the endoplasmic reticulum protein stimulator of interferon genes (STING) with high affinity, thereby unleashing an inflammatory response. cGAS-binding DNA is not restricted by sequence and must only be >45 nucleotides in length; therefore, cGAS can also be stimulated by self genomic or mitochondrial DNA. This broad specificity probably explains why the cGAS-STING pathway has been implicated in a number of autoinflammatory, autoimmune and neurodegenerative diseases; this pathway might also be activated during acute and chronic kidney injury. Therapeutic manipulation of the cGAS-STING pathway, using synthetic cyclic dinucleotides or inhibitors of cGAMP metabolism, promises to enhance immune responses in cancer or viral infections. By contrast, inhibitors of cGAS or STING might be useful in diseases in which this pro-inflammatory pathway is chronically activated.
Collapse
Affiliation(s)
| | - Jie An
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Keith B Elkon
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
27
|
Lee WF, Fan WL, Tseng MH, Yang HY, Huang JL, Wu CY. Characteristics and genetic analysis of patients suspected with early-onset systemic lupus erythematosus. Pediatr Rheumatol Online J 2022; 20:68. [PMID: 35964089 PMCID: PMC9375402 DOI: 10.1186/s12969-022-00722-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is rarely diagnosed before 5-years-old. Those with disease onset at a very young age are predicted by a higher genetic risk and a more severe phenotype. We performed whole-exome sequencing to survey the genetic etiologies and clinical manifestations in patients fulfilling 2012 SLICC SLE classification criteria before the age of 5. CASE PRESENTATION Among the 184 childhood-onset SLE patients regularly followed in a tertiary medical center in Taiwan, 7 cases (3.8%) of which onset ≦ 5 years of age were identified for characteristic review and genetic analysis. Compared to those onset at elder age, cases onset before the age of 5 are more likely to suffer from proliferative glomerulonephritis, renal thrombotic microangiopathy, neuropsychiatric disorder and failure to thrive. Causative genetic etiologies were identified in 3. In addition to the abundance of autoantibodies, patient with homozygous TREX1 (c.292_293 ins A) mutation presented with chilblain-like skin lesions, peripheral spasticity, endocrinopathy and experienced multiple invasive infections. Patient with SLC7A7 (c.625 + 1 G > A) mutation suffered from profound glomerulonephritis with full-house glomerular deposits as well as hyperammonemia, metabolic acidosis and episodic conscious disturbance. Two other cases harbored variants in lupus associating genes C1s, C2, DNASE1 and DNASE1L3 and another with CFHR4. Despite fulfilling the classification criteria for lupus, many of the patients required treatments beyond conventional therapy. CONCLUSIONS Genetic etiologies and lupus mimickers were found among a substantial proportion of patients suspected with early-onset SLE. Detail clinical evaluation and genetic testing are important for tailored care and personalized treatment.
Collapse
Affiliation(s)
- Wan-Fang Lee
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, No.5 Fu-Hsing St. Kuei Shan Hsiang, Taoyuan, Taoyuan Hsien, Taiwan
| | - Wen-Lang Fan
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Min-Hua Tseng
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jing-Long Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, No.5 Fu-Hsing St. Kuei Shan Hsiang, Taoyuan, Taoyuan Hsien, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei city, Taiwan.
