1
|
Bolko L, Anquetil C, Llibre A, Maillard S, Amelin D, Dorgham K, Bondet V, Landon-Cardinal O, Toquet S, Mariampillai K, Malatre S, Mahoudeau A, Hervier B, Rodero M, Gorochov G, Duffy D, Benveniste O, Allenbach Y. Ultrasensitive interferons quantification reveals different cytokine profile secretion in inflammatory myopathies and can serve as biomarkers of activity in dermatomyositis. Front Immunol 2025; 16:1529582. [PMID: 40013143 PMCID: PMC11861187 DOI: 10.3389/fimmu.2025.1529582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/06/2025] [Indexed: 02/28/2025] Open
Abstract
Objective The objective of this study was to evaluate the presence of different types of interferon in idiopathic inflammatory myopathies (IIM) and their subgroups using ultrasensitive cytokine detection techniques (SIMOA) and to assess their potential as activity biomarkers. Methods Disease activity was measured at the time of serum collection and assessed by manual muscle testing eight (MMT8 score 0-150), muscle enzymes to calculate the Physician Global Assessment (PGA) (0-10). Patients were classified as active if PGA>5.Serum IFN-α and IFN-γ levels was measured using the single molecule array (SIMOA) technique. Serum IFN-β level was measured by Elisa. Correlation between IFN levels and disease activity were performed. Results We included 242 IIM patients and found a good correlation between type I Interferon (IFN) and dermatomyositis disease activity. IFN-α and IFN-β was highly correlated with disease activity (r=0.76 and r=0,58). To evaluate whether the different types of Interferons could serve as biomarkers of activity, we generated ROC curves. Patients with active DM had a higher median IFN-α level (0.49 pg/ml [0.1-3.7]) compared with non-active patients (0.03 pg/ml [0.01-0.07] p<0.05). The area under the curve was 0.90 IC95 (0.76-0.97) p<0.05. Furthermore, Myositis-specific antibodies appear to be associated with a different secretion profile; patients with anti-MDA 5 antibodies had higher level of IFN-α than most other antibodies (6.58 vs 0.14 p<0.005). NXP2 had higher IFN-β level than patients with Tif1γ antibodies. Conclusion Serum IFN-α level measured by SIMOA is a reliable biomarker of DM activity. Myositis-specific antibodies appear to be associated with a different secretion profile. This data needs to be confirmed in order to select the good therapeutics strategies in DM.
Collapse
Affiliation(s)
- Loïs Bolko
- Rheumatology, Maison Blanche Hospital, Reims, France
- Department of Internal Medicine and Clinical Immunology, National Reference Center for Rare NeuroMuscular Disorders, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Association Institut de Myologie, Center of Research in Myology, UMRS, Paris, France
| | - Céline Anquetil
- Department of Internal Medicine and Clinical Immunology, National Reference Center for Rare NeuroMuscular Disorders, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Association Institut de Myologie, Center of Research in Myology, UMRS, Paris, France
| | - Alba Llibre
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Solène Maillard
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Association Institut de Myologie, Center of Research in Myology, UMRS, Paris, France
| | - Damien Amelin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Association Institut de Myologie, Center of Research in Myology, UMRS, Paris, France
| | - Karim Dorgham
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Océane Landon-Cardinal
- Department of Internal Medicine and Clinical Immunology, National Reference Center for Rare NeuroMuscular Disorders, Pitié-Salpêtrière Hospital, Paris, France
- Department of Medicine, University of Montreal, Montreal, QC, Canada
- Division of Rheumatology, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC, Canada
| | - Ségolène Toquet
- Department of Internal Medicine and Clinical Immunology, National Reference Center for Rare NeuroMuscular Disorders, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Association Institut de Myologie, Center of Research in Myology, UMRS, Paris, France
| | - Kuberaka Mariampillai
- Department of Internal Medicine and Clinical Immunology, National Reference Center for Rare NeuroMuscular Disorders, Pitié-Salpêtrière Hospital, Paris, France
| | - Samuel Malatre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Association Institut de Myologie, Center of Research in Myology, UMRS, Paris, France
| | - Alexandrine Mahoudeau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Association Institut de Myologie, Center of Research in Myology, UMRS, Paris, France
| | - Baptiste Hervier
- Department of Internal Medicine and Clinical Immunology, National Reference Center for Rare NeuroMuscular Disorders, Pitié-Salpêtrière Hospital, Paris, France
| | - Mathieu Rodero
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, Centre National de la Recherche Scientifique (CNRS), Paris Cité University, Paris, France
| | - Guy Gorochov
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, National Reference Center for Rare NeuroMuscular Disorders, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Association Institut de Myologie, Center of Research in Myology, UMRS, Paris, France
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunology, National Reference Center for Rare NeuroMuscular Disorders, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Association Institut de Myologie, Center of Research in Myology, UMRS, Paris, France
| |
Collapse
|
2
|
Stemmerik MG, Tasca G, Gilhus NE, Servais L, Vicino A, Maggi L, Sansone V, Vissing J. Biological biomarkers in muscle diseases relevant for follow-up and evaluation of treatment. Brain 2025; 148:363-375. [PMID: 39397743 DOI: 10.1093/brain/awae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Muscle diseases cover a diverse group of disorders that, in most cases, are hereditary. The rarity of the individual muscle diseases provides a challenge for researchers when wanting to establish natural history of the conditions and when trying to develop diagnostic tools, therapies, and outcome measures to evaluate disease progression. With emerging molecular therapies in many genetic muscle diseases, as well as biological therapies for the immune-mediated diseases, biological biomarkers play an important role in both drug development and evaluation. In this review, we focus on the role of biological biomarkers in muscle diseases and discuss their utility as surrogate end points in therapeutic trials. We categorize these as either (i) disease unspecific markers; (ii) markers of specific pathways that may be used for more than one disease; or (iii) disease-specific markers. We also propose that evaluation of specific therapeutic interventions benefits from biological markers that match the intervention.
Collapse
Affiliation(s)
- Mads G Stemmerik
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne NE1 3BZ, UK
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
- Department of Neurology, Haukeland University Hospital, 5009 Bergen, Norway
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 3PT, UK
- Division of Child Neurology, Department of Pediatrics, Centre de Référence des Maladies Neuromusculaires, University Hospital Liège and University of Liège, 4000 Liège, Belgium
| | - Alex Vicino
- Nerve-Muscle Unit, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan MI, Italy
| | - Valeria Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan- ERN for Neuromuscular Diseases, 20162 Milan MI, Italy
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Nath SR, Dasgupta A, Dubey D, Kokesh E, Beecher G, Fadra N, Liewluck T, Pittock S, Doles JD, Litchy W, Milone M. Unraveling calcium dysregulation and autoimmunity in immune mediated rippling muscle disease. Acta Neuropathol Commun 2025; 13:11. [PMID: 39819455 PMCID: PMC11736958 DOI: 10.1186/s40478-025-01926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Rippling Muscle Disease (RMD) is a rare skeletal myopathy characterized by abnormal muscular excitability manifesting with wave-like muscle contractions and percussion-induced muscle mounding. Hereditary RMD is associated with caveolin-3 or cavin-1 mutations. Recently, we identified cavin 4 autoantibodies as a biomarker of immune-mediated RMD (iRMD), though the underlying disease-mechanisms remain poorly understood. Transcriptomic studies were performed on muscle biopsies of 8 patients (5 males; 3 females; ages 26-to-80) with iRMD. Subsequent pathway analysis compared iRMD to human non-disease control and disease control (dermatomyositis) muscle samples. Transcriptomic studies demonstrated changes in key pathways of muscle contraction and development. All iRMD samples had significantly upregulated cavin-4 expression compared to controls, likely compensatory for autoantibody-mediated protein degradation. Proteins involved in muscle relaxation (including SERCA1, PMCA and PLN) were significantly increased in iRMD compared to controls. Comparison of iRMD to dermatomyositis transcriptomics demonstrated significant overlap in immune pathways, and the IL-6 signaling pathway was markedly increased in all iRMD patient muscle biopsies and increased in the majority of iRMD patients' serum. This study represents the first muscle transcriptomic analysis of iRMD patients and dissects underlying disease mechanisms. Increase of sarcolemmal and cellular calcium channels as well as PLN, an inhibitor of the SERCA pump for calcium into the sarcoplasm, likely alters the calcium dynamics in iRMD. These changes in crucial components of muscle relaxation may underlie rippling by altering calcium flux. Our findings provide crucial insights into the differential expression of genes regulating muscle relaxation and highlight potential disease pathomechanisms.
Collapse
Affiliation(s)
- Samir R Nath
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Divyanshu Dubey
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Eileen Kokesh
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Grayson Beecher
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Numrah Fadra
- Division of Computational Biology, Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sean Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - William Litchy
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | |
Collapse
|
4
|
Fiorentino D, Mangold AR, Werth VP, Christopher-Stine L, Femia A, Chu M, Musiek ACM, Sluzevich JC, Graham LV, Fernandez AP, Aggarwal R, Rieger K, Page KM, Li X, Hyde C, Rath N, Sloan A, Oemar B, Banerjee A, Salganik M, Banfield C, Neelakantan S, Beebe JS, Vincent MS, Peeva E, Vleugels RA. Efficacy, safety, and target engagement of dazukibart, an IFNβ specific monoclonal antibody, in adults with dermatomyositis: a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2025; 405:137-146. [PMID: 39798982 DOI: 10.1016/s0140-6736(24)02071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Dermatomyositis is a chronic autoimmune disease with distinctive cutaneous eruptions and muscle weakness, and the pathophysiology is characterised by type I interferon (IFN) dysregulation. This study aims to assess the efficacy, safety, and target engagement of dazukibart, a potent, selective, humanised IgG1 neutralising monoclonal antibody directed against IFNβ, in adults with moderate-to-severe dermatomyositis. METHODS This multicentre, double-blind, randomised, placebo-controlled, phase 2 trial was conducted at 25 university-based hospitals and outpatient sites in Germany, Hungary, Poland, Spain, and the USA. Adults aged 18-80 years with skin-predominant dermatomyositis were enrolled during stages 1, 2, and 2a, and had to have a Cutaneous Dermatomyositis Disease Area and Severity Index-Activity (CDASI-A) score of 14 or more and at least one unsuccessful systemic treatment with standard of care; whereas those with muscle-predominant dermatomyositis were enrolled in stage 3 and had to have active moderate muscle involvement. Patients were randomly assigned using an interactive response technology system to dazukibart 600 mg or placebo in stage 1; dazukibart 600 mg, dazukibart 150 mg, or placebo in stage 2; dazukibart 600 mg then placebo, dazukibart 150 mg then placebo, placebo then dazukibart 600 mg, or placebo then dazukibart 150 mg in stage 2a; and dazukibart 600 mg then placebo or placebo then dazukibart 600 mg in stage 3. For stage 2a and stage 3, treatments were switched at week 12. Patients, investigators, outcome assessors, and funders were masked to the treatment assignment. Dazukibart and placebo were administered intravenously on day 1 every 4 weeks, up to and including week 8 (stages 1 and 2, and stages 2a and 3 for patients starting dazukibart), or on week 12 every 4 weeks, up to and including week 20 (stages 2a and 3 for patients who started placebo and switched to dazukibart). The primary outcome for the skin-predominant cohorts was the change from baseline in CDASI-A score at week 12 assessed in the full analysis set (FAS; stage 1) and the pooled skin FAS (stages 1, 2, and 2a), and safety in the muscle-predominant cohort. This study is registered with ClinicalTrials.gov, NCT03181893. FINDINGS Between Jan 23, 2018, and Feb 23, 2022, 125 adults were assessed and 50 were excluded. 75 patients were randomly assigned and treated (15 to dazukibart 150 mg, 37 to dazukibart 600 mg, and 23 to placebo). Most patients were female (53 [93%] of 57 in the skin-predominant cohort vs 13 [72%] of 18 in the muscle-predominant cohort and four [7%] vs five [28%] were male). In the FAS in stage 1 at week 12, the mean change from baseline in CDASI-A for dazukibart 600 mg was -18·8 (90% CI -21·8 to -15·8; placebo-adjusted difference -14·8 [-20·3 to -9·4]; p<0·0001). In the pooled skin FAS at week 12, the mean change from baseline in CDASI-A for the dazukibart 600 mg group was -19·2 (-21·5 to -16·8; placebo-adjusted difference -16·3 [-20·4 to -12·1]; p<0·0001), whereas the dazukibart 150 mg group was -16·6 (-19·8 to -13·4; placebo-adjusted difference -13·7 [-18·3 to -9·0]; p<0·0001). Treatment-emergent adverse events occurred in 12 (80%) of 15 patients in the dazukibart 150 mg group versus 30 (81%) of 37 in the dazukibart 600 mg group versus 18 (78%) of 23 in the placebo group, with the most common being infections and infestations (two [13%] vs 12 [32%] vs seven [30%]). Four (11%) patients in the dazukibart 150 mg group and one (4%) in the placebo group reported serious adverse events. One patient in stage 3 received dazukibart 600 mg then placebo and died during follow-up due to haemophagocytic lymphohistiocytosis and macrophage activation syndrome. INTERPRETATION Dazukibart resulted in a pronounced reduction in disease activity and was generally well tolerated, supporting IFNβ inhibition as a highly promising therapeutic strategy in adults with dermatomyositis. FUNDING Pfizer.
Collapse
Affiliation(s)
- David Fiorentino
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | - Aaron R Mangold
- Department of Dermatology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Victoria P Werth
- University of Pennsylvania, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Lisa Christopher-Stine
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alisa Femia
- Ronald O Perelman Department of Dermatology, New York University Grossman School of Medicine, New York City, NY, USA
| | | | - Amy C M Musiek
- Division of Dermatology, Washington University School of Medicine, Washington, MO, USA
| | | | - Lauren V Graham
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anthony P Fernandez
- Department of Dermatology and Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Rohit Aggarwal
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kerri Rieger
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ruth Ann Vleugels
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Martín-Torregrosa D, Mansilla-Polo M, Morgado-Carrasco D. Use of Anifrolumab in Systemic Lupus Erythematosus, Cutaneous Lupus Erythematosus, and Other Autoimmune Dermatoses. ACTAS DERMO-SIFILIOGRAFICAS 2025; 116:55-67. [PMID: 38972582 DOI: 10.1016/j.ad.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024] Open
Abstract
Anifrolumab is an inhibitor of the type I interferon receptor subunit 1 (IFNAR1) recently approved for the management of moderate-to-severe systemic lupus erythematosus (SLE). In 2 clinical trials, it has proven effective to treat cutaneous signs. Although anifrolumab has not been indicated for cutaneous lupus erythematosus (CLE), multiple cases and case series (20 publications with a total of 78 patients) have shown good and rapid responses with this drug, both in subacute CLE and discoid lupus erythematosus, as well as in lupus panniculitis and perniosis. Two case reports of dermatomyositis have also experienced clinical improvement with anifrolumab. Clinical trials of this drug are ongoing for subacute CLE and discoid lupus erythematosus, systemic sclerosis, and progressive vitiligo. Its most common adverse effects are respiratory infections and herpes zoster. Anifrolumab may be a well-tolerated alternative in the management of CLE.
