1
|
Carvalho LM, Carvalho BG, Souza LL, da Mota JC, Ribeiro AA, Nicoletti CF. Obesity as an aggravating factor of systemic lupus erythematosus disease: What we already know and what we must explore. A rapid scoping review. Nutrition 2024; 128:112559. [PMID: 39244807 DOI: 10.1016/j.nut.2024.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can affect various organs and systems. Symptoms of SLE can vary widely from person to person and over time, including fatigue, joint pain, skin rashes, fever, and inflammation of multiple organs. The association between SLE and excess body weight has been the subject of study, with evidence suggesting that overweight and obesity can worsen the disease´s clinical presentation. Obesity is linked to a state of low-grade chronic inflammation, which can exacerbate the inflammation present in SLE. Additionally, obesity may negatively impact treatment response, disease progression, and patient prognosis. Patients with SLE and obesity may face additional challenges in managing the disease, such as increased symptom severity, higher risk of cardiovascular and renal complications, and a reduced response to conventional treatments. Obesity can also influence the quality of life of patients with SLE, making a holistic approach that considers the individual's nutritional status essential. Therefore, understanding the relationship between obesity and SLE is crucial for optimizing treatment, improving clinical outcomes, and enhancing patients' quality of life. Further research is needed to elucidate the underlying pathophysiological mechanisms, develop more precise and personalized management strategies, and identify biomarkers that can predict disease prognosis and treatment response.
Collapse
Affiliation(s)
- Lucas M Carvalho
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Beatriz G Carvalho
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia L Souza
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jhulia Cnl da Mota
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda A Ribeiro
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carolina F Nicoletti
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Zhang Y, Liu K, Guo M, Yang Y, Zhang H. Negative regulator IL-1 receptor 2 (IL-1R2) and its roles in immune regulation of autoimmune diseases. Int Immunopharmacol 2024; 136:112400. [PMID: 38850793 DOI: 10.1016/j.intimp.2024.112400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The decoy receptor interleukin 1 receptor 2 (IL-1R2), also known as CD121b, has different forms: membrane-bound (mIL-1R2), soluble secreted (ssIL-1R2), shedded (shIL-1R2), intracellular domain (IL-1R2ICD). The different forms of IL-1R2 exert not exactly similar functions. IL-1R2 can not only participate in the regulation of inflammatory response by competing with IL-1R1 to bind IL-1 and IL-1RAP, but also regulate IL-1 maturation and cell activation, promote cell survival, participate in IL-1-dependent internalization, and even have biological activity as a transcriptional cofactor. In this review, we provide a detailed description of the biological characteristics of IL-1R2 and discuss the expression and unique role of IL-1R2 in different immune cells. Importantly, we summarize the role of IL-1R2 in immune regulation from different autoimmune diseases, hoping to provide a new direction for in-depth studies of pathogenesis and therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Muyao Guo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha City, Hunan Province, China
| | - Yiying Yang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China; Postdoctoral Research Station of Biology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China.
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| |
Collapse
|
3
|
Younesian S, Mohammadi MH, Younesian O, Momeny M, Ghaffari SH, Bashash D. DNA methylation in human diseases. Heliyon 2024; 10:e32366. [PMID: 38933971 PMCID: PMC11200359 DOI: 10.1016/j.heliyon.2024.e32366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Aberrant epigenetic modifications, particularly DNA methylation, play a critical role in the pathogenesis and progression of human diseases. The current review aims to reveal the role of aberrant DNA methylation in the pathogenesis and progression of diseases and to discuss the original data obtained from international research laboratories on this topic. In the review, we mainly summarize the studies exploring the role of aberrant DNA methylation as diagnostic and prognostic biomarkers in a broad range of human diseases, including monogenic epigenetics, autoimmunity, metabolic disorders, hematologic neoplasms, and solid tumors. The last section provides a general overview of the possibility of the DNA methylation machinery from the perspective of pharmaceutic approaches. In conclusion, the study of DNA methylation machinery is a phenomenal intersection that each of its ways can reveal the mysteries of various diseases, introduce new diagnostic and prognostic biomarkers, and propose a new patient-tailored therapeutic approach for diseases.
Collapse
Affiliation(s)
- Samareh Younesian
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313 Iran
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313 Iran
| | - Ommolbanin Younesian
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, 46841-61167 Iran
| | - Majid Momeny
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, 77030 TX, USA
| | - Seyed H. Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, 1411713135 Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313 Iran
| |
Collapse
|
4
|
Ochoa‐Avilés C, Ochoa‐Avilés A, Rivas‐Párraga R, Escandón S, Santos‐Jesus TD, Silva MDJ, Leão V, Salinas M, Vicuña Y, Baldeón L, Molina‐Cando MJ, Morillo D, Machuca M, Rodas C, Figueiredo C, Neira VA. Mother's smoking habits affects IL10 methylation but not asthma in Ecuadorian children. Mol Genet Genomic Med 2024; 12:e2438. [PMID: 38666495 PMCID: PMC11046467 DOI: 10.1002/mgg3.2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
There is no evidence evaluating the IL10 epigenetic upregulation among mestizo children in a high-altitude Andean city in Latin America. OBJECTIVE To identify polymorphisms and methylation profiles in the IL10 gene associated with asthma in children aged 5 to 11. METHODS A case-control study was conducted with asthmatic and non-asthmatic children aged 5 to 11 years in Cuenca-Ecuador. Data on allergic diseases and risk factors were collected through a questionnaire for parents. Atopy was measured by skin prick test (SPT) to relevant aeroallergens. Three IL10 single nucleotide polymorphisms were evaluated in all participants, and methylation analysis was performed in 54 participants. Association between risk factors, allergic diseases and genetic factors were estimated using multivariate logistic regression. RESULTS The results of polymorphisms showed no differences between cases and controls when comparing the SNPs rs3024495, rs3024496, rs1800896 allelic and genotypic frequencies. In the methylation analysis, no differences in the IL10 methylation profile were found between cases and controls; however, the multivariate analysis showed an association between the mother's smoking habits and the IL10 methylation profile. CONCLUSION Smoking habit could be essential as an environmental exposure factor in regulating gene expression in children with asthma.