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, No.5 Fu-Hsing St. Kuei Shan Hsiang, Taoyuan, Taoyuan Hsien, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
28
|
Karathanasis DK, Rapti A, Nezos A, Skarlis C, Kilidireas C, Mavragani CP, Evangelopoulos ME. Differentiating central nervous system demyelinating disorders: The role of clinical, laboratory, imaging characteristics and peripheral blood type I interferon activity. Front Pharmacol 2022; 13:898049. [PMID: 36034800 PMCID: PMC9412761 DOI: 10.3389/fphar.2022.898049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: While multiple sclerosis (MS) is considered the cornerstone of autoimmune demyelinating CNS disorders, systemic autoimmune diseases (SADs) are important MS mimickers. We sought to explore whether distinct clinical, laboratory, and imaging characteristics along with quantitation of peripheral blood type I interferon (IFN) activity could aid in differentiating between them. Methods: A total of 193 consecutive patients with imaging features suggesting the presence of CNS demyelinating disease with or without relevant clinical manifestations underwent full clinical, laboratory, and imaging evaluation, including testing for specific antibodies against 15 cellular antigens. Expression analysis of type I IFN-inducible genes (MX-1, IFIT-1, and IFI44) was performed by real-time PCR, and a type I IFN score, reflecting type I IFN peripheral activity, was calculated. After joint neurological/rheumatological evaluation and 1 year of follow-up, patients were classified into MS spectrum and CNS autoimmune disorders. Results: While 66.3% (n = 128) of the patients were diagnosed with MS spectrum disorders (predominantly relapsing–remitting MS), 24.9% (n = 48) were included in the CNS autoimmune group, and out of those, one-fourth met the criteria for SAD (6.7% of the cohort, n = 13); the rest (18.1% of the cohort, n = 35), despite showing evidence of systemic autoimmunity, did not fulfill SAD criteria and comprised the “demyelinating disease with autoimmune features” (DAF) subgroup. Compared to the MS spectrum, CNS autoimmune patients were older, more frequently females, with increased rates of hypertension/hyperlipidemia, family history of autoimmunity, cortical dysfunction, anti-nuclear antibody titers ≥1/320, anticardiolipin IgM positivity, and atypical for MS magnetic resonance imaging lesions. Conversely, lower rates of infratentorial and callosal MRI lesions, CSF T2 oligoclonal bands, and IgG-index positivity were observed in CNS autoimmune patients. Patients fulfilling SAD criteria, but not the DAF group, had significantly higher peripheral blood type I IFN scores at baseline compared to MS spectrum [median (IQR)]: 50.18 (152.50) vs. −0.64 (6.75), p-value: 0.0001. Conclusion: Our study suggests that underlying systemic autoimmunity is not uncommon in patients evaluated for possible CNS demyelination. Distinct clinical, imaging and laboratory characteristics can aid in early differentiation between MS and CNS-involving systemic autoimmunity allowing for optimal therapeutic strategies. Activated type I IFN pathway could represent a key mediator among MS-like-presenting SADs and therefore a potential therapeutic target.
Collapse
Affiliation(s)
- Dimitris K. Karathanasis
- First Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Rapti
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P. Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Fourth Department of Internal Medicine, School of Medicine, University Hospital Attikon, National and Kapodistrian University of Athens, Haidari, Greece
- Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Eleftheria Evangelopoulos
- First Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Maria Eleftheria Evangelopoulos,
| |
Collapse
|
29
|
Appenzeller S, Pereira DR, Julio PR, Reis F, Rittner L, Marini R. Neuropsychiatric manifestations in childhood-onset systemic lupus erythematosus. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:571-581. [PMID: 35841921 DOI: 10.1016/s2352-4642(22)00157-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Neuropsychiatric manifestations occur frequently and are challenging to diagnose in childhood-onset systemic lupus erythematosus (SLE). Most patients with childhood-onset SLE have neuropsychiatric events in the first 2 years of disease. 30-70% of patients present with more than one neuropsychiatric event during their disease course, with an average of 2-3 events per person. These symptoms are associated with disability and mortality. Serum, cerebrospinal fluid, and neuroimaging findings have been described in childhood-onset SLE; however, only a few have been validated as biomarkers for diagnosis, monitoring response to treatment, or prognosis. The aim of this Review is to describe the genetic risk, clinical and neuroimaging characteristics, and current treatment strategies of neuropsychiatric manifestations in childhood-onset SLE.
Collapse
Affiliation(s)
- Simone Appenzeller
- Department of Orthopedics, Rheumatology, and Traumatology, University of Campinas, Campinas, Brazil; Rheumatology Laboratory, University of Campinas, Campinas, Brazil.