Collapse
Affiliation(s)
- D Martín-Torregrosa
- Servicio de Dermatología, Hospital Universitario y Politécnico La Fe, IIS La Fe, Valencia, España
| | - M Mansilla-Polo
- Servicio de Dermatología, Hospital Universitario y Politécnico La Fe, IIS La Fe, Valencia, España
| | - D Morgado-Carrasco
- Servicio de Dermatología, Hospital de Figueres, Fundació Salut Empordà, Girona, España; Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, España.
| |
Collapse
|
6
|
Sharma P, Boulton DW, Bertagnolli LN, Tang W. Physiology-based pharmacokinetic model with relative transcriptomics to evaluate tissue distribution and receptor occupancy of anifrolumab. CPT Pharmacometrics Syst Pharmacol 2025; 14:105-117. [PMID: 39360565 PMCID: PMC11706429 DOI: 10.1002/psp4.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Type I interferons contribute to the pathogenesis of several autoimmune disorders, including systemic lupus erythematosus (SLE), systemic sclerosis, cutaneous lupus erythematosus, and myositis. Anifrolumab is a monoclonal antibody that binds to subunit 1 of the type I interferon receptor (IFNAR1). Results of phase IIb and phase III trials led to the approval of intravenous anifrolumab 300 mg every 4 weeks (Q4W) alongside standard therapy in patients with moderate-to-severe SLE. Here, we built a population physiology-based pharmacokinetic (PBPK) model of anifrolumab by utilizing the physiochemical properties of anifrolumab, binding kinetics to the Fc gamma neonatal receptor, and target-mediated drug disposition properties. A novel relative transcriptomics approach was employed to determine IFNAR1 expression in tissues (blood, skin, gastrointestinal tract, lungs, and muscle) using mRNA abundances from bioinformatic databases. The IFNAR1 expression and PBPK model were validated by testing their ability to predict clinical pharmacokinetics over a large dose range from different clinical scenarios after subcutaneous and intravenous anifrolumab dosing. The validated PBPK model predicted high unbound local concentrations of anifrolumab in blood, skin, gastrointestinal tract, lungs, and muscle, which exceeded its IFNAR1 dissociation equilibrium constant values. The model also predicted high IFNAR1 occupancy with subcutaneous and intravenous anifrolumab dosing. The model predicted more sustained IFNAR1 occupancy ≥90% with subcutaneous anifrolumab 120 mg once-weekly dosing vs. intravenous 300 mg Q4W dosing. The results informed the dosing of phase III studies of anifrolumab in new indications and present a novel approach to PBPK modeling coupled with relative transcriptomics in simulating pharmacokinetics of therapeutic monoclonal antibodies.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacology
- Receptor, Interferon alpha-beta/genetics
- Tissue Distribution
- Models, Biological
- Transcriptome/drug effects
- Lupus Erythematosus, Systemic/drug therapy
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/administration & dosage
Collapse
Affiliation(s)
- Pradeep Sharma
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety SciencesR&D, AstraZenecaCambridgeUK
| | - David W. Boulton
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety SciencesR&D, AstraZenecaGaithersburgMarylandUSA
| | - Lynn N. Bertagnolli
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety SciencesR&D, AstraZenecaGaithersburgMarylandUSA
| | - Weifeng Tang
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety SciencesR&D, AstraZenecaGaithersburgMarylandUSA
| |
Collapse
|
7
|
Martín-Torregrosa D, Mansilla-Polo M, Morgado-Carrasco D. [Translated article] Use of Anifrolumab in Systemic Lupus Erythematosus, Cutaneous Lupus Erythematosus, and Other Autoimmune Dermatoses. ACTAS DERMO-SIFILIOGRAFICAS 2025; 116:T55-T67. [PMID: 39389344 DOI: 10.1016/j.ad.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 10/12/2024] Open
Abstract
Anifrolumab is an inhibitor of the type I interferon receptor subunit 1 (IFNAR1) recently approved for the management of moderate-to-severe systemic lupus erythematosus (SLE). In 2 clinical trials, it has proven effective to treat cutaneous signs. Although anifrolumab has not been indicated for cutaneous lupus erythematosus (CLE), multiple cases and case series (20 publications with a total of 78 patients) have shown good and rapid responses with this drug, both in subacute CLE and discoid lupus erythematosus, as well as in lupus panniculitis and perniosis. Two case reports of dermatomyositis have also experienced clinical improvement with anifrolumab. Clinical trials of this drug are ongoing for subacute CLE and discoid lupus erythematosus, systemic sclerosis, and progressive vitiligo. Its most common adverse effects are respiratory infections and herpes zoster. Anifrolumab may be a well-tolerated alternative in the management of CLE.
Collapse
MESH Headings
- Humans
- Lupus Erythematosus, Cutaneous/chemically induced
- Lupus Erythematosus, Cutaneous/drug therapy
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/chemically induced
- Lupus Erythematosus, Systemic/complications
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/chemically induced
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/adverse effects
- Skin Diseases/chemically induced
- Clinical Trials as Topic
Collapse
Affiliation(s)
- D Martín-Torregrosa
- Servicio de Dermatología, Hospital Universitario y Politécnico La Fe, IIS La Fe, Valencia, Spain
| | - M Mansilla-Polo
- Servicio de Dermatología, Hospital Universitario y Politécnico La Fe, IIS La Fe, Valencia, Spain
| | - D Morgado-Carrasco
- Servicio de Dermatología, Hospital de Figueres, Fundació Salut Empordà, Girona, Spain; Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Wen J, Zhou M, Lai Y, Zhuang L, Shi J, Lin Z, Chen B, Li M, Yang N, Wang S. Serum level of IFN-λ is elevated in idiopathic inflammatory myopathies. Clin Rheumatol 2025; 44:327-340. [PMID: 39579267 DOI: 10.1007/s10067-024-07227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Idiopathic inflammatory myopathies (IIM) are a heterogeneous group of autoimmune disorders with uncertain pathogenesis. Interferon (IFN)-λ has recently been described as an important mediator of immune responses. The main purpose of this study is to find out whether IFN-λ is involved in IIM. METHODS The published RNA-seq data of dermatomyositis (DM) muscle and IIM double negative (DN) B cells were analyzed. Serum IFN-λ1, IFN-λ2, and IFN-λ3 levels of 59 IIM patients and 29 healthy persons were determined by enzyme-linked immunosorbent assay (ELISA). The proportion of DN B cells and subsets as well as phosphorylated STAT1 (p-STAT1) levels in peripheral B cells was measured by flow cytometry. Ex vivo induction of double negative 2 (DN2) B cells were performed for validation. RESULTS Type III IFN signaling pathway was enriched in muscle tissue from DM patients. Serum IFN-λ1, IFN-λ2, and IFN-λ3 levels were significantly higher in the IIM patients, especially patients with interstitial lung disease (ILD) and skin manifestations. Moreover, serum IFN-λ1 level was positively correlated with the disease activity. In addition, IIM patients with positive anti-melanoma differentiation-associated gene 5 (anti-MDA5) antibodies exhibited higher serum IFN-λ1, IFN-λ2, and IFN-λ3 levels. The frequency of DN2 B cells were elevated in IIM patients' blood. Interestingly, the type III IFN signaling pathway was enriched in circulating DN2 B cells from IIM patients, which could induce T-bet+CD19hi DN2 B cell differentiation ex vivo. CONCLUSION IFN-λ may participate in the pathogenesis of IIM by acting on DN2 B cells and serve as a disease biomarker for IIM patients. Key Points • Type III IFN signaling pathway is enriched in the involved muscles of DM patients. • Serum IFN-λ in IIM patients is correlated with disease activity and is higher in patients with ILD, skin lesions, and positive anti-MDA5 antibodies. • DN2 B cells with enriched type III IFN signaling pathway are accumulated in the peripheral blood of IIM patients.
Collapse
Affiliation(s)
- Jingping Wen
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Mianjing Zhou
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yimei Lai
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lili Zhuang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia Shi
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhangmei Lin
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Binfeng Chen
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Mengyuan Li
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Shuyi Wang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Hashemi KB, Shaw KS, Castillo R, Vleugels RA. Innovation in Dermatomyositis. Dermatol Clin 2025; 43:103-110. [PMID: 39542557 DOI: 10.1016/j.det.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Dermatomyositis (DM) is a rare autoimmune disease defined by the presence of characteristic cutaneous findings, an increased cancer risk, and variable extracutaneous pathology involving the muscles, lungs, gastrointestinal tract, heart, and/or joints. Although the pathogenesis of DM remains incompletely understood, the discovery of myositis-specific autoantibodies has been an important step forward in understanding disease heterogeneity in DM and stratifying risk for extracutaneous disease and malignancy. Moreover, the recent elucidation of key immunologic drivers of DM has laid the groundwork for the development of novel, targeted treatments in the DM therapeutic pipeline.
Collapse
Affiliation(s)
- Kimberly B Hashemi
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA; Dermatology Program, Division of Immunology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Autoimmune Skin Disease Program, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Katharina S Shaw
- Division of Dermatology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 3700 Walnut Street Suite 1, Philadelphia, PA 19104, USA
| | - Rochelle Castillo
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA; Dermatology Program, Division of Immunology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Autoimmune Skin Disease Program, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Ruth Ann Vleugels
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA; Dermatology Program, Division of Immunology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Autoimmune Skin Disease Program, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Castellini C, Scotti C, Navarini L, Fu Q, Qian J, Giacomelli R, Cavagna L, Ruscitti P. The evaluation of type I interferon score in dermatomyositis, a systematic review and a meta-analysis. Autoimmun Rev 2024; 23:103686. [PMID: 39521363 DOI: 10.1016/j.autrev.2024.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Dermatomyositis (DM) is a rare autoimmune systemic disorder manifesting with typical skin rashes and proximal muscle weakness. A specific clinical DM subset is characterized by the presence of the anti-melanoma differentiation-associated protein 5 (MDA5) autoantibodies. These patients are usually burdened by a severe clinical phenotype exhibiting a poor prognosis. Interestingly, a growing body of evidence has shown that (interferon) IFN signature evaluation by the assessment of type I IFN score could be a possible mechanistic biomarker for these more severe patients with DM. Thus, in this work, the difference in type I IFN score between patients with DM and healthy controls (HCs), lacking systematic synthesis of available evidence, was assessed. Moreover, the possible difference in type I IFN score between patients with DM with or without MDA5 autoantibodies was investigated. A systematic review with a meta-analysis of available literature about values of type I IFN was performed in DM and HCs. A literature search was carried out in MEDLINE, SCOPUS, and WEB OF SCIENCE databases to identify all possible relevant studies published up to May 2024 in English language. Four studies met the inclusion criteria, comparing type I IFN score between patients with DM and HCs, or between patients with or without anti-MDA5 autoantibodies. The type I IFN score was significantly higher in patients affected by DM when compared with HCs (pooled SMD = 2.27; 95 % CI: 0.71, 3.82; p = 0.004, I2 = 96 %, pfor heterogeneity < 0.00001) and in patients with anti-MDA5 autoantibodies than those without (pooled SMD = 0.88; 95 % CI: 0.06, 1.70; p = 0.03, I2 = 83 %, pfor heterogeneity = 0.01). In this systematic review and meta-analysis, higher values of type I IFN score were retrieved in patients with DM when compared with HCs and in patients with anti-MDA5 autoantibodies with respect to those without. Thus, the assessment of type I IFN score appears to be a valuable mechanistic biomarker to clinically profile DM patients, and particularly those with anti-MDA5 autoantibodies.
Collapse
Affiliation(s)
- Chiara Castellini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Claudia Scotti
- Unit of Imunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Lombardy, Italy
| | - Luca Navarini
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy; Rheumatology, Immunology and Clinical Medicine Unit, Department of Medicine, University of Rome "Campus Biomedico" School of Medicine, Rome, Italy
| | - Qiong Fu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and Shanghai Immune Therapy Institute, Shanghai, China
| | - Jinjing Qian
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy; Rheumatology, Immunology and Clinical Medicine Unit, Department of Medicine, University of Rome "Campus Biomedico" School of Medicine, Rome, Italy
| | - Lorenzo Cavagna
- Rheumatology Unit, Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Lombardy, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy.
| |
Collapse
|
11
|
Huang YM, Shih LJ, Hsieh TW, Tsai KW, Lu KC, Liao MT, Hu WC. Type 2 hypersensitivity disorders, including systemic lupus erythematosus, Sjögren's syndrome, Graves' disease, myasthenia gravis, immune thrombocytopenia, autoimmune hemolytic anemia, dermatomyositis, and graft-versus-host disease, are THαβ-dominant autoimmune diseases. Virulence 2024; 15:2404225. [PMID: 39267271 PMCID: PMC11409508 DOI: 10.1080/21505594.2024.2404225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
The THαβ host immunological pathway contributes to the response to infectious particles (viruses and prions). Furthermore, there is increasing evidence for associations between autoimmune diseases, and particularly type 2 hypersensitivity disorders, and the THαβ immune response. For example, patients with systemic lupus erythematosus often produce anti-double stranded DNA antibodies and anti-nuclear antibodies and show elevated levels of type 1 interferons, type 3 interferons, interleukin-10, IgG1, and IgA1 throughout the disease course. These cytokines and antibody isotypes are associated with the THαβ host immunological pathway. Similarly, the type 2 hypersensitivity disorders myasthenia gravis, Graves' disease, graft-versus-host disease, autoimmune hemolytic anemia, immune thrombocytopenia, dermatomyositis, and Sjögren's syndrome have also been linked to the THαβ pathway. Considering the potential associations between these diseases and dysregulated THαβ immune responses, therapeutic strategies such as anti-interleukin-10 or anti-interferon α/β could be explored for effective management.