| | - Danilo Rodrigues Pereira
- Rheumatology Laboratory, University of Campinas, Campinas, Brazil; Medical Physiopathology Graduate Program, University of Campinas, Campinas, Brazil
| | - Paulo Rogério Julio
- Rheumatology Laboratory, University of Campinas, Campinas, Brazil; Child and Adolescent Health Graduate Program, University of Campinas, Campinas, Brazil
| | - Fabiano Reis
- Department of Radiology, University of Campinas, Campinas, Brazil
| | - Leticia Rittner
- School of Medical Science; School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | - Roberto Marini
- Pediatric Rheumatology Unit, Department of Pediatrics, University of Campinas, Campinas, Brazil
| |
Collapse
|
30
|
Mönkäre S, Kuuluvainen L, Schleutker J, Bras J, Roine S, Pöyhönen M, Guerreiro R, Myllykangas L. Genetic analysis reveals novel variants for vascular cognitive impairment. Acta Neurol Scand 2022; 146:42-50. [PMID: 35307828 PMCID: PMC9314039 DOI: 10.1111/ane.13613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The genetic background of vascular cognitive impairment (VCI) is poorly understood compared to other dementia disorders. The aim of the study was to investigate the genetic background of VCI in a well-characterized Finnish cohort. MATERIALS & METHODS Whole-exome sequencing (WES) was applied in 45 Finnish VCI patients. Copy-number variant (CNV) analysis using a SNP array was performed in 80 VCI patients. This study also examined the prevalence of variants at the miR-29 binding site of COL4A1 in 73 Finnish VCI patients. RESULTS In 40% (18/45) of the cases, WES detected possibly causative variants in genes associated with cerebral small vessel disease (CSVD) or other neurological or stroke-related disorders. These variants included HTRA1:c.847G>A p.(Gly283Arg), TREX1:c.1079A>G, p.(Tyr360Cys), COLGALT1:c.1411C>T, p.(Arg471Trp), PRNP: c.713C>T, p.(Pro238Leu), and MTHFR:c.1061G>C, p.(Gly354Ala). Additionally, screening of variants in the 3'UTR of COL4A1 gene in a sub-cohort of 73 VCI patients identified a novel variant c.*36T>A. CNV analysis showed that pathogenic CNVs are uncommon in VCI. CONCLUSIONS These data support pathogenic roles of variants in HTRA1, TREX1 and in the 3'UTR of COL4A1 in CSVD and VCI, and suggest that vascular pathogenic mechanisms are linked to neurodegeneration, expanding the understanding of the genetic background of VCI.
Collapse
Affiliation(s)
- Saana Mönkäre
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
- Laboratory DivisionDepartment of Medical Genetics, GenomicsTurku University HospitalTurkuFinland
| | - Liina Kuuluvainen
- Diagnostic CenterDepartment of Clinical GeneticsHelsinki University HospitalHelsinkiFinland
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
| | - Johanna Schleutker
- Laboratory DivisionDepartment of Medical Genetics, GenomicsTurku University HospitalTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Jose Bras
- Center for Neurodegenerative ScienceVan Andel InstituteGrand RapidsMichiganUSA
- Division of Psychiatry and Behavioral MedicineMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - Susanna Roine
- NeurocenterDepartment of Cerebrovascular DiseasesTurku University HospitalTurkuFinland
| | - Minna Pöyhönen
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
- HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| | - Rita Guerreiro
- Center for Neurodegenerative ScienceVan Andel InstituteGrand RapidsMichiganUSA
- Division of Psychiatry and Behavioral MedicineMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - Liisa Myllykangas
- HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
- Department of PathologyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
31
|
Ouyang W, Wang S, Hu J, Liu Z. Can the cGAS-STING Pathway Play a Role in the Dry Eye? Front Immunol 2022; 13:929230. [PMID: 35812407 PMCID: PMC9263829 DOI: 10.3389/fimmu.2022.929230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
Dry eye is one of the most common ocular surface diseases in the world and seriously affects the quality of life of patients. As an immune-related disease, the mechanism of dry eye has still not been fully elucidated. The cGAS-STING pathway is a recently discovered pathway that plays an important role in autoimmune and inflammatory diseases by recognizing dsDNA. As an important signal to initiate inflammation, the release of dsDNA is associated with dry eye. Herein, we focused on the pathophysiology of the immune-inflammatory response in the pathogenesis of dry eye, attempted to gain insight into the involvement of dsDNA in the dry eye immune response, and investigated the mechanism of the cGAS-STING pathway involved in the immune-inflammatory response. We further proposed that the cGAS-STING pathway may participate in dry eye as a new mechanism linking dry eye and the immune-inflammatory response, thus providing a new direction for the mechanistic exploration of dry eye.