Collapse
Affiliation(s)
- Yao-Ming Huang
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei city, Taiwan
| | - Teng-Wei Hsieh
- Division of Immunology, Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Medical Tzu Chi Foundation, New Taipei City, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| |
Collapse
|
12
|
Wang X, Hu H, Yan G, Zheng B, Luo J, Fan J. Identification and validation of interferon-stimulated gene 15 as a biomarker for dermatomyositis by integrated bioinformatics analysis and machine learning. Front Immunol 2024; 15:1429817. [PMID: 39559355 PMCID: PMC11570269 DOI: 10.3389/fimmu.2024.1429817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Background Dermatomyositis (DM) is an autoimmune disease that primarily affects the skin and muscles. It can lead to increased mortality, particularly when patients develop associated malignancies or experience fatal complications such as pulmonary fibrosis. Identifying reliable biomarkers is essential for the early diagnosis and treatment of DM. This study aims to identify and validate pivotal diagnostic biomarker for DM through integrated bioinformatics analysis and clinical sample validation. Methods Gene expression datasets GSE46239 and GSE142807 from the Gene Expression Omnibus (GEO) database were merged for analysis. Differentially expressed genes (DEGs) were identified and subjected to enrichment analysis. Advanced machine learning methods were utilized to further pinpoint hub genes. Weighted gene co-expression network analysis (WGCNA) was also conducted to discover key gene modules. Subsequently, we derived intersection gene from these methods. The diagnostic performance of the candidate biomarker was evaluated using analysis with dataset GSE128314 and confirmed by immunohistochemistry (IHC) in skin lesion biopsy specimens. The CIBERSORT algorithm was used to analyze immune cell infiltration patterns in DM, then the association between the hub gene and immune cells was investigated. Gene set enrichment analysis (GSEA) was performed to understand the biomarker's biological functions. Finally, the drug-gene interactions were predicted using the DrugRep server. Results Interferon-stimulated gene 15 (ISG15) was identified by intersecting DEGs, advanced machine learning-selected genes and key module genes from WGCNA. ROC analysis showed ISG15 had a high Area under the curve (AUC) of 0.950. IHC findings confirmed uniformly positive expression of ISG15, particularly in perivascular regions and lymphocytes, contrasting with universally negative expression in controls. Further analysis revealed that ISG15 is involved in abnormalities in various immune cells and inflammation-related pathways. We also predicted three drugs targeting ISG15, supported by molecular docking studies. Conclusion Our study identifies ISG15 as a highly specific diagnostic biomarker for DM, ISG15 may be closely related to the pathogenesis of DM, demonstrating promising potential for clinical application.
Collapse
Affiliation(s)
- Xingwang Wang
- Department of Dermatology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Hao Hu
- Department of Radiation Therapy, General Hospital of Southern Theater Command, Guangzhou, China
| | - Guangning Yan
- Department of Pathology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Bo Zheng
- Department of Dermatology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jinxia Luo
- Department of Pathology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jianyong Fan
- Department of Dermatology, General Hospital of Southern Theater Command, Guangzhou, China
| |
Collapse
|
13
|
Veldkamp SR, van Wijk F, van Royen-Kerkhof A, Jansen MH. Personalised medicine in juvenile dermatomyositis: From novel insights in disease mechanisms to changes in clinical practice. Best Pract Res Clin Rheumatol 2024; 38:101976. [PMID: 39174374 DOI: 10.1016/j.berh.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
Juvenile dermatomyositis is characterized by childhood-onset chronic inflammation of the muscles and skin, with potential involvement of other organs. Patients are at risk for long-term morbidity due to insufficient disease control and steroid-related toxicity. Personalised treatment is challenged by a lack of validated tools that can reliably predict treatment response and monitor ongoing (subclinical) inflammation, and by a lack of evidence regarding the best choice of medication for individual patients. A better understanding of the involved disease mechanisms could reveal potential biomarkers and novel therapeutic targets. In this review, we highlight the most relevant immune and non-immune mechanisms, elucidating the effects of interferon overexpression on tissue alongside the interplay between the interferon signature, mitochondrial function, and immune cells. We review mechanism-based biomarkers that are promising for clinical implementation, and the latest advances in targeted therapy development. Finally, we discuss key steps needed for translating these discoveries into clinical practice.
Collapse
Affiliation(s)
- Saskia R Veldkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Annet van Royen-Kerkhof
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc Ha Jansen
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
14
|
Solignac M, Cabrera N, Fouillet-Desjonqueres M, Duquesne A, Laurent A, Foray AP, Viel S, Zekre F, Belot A. JAK inhibitors in refractory juvenile rheumatic diseases: Efficacy, tolerance and type-I interferon profiling, a single center retrospective study. J Autoimmun 2024; 147:103248. [PMID: 38797048 DOI: 10.1016/j.jaut.2024.103248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVES - Janus Kinase inhibitors (JAKi) are a new class of drugs available for pediatric rheumatic diseases. This study aimed to describe the safety and effectiveness of JAKi in these diseases, with a focus on longitudinal interferon-stimulated genes (ISG) assessment. METHODS - We present a single-center retrospective study of children with refractory pediatric rheumatic diseases including connective tissue diseases, monogenic type I interferonopathies or juvenile idiopathic arthritis, receiving JAKi. According to physicians' assessment, treatment effectiveness was classified at 12 months as a complete response in the total absence of disease activity, partial response in case of significant (>50%) but incomplete improvement or no response in the case of non-response or improvement of less than 50% of the clinical and biological parameters. ISG were monitored longitudinally using Nanostring technology. RESULTS - 22 children were retrospectively included in this study, treated either by baricitinib or ruxolitinib. Complete response was achieved at 12 months in 9/22 (41%) patients. 6/22 (27%) patients were non-responders and treatment had been discontinued in five of them. Within the interferon (IFN)-related diseases group, ISG-score was significantly reduced 12 months after JAKi onset (p = 0.0068). At 12 months, daily glucocorticoid doses had been reduced with a median dose of 0.16 mg/kg/day (IQR 0.11; 0.33) (p = 0.0425). 7/22 (32%) patients had experienced side effects, infections being the most common. Increase of the body mass index was also recorded in children in the first 6 months of treatment. CONCLUSION - JAKi represent a promising treatment of immune-mediated pediatric diseases, enabling to decrease type-I IFN transcriptomic signature in responding patients, especially in the context of juvenile dermatomyositis. JAKi represent steroid-sparing drugs but they induce metabolic changes linked to weight gain, posing a concern in the treatment of young patients and teenagers. More data are required to define the efficacy and safety of JAKi in the management of refractory pediatric rheumatic diseases.
Collapse
Affiliation(s)
- Marie Solignac
- Department of Pediatrics, Nantes University Hospital, Nantes, France; Department of Pediatric Rheumatology, Nephrology, and Dermatology, Lyon University Hospital, Lyon, France
| | - Natalia Cabrera
- University of Lyon, UMR - CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive, Lyon, F-69100, France
| | - Marine Fouillet-Desjonqueres
- Department of Pediatric Rheumatology, Nephrology, and Dermatology, Lyon University Hospital, Lyon, France; National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in childrEn (RAISE), Lyon, France
| | - Agnes Duquesne
- Department of Pediatric Rheumatology, Nephrology, and Dermatology, Lyon University Hospital, Lyon, France; National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in childrEn (RAISE), Lyon, France
| | - Audrey Laurent
- Department of Pediatric Rheumatology, Nephrology, and Dermatology, Lyon University Hospital, Lyon, France; National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in childrEn (RAISE), Lyon, France
| | - Anne-Perrine Foray
- Immunology Laboratory, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre Bénite, France
| | - Sebastien Viel
- Bank of Tissues and Cells, Hôpital Edouard Herriot, Hospices Civils de Lyon, Place d'Arsonval, F-69003 Lyon, France; CIRI, Centre International de Recherche en Infec tiologie, Univ Lyon, Inserm, U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Franck Zekre
- Department of Pediatric Rheumatology, Nephrology, and Dermatology, Lyon University Hospital, Lyon, France; National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in childrEn (RAISE), Lyon, France; CIRI, Centre International de Recherche en Infec tiologie, Univ Lyon, Inserm, U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Alexandre Belot
- Department of Pediatric Rheumatology, Nephrology, and Dermatology, Lyon University Hospital, Lyon, France; National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in childrEn (RAISE), Lyon, France; CIRI, Centre International de Recherche en Infec tiologie, Univ Lyon, Inserm, U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| |
Collapse
|
15
|
Yatomi M, Akasaka K, Sato S, Chida M, Kanbe M, Sawada H, Yokota I, Wakamatsu I, Muto S, Sato M, Yamaguchi K, Miura Y, Tsurumaki H, Sakurai R, Hara K, Koga Y, Sunaga N, Yamakawa H, Matsushima H, Yamazaki S, Endo Y, Motegi SI, Hisada T, Maeno T. A case of autoimmune pulmonary alveolar proteinosis during the course of treatment of rapidly progressive interstitial pneumonia associated with anti-MDA5 antibody-positive dermatomyositis. BMC Pulm Med 2024; 24:170. [PMID: 38589870 PMCID: PMC11003183 DOI: 10.1186/s12890-024-02989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Autoimmune pulmonary alveolar proteinosis (APAP) is a diffuse lung disease that causes abnormal accumulation of lipoproteins in the alveoli; however, its pathogenesis remains unclear. Recently, APAP cases have been reported during the course of dermatomyositis. The combination of these two diseases may be coincidental; however, it may have been overlooked because differentiating APAP from a flare-up of interstitial pneumonia associated with dermatomyositis is challenging. This didactic case demonstrates the need for early APAP scrutiny. CASE PRESENTATION A 50-year-old woman was diagnosed with anti-melanoma differentiation-associated gene 5 (anti-MDA5) antibody-positive dermatitis and interstitial pneumonia in April 2021. The patient was treated with corticosteroids, tacrolimus, and cyclophosphamide pulse therapy for interstitial pneumonia complicated by MDA5 antibody-positive dermatitis, which improved the symptoms and interstitial pneumonia. Eight months after the start of treatment, a new interstitial shadow appeared that worsened. Therefore, three additional courses of cyclophosphamide pulse therapy were administered; however, the respiratory symptoms and interstitial shadows did not improve. Respiratory failure progressed, and 14 months after treatment initiation, bronchoscopy revealed turbid alveolar lavage fluid, numerous foamy macrophages, and numerous periodic acid-Schiff-positive unstructured materials. Blood test results revealed high anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) antibody levels, leading to a diagnosis of APAP. The patient underwent whole-lung lavage, and the respiratory disturbance promptly improved. Anti-GM-CSF antibodies were measured from the cryopreserved serum samples collected at the time of diagnosis of anti-MDA5 antibody-positive dermatitis, and 10 months later, both values were significantly higher than normal. CONCLUSIONS This is the first report of anti-MDA5 antibody-positive dermatomyositis complicated by interstitial pneumonia with APAP, which may develop during immunosuppressive therapy and be misdiagnosed as a re-exacerbation of interstitial pneumonia. In anti-MDA5 antibody-positive dermatomyositis, APAP comorbidity may have been overlooked, and early evaluation with bronchoalveolar lavage fluid and anti-GM-CSF antibody measurements should be considered, keeping the development of APAP in mind.
Collapse
Affiliation(s)
- Masakiyo Yatomi
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan.
| | - Keiichi Akasaka
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5, Shintoshin, Chuo-Ku, Saitama, 330-8553, Japan
| | - Shintaro Sato
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5, Shintoshin, Chuo-Ku, Saitama, 330-8553, Japan
| | - Mizuki Chida
- Department of Dermatology, Gunma University Graduate School of Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Mio Kanbe
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Hiru Sawada
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Itaru Yokota
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Ikuo Wakamatsu
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Sohei Muto
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Mari Sato
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Kochi Yamaguchi
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Yosuke Miura
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Hiroaki Tsurumaki
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Reiko Sakurai
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371-, 8511, Japan
| | - Kenichiro Hara
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Yasuhiko Koga
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Noriaki Sunaga
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Hideaki Yamakawa
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5, Shintoshin, Chuo-Ku, Saitama, 330-8553, Japan
| | - Hidekazu Matsushima
- Department of Respiratory Medicine, Saitama Red Cross Hospital, 1-5, Shintoshin, Chuo-Ku, Saitama, 330-8553, Japan
| | - Sahori Yamazaki
- Department of Dermatology, Gunma University Graduate School of Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Yukie Endo
- Department of Dermatology, Gunma University Graduate School of Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8514, Japan
| | - Toshitaka Maeno
- Division of Allergy and Respiratory Medicine, Integrative Center of Internal Medicine, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371- 8511, Japan
| |
Collapse
|
16
|
Zhang Y, Maskan Bermudez N, Sa B, Maderal AD, Jimenez JJ. Epigenetic mechanisms driving the pathogenesis of systemic lupus erythematosus, systemic sclerosis and dermatomyositis. Exp Dermatol 2024; 33:e14986. [PMID: 38059632 DOI: 10.1111/exd.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Autoimmune connective tissue disorders, including systemic lupus erythematosus, systemic sclerosis (SSc) and dermatomyositis (DM), often manifest with debilitating cutaneous lesions and can result in systemic organ damage that may be life-threatening. Despite recent therapeutic advancements, many patients still experience low rates of sustained remission and significant treatment toxicity. While genetic predisposition plays a role in these connective tissue disorders, the relatively low concordance rates among monozygotic twins (ranging from approximately 4% for SSc to about 11%-50% for SLE) have prompted increased scrutiny of the epigenetic factors contributing to these diseases. In this review, we explore some seminal studies and key findings to provide a comprehensive understanding of how dysregulated epigenetic mechanisms can contribute to the development of SLE, SSc and DM.