Collapse
Affiliation(s)
- Weijie Ouyang
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Shoubi Wang
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Xiamen University, Xiamen, China
- Xiamen Clinical Medical Center for Endocrine and Metabolic Diseases, Xiamen University, Xiamen, China
- Xiamen Diabetes Prevention and Treatment Center, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Diabetes Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiaoyue Hu
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
- *Correspondence: Zuguo Liu, ; Jiaoyue Hu,
| | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, China
- *Correspondence: Zuguo Liu, ; Jiaoyue Hu,
| |
Collapse
|
32
|
Lyon E, Temple-Smolkin RL, Hegde M, Gastier-Foster JM, Palomaki GE, Richards CS. An Educational Assessment of Evidence Used for Variant Classification: A Report of the Association for Molecular Pathology. J Mol Diagn 2022; 24:555-565. [PMID: 35429647 DOI: 10.1016/j.jmoldx.2021.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/12/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022] Open
Abstract
The Association for Molecular Pathology Variant Interpretation Testing Among Laboratories (VITAL) Working Group convened to evaluate the Standards and Guidelines for the Interpretation of Sequence Variants implementation into clinical practice, identify problematic classification rules, and define implementation challenges. Variants and associated clinical information were provided to volunteer respondents. Participant variant classifications were compared with intended consensus-derived classifications of the Working Group. The 24 variant challenges received 1379 responses; 1119 agreed with the intended response (81%; 95% CI, 79% to 83%). Agreement ranged from 44% to 100%, with 16 challenges (67%; 47% to 82%) reaching consensus (≥80% agreement). Participant classifications were also compared to a calculated interpretation of the ACMG Guidelines using the participant-reported criteria as input. The 24 variant challenges had 1368 responses with specific evidence provided and 1121 (82%; 80% to 84%) agreed with the calculated interpretation. Agreement for challenges ranged from 63% to 98%; 15 (63%; 43% to 79%) reaching consensus. Among 81 individual participants, 32 (40%; 30% to 50%) reached agreement with at least 80% of the intended classifications and 42 (52%; 41% to 62%) with the calculated classifications. This study demonstrated that although variant classification remains challenging, published guidelines are being utilized and adapted to improve variant calling consensus. This study identified situations where clarifications are warranted and provides a model for competency assessment.
Collapse
Affiliation(s)
- Elaine Lyon
- The Variant Interpretation Testing Among Laboratories (VITAL) Working Group of the Clinical Practice Committee, Association for Molecular Pathology (AMP), Rockville, Maryland; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | | | - Madhuri Hegde
- The Variant Interpretation Testing Among Laboratories (VITAL) Working Group of the Clinical Practice Committee, Association for Molecular Pathology (AMP), Rockville, Maryland; Global Genetics Laboratory, PerkinElmer Genomics, Pittsburgh, Pennsylvania
| | - Julie M Gastier-Foster
- The Variant Interpretation Testing Among Laboratories (VITAL) Working Group of the Clinical Practice Committee, Association for Molecular Pathology (AMP), Rockville, Maryland; Departments of Pediatrics and Pathology/Immunology, Baylor College of Medicine, Houston, Texas; Pathology Department, Texas Children's Hospital, Houston, Texas; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Glenn E Palomaki
- The Variant Interpretation Testing Among Laboratories (VITAL) Working Group of the Clinical Practice Committee, Association for Molecular Pathology (AMP), Rockville, Maryland; Department of Pathology and Laboratory Medicine, Women & Infants Hospital and the Alpert Medical School at Brown University, Providence, Rhode Island
| | - C Sue Richards
- The Variant Interpretation Testing Among Laboratories (VITAL) Working Group of the Clinical Practice Committee, Association for Molecular Pathology (AMP), Rockville, Maryland; Department of Molecular and Medical Genetics and Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
33
|
Concepts in lupus pathophysiology: Lessons learned from disease across the spectrum. Clin Immunol 2022; 238:109021. [DOI: 10.1016/j.clim.2022.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
|
34
|
Wang Q, Du J, Hua S, Zhao K. TREX1 Plays Multiple Roles in Human Diseases. Cell Immunol 2022; 375:104527. [DOI: 10.1016/j.cellimm.2022.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/12/2022] [Accepted: 04/10/2022] [Indexed: 11/15/2022]
|
35
|
X-Chromosome Inactivation and Related Diseases. Genet Res (Camb) 2022; 2022:1391807. [PMID: 35387179 PMCID: PMC8977309 DOI: 10.1155/2022/1391807] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
X-chromosome inactivation (XCI) is the form of dosage compensation in mammalian female cells to balance X-linked gene expression levels of the two sexes. Many diseases are related to XCI due to inactivation escape and skewing, and the symptoms and severity of these diseases also largely depend on the status of XCI. They can be divided into 3 types: X-linked diseases, diseases that are affected by XCI escape, and X-chromosome aneuploidy. Here, we review representative diseases in terms of their definition, symptoms, and XCI’s role in the pathogenesis of these diseases.