Collapse
Affiliation(s)
- Yusheng Zhang
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Narges Maskan Bermudez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brianna Sa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
17
|
Tabata MM, Hodgkinson LM, Wu TT, Li S, Huard C, Zhao S, Bennett D, Johnson J, Tierney C, He W, Buhlmann JE, Page KM, Johnson K, Casciola-Rosen L, Chung L, Sarin KY, Fiorentino D. The Type I Interferon Signature Reflects Multiple Phenotypic and Activity Measures in Dermatomyositis. Arthritis Rheumatol 2023; 75:1842-1849. [PMID: 37096447 DOI: 10.1002/art.42526] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/15/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE The type 1 interferon (IFN) pathway is up-regulated in dermatomyositis (DM). We sought to define how organ-specific disease activity as well as autoantibodies and other clinical factors are independently associated with systemic type I IFN activity in adult patients with DM. METHODS RNA sequencing was performed on 355 whole blood samples collected from 202 well-phenotyped DM patients followed up during the course of their clinical care. A previously defined 13-gene type I IFN score was modeled as a function of demographic, serologic, and clinical variables using both cross-sectional and longitudinal data. RESULTS The pattern of type I IFN-driven transcriptional response was stereotyped across samples with a sequential modular activation pattern strikingly similar to systemic lupus erythematosus. The median type I IFN score was higher or lower in patients with anti-melanoma differentiation-associated protein 5 (anti-MDA-5) or anti-Mi-2 antibodies, respectively, compared to patients without these antibodies. Absolute type I IFN score was independently associated with muscle and skin disease activity, interstitial lung disease, and anti-MDA-5 antibodies. Changes in the type I IFN score over time were significantly associated with changes in skin or muscle disease activity. Stratified analysis accounting for heterogeneity in organ involvement and antibody class revealed high correlation between changes in the type I IFN score and skin disease activity (Spearman's ρ = 0.84-0.95). CONCLUSION The type I IFN score is independently associated with skin and muscle disease activity as well as certain clinical and serologic features in DM. Accounting for the effect of muscle disease and anti-MDA-5 status revealed that the type I IFN score is strongly correlated with skin disease activity, providing support for type I IFN blockade as a therapeutic strategy for DM.
Collapse
Affiliation(s)
- Mika M Tabata
- Department of Dermatology, Stanford University, Stanford, California
| | | | - Tiffany T Wu
- Department of Dermatology, Stanford University, Stanford, California
| | - Shufeng Li
- Department of Dermatology and Urology, Stanford University, Stanford, California
| | - Christine Huard
- Pfizer Worldwide Research, Development & Medicine, Cambridge, Massachusetts
| | - Shanrong Zhao
- Pfizer Worldwide Research, Development & Medicine, Cambridge, Massachusetts
| | - Donald Bennett
- Pfizer Worldwide Research, Development & Medicine, Cambridge, Massachusetts
| | - Jillian Johnson
- Pfizer Worldwide Research, Development & Medicine, Cambridge, Massachusetts
| | - Cassandra Tierney
- Pfizer Worldwide Research, Development & Medicine, Cambridge, Massachusetts
| | - Wen He
- Pfizer Worldwide Research, Development & Medicine, Cambridge, Massachusetts
| | - Janet E Buhlmann
- Pfizer Worldwide Research, Development & Medicine, Cambridge, Massachusetts
| | - Karen M Page
- Pfizer Worldwide Research, Development & Medicine, Cambridge, Massachusetts
| | - Kristen Johnson
- Pfizer Worldwide Research, Development & Medicine, Cambridge, Massachusetts
| | - Livia Casciola-Rosen
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lorinda Chung
- Stanford University School of Medicine, and Department of Immunology and Rheumatology, Palo Alto VA Health Care System, Palo Alto, California
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University, Stanford, California
| | - David Fiorentino
- Department of Dermatology, Stanford University, Stanford, California
| |
Collapse
|
18
|
Gandolfi S, Pileyre B, Drouot L, Dubus I, Auquit-Auckbur I, Martinet J. Stromal vascular fraction in the treatment of myositis. Cell Death Discov 2023; 9:346. [PMID: 37726262 PMCID: PMC10509179 DOI: 10.1038/s41420-023-01605-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Muscle regeneration is a physiological process that converts satellite cells into mature myotubes under the influence of an inflammatory environment progressively replaced by an anti-inflammatory environment, with precise crosstalk between immune and muscular cells. If the succession of these phases is disturbed, the immune system can sometimes become auto-reactive, leading to chronic muscular inflammatory diseases, such as myositis. The triggers of these autoimmune myopathies remain mostly unknown, but the main mechanisms of pathogenesis are partially understood. They involve chronic inflammation, which could be associated with an auto-reactive immune response, and gradually with a decrease in the regenerative capacities of the muscle, leading to its degeneration, fibrosis and vascular architecture deterioration. Immunosuppressive treatments can block the first part of the process, but sometimes muscle remains weakened, or even still deteriorates, due to the exhaustion of its capacities. For patients refractory to immunosuppressive therapies, mesenchymal stem cells have shown interesting effects but their use is limited by their availability. Stromal vascular fraction, which can easily be extracted from adipose tissue, has shown good tolerance and possible therapeutic benefits in several degenerative and autoimmune diseases. However, despite the increasing use of stromal vascular fraction, the therapeutically active components within this heterogeneous cellular product are ill-defined and the mechanisms by which this therapy might be active remain insufficiently understood. We review herein the current knowledge on the mechanisms of action of stromal vascular fraction and hypothesise on how it could potentially respond to some of the unmet treatment needs of refractory myositis.
Collapse
Affiliation(s)
- S Gandolfi
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
- Toulouse University Hospital, Department of Plastic and Reconstructive Surgery, F-31000, Toulouse, France
| | - B Pileyre
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France.
- Centre Henri Becquerel, Department of Pharmacy, F-76000, Rouen, France.
| | - L Drouot
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Dubus
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Auquit-Auckbur
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Plastic, Reconstructive and Hand Surgery, F-76000, Rouen, France
| | - J Martinet
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Immunology and Biotherapy, F-76000, Rouen, France
| |
Collapse
|
19
|
Doskaliuk B, Ravichandran N, Sen P, Day J, Joshi M, Nune A, Nikiphorou E, Saha S, Tan AL, Shinjo SK, Ziade N, Velikova T, Milchert M, Jagtap K, Parodis I, Gracia-Ramos AE, Cavagna L, Kuwana M, Knitza J, Chen YM, Makol A, Agarwal V, Patel A, Pauling JD, Wincup C, Barman B, Tehozol EAZ, Serrano JR, La Torre IGD, Colunga-Pedraza IJ, Merayo-Chalico J, Chibuzo OC, Katchamart W, Goo PA, Shumnalieva R, Hoff LS, Kibbi LE, Halabi H, Vaidya B, Shaharir SS, Hasan ATMT, Dey D, Gutiérrez CET, Caballero-Uribe CV, Lilleker JB, Salim B, Gheita T, Chatterjee T, Distler O, Saavedra MA, Chinoy H, Agarwal V, Aggarwal R, Gupta L. Long-term safety of COVID vaccination in individuals with idiopathic inflammatory myopathies: results from the COVAD study. Rheumatol Int 2023; 43:1651-1664. [PMID: 37351634 PMCID: PMC10348925 DOI: 10.1007/s00296-023-05345-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 06/24/2023]
Abstract
Limited evidence on long-term COVID-19 vaccine safety in patients with idiopathic inflammatory myopathies (IIMs) continues to contribute to vaccine hesitancy. We studied delayed-onset vaccine adverse events (AEs) in patients with IIMs, other systemic autoimmune and inflammatory disorders (SAIDs), and healthy controls (HCs), using data from the second COVID-19 Vaccination in Autoimmune Diseases (COVAD) study. A validated self-reporting e-survey was circulated by the COVAD study group (157 collaborators, 106 countries) from Feb-June 2022. We collected data on demographics, comorbidities, IIM/SAID details, COVID-19 history, and vaccination details. Delayed-onset (> 7 day) AEs were analyzed using regression models. A total of 15165 respondents undertook the survey, of whom 8759 responses from vaccinated individuals [median age 46 (35-58) years, 74.4% females, 45.4% Caucasians] were analyzed. Of these, 1390 (15.9%) had IIMs, 50.6% other SAIDs, and 33.5% HCs. Among IIMs, 16.3% and 10.2% patients reported minor and major AEs, respectively, and 0.72% (n = 10) required hospitalization. Notably patients with IIMs experienced fewer minor AEs than other SAIDs, though rashes were expectedly more than HCs [OR 4.0; 95% CI 2.2-7.0, p < 0.001]. IIM patients with active disease, overlap myositis, autoimmune comorbidities, and ChadOx1 nCOV-19 (Oxford/AstraZeneca) recipients reported AEs more often, while those with inclusion body myositis, and BNT162b2 (Pfizer) recipients reported fewer AEs. Vaccination is reassuringly safe in individuals with IIMs, with AEs, hospitalizations comparable to SAIDs, and largely limited to those with autoimmune multimorbidity and active disease. These observations may inform guidelines to identify high-risk patients warranting close monitoring in the post-vaccination period.
Collapse
Affiliation(s)
- Bohdana Doskaliuk
- Department of Pathophysiology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Naveen Ravichandran
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Parikshit Sen
- Maulana Azad Medical College, 2-Bahadurshah Zafar Marg, New Delhi, Delhi, 110002, India
| | - Jessica Day
- Department of Rheumatology, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mrudula Joshi
- Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
| | - Arvind Nune
- Southport and Ormskirk Hospital NHS Trust, Southport, PR8 6PN, UK
| | - Elena Nikiphorou
- Centre for Rheumatic Diseases, King's College London, London, UK
- Rheumatology Department, King's College Hospital, London, UK
| | - Sreoshy Saha
- Mymensingh Medical College, Mymensingh, Bangladesh
| | - Ai Lyn Tan
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Samuel Katsuyuki Shinjo
- Division of RheumatologyFaculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Nelly Ziade
- Rheumatology Department, Saint-Joseph University, Beirut, Lebanon
- Rheumatology Department, Hotel-Dieu de France Hospital, Beirut, Lebanon
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str, 1407, Sofia, Bulgaria
| | - Marcin Milchert
- Department of Internal Medicine, Rheumatology, Diabetology, Geriatrics and Clinical Immunology, Pomeranian Medical University in Szczecin, Ul Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Kshitij Jagtap
- Seth Gordhandhas Sunderdas Medical College and King Edwards Memorial Hospital, Mumbai, Maharashtra, India
| | - Ioannis Parodis
- Division of RheumatologyDepartment of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of RheumatologyFaculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Abraham Edgar Gracia-Ramos
- Department of Internal Medicine, General Hospital, National Medical Center "La Raza", Instituto Mexicano del Seguro Social, Av. Jacaranda S/N, Col. La Raza, Del. Azcapotzalco, C.P. 02990, Mexico City, Mexico
| | - Lorenzo Cavagna
- Rheumatology UnitDipartimento Di Medicine Interna E Terapia Medica, Università Degli Studi Di Pavia, Pavia, Lombardy, Italy
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan
| | - Johannes Knitza
- Medizinische Klinik 3-Rheumatologie und Immunologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Deutschland
| | - Yi Ming Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ashima Makol
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Vishwesh Agarwal
- Mahatma Gandhi Mission Medical College, Navi Mumbai, Maharashtra, India
| | - Aarat Patel
- Bon Secours Rheumatology Center and Division of Pediatric RheumatologyDepartment of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - John D Pauling
- Bristol Medical School Translational Health Sciences, University of Bristol, Bristol, UK
- Department of Rheumatology, North Bristol NHS Trust, Bristol, UK
| | - Chris Wincup
- Division of Medicine, Rayne InstituteDepartment of Rheumatology, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
| | - Bhupen Barman
- Department of General Medicine, All India Institute of Medical Sciences (AIIMS), Guwahati, India
| | - Erick Adrian Zamora Tehozol
- Rheumatology, Medical Care & Research, Centro Medico Pensiones Hospital, Instituto Mexicano del Seguro Social Delegación Yucatán, Yucatán, Mexico
| | - Jorge Rojas Serrano
- Rheumatologist and Clinical InvestigatorInterstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Ignacio García-De La Torre
- Departamento de Inmunología Y Reumatología, Hospital General de Occidente and Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | - Javier Merayo-Chalico
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Okwara Celestine Chibuzo
- Department of Medicine, University of Nigeria Teaching Hospital, Ituku-Ozalla/University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Wanruchada Katchamart
- Division of RheumatologyDepartment of MedicineFaculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Russka Shumnalieva
- Department of RheumatologyClinic of Rheumatology, University Hospital "St. Ivan Rilski", Medical University-Sofia, Sofia, Bulgaria
| | | | - Lina El Kibbi
- Internal Medicine Department, Rheumatology Unit, Specialized Medical Center, Riyadh, Saudi Arabia
| | - Hussein Halabi
- Department of Internal MedicineSection of Rheumatology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Binit Vaidya
- National Center for Rheumatic Diseases (NCRD), Ratopul, Kathmandu, Nepal
| | | | - A T M Tanveer Hasan
- Department of Rheumatology, Enam Medical College & Hospital, Dhaka, Bangladesh
| | - Dzifa Dey
- Department of Medicine and Therapeutics, Rheumatology Unit, University of Ghana Medical SchoolCollege of Health Sciences, Korle-Bu, Accra, Ghana
| | - Carlos Enrique Toro Gutiérrez
- Reference Center for Osteoporosis, Rheumatology and Dermatology, Pontifica Universidad Javeriana Cali, Cali, Colombia
| | | | - James B Lilleker
- Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Babur Salim
- Rheumatology Department, Fauji Foundation Hospital, Rawalpindi, Pakistan
| | - Tamer Gheita
- Rheumatology Department, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Tulika Chatterjee
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Miguel A Saavedra
- Departamento de Reumatología Hospital de Especialidades Dr. Antonio Fraga Mouret, Centro Médico Nacional La Raza, IMSS, Mexico City, Mexico
| | - Hector Chinoy
- Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, UK
- Department of Rheumatology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rohit Aggarwal
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Latika Gupta
- Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
- Department of Rheumatology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK.
- City Hospital, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK.
| |
Collapse
|
20
|
Londe AC, Fernandez-Ruiz R, Julio PR, Appenzeller S, Niewold TB. Type I Interferons in Autoimmunity: Implications in Clinical Phenotypes and Treatment Response. J Rheumatol 2023; 50:1103-1113. [PMID: 37399470 DOI: 10.3899/jrheum.2022-0827] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 07/05/2023]
Abstract
Type I interferon (IFN-I) is thought to play a role in many systemic autoimmune diseases. IFN-I pathway activation is associated with pathogenic features, including the presence of autoantibodies and clinical phenotypes such as more severe disease with increased disease activity and damage. We will review the role and potential drivers of IFN-I dysregulation in 5 prototypic autoimmune diseases: systemic lupus erythematosus, dermatomyositis, rheumatoid arthritis, primary Sjögren syndrome, and systemic sclerosis. We will also discuss current therapeutic strategies that directly or indirectly target the IFN-I system.
Collapse
Affiliation(s)
- Ana Carolina Londe
- A.C. Londe, MSc, Autoimmunity Lab, and Graduate Program in Physiopathology, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ruth Fernandez-Ruiz
- R. Fernandez-Ruiz, MD, Department of Medicine, Hospital for Special Surgery, New York, New York, USA
| | - Paulo Rogério Julio
- P. Rogério Julio, MSc, Autoimmunity Lab, and Graduate Program of Child and Adolescent Health, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Simone Appenzeller
- S. Appenzeller, MD, PhD, Autoimmunity Lab, and Rheumatology Unit, Department of Medicine, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Timothy B Niewold
- T.B. Niewold, MD, Department of Medicine, Hospital for Special Surgery, New York, New York, USA.
| |
Collapse
|
21
|
Rodríguez-Carrio J, Burska A, Conaghan PG, Dik WA, Biesen R, Eloranta ML, Cavalli G, Visser M, Boumpas DT, Bertsias G, Wahren-Herlenius M, Rehwinkel J, Frémond ML, Crow MK, Rönnblom L, Versnel MA, Vital EM. 2022 EULAR points to consider for the measurement, reporting and application of IFN-I pathway activation assays in clinical research and practice. Ann Rheum Dis 2023; 82:754-762. [PMID: 36858821 DOI: 10.1136/ard-2022-223628] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/04/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Type I interferons (IFN-Is) play a role in a broad range of rheumatic and musculoskeletal diseases (RMDs), and compelling evidence suggests that their measurement could have clinical value, although testing has not progressed into clinical settings. OBJECTIVE To develop evidence-based points to consider (PtC) for the measurement and reporting of IFN-I assays in clinical research and to determine their potential clinical utility. METHODS EULAR standardised operating procedures were followed. A task force including rheumatologists, immunologists, translational scientists and a patient partner was formed. Two systematic reviews were conducted to address methodological and clinical questions. PtC were formulated based on the retrieved evidence and expert opinion. Level of evidence and agreement was determined. RESULTS Two overarching principles and 11 PtC were defined. The first set (PtC 1-4) concerned terminology, assay characteristics and reporting practices to enable more consistent reporting and facilitate translation and collaborations. The second set (PtC 5-11) addressed clinical applications for diagnosis and outcome assessments, including disease activity, prognosis and prediction of treatment response. The mean level of agreement was generally high, mainly in the first PtC set and for clinical applications in systemic lupus erythematosus. Harmonisation of assay methodology and clinical validation were key points for the research agenda. CONCLUSIONS IFN-I assays have a high potential for implementation in the clinical management of RMDs. Uptake of these PtC will facilitate the progress of IFN-I assays into clinical practice and may be also of interest beyond rheumatology.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Department of Functional Biology, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Agata Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Willem A Dik
- Erasmus MC, University Medical Center Rotterdam, Laboratory Medical Immunology, Department of Immunology, Rotterdam, The Netherlands
| | - Robert Biesen
- Charité University Medicine Berlin, Department of Rheumatology, Berlin, Germany
| | - Maija-Leena Eloranta
- Uppsala University, Department of Medical Sciences, Rheumatology, Uppsala, Sweden
| | - Giulio Cavalli
- Vita-Salute San Raffaele University, Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Milan, Italy
| | - Marianne Visser
- EULAR PARE Patient Research Partner, Amsterdam, The Netherlands
| | - Dimitrios T Boumpas
- Medicine, University of Crete, Medical School, Department of Internal Medicine, Heraklion, Greece
| | - George Bertsias
- University of Crete, Medical School, Department of Rheumatology-Clinical Immunology, Heraklion, Greece
| | - Marie Wahren-Herlenius
- Karolinska Institutet, Division of Rheumatology, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Marie-Louise Frémond
- Université de Paris Cité, Hôpital Necker-Enfants Malades, Immuno-Hématologie et Rhumatologie pédiatriques, Paris, France
| | - Mary K Crow
- Hospital for Special Surgery, Weill Cornell Medical College, Mary Kirkland Center for Lupus Research, New York, New York, USA
| | - Lars Rönnblom
- Uppsala University, Department of Medical Sciences, Rheumatology, Uppsala, Sweden
| | - Marjan A Versnel
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, The Netherlands
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
22
|
Qian J, Li R, Chen Z, Cao Z, Lu L, Fu Q. Type I interferon score is associated with the severity and poor prognosis in anti-MDA5 antibody-positive dermatomyositis patients. Front Immunol 2023; 14:1151695. [PMID: 37006269 PMCID: PMC10063972 DOI: 10.3389/fimmu.2023.1151695] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
ObjectivesTo investigate the clinical significance of the interferon (IFN) score, especially the IFN-I score, in patients with anti-melanoma differentiation-associated gene 5 (MDA5) antibody-positive dermatomyositis (anti-MDA5+ DM).MethodsWe enrolled 262 patients with different autoimmune diseases, including idiopathic inflammatory myopathy, systemic lupus erythematosus, rheumatoid arthritis, adult-onset Still’s disease, and Sjögren’s syndrome, as well as 58 healthy controls. Multiplex quantitative real-time polymerase chain reaction (RT-qPCR) using four TaqMan probes was used to evaluate type I IFN-stimulated genes (IFI44 and MX1), one type II IFN-stimulated gene (IRF1), and one internal control gene (HRPT1), which were used to determine the IFN-I score. The clinical features and disease activity index were compared between the high and low IFN-I score groups in 61 patients with anti-MDA5+ DM. The associations between laboratory findings and the predictive value of the baseline IFN-I score for mortality were analyzed.ResultsThe IFN score was significantly higher in patients with anti-MDA5+ DM than in healthy controls. The IFN-I score was positively correlated with the serum IFN-α concentration, ferritin concentration, and Myositis Disease Activity Assessment Visual Analogue Scale (MYOACT) score. Compared with patients with a low IFN-I score, patients with a high IFN-I score showed a higher MYOACT score, C-reactive protein concentration, aspartate transaminase concentration, ferritin concentration, plasma cell percentage, and CD3+ T-cell percentage, as well as lower lymphocyte, natural killer cell, and monocyte counts. The 3-month survival rate was significantly lower in patients with an IFN-I score of >4.9 than in those with an IFN-I score of ≤4.9 (72.9% vs. 100%, respectively; P = 0.044).ConclusionThe IFN score, especially the IFN-I score, measured by multiplex RT-qPCR is a valuable tool to monitor disease activity and predict mortality in patients with anti-MDA5+ DM.
Collapse
Affiliation(s)
- Jinjing Qian
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Rui Li
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiwei Chen
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zehui Cao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Qiong Fu, ; Liangjing Lu, ; Zehui Cao,
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Qiong Fu, ; Liangjing Lu, ; Zehui Cao,
| | - Qiong Fu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Qiong Fu, ; Liangjing Lu, ; Zehui Cao,
| |
Collapse
|
23
|
La Rocca G, Ferro F, Baldini C, Libra A, Sambataro D, Colaci M, Malatino L, Palmucci S, Vancheri C, Sambataro G. Targeting intracellular pathways in idiopathic inflammatory myopathies: A narrative review. Front Med (Lausanne) 2023; 10:1158768. [PMID: 36993798 PMCID: PMC10040547 DOI: 10.3389/fmed.2023.1158768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
In recent decades, several pieces of evidence have drawn greater attention to the topic of innate immunity, in particular, interferon (IFN) and Interleukin 6 in the pathogenesis of idiopathic inflammatory myopathies (IIM). Both of these molecules transduce their signal through a receptor coupled with Janus kinases (JAK)/signal transducer and activator of transcription proteins (STAT). In this review, we discuss the role of the JAK/STAT pathway in IIM, evaluate a possible therapeutic role for JAK inhibitors in this group of diseases, focusing on those with the strongest IFN signature (dermatomyositis and antisynthetase syndrome).
Collapse
Affiliation(s)
- Gaetano La Rocca
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Ferro
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Baldini
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Libra
- Regional Referral Centre for Rare Lung Disease, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| | | | - Michele Colaci
- Internal Medicine Unit, Rheumatology Clinic, Azienda Ospedaliera per l’Emergenza Cannizzaro, University of Catania, Catania, Italy
| | - Lorenzo Malatino
- Internal Medicine Unit, Rheumatology Clinic, Azienda Ospedaliera per l’Emergenza Cannizzaro, University of Catania, Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Carlo Vancheri
- Regional Referral Centre for Rare Lung Disease, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| | - Gianluca Sambataro
- Regional Referral Centre for Rare Lung Disease, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
- Artroreuma S.R.L., Rheumatology Outpatient Clinic, Catania, Italy
- *Correspondence: Gianluca Sambataro,
| |
Collapse
|
24
|
Rodríguez-Carrio J, Burska A, Conaghan PG, Dik WA, Biesen R, Eloranta ML, Cavalli G, Visser M, Boumpas DT, Bertsias G, Wahren-Herlenius M, Rehwinkel J, Frémond ML, Crow MK, Ronnblom L, Vital E, Versnel M. Association between type I interferon pathway activation and clinical outcomes in rheumatic and musculoskeletal diseases: a systematic literature review informing EULAR points to consider. RMD Open 2023; 9:e002864. [PMID: 36882218 PMCID: PMC10008483 DOI: 10.1136/rmdopen-2022-002864] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Type I interferons (IFN-I) contribute to a broad range of rheumatic and musculoskeletal diseases (RMDs). Compelling evidence suggests that the measurement of IFN-I pathway activation may have clinical value. Although several IFN-I pathway assays have been proposed, the exact clinical applications are unclear. We summarise the evidence on the potential clinical utility of assays measuring IFN-I pathway activation. METHODS A systematic literature review was conducted across three databases to evaluate the use of IFN-I assays in diagnosis and monitor disease activity, prognosis, response to treatment and responsiveness to change in several RMDs. RESULTS Of 366 screened, 276 studies were selected that reported the use of assays reflecting IFN-I pathway activation for disease diagnosis (n=188), assessment of disease activity (n=122), prognosis (n=20), response to treatment (n=23) and assay responsiveness (n=59). Immunoassays, quantitative PCR (qPCR) and microarrays were reported most frequently, while systemic lupus erythematosus (SLE), rheumatoid arthritis, myositis, systemic sclerosis and primary Sjögren's syndrome were the most studied RMDs. The literature demonstrated significant heterogeneity in techniques, analytical conditions, risk of bias and application in diseases. Inadequate study designs and technical heterogeneity were the main limitations. IFN-I pathway activation was associated with disease activity and flare occurrence in SLE, but their incremental value was uncertain. IFN-I pathway activation may predict response to IFN-I targeting therapies and may predict response to different treatments. CONCLUSIONS Evidence indicates potential clinical value of assays measuring IFN-I pathway activation in several RMDs, but assay harmonisation and clinical validation are urged. This review informs the EULAR points to consider for the measurement and reporting of IFN-I pathway assays.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Agata Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - P G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Willem A Dik
- Laboratory Medical Immunology, department of Immunology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Robert Biesen
- Department of Rheumatology, Charité University Medicine Berlin, Berlin, Germany
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | - Marianne Visser
- EULAR, PARE Patient Research Partners, Amsterdam, The Netherlands
| | - Dimitrios T Boumpas
- Department of Internal Medicine, University of Crete, Medical School, Heraklion, Greece
| | - George Bertsias
- Department of Rheumatology-Clinical Immunology, University of Crete, Medical School, Heraklion, Greece
| | - Marie Wahren-Herlenius
- Karolinska Institutet, Division of Rheumatology, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Norway
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | - Marie-Louise Frémond
- Université de Paris Cité, Hôpital Necker-Enfants Malades, Immuno-Hématologie et Rhumatologie pédiatriques, Paris, France
| | - Mary K Crow
- Hospital for Special Surgery, Weill Cornell Medical College, Mary Kirkland Center for Lupus Research, New York, USA
| | - Lars Ronnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Ed Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Marjan Versnel
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
25
|
Grazzini S, Rizzo C, Conticini E, D'Alessandro R, La Barbera L, D'Alessandro M, Falsetti P, Bargagli E, Guggino G, Cantarini L, Frediani B. The role of bDMARDs in idiopathic inflammatory myopathies: A systematic literature review. Clin Exp Rheumatol 2023; 22:103264. [PMID: 36549353 DOI: 10.1016/j.autrev.2022.103264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Idiopathic inflammatory myopathies (IIM) are a group of different conditions typically affecting striate muscle, lung, joints, skin and gastrointestinal tract. Treatment typically relies on glucocorticoids and synthetic immunosuppressants, but the occurrence of refractory, difficult to treat, manifestations, may require more aggressive treatment, borrowed from other autoimmune diseases, including biologic disease modifying drugs (bDMARDs). In this regard, we conducted a systemic literature review in order to depict the current evidence about the use of bDMARDs in IIM. A total of 78 papers, published during the last 21 years, were retrieved. The majority of patients was treated with TNF-α inhibitors, whose effectiveness was assessed particularly in recalcitrant striate muscle, skin and joints involvement. Rituximab, whose evidence is supported by a large number of real-life studies and trials, seems to be an excellent option in case of ILD and anti-synthetase syndrome, while Tocilizumab, despite not meeting primary and secondary endpoints in a recently published clinical trial, proved its effectiveness in rapidly progressing ILD. Similarly, Abatacept, studied in a phase IIb clinical trial with conflicting evidence, was reported to be effective in some case reports of refractory dermatomyositis. Less data exist for anti-IL1 and anti-IL23 agents, which were employed particularly for inclusion body myositis and severe skin disease, respectively. This study provides an organ-focused assessment of bDMARDs in IIM, which display encouraging results in the treatment of refractory subsets of disease.