Collapse
|
36
|
Chowdhury A, Witte S, Aich A. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Front Cell Dev Biol 2022; 10:796066. [PMID: 35223833 PMCID: PMC8873532 DOI: 10.3389/fcell.2022.796066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria, in symbiosis with the host cell, carry out a wide variety of functions from generating energy, regulating the metabolic processes, cell death to inflammation. The most prominent function of mitochondria relies on the oxidative phosphorylation (OXPHOS) system. OXPHOS heavily influences the mitochondrial-nuclear communication through a plethora of interconnected signaling pathways. Additionally, owing to the bacterial ancestry, mitochondria also harbor a large number of Damage Associated Molecular Patterns (DAMPs). These molecules relay the information about the state of the mitochondrial health and dysfunction to the innate immune system. Consequently, depending on the intracellular or extracellular nature of detection, different inflammatory pathways are elicited. One group of DAMPs, the mitochondrial nucleic acids, hijack the antiviral DNA or RNA sensing mechanisms such as the cGAS/STING and RIG-1/MAVS pathways. A pro-inflammatory response is invoked by these signals predominantly through type I interferon (T1-IFN) cytokines. This affects a wide range of organ systems which exhibit clinical presentations of auto-immune disorders. Interestingly, tumor cells too, have devised ingenious ways to use the mitochondrial DNA mediated cGAS-STING-IRF3 response to promote neoplastic transformations and develop tumor micro-environments. Thus, mitochondrial nucleic acid-sensing pathways are fundamental in understanding the source and nature of disease initiation and development. Apart from the pathological interest, recent studies also attempt to delineate the structural considerations for the release of nucleic acids across the mitochondrial membranes. Hence, this review presents a comprehensive overview of the different aspects of mitochondrial nucleic acid-sensing. It attempts to summarize the nature of the molecular patterns involved, their release and recognition in the cytoplasm and signaling. Finally, a major emphasis is given to elaborate the resulting patho-physiologies.
Collapse
Affiliation(s)
- Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Steffen Witte
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging, from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
37
|
Lindblom J, Mohan C, Parodis I. Biomarkers in Neuropsychiatric Systemic Lupus Erythematosus: A Systematic Literature Review of the Last Decade. Brain Sci 2022; 12:192. [PMID: 35203955 PMCID: PMC8869794 DOI: 10.3390/brainsci12020192] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Nervous system involvement in patients with SLE, termed neuropsychiatric SLE (NPSLE), constitutes a diagnostic challenge, and its management is still poorly optimised. This review summarises recent insights over the past decade in laboratory biomarkers of diagnosis, monitoring, and prognosis of NPSLE. An initial systematic search in the Medline and Web of Science was conducted to guide the selection of articles. Emerging diagnostic biomarkers in NPSLE that displayed satisfactory ability to discriminate between NPSLE and controls include serum interleukin (IL)-6, microRNA (miR)-23a, miR-155, and cerebrospinal fluid (CSF) α-Klotho. CSF lipocalin-2, macrophage colony-stimulating factor (M-CSF), and immunoglobulin (Ig)M also displayed such ability in two ethnically diverse cohorts. Serum interferon (IFN)-α and neuron specific enolase (NSE) were recently reported to moderately correlate with disease activity in patients with active NPSLE. CSF IL-8, IL-13, and granulocyte colony-stimulating factor (G-CSF) exhibited excellent sensitivity, yet poorer specificity, as predictors of response to therapy in patients with NPSLE. The overall lack of validation studies across multiple and diverse cohorts necessitates further and well-concerted investigations. Nevertheless, we propound CSF lipocalin 2 among molecules that hold promise as reliable diagnostic biomarkers in NPSLE.
Collapse
Affiliation(s)
- Julius Lindblom
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute and Karolinska University Hospital, 17176 Stockholm, Sweden;
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute and Karolinska University Hospital, 17176 Stockholm, Sweden;
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, 70182 Örebro, Sweden
| |
Collapse
|
38
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
The Immunogenetics of Systemic Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:259-298. [DOI: 10.1007/978-3-030-92616-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Krusche M, Kallinich T. [Autoinflammation-differences between children and adults]. Z Rheumatol 2021; 81:45-54. [PMID: 34762171 DOI: 10.1007/s00393-021-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 10/19/2022]
Abstract
Autoinflammatory diseases present as multisystemic inflammation and often manifest in early childhood. In contrast, in a few diseases, e.g., the recently described VEXAS (vacuoles, E1 enzyme, X‑linked, autoinflammatory, somatic) syndrome, the first symptoms occur exclusively in adulthood. This article describes how the phenotypic expression and severity of individual autoinflammatory diseases differ depending on age. Furthermore, differences in the development of organ damage in children and adults are pointed out. In addition to the hereditary periodic fever syndromes, the clinical picture of deficiency of adenosine deaminase 2, the interferonopathies, periodic fever, aphthous stomatitis, pharyngitis, and adenitis syndrome as well as VEXAS and Schnitzler syndromes are highlighted.