Collapse
Affiliation(s)
- Silvia Grazzini
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Chiara Rizzo
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Edoardo Conticini
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
| | - Roberto D'Alessandro
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Lidia La Barbera
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Miriana D'Alessandro
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, Siena, Italy
| | - Paolo Falsetti
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, Siena, Italy
| | - Giuliana Guggino
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Luca Cantarini
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Bruno Frediani
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
26
|
Nelke C, Pawlitzki M, Schroeter CB, Huntemann N, Räuber S, Dobelmann V, Preusse C, Roos A, Allenbach Y, Benveniste O, Wiendl H, Lundberg IE, Stenzel W, Meuth SG, Ruck T. High-Dimensional Cytometry Dissects Immunological Fingerprints of Idiopathic Inflammatory Myopathies. Cells 2022; 11:3330. [PMID: 36291195 PMCID: PMC9601098 DOI: 10.3390/cells11203330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic inflammation of skeletal muscle is the common feature of idiopathic inflammatory myopathies (IIM). Given the rarity of the disease and potential difficulty of routinely obtaining target tissue, i.e., standardized skeletal muscle, our understanding of immune signatures of the IIM spectrum remains incomplete. Further insight into the immune topography of IIM is needed to determine specific treatment targets according to clinical and immunological phenotypes. Thus, we used high-dimensional flow cytometry to investigate the immune phenotypes of anti-synthetase syndrome (ASyS), dermatomyositis (DM) and inclusion-body myositis (IBM) patients as representative entities of the IIM spectrum and compared them to healthy controls. We studied the CD8, CD4 and B cell compartments in the blood aiming to provide a contemporary overview of the immune topography of the IIM spectrum. ASyS was characterized by altered CD4 composition and expanded T follicular helper cells supporting B cell-mediated autoimmunity. For DM, unsupervised clustering identified expansion of distinct B cell subtypes highly expressing immunoglobulin G4 (IgG4) and CD38. Lastly, terminally differentiated, cytotoxic CD8 T cells distinguish IBM from other IIM. Interestingly, these terminally differentiated CD8 T cells highly expressed the integrin CD18 mediating cellular adhesion and infiltration. The distinct immune cell topography of IIM might provide the framework for targeted treatment approaches potentially improving therapeutic outcomes.
Collapse
Affiliation(s)
- Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Christina B. Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Saskia Räuber
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Vera Dobelmann
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Andreas Roos
- Department of Neuropediatrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Yves Allenbach
- Service de Médecine Interne et Immunologie Clinique, University Hospital Pitié Salpêtrière, 75013 Paris, France
| | - Olivier Benveniste
- Service de Médecine Interne et Immunologie Clinique, University Hospital Pitié Salpêtrière, 75013 Paris, France
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Ingrid E. Lundberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW This review summarizes and comments on current knowledge in dermatomyositis. RECENT FINDINGS The 2018 European Neuromuscular Centre classification of dermatomyositis has been challenging by the discovery of clinicopathological features associated with dermatomyositis-specific antibody (DMSA) that were not incorporated in the original criteria. These features include but may not be limited to the presence of perifascicular necrosis in anti-Mi-2 dermatomyositis; presence of diffuse nonperifascicular sarcoplasmic myxovirus resistance protein A expression in anti-MDA5 dermatomyositis; and dermatomyositis sine dermatitis in anti-NXP-2 dermatomyositis. Variations and subclassifications within the same DMSA subtypes are observed: anti-MDA5 dermatomyositis is clinically subcategorized into good, intermediate, and poor prognostic subgroups; concurrent anti-CCAR1 and anti-TIF1-γ positivity identify anti-TIF1-γ-positive patient with a lower risk for cancer-associated myositis. Owing to distinct IFN1-signaling pathway activation in dermatomyositis, JAK-STAT inhibitor - the pathway-targeted therapy, have been studied with promising results in refractory dermatomyositis and some new-onset dermatomyositis. In addition, the potential serum biomarkers for IFN1 pathway activation are being investigated for their performance in monitoring the disease activity and the efficacy of the treatment. SUMMARY DMSA, evidence of prominent IFN1 pathway activation, and risk/severity-associated biomarkers would likely play major roles in future dermatomyositis classification, disease monitoring, and treatment decision.
Collapse
Affiliation(s)
- Jantima Tanboon
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Neuromuscular Research, National Institute of Neuroscience (NIN), National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience (NIN), National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- Department of Genome Medicine Development
- Department of Clinical Genome Analysis, Medical Genome Center (MGC), National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This review provides updates regarding biomarker studies that address key clinical unmet needs, which relate to the evaluation of the disease activity in patients with dermatomyositis. RECENT FINDINGS Increasing evidence supports that the serum levels of dermatomyositis-specific antibodies (DM-MSAs), which include anti-Mi-2, anti-NXP2, anti-MDA5, anti-TNF1-γ, and anti-SAE, are correlated with the disease activity. Moreover, serial measurements of DM-MSA levels may help to predict the disease status. Beyond the MSA, macrophage activation-related biomarker-soluble CD163, CD206, neopterin, and galectin-3/9 are the most currently talked biomarkers for disease activity in dermatomyositis; new circulating T-cell subsets CD4+CXCR5+CCR7loPD-1hi and TIGIT+CD226+ CD4 T cells can potentially harbor biomarkers of disease activity in dermatomyositis. In addition, LDGs and NETs were also shown to be correlated with the disease activities of dermatomyositis. SUMMARY Promising candidate biomarkers are now available for evaluating disease activity in dermatomyositis. These biomarkers need external validation in other large cohort studies.
Collapse
|
29
|
Zhou M, Cheng X, Zhu W, Jiang J, Zhu S, Wu X, Liu M, Fang Q. Activation of
cGAS‐STING
pathway – A possible cause of myofiber atrophy/necrosis in dermatomyositis and immune‐mediated necrotizing myopathy. J Clin Lab Anal 2022; 36:e24631. [PMID: 36030554 PMCID: PMC9550984 DOI: 10.1002/jcla.24631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2019] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Objective The objective was to investigate the expression of the cGAS‐STING pathway‐associated protein in idiopathic inflammatory myopathy (IIM) and to investigate whether it is related to myofiber atrophy/necrosis in patients with dermatomyositis and immune‐mediated necrotizing myopathy. Material and Methods Muscle specimens obtained by open biopsy from 26 IIM patients (14 with dermatomyositis (DM), 8 with immune‐mediated necrotizing myopathy (IMNM), and 4 with other types of IIM), 4 dystrophinopathy, and 9 control patients were assessed for expression of cGAS‐STING pathway members via Western blot, quantitative real‐time PCR analysis (qRT‐PCR), and immunochemistry. Meanwhile, analysis its location distribution througn immunochemistry. Results Compared to the control group, the expression of cGAS, STING, and related molecules was obviously increased in muscle samples of IIM patients. Upregulated cGAS and STING were mainly located in the vascular structure, inflammatory infiltrates, and atrophic and necrotic fibers. While comparing to the Dys patients, the mRNA level of cGAS, STING, and TNF‐a was upregulated, meanwhile, the protein of the TBK1, P‐TBK1, and P‐IRF3 associated with interferon upregulation was overexpressed through Western blot in IMNM and DM. Considering that cGAS and STING are located in necrotic and Mx1‐positive atrophic fibers, it is really possible that the cGAS‐STING pathway may lead to fibers atrophy/necrosis by producing IFNs. Conclusion The cGAS‐STING pathway was activated in the muscle samples of IIM patients and its activation may be the reason of myofiber atrophy and necrosis in DM and IMNM patients.
Collapse
Affiliation(s)
- Meichen Zhou
- Department of Neurology First Affiliated Hospital of Soochow University Suzhou China
| | - Xiaoxiao Cheng
- Department of Neurology First Affiliated Hospital of Soochow University Suzhou China
| | - Wenhua Zhu
- Department of Neurology Huashan hospital Shanghai China
| | - Jianhua Jiang
- Department of Neurology First Affiliated Hospital of Soochow University Suzhou China
| | - Sijia Zhu
- Department of Neurology First Affiliated Hospital of Soochow University Suzhou China
| | - Xuan Wu
- Department of Neurology Affiliated Hospital of Yangzhou University Yangzhou China
| | - Meirong Liu
- Department of Neurology First Affiliated Hospital of Soochow University Suzhou China
| | - Qi Fang
- Department of Neurology First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
30
|
Castillo R, Albayda J. Refractory alopecia universalis associated with dermatomyositis successfully treated with tofacitinib. Mod Rheumatol Case Rep 2022; 6:199-202. [PMID: 35253877 PMCID: PMC11132691 DOI: 10.1093/mrcr/rxac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022]
Abstract
Dermatomyositis (DM) and alopecia areata are two diseases characterised by aberrant interferon signalling. While patchy alopecia of the scalp is a known feature of DM, alopecia universalis, which involves hair loss over the entire body, has rarely been reported in conjunction with DM. Herein, we report the case of a 30-year-old female with DM who developed refractory cutaneous disease and alopecia universalis that were successfully treated with tofacitinib. This could suggest that concomitant severe alopecia and refractory cutaneous DM may reflect a strong baseline interferon gene signature that may predict responsiveness to janus kinase inhibitors.
Collapse
Affiliation(s)
- Rochelle Castillo
- Department of Medicine, Division of Rheumatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jemima Albayda
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Neely J, Hartoularos G, Bunis D, Sun Y, Lee D, Kim S, Ye CJ, Sirota M. Multi-Modal Single-Cell Sequencing Identifies Cellular Immunophenotypes Associated With Juvenile Dermatomyositis Disease Activity. Front Immunol 2022; 13:902232. [PMID: 35799782 PMCID: PMC9254730 DOI: 10.3389/fimmu.2022.902232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Juvenile dermatomyositis (JDM) is a rare autoimmune condition with insufficient biomarkers and treatments, in part, due to incomplete knowledge of the cell types mediating disease. We investigated immunophenotypes and cell-specific genes associated with disease activity using multiplexed RNA and protein single-cell sequencing applied to PBMCs from 4 treatment-naïve JDM (TN-JDM) subjects at baseline, 2, 4, and 6 months post-treatment and 4 subjects with inactive disease on treatment. Analysis of 55,564 cells revealed separate clustering of TN-JDM cells within monocyte, NK, CD8+ effector T and naïve B populations. The proportion of CD16+ monocytes was reduced in TN-JDM, and naïve B cells and CD4+ Tregs were expanded. Cell-type differential gene expression analysis and hierarchical clustering identified a pan-cell-type IFN gene signature over-expressed in TN-JDM in all cell types and correlated with disease activity most strongly in cytotoxic cell types. TN-JDM CD16+ monocytes expressed the highest IFN gene score and were highly skewed toward an inflammatory and antigen-presenting phenotype at both the transcriptomic and proteomic levels. A transitional B cell population with a distinct transcriptomic signature was expanded in TN-JDM and characterized by higher CD24 and CD5 proteins and less CD39, an immunoregulatory protein. This data provides new insights into JDM immune dysregulation at cellular resolution and serves as a novel resource for myositis investigators.
Collapse
Affiliation(s)
- Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - George Hartoularos
- Graduate Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, CA, United States
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Daniel Bunis
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, United States
| | - Yang Sun
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - David Lee
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Susan Kim
- Division of Pediatric Rheumatology, Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Chun Jimmie Ye
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, United States
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
32
|
Update on Biomarkers of Vasculopathy in Juvenile and Adult Myositis. Curr Rheumatol Rep 2022; 24:227-237. [PMID: 35680774 DOI: 10.1007/s11926-022-01076-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Although rare, idiopathic inflammatory myopathies (IIM) comprise a heterogeneous group of autoimmune conditions in adults and children. Increasingly, vasculopathy is recognised to be key in the underlying pathophysiology and plays a crucial role in some of the more challenging complications including calcinosis, gastrointestinal involvement and interstitial lung disease. The exciting prospect of development of biomarkers of vasculopathy would enable earlier detection and monitoring of these complications and possible prevention of their potentially devastating consequences. The purpose was to review the current literature on biomarkers of vasculopathy in IIM and offer insight as to the biomarkers most likely to have an impact on clinical care. RECENT FINDINGS Multiple candidate biomarkers have been studied including circulating endothelial cells (CEC), microparticles (MP), soluble adhesion markers (ICAM-1, ICAM-3, VCAM-1), selectin proteins (E-, L-, P-selectin), coagulation factors, angiogenic factors, cytokines (including (IL-6, IL-10, TNF-α, IL-18) and interferon (IFN)-related biomarkers (including IFNα, IFN-β, IFNγ, galectin-9, interferon signature and interferon-related chemokines (MCP-1, IP-10 and MIG). There is a growing body of evidence of the potential role of biomarkers in detecting and monitoring the vasculopathy in IIM, detecting disease activity and predicting disease flares and overall prognosis. Exciting progress has been made in the search for biomarkers of vasculopathy of IIM; however, none of the studies are validated and further research is required.
Collapse
|
33
|
Friedman SA, Charmchi Z, Silver M, Jacoby N, Perk J, Anziska Y. Skeletal Muscle Manifestations and Creatine Kinase in COVID-19. Neurohospitalist 2022; 12:597-606. [PMID: 36147765 PMCID: PMC9160579 DOI: 10.1177/19418744221105961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose Skeletal muscle symptoms and elevated creatine kinase (CK) levels have been consistently reported as part of the COVID-19 disease process. Previous studies have yet to show a consistent relationship between CK levels and skeletal muscle symptoms, disease severity, and death from COVID-19. The purpose of this study is to determine whether elevated CK is associated with a COVID-19 course requiring intubation, intensive care, and/or causing death. Secondary objectives: To determine if there is a relationship between elevated CK and (1) skeletal muscle symptoms/signs (2) complications of COVID-19 and (3) other diagnostic laboratory values. Methods This is a retrospective, single center cohort study. Data were collected from March 13, 2020, to May 13, 2020. This study included 289 hospitalized patients with laboratory-confirmed SARS-CoV-2 and measured CK levels during admission. Results Of 289 patients (mean age 68.5 [SD 13.8] years, 145 [50.2%] were men, 262 [90.7%] were African American) with COVID-19, 52 (18.0%) reported myalgia, 92 (31.8%) reported subjective weakness, and 132 (45.7%) had elevated CK levels (defined as greater than 220 U/L). Elevated CK was found to be associated with severity of disease, even when adjusting for inflammatory marker C-reactive protein (initial CK: OR 1.006 [95% CI: 1.002-1.011]; peak CK: OR 1.006 [95% CI: 1.002-1.01]; last CK: 1.009 [95% CI: 1.002-1.016]; q = .04). Creatine kinase was not found to be associated with skeletal muscle symptoms/signs or with other laboratory markers. Conclusions Creatine kinase is of possible clinical significance and may be used as an additional data point in predicting the trajectory of the COVID-19 disease process.
Collapse
Affiliation(s)
- Sarah A. Friedman
- Department of Neurology, SUNY Downstate Medical Center, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Neurology, New York Presbyterian and Weill Cornell Medicine, New York, NY, USA
| | - Zeinab Charmchi
- Department of Neurology, SUNY Downstate Medical Center, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Michael Silver
- Department of Neurology, SUNY Downstate Medical Center, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Nuri Jacoby
- Department of Neurology, SUNY Downstate Medical Center, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jonathan Perk
- Department of Neurology, SUNY Downstate Medical Center, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Yaacov Anziska
- Department of Neurology, SUNY Downstate Medical Center, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
34
|
Huang P, Tang L, Zhang L, Ren Y, Peng H, Xiao Y, Xu J, Mao D, Liu L, Liu L. Identification of Biomarkers Associated With CD4+ T-Cell Infiltration With Gene Coexpression Network in Dermatomyositis. Front Immunol 2022; 13:854848. [PMID: 35711463 PMCID: PMC9196312 DOI: 10.3389/fimmu.2022.854848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Background Dermatomyositis is an autoimmune disease characterized by damage to the skin and muscles. CD4+ T cells are of crucial importance in the occurrence and development of dermatomyositis (DM). However, there are few bioinformatics studies on potential pathogenic genes and immune cell infiltration of DM. Therefore, this study intended to explore CD4+ T-cell infiltration–associated key genes in DM and construct a new model to predict the level of CD4+ T-cell infiltration in DM. Methods GSE46239, GSE142807, GSE1551, and GSE193276 datasets were downloaded. The WGCNA and CIBERSORT algorithms were performed to identify the most correlated gene module with CD4+ T cells. Matascape was used for GO enrichment and KEGG pathway analysis of the key gene module. LASSO regression analysis was used to identify the key genes and construct the prediction model. The correlation between the key genes and CD4+ T-cell infiltration was investigated. GSEA was performed to research the underlying signaling pathways of the key genes. The key gene-correlated transcription factors were identified through the RcisTarget and Gene-motif rankings databases. The miRcode and DIANA-LncBase databases were used to build the lncRNA-miRNA-mRNA network. Results In the brown module, 5 key genes (chromosome 1 open reading frame 106 (C1orf106), component of oligomeric Golgi complex 8 (COG8), envoplakin (EVPL), GTPases of immunity-associated protein family member 6 (GIMAP6), and interferon-alpha inducible protein 6 (IFI6)) highly associated with CD4+ T-cell infiltration were identified. The prediction model was constructed and showed better predictive performance in the training set, and this satisfactory model performance was validated in another skin biopsy dataset and a muscle biopsy dataset. The expression levels of the key genes promoted the CD4+ T-cell infiltration. GSEA results revealed that the key genes were remarkably enriched in many immunity-associated pathways, such as JAK/STAT signaling pathway. The cisbp_M2205, transcription factor-binding site, was enriched in C1orf106, EVPL, and IF16. Finally, 3,835 lncRNAs and 52 miRNAs significantly correlated with key genes were used to build a ceRNA network. Conclusion The C1orf106, COG8, EVPL, GIMAP6, and IFI6 genes are associated with CD4+ T-cell infiltration. The prediction model constructed based on the 5 key genes may better predict the level of CD4+ T-cell infiltration in damaged muscle and lesional skin of DM. These key genes could be recognized as potential biomarkers and immunotherapeutic targets of DM.
Collapse
Affiliation(s)
- Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Liqun Liu, ; Lingjuan Liu,
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Liqun Liu, ; Lingjuan Liu,
| |
Collapse
|
35
|
Identification of hub biomarkers and immune cell infiltration in polymyositis and dermatomyositis. Aging (Albany NY) 2022; 14:4530-4555. [PMID: 35609018 PMCID: PMC9186768 DOI: 10.18632/aging.204098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/12/2022] [Indexed: 12/03/2022]
Abstract
Objective: Polymyositis (PM) and dermatomyositis (DM) are heterogeneous disorders. However, the etiology of PM/DM development has not been thoroughly clarified. Methods: Gene expression data of PM/DM were obtained from Gene Expression Omnibus. We used robust rank aggregation (RRA) to identify differentially expressed genes (DEGs). Gene Ontology functional enrichment and pathway analyses were used to investigate potential functions of the DEGs. Weighted gene co-expression network analysis (WGCNA) was used to establish a gene co-expression network. CIBERSORT was utilized to analyze the pattern of immune cell infiltration in PM/DM. Protein–protein interaction (PPI) network, Venn, and association analyses between core genes and muscle injury were performed to identify hub genes. Receiver operating characteristic analyses were executed to investigate the value of hub genes in the diagnosis of PM/DM, and the results were verified using the microarray dataset GSE48280. Results: Five datasets were included. The RRA integrated analysis identified 82 significant DEGs. Functional enrichment analysis revealed that immune function and the interferon signaling pathway were enriched in PM/DM. WGCNA outcomes identified MEblue and MEturquoise as key target modules in PM/DM. Immune cell infiltration analysis revealed greater macrophage infiltration and lower regulatory T-cell infiltration in PM/DM patients than in healthy controls. PPI network, Venn, and association analyses of muscle injury identified five putative hub genes: TRIM22, IFI6, IFITM1, IFI35, and IRF9. Conclusions: Our bioinformatics analysis identified new genetic biomarkers of the pathogenesis of PM/DM. We demonstrated that immune cell infiltration plays a pivotal part in the occurrence of PM/DM.
Collapse
|
36
|
Pinal-Fernandez I, Greenberg SA. Type I Interferons in Dermatomyositis Myoblasts: Toxic Effect and a Potential Autocrine Loop. Neurology 2022; 98:869-870. [DOI: 10.1212/wnl.0000000000200679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
37
|
Gallay L, Fermon C, Lessard L, Weiss-Gayet M, Viel S, Streichenberger N, Corpet A, Mounier R, Gitiaux C, Mouchiroud G, Chazaud B. Involvement of Type-I Interferon Signaling in Muscle Stem Cell Proliferation During Dermatomyositis. Neurology 2022; 98:e2108-e2119. [DOI: 10.1212/wnl.0000000000200271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/08/2022] [Indexed: 11/15/2022] Open
Abstract
Background and objective:The idiopathic inflammatory myopathy Dermatomyositis (DM) is an acquired disease that combines muscle, lung and skin impairments. DM patients show a wide range of severity of proximal skeletal muscle weakness, associated with inflammatory infiltrates, vasculitis, and capillary dropout, perifascicular myofiber atrophy. Moreover, DM muscles show signs of muscle regeneration. Since muscle stem cells (MuSCs) are responsible for myofiber repair, we asked wether the proliferative properties of muscle stem cells (MuSCs) are altered in DM muscle. We investigated the role of type-I interferon (IFN-I) in this process since DM is associated with sustained inflammation with high IFN-I levels.Methods:MuSCs isolated from normal, adult and juvenile DM muscles were grown in culture and were analyzed in vitro for their proliferating properties, their myogenic capacities and their senescence. Gain and loss of function experiments were performed to assess the role of IFN-I signaling in the prolfierative capacities of MuSCs.Results:MuSCs derived from 8 DM adult patients (DM-MuSCs) (5 severe form and 3 mild form, established from histological evaluation), from 3 juvenile DM patients and from normal muscle were used to analyze their myogenesis in vitro. DM-MuSCs exhibited strongly reduced proliferating capacities as compared with healthy MuSCs (-31 to -43% for severe and mild DM, respectively), leading to poor myotube formation (-36 to -71%). DM-MuSCs were enriched in senescent, beta-galactosidase positive cells, explaining partly the proliferation defect. Gain and loss of function experiments were performed to assess the role of IFN-I on the proliferative capacity of MuSCs. High concentrations of IFN-I decreased the proliferation of healthy MuSCs. Similarly, conditioned-medium from DM-MuSCs decreased the proliferation of healthy MuSC (-15 to -22%), suggesting the delivery of an autocrine effector. Then, pharmacological blockade of the IFN signaling (using ruxolitinib or anti-IFN-receptor antibodies) in DM-MuSCs rescued their proliferation up to the control values.Discussion:These results show that autocrine IFN-I signaling prevents MuSC expansion, leading to muscle repair deficit. This process may explain the persistent muscle weakness observed in severe DM patients.
Collapse
|
38
|
Marasandra Ramesh H, Gude SS, Venugopal S, Peddi NC, Gude SS, Vuppalapati S. The Role of Myositis-Specific Autoantibodies in the Dermatomyositis Spectrum. Cureus 2022; 14:e22978. [PMID: 35415038 PMCID: PMC8990210 DOI: 10.7759/cureus.22978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
Dermatomyositis (DM) is a systemic autoimmune disease that affects skeletal muscles, the skin, and the lungs. It is characterized by autoantibodies, tissue inflammation, parenchymal cell damage, death, and vasculopathy. In terms of epidemiology, DM affects both children and adults. The current pathophysiology of DM is described as an autoimmune attack on the afflicted organs driven by environmental variables such as UV exposure, medications, infections, and lifestyle choices in genetically predisposed people. DM is also a paraneoplastic condition, which means that cancer may arise before, along with, or following the development of the symptoms of DM. Myositis-specific autoantibodies are associated with phenotypical features and are used for sub-classification of dermatomyositis patients. Because the risk of interstitial lung disease (ILD), internal malignancy, destructive disease trajectory, and maybe a response to medication differs by DM myositis-specific antibody (MSA) group, a better knowledge of MSAs and the validation and standardization of tests employed for detection is crucial for improving diagnosis and treatment. The diagnostic sensitivity and specificity of tests for various MSAs are not ideal, just like with any other test. However, more antibody tests are anticipated to make their way into formal schemata for diagnosis and actionable risk assessment in DM due to worldwide standardization and more extensive research. In this review, we outline crucial aspects for interpreting clinical and pathologic relationships with MSA in DM and critical knowledge and practice gaps that will optimize the clinical benefit and utility of MSAs as diagnostic and prognostic markers.
Collapse
Affiliation(s)
| | | | - Shravya Venugopal
- Internal Medicine, Kasturba Medical College, Mangalore, Mangalore, IND
| | | | | | - Sravya Vuppalapati
- Paediatrics, PES Institute of Medical Sciences and Research, Kuppam, IND
| |
Collapse
|
39
|
Graf M, von Stuckrad SL, Uruha A, Klotsche J, Zorn-Pauly L, Unterwalder N, Buttgereit T, Krusche M, Meisel C, Burmester GR, Hiepe F, Biesen R, Kallinich T, Stenzel W, Schneider U, Rose T. SIGLEC1 enables straightforward assessment of type I interferon activity in idiopathic inflammatory myopathies. RMD Open 2022; 8:rmdopen-2021-001934. [PMID: 35177553 PMCID: PMC8860073 DOI: 10.1136/rmdopen-2021-001934] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022] Open
Abstract
Objective To evaluate sialic acid binding Ig-like lectin 1 (SIGLEC1) expression on monocytes by flow cytometry as a type I interferon biomarker in idiopathic inflammatory myopathies (IIM). Methods We performed a retrospective analysis of adult and paediatric patients with the diagnosis of IIM. SIGLEC1 expression was assessed by flow cytometry and was compared with Physician Global Assessment or Childhood Myositis Assessment Scale disease activity scores. Mann Whitney U test and receiver operating characteristic curves were used for cross-sectional data analysis (n=96), two-level mixed-effects linear regression model for longitudinal analyses (n=26, 110 visits). Response to treatment was analysed in 14 patients within 12 months, using Wilcoxon test. SIGLEC1 was compared with interferon-stimulated gene 15/MxA status by immunohistochemical staining of muscle biopsies (n=17). Results 96 patients with adult (a) and juvenile (j) dermatomyositis (DM, n=38), antisynthetase syndrome (AS, n=19), immune-mediated necrotising myopathy (IMNM, n=8), inclusion body myositis (IBM, n=9) and overlap myositis (n=22) were included. SIGLEC1 distinguished significantly between active and inactive disease with an area under the curve of 0.92 (95% CI 0.83 to 1) in DM and correlated with disease activity longitudinally (aDM: standardised beta=0.54, p<0.001; jDM: standardised beta=−0.70, p<0.001). Response to treatment in DM was associated with a decreasing SIGLEC1 (p<0.01, Wilcoxon test). SIGLEC1 was found upregulated in 8 of 19 patients with AS, 2 of 9 patients with IBM but not in IMNM. Conclusion SIGLEC1 is a candidate biomarker to assess type I interferon activity in IIM and proved useful for monitoring disease activity and response to treatment in juvenile and adult DM.
Collapse
Affiliation(s)
- Manuel Graf
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sae Lim von Stuckrad
- Department of Pediatric Pneumology, Immunology and Critical Care Medicine and SPZ (Center for Chronically Sick Children), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Akinori Uruha
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Jens Klotsche
- German Rheumatism Research Center Berlin - a Leibniz Institute (DRFZ), Berlin, Germany
| | - Lydia Zorn-Pauly
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nadine Unterwalder
- Department of Immunology, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Thomas Buttgereit
- Department of Dermatology and Allergy, Dermatological Allergology, Allergie-Centrum-Charité, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Krusche
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Meisel
- Department of Immunology, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Hiepe
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Biesen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tilmann Kallinich
- Department of Pediatric Pneumology, Immunology and Critical Care Medicine and SPZ (Center for Chronically Sick Children), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin - a Leibniz Institute (DRFZ), Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Udo Schneider
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Rose
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
40
|
Chen D, Huang W, Zhongjie W, Feifeng R, Luo L, Jun Z, Dongmei H, Tian M, Tang L. OUP accepted manuscript. Rheumatology (Oxford) 2022; 61:e221-e223. [PMID: 35148369 DOI: 10.1093/rheumatology/keac084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/15/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dandan Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenhan Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Zhongjie
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ren Feifeng
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Luo
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou Jun
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huang Dongmei
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengxue Tian
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Tang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Cooles FAH, Isaacs JD. The interferon gene signature as a clinically relevant biomarker in autoimmune rheumatic disease. THE LANCET. RHEUMATOLOGY 2022; 4:e61-e72. [PMID: 38288732 DOI: 10.1016/s2665-9913(21)00254-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
The interferon gene signature (IGS) is derived from the expression of interferon-regulated genes and is classically increased in response to type I interferon exposure. A raised whole blood IGS has increasingly been reported in rheumatic diseases as sequencing technology has advanced. Although its role remains unclear, we explore how a raised IGS can function as a clinically relevant biomarker, independent of whether it is a bystander effect or a key pathological process. For example, a raised IGS can act as a diagnostic biomarker when predicting rheumatoid arthritis in patients with arthralgia and anti-citrullinated protein antibodies, or predicting systemic lupus erythematous (SLE) in those with antinuclear antibodies; a theragnostic biomarker when predicting response for patients receiving disease modifying therapy, such as rituximab in rheumatoid arthritis; a biomarker of disease activity (early rheumatoid arthritis, dermatomyositis, systemic sclerosis, SLE); or finally a predictor of clinical characteristics, such as lupus nephritis in SLE or disease burden in primary Sjögren's syndrome. A high IGS does not uniformly predict worse clinical phenotypes across all diseases, as demonstrated by a reduced disease burden in primary Sjögren's syndrome, nor does it predict a universally poorer response to all therapies, as shown in rheumatoid arthritis. This dichotomy highlights both the complexity of type I interferon signalling in vivo and the current lack of standardisation when calculating the IGS. The IGS as a biomarker warrants further exploration, with beneficial clinical applications anticipated in multiple rheumatic diseases.