Collapse
Affiliation(s)
- Martin Krusche
- Rheumatologie und entzündliche Systemerkrankungen, III. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Tilmann Kallinich
- Klinik für Pädiatrie mit Schwerpunkt Pneumologie, Immunologie und Intensivmedizin, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland. .,SozialpädiatischesZentrum, Charité - Universitätsmedizin Berlin, Berlin, Deutschland. .,Berlin Institute of Health, Berlin, Deutschland. .,Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland.
| |
Collapse
|
41
|
Regulation of cGAS-STING pathway - Implications for systemic lupus erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:173-184. [PMID: 36465073 PMCID: PMC9524788 DOI: 10.2478/rir-2021-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022]
Abstract
Abstract
Type I interferon (IFN-I) is implicated in the pathogenesis of systemic lupus erythematosus (SLE) and the closely associated monogenic autoinflammatory disorders termed the “interferonopathies.” Recently, the cytosolic DNA sensor cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have been identified as having important, if not central, roles in driving IFN-I expression in response to self-DNA. This review highlights the many ways in which this pathway is regulated in order to prevent self-DNA recognition and underlines the importance of maintaining tight control in order to prevent autoimmune disease. We will discuss the murine and human studies that have implicated the cGAS-STING pathway as being an important contributor to breakdown in tolerance in SLE and highlight the potential therapeutic application of this knowledge for the treatment of SLE.
Collapse
|
42
|
Papadopoulos VE, Skarlis C, Evangelopoulos ME, Mavragani CP. Type I interferon detection in autoimmune diseases: challenges and clinical applications. Expert Rev Clin Immunol 2021; 17:883-903. [PMID: 34096436 DOI: 10.1080/1744666x.2021.1939686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Accumulating data highlights that the dysregulation of type I interferon (IFN) pathways plays a central role in the pathogenesis of several systemic and organ-specific autoimmune diseases. Advances in understanding the role of type I IFNs in these disorders can lead to targeted drug development as well as establishing potential disease biomarkers. AREAS COVERED Here, we summarize current knowledge regarding the role of type I IFNs in the major systemic, as well as organ-specific, autoimmune disorders, including prominent inflammatory CNS disorders like multiple sclerosis. EXPERT OPINION Type I IFN involvement and its clinical associations in a wide spectrum of autoimmune diseases represents a promising area for research aiming to unveil common pathogenetic pathways in systemic and organ-specific autoimmunity.
Collapse
Affiliation(s)
- Vassilis E Papadopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
43
|
d'Angelo DM, Di Filippo P, Breda L, Chiarelli F. Type I Interferonopathies in Children: An Overview. Front Pediatr 2021; 9:631329. [PMID: 33869112 PMCID: PMC8044321 DOI: 10.3389/fped.2021.631329] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 01/01/2023] Open
Abstract
Notable advances in gene sequencing methods in recent years have permitted enormous progress in the phenotypic and genotypic characterization of autoinflammatory syndromes. Interferonopathies are a recent group of inherited autoinflammatory diseases, characterized by a dysregulation of the interferon pathway, leading to constitutive upregulation of its activation mechanisms or downregulation of negative regulatory systems. They are clinically heterogeneous, but some peculiar clinical features may lead to suspicion: a familial "idiopathic" juvenile arthritis resistant to conventional treatments, an early necrotizing vasculitis, a non-infectious interstitial lung disease, and a panniculitis associated or not with a lipodystrophy may represent the "interferon alarm bells." The awareness of this group of diseases represents a challenge for pediatricians because, despite being rare, a differential diagnosis with the most common childhood rheumatological and immunological disorders is mandatory. Furthermore, the characterization of interferonopathy molecular pathogenetic mechanisms is allowing important steps forward in other immune dysregulation diseases, such as systemic lupus erythematosus and inflammatory myositis, implementing the opportunity of a more effective target therapy.