Collapse
Affiliation(s)
- Faye A H Cooles
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
42
|
Xiao L, Xiao W, Lin S. Ten genes are considered as potential biomarkers for the diagnosis of dermatomyositis. PLoS One 2021; 16:e0260511. [PMID: 34818375 PMCID: PMC8612544 DOI: 10.1371/journal.pone.0260511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE This study aimed to identify the biomarkers and mechanisms for dermatomyositis (DM) progression at the transcriptome level through a combination of microarray and bioinformatic analyses. METHOD Microarray datasets for skeletal muscle of DM and healthy control (HC) were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were identified by using GEO2R. Enrichment analyses were performed to understand the functions and enriched pathways of DEGs. A protein-protein interaction network was constructed to identify hub genes. The top 10 hub genes were validated by other GEO datasets. The diagnostic accuracy of the top 10 hub genes for DM was evaluated using the area under the curve of the receiver operating characteristic curve. RESULT A total of 63 DEGs were identified between 10 DM samples and 9 HC samples. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that DEGs are mostly enriched in response to virus, defense response to virus, and type I interferon signaling pathway. 10 hub genes and 3 gene cluster modules were identified by Cytoscape. The identified hub genes were verified by GSE1551 and GSE11971 datasets and proven to be potential biomarkers for the diagnosis of DM. CONCLUSION Our work identified 10 valuable genes as potential biomarkers for the diagnosis of DM and explored the potential underlying molecular mechanism of the disease.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Rheumatology, Hainan general hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, China
| | - Wei Xiao
- Department of Respiratory, Hainan general hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, China
| | - Shudian Lin
- Department of Rheumatology, Hainan general hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, China
- * E-mail:
| |
Collapse
|
43
|
Belousov PV. Analysis of the Repertoires of Circulating Autoantibodies' Specificities as a Tool for Identification of the Tumor-Associated Antigens: Current Problems and Solutions. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1225-1242. [PMID: 34903148 DOI: 10.1134/s0006297921100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 06/14/2023]
Abstract
Circulating autoantibodies against tumor-associated autoantigens (TAA) may serve as valuable biomarkers for a wide range of diagnostic purposes. Modern immunology offers a large variety of methods for in-depth comparative analysis of the repertoires of circulating antibodies' antigenic specificities in health and disease. Nevertheless, this research field so far has met somewhat limited clinical success, while numerous data on the repertoires of circulating autoantibodies' specificities in cancer patients are poorly integrated into the contemporary picture of the immunological and molecular landscapes of human tumors. This review is an attempt to identify and systematize the key and essentially universal conceptual and methodological limitations of analyses of the repertoires of circulating antibodies' antigenic specificities in cancer (expression bias, redundancy of TAA repertoires, identification of natural IgG, the absence of the pathogenetically relevant context in the experimental systems used to detect TAA), as well as to discuss potential and already known methodological improvements that may significantly increase the detectability of the pathogenetically relevant and diagnostically significant bona fide TAA.
Collapse
Affiliation(s)
- Pavel V Belousov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- National Center for Personalized Medicine of Endocrine Diseases, National Medical Research Center of Endocrinology, Ministry of Health of the Russian Federation, Moscow, 117036, Russia
| |
Collapse
|
44
|
Ll Wilkinson MG, Deakin CT, Papadopoulou C, Eleftheriou D, Wedderburn LR. JAK inhibitors: a potential treatment for JDM in the context of the role of interferon-driven pathology. Pediatr Rheumatol Online J 2021; 19:146. [PMID: 34563217 PMCID: PMC8466894 DOI: 10.1186/s12969-021-00637-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/28/2021] [Indexed: 12/29/2022] Open
Abstract
Juvenile Idiopathic Inflammatory Myopathies (IIM) are a group of rare diseases that are heterogeneous in terms of pathology that can include proximal muscle weakness, associated skin changes and systemic involvement. Despite options for treatment, many patients continue to suffer resistant disease and lasting side-effects. Advances in the understanding of the immunopathology and genetics underlying IIM may specify new therapeutic targets, particularly where conventional treatment has not achieved a clinical response. An upregulated type I interferon signature is strongly associated with disease and could be a prime target for developing more specific therapeutics. There are multiple components of the IFN pathway that could be targeted for blockade therapy.Downstream of the cytokine receptor complexes are the Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway, which consists of JAK1-3, TYK2, and STAT1-6. Therapeutic inhibitors have been developed to target components of this pathway. Promising results have been observed in case studies reporting the use of the JAK inhibitors, Baricitinib, Tofacitinib and Ruxolitinib in the treatment of refractory Juvenile Dermatomyositis (JDM). There is still the question of safety and efficacy for the use of JAK inhibitors in JDM that need to be addressed by clinical trials. Here we review the future for the use of JAK inhibitors as a treatment for JDM.
Collapse
Affiliation(s)
- Meredyth G Ll Wilkinson
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, University College London, London, UK.
- NIHR Biomedical Research Centre at GOSH, London, UK.
| | - Claire T Deakin
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, University College London, London, UK
- NIHR Biomedical Research Centre at GOSH, London, UK
| | - Charalampia Papadopoulou
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Rheumatology, Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Despina Eleftheriou
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Rheumatology, Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Lucy R Wedderburn
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, University College London, London, UK
- NIHR Biomedical Research Centre at GOSH, London, UK
- Rheumatology, Great Ormond Street Hospital, Great Ormond Street, London, UK
| |
Collapse
|
45
|
Biomarker und Histologie bei idiopathischen inflammatorischen Myopathien. AKTUEL RHEUMATOL 2021. [DOI: 10.1055/a-1548-8934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungDie idiopathischen inflammatorischen Myopathien (IIM) sind eine Gruppe entzündlicher Muskelerkrankungen für deren Diagnosestellung, Verlaufsbeurteilung, Prognoseabschätzung und Risikostratifizierung Biomarker eine jeweils essentielle Rolle spielen. Biomarker in diesem Kontext können sowohl „herkömmliche“ serologische Marker wie Muskelenzyme oder Autoantikörper, histologische Marker wie entitätsspezifische inflammatorische Muster, aber auch genomische und genetische Marker sein. Der vorliegende Artikel gibt einen Überblick über bewährte und innovative Marker.
Collapse
|
46
|
Lerkvaleekul B, Veldkamp SR, van der Wal MM, Schatorjé EJH, Kamphuis SSM, van den Berg JM, Muller PCEH, Armbrust W, Vastert SJ, Wienke J, Jansen MHA, van Royen-Kerkhof A, van Wijk F. Siglec-1 expression on monocytes is associated with the interferon signature in juvenile dermatomyositis and can predict treatment response. Rheumatology (Oxford) 2021; 61:2144-2155. [PMID: 34387304 PMCID: PMC9071568 DOI: 10.1093/rheumatology/keab601] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/20/2021] [Indexed: 12/01/2022] Open
Abstract
Objective JDM is a rare chronic immune-mediated inflammatory disease with a predominant role for type I IFN responses. We aimed to determine the potential of Siglec-1 expression on monocytes as a novel IFN-inducible biomarker for disease activity monitoring and prediction of treatment response in patients with JDM. Methods Siglec-1 was measured by flow cytometry on circulating monocytes of 21 newly diagnosed JDM patients before start of treatment and, for 10 of these, also during follow-up. The expression levels of five type I IFN-stimulated genes, MX1, IFI44, IFI44L, LY6E and IFIT3, were measured by RT-qPCR to determine the IFN signature and calculate an IFN score. IFN-inducible plasma proteins CXCL10 and galectin-9 were measured by multiplex immunoassay. Results Siglec-1 and IFN score were increased in JDM patients compared with controls and correlated with clinical disease activity. Stratification of patients by Siglec-1 expression at diagnosis identified those with high Siglec-1 expression as having a higher risk of requiring treatment intensification within the first 3 months after diagnosis (55% vs 0% of patients, P = 0.01). Siglec-1 expression strongly correlated with plasma levels of previously validated biomarkers CXCL10 (rs = 0.81, P < 0.0001) and galectin-9 (rs = 0.83, P < 0.0001), and was superior to the IFN score in predicting treatment response (area under the curve 0.87 vs 0.53, P = 0.01). Conclusion Siglec-1 on monocytes is a novel IFN-inducible biomarker in JDM that correlates with clinical disease activity and identifies patients at risk for a suboptimal treatment response. Further studies are required to validate these findings and their clinical potential.
Collapse
Affiliation(s)
- Butsabong Lerkvaleekul
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saskia R Veldkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maria M van der Wal
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ellen J H Schatorjé
- Department of Paediatrics, Paediatric Rheumatology, Amalia Children's Hospital, Radboud University Medical Centre Nijmegen, Nijmegen, the Netherlands
| | - Sylvia S M Kamphuis
- Paediatric Rheumatology, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - J Merlijn van den Berg
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Petra C E Hissink Muller
- Department of Paediatric Rheumatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Wineke Armbrust
- Department of Pediatric Rheumatology and Immunology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sebastiaan J Vastert
- Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Judith Wienke
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc H A Jansen
- Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annet van Royen-Kerkhof
- Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
47
|
Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol 2021; 17:585-595. [PMID: 34341562 DOI: 10.1038/s41584-021-00652-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Most rheumatic and musculoskeletal diseases (RMDs) can be placed along a spectrum of disorders, with autoinflammatory diseases (including monogenic systemic autoinflammatory diseases) and autoimmune diseases (such as systemic lupus erythematosus and antiphospholipid syndrome) representing the two ends of this spectrum. However, although most autoinflammatory diseases are characterized by the activation of innate immunity and inflammasomes and classical autoimmunity typically involves adaptive immune responses, there is some overlap in the features of autoimmunity and autoinflammation in RMDs. Indeed, some 'mixed-pattern' diseases such as spondyloarthritis and some forms of rheumatoid arthritis can also be delineated. A better understanding of the pathogenic pathways of autoinflammation and autoimmunity in RMDs, as well as the preferential cytokine patterns observed in these diseases, could help us to design targeted treatment strategies.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum fur Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Szilvia Szamosi
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Szűcs
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
48
|
Casal-Dominguez M, Pinal-Fernandez I, Mammen AL. Inhibiting Interferon Pathways in Dermatomyositis: Rationale and Preliminary Evidence. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021. [DOI: 10.1007/s40674-021-00182-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Suspitsin EN, Raupov RK, Kuchinskaya EM, Kostik MM. Analysis of interferon type I signature for differential diagnosis of diseases of the immune system ( review of literature). Klin Lab Diagn 2021; 66:279-284. [PMID: 34047513 DOI: 10.51620/0869-2084-2021-66-5-279-284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Type 1 interferons (IFN1) are both key molecules of antiviral defense and potent inflammatory mediators. In 2003, increased expression of a variety of interferon 1-regulated genes was observed in a blood cells of patients with systemic lupus erythematosus (SLE). This phenomenon was called the type 1 interferon signature (IFN1-signature). Since then, expression patterns indicating the presence of an IFN1-signature were consistently detected in a range of monogenic and complex autoimmune and autoinflammatory conditions. A quantitative indicator reflecting the degree of hyperactivation of the IFN1 pathway is known as interferon score. This review discusses the possible causes of upregulated expression of interferon 1-induced genes, the laboratory approaches to the interferon score analysis, as well as the practical use of this indicator for the diagnosis of various conditions.
Collapse
Affiliation(s)
- E N Suspitsin
- St.-Petersburg State Pediatric Medical University.,N.N. Petrov Institute of Oncology
| | - R K Raupov
- St.-Petersburg State Pediatric Medical University
| | | | - M M Kostik
- St.-Petersburg State Pediatric Medical University.,Almazov National Medical Research Centre
| |
Collapse
|
50
|
Turnier JL, Pachman LM, Lowe L, Tsoi LC, Elhaj S, Menon R, Amoruso MC, Morgan GA, Gudjonsson JE, Berthier CC, Kahlenberg JM. Comparison of Lesional Juvenile Myositis and Lupus Skin Reveals Overlapping Yet Unique Disease Pathophysiology. Arthritis Rheumatol 2021; 73:1062-1072. [PMID: 33305541 DOI: 10.1002/art.41615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Skin inflammation heralds systemic disease in juvenile myositis, yet we lack an understanding of pathogenic mechanisms driving skin inflammation in this disease. We undertook this study to define cutaneous gene expression signatures in juvenile myositis and identify key genes and pathways that differentiate skin disease in juvenile myositis from childhood-onset systemic lupus erythematosus (SLE). METHODS We used formalin-fixed paraffin-embedded skin biopsy samples from 15 patients with juvenile myositis (9 lesional, 6 nonlesional), 5 patients with childhood-onset SLE, and 8 controls to perform transcriptomic analysis and identify significantly differentially expressed genes (DEGs; q ≤ 5%) between patient groups. We used Ingenuity Pathway Analysis (IPA) to highlight enriched biologic pathways and validated DEGs by immunohistochemistry and quantitative real-time polymerase chain reaction. RESULTS Comparison of lesional juvenile myositis to control samples revealed 221 DEGs, with the majority of up-regulated genes representing interferon (IFN)-stimulated genes. CXCL10, CXCL9, and IFI44L represented the top 3 DEGs (fold change 23.2, 13.3, and 13.0, respectively; q < 0.0001). IPA revealed IFN signaling as the top canonical pathway. When compared to childhood-onset SLE, lesional juvenile myositis skin shared a similar gene expression pattern, with only 28 unique DEGs, including FBLN2, CHKA, and SLURP1. Notably, patients with juvenile myositis who were positive for nuclear matrix protein 2 (NXP-2) autoantibodies exhibited the strongest IFN signature and also demonstrated the most extensive Mx-1 immunostaining, both in keratinocytes and perivascular regions. CONCLUSION Lesional juvenile myositis skin demonstrates a striking IFN signature similar to that previously reported in juvenile myositis muscle and peripheral blood. Further investigation into the association of a higher IFN score with NXP-2 autoantibodies may provide insight into disease endotypes and pathogenesis.
Collapse
Affiliation(s)
| | - Lauren M Pachman
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | - Maria C Amoruso
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | |
Collapse
|