Collapse
Affiliation(s)
| | | | - Luciana Breda
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy
- Center of Excellence on Aging, University of Chieti, Chieti, Italy
| |
Collapse
|
44
|
McWhirter SM, Jefferies CA. Nucleic Acid Sensors as Therapeutic Targets for Human Disease. Immunity 2021; 53:78-97. [PMID: 32668230 DOI: 10.1016/j.immuni.2020.04.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Innate immune sensors that detect nucleic acids are attractive targets for therapeutic intervention because of their diverse roles in many disease processes. In detecting RNA and DNA from either self or non-self, nucleic acid sensors mediate the pathogenesis of many autoimmune and inflammatory conditions. Despite promising pre-clinical data and investigational use in the clinic, relatively few drugs targeting nucleic acid sensors are approved for therapeutic use. Nevertheless, there is growing appreciation for the untapped potential of nucleic acid sensors as therapeutic targets, driven by the need for better therapies for cancer, infectious diseases, and autoimmune disorders. This review highlights the diverse mechanisms by which nucleic acid sensors are activated and exert their biological effects in the context of various disease settings. We discuss current therapeutic strategies utilizing agonists and antagonists targeting nucleic acid sensors to treat infectious disease, cancer, and autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
| | - Caroline A Jefferies
- Department of Biomedical Sciences and Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
45
|
Pang H, Xia Y, Luo S, Huang G, Li X, Xie Z, Zhou Z. Emerging roles of rare and low-frequency genetic variants in type 1 diabetes mellitus. J Med Genet 2021; 58:289-296. [PMID: 33753534 PMCID: PMC8086251 DOI: 10.1136/jmedgenet-2020-107350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is defined as an autoimmune disorder and has enormous complexity and heterogeneity. Although its precise pathogenic mechanisms are obscure, this disease is widely acknowledged to be precipitated by environmental factors in individuals with genetic susceptibility. To date, the known susceptibility loci, which have mostly been identified by genome-wide association studies, can explain 80%–85% of the heritability of T1DM. Researchers believe that at least a part of its missing genetic component is caused by undetected rare and low-frequency variants. Most common variants have only small to modest effect sizes, which increases the difficulty of dissecting their functions and restricts their potential clinical application. Intriguingly, many studies have indicated that rare and low-frequency variants have larger effect sizes and play more significant roles in susceptibility to common diseases, including T1DM, than common variants do. Therefore, better recognition of rare and low-frequency variants is beneficial for revealing the genetic architecture of T1DM and for providing new and potent therapeutic targets for this disease. Here, we will discuss existing challenges as well as the great significance of this field and review current knowledge of the contributions of rare and low-frequency variants to T1DM.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
46
|
Santa P, Garreau A, Serpas L, Ferriere A, Blanco P, Soni C, Sisirak V. The Role of Nucleases and Nucleic Acid Editing Enzymes in the Regulation of Self-Nucleic Acid Sensing. Front Immunol 2021; 12:629922. [PMID: 33717156 PMCID: PMC7952454 DOI: 10.3389/fimmu.2021.629922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Detection of microbial nucleic acids by the innate immune system is mediated by numerous intracellular nucleic acids sensors. Upon the detection of nucleic acids these sensors induce the production of inflammatory cytokines, and thus play a crucial role in the activation of anti-microbial immunity. In addition to microbial genetic material, nucleic acid sensors can also recognize self-nucleic acids exposed extracellularly during turn-over of cells, inefficient efferocytosis, or intracellularly upon mislocalization. Safeguard mechanisms have evolved to dispose of such self-nucleic acids to impede the development of autoinflammatory and autoimmune responses. These safeguard mechanisms involve nucleases that are either specific to DNA (DNases) or RNA (RNases) as well as nucleic acid editing enzymes, whose biochemical properties, expression profiles, functions and mechanisms of action will be detailed in this review. Fully elucidating the role of these enzymes in degrading and/or processing of self-nucleic acids to thwart their immunostimulatory potential is of utmost importance to develop novel therapeutic strategies for patients affected by inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Santa
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Anne Garreau
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | | | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| |
Collapse
|
47
|
Ukadike KC, Mustelin T. Implications of Endogenous Retroelements in the Etiopathogenesis of Systemic Lupus Erythematosus. J Clin Med 2021; 10:856. [PMID: 33669709 PMCID: PMC7922054 DOI: 10.3390/jcm10040856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. While its etiology remains elusive, current understanding suggests a multifactorial process with contributions by genetic, immunologic, hormonal, and environmental factors. A hypothesis that combines several of these factors proposes that genomic elements, the L1 retrotransposons, are instrumental in SLE pathogenesis. L1 retroelements are transcriptionally activated in SLE and produce two proteins, ORF1p and ORF2p, which are immunogenic and can drive type I interferon (IFN) production by producing DNA species that activate cytosolic DNA sensors. In addition, these two proteins reside in RNA-rich macromolecular assemblies that also contain well-known SLE autoantigens like Ro60. We surmise that cells expressing L1 will exhibit all the hallmarks of cells infected by a virus, resulting in a cellular and humoral immune response similar to those in chronic viral infections. However, unlike exogenous viruses, L1 retroelements cannot be eliminated from the host genome. Hence, dysregulated L1 will cause a chronic, but perhaps episodic, challenge for the immune system. The clinical and immunological features of SLE can be at least partly explained by this model. Here we review the support for, and the gaps in, this hypothesis of SLE and its potential for new diagnostic, prognostic, and therapeutic options in SLE.
Collapse
Affiliation(s)
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA;
| |
Collapse
|
48
|
Jabalameli N, Rajabi F, Firooz A, Rezaei N. The Overlap between Genetic Susceptibility to COVID-19 and Skin Diseases. Immunol Invest 2021; 51:1087-1094. [PMID: 33494631 DOI: 10.1080/08820139.2021.1876086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Navid Jabalameli
- Network of Dermatology Research (NDR), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fateme Rajabi
- Network of Dermatology Research (NDR), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Center for Research & Training in Skin Diseases & Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Firooz
- Center for Research & Training in Skin Diseases & Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
49
|
Smith JA. STING, the Endoplasmic Reticulum, and Mitochondria: Is Three a Crowd or a Conversation? Front Immunol 2021; 11:611347. [PMID: 33552072 PMCID: PMC7858662 DOI: 10.3389/fimmu.2020.611347] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
The anti-viral pattern recognition receptor STING and its partnering cytosolic DNA sensor cGAS have been increasingly recognized to respond to self DNA in multiple pathologic settings including cancer and autoimmune disease. Endogenous DNA sources that trigger STING include damaged nuclear DNA in micronuclei and mitochondrial DNA (mtDNA). STING resides in the endoplasmic reticulum (ER), and particularly in the ER-mitochondria associated membranes. This unique location renders STING well poised to respond to intracellular organelle stress. Whereas the pathways linking mtDNA and STING have been addressed recently, the mechanisms governing ER stress and STING interaction remain more opaque. The ER and mitochondria share a close anatomic and functional relationship, with mutual production of, and inter-organelle communication via calcium and reactive oxygen species (ROS). This interdependent relationship has potential to both generate the essential ligands for STING activation and to regulate its activity. Herein, we review the interactions between STING and mitochondria, STING and ER, ER and mitochondria (vis-à-vis calcium and ROS), and the evidence for 3-way communication.
Collapse
Affiliation(s)
- Judith A Smith
- Department of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
50
|
Rutherford HA, Kasher PR, Hamilton N. Dirty Fish Versus Squeaky Clean Mice: Dissecting Interspecies Differences Between Animal Models of Interferonopathy. Front Immunol 2021; 11:623650. [PMID: 33519829 PMCID: PMC7843416 DOI: 10.3389/fimmu.2020.623650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Autoimmune and autoinflammatory diseases are rare but often devastating disorders, underpinned by abnormal immune function. While some autoimmune disorders are thought to be triggered by a burden of infection throughout life, others are thought to be genetic in origin. Among these heritable disorders are the type I interferonopathies, including the rare Mendelian childhood-onset encephalitis Aicardi-Goutières syndrome. Patients with Aicardi Goutières syndrome are born with defects in enzymes responsible for nucleic acid metabolism and develop devastating white matter abnormalities resembling congenital cytomegalovirus brain infection. In some cases, common infections preceded the onset of the disease, suggesting immune stimulation as a potential trigger. Thus, the antiviral immune response has been actively studied in an attempt to provide clues on the pathological mechanisms and inform on the development of therapies. Animal models have been fundamental in deciphering biological mechanisms in human health and disease. Multiple rodent and zebrafish models are available to study type I interferonopathies, which have advanced our understanding of the human disease by identifying key pathological pathways and cellular drivers. However, striking differences in phenotype have also emerged between these vertebrate models, with zebrafish models recapitulating key features of the human neuropathology often lacking in rodents. In this review, we compare rodent and zebrafish models, and summarize how they have advanced our understanding of the pathological mechanisms in Aicardi Goutières syndrome and similar disorders. We highlight recent discoveries on the impact of laboratory environments on immune stimulation and how this may inform the differences in pathological severity between mouse and zebrafish models of type I interferonopathies. Understanding how these differences arise will inform the improvement of animal disease modeling to accelerate progress in the development of therapies for these devastating childhood disorders.
Collapse
Affiliation(s)
- Holly A. Rutherford
- The Bateson Centre, Institute of Neuroscience, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Paul R. Kasher
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, United Kingdom
| | - Noémie Hamilton
- The Bateson Centre, Institute of Neuroscience, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|