Collapse
Affiliation(s)
- Cristina Ochoa‐Avilés
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | | | - Roque Rivas‐Párraga
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Biomass to Resources GroupUniversidad Regional Amazónica IkiamTenaNapoEcuador
| | - Samuel Escandón
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
| | - Talita Dos Santos‐Jesus
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Milca de J. Silva
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Valderiene Leão
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Marco Salinas
- Biomass to Resources GroupUniversidad Regional Amazónica IkiamTenaNapoEcuador
| | - Yosselin Vicuña
- Instituto de Investigación en Biomedicina Facultad de Ciencias MédicasUniversidad Central del EcuadorQuitoPichinchaEcuador
| | - Lucy Baldeón
- Instituto de Investigación en Biomedicina Facultad de Ciencias MédicasUniversidad Central del EcuadorQuitoPichinchaEcuador
| | - María José Molina‐Cando
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Facultad de MedicinaUniversidad Internacional del EcuadorQuitoPichinchaEcuador
| | - Diana Morillo
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Facultad de MedicinaUniversidad Internacional del EcuadorQuitoPichinchaEcuador
| | - Marcos Machuca
- Facultad de MedicinaUniversidad del AzuayCuencaAzuayEcuador
| | - Claudia Rodas
- Facultad de MedicinaUniversidad del AzuayCuencaAzuayEcuador
| | - Camila Figueiredo
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Vivian Alejandra Neira
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Facultad de MedicinaUniversidad del AzuayCuencaAzuayEcuador
| |
Collapse
|
5
|
Hu H, Wu A, Mu X, Zhou H. Role of Interleukin 1 Receptor 2 in Kidney Disease. J Interferon Cytokine Res 2024; 44:170-177. [PMID: 38527174 DOI: 10.1089/jir.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
The interleukin 1 (IL-1) family plays a significant role in the innate immune response. IL-1 receptor 2 (IL-1R2) is the decoy receptor of IL-1. It is a negative regulator that can be subdivided into membrane-bound and soluble types. IL-1R2 plays a role in the IL-1 family mainly through the following mechanisms: formation of inactive signaling complexes upon binding to the receptor auxiliary protein and inhibition of ligand IL-1 maturation. This review covers the roles of IL-1R2 in kidney disorders. Chronic kidney disease, acute kidney injury, lupus nephritis, IgA nephropathy, renal clear cell carcinoma, rhabdoid tumor of kidney, kidney transplantation, and kidney infection were all shown to have abnormal IL-1R2 expression. IL-1R2 may be a potential marker and a promising therapeutic target for kidney disease.
Collapse
Affiliation(s)
- Huiyue Hu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Aihua Wu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaodie Mu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hua Zhou
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
6
|
Xu J, Chen H, Sun C, Wei S, Tao J, Jia Z, Chen X, Lv W, Lv H, Tang G, Jiang Y, Zhang M. Epigenome-wide methylation haplotype association analysis identified HLA-DRB1, HLA-DRB5 and HLA-DQB1 as risk factors for rheumatoid arthritis. Int J Immunogenet 2023; 50:291-298. [PMID: 37688529 DOI: 10.1111/iji.12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/04/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
The aim of this study was to compare nonrandom associations between physically adjacent single methylation polymorphism loci among rheumatoid arthritis (RA) and normal subjects for investigating RA-risk methylation haplotypes (meplotype). With 354 ACPA-positive RA patients and 335 normal controls selected from a case-control study based on Swedish population, we conducted the first RA epigenome-wide meplotype association study using our software EWAS2.0, mainly including (i) converted the β value to methylation genotype (menotype) data, (ii) identified methylation disequilibrium (MD) block, (iii) calculated frequent of each meplotypes in MD block and performed case-control association test and (iv) screened for RA-risk meplotypes by odd ratio (OR) and p-values. Ultimately, 545 meplotypes on 334 MD blocks were identified significantly associated with RA (p-value < .05). These meplotypes were mapped to 329 candidate genes related to RA. Subsequently, combined with gene optimization, eight RA-risk meplotypes were identified on three risk genes: HLA-DRB1, HLA-DRB5 and HLA-DQB1. Our results reported the relationship between DNA methylation pattern on HLA-DQB1 and the risk of RA for the first time, demonstrating the co-demethylation of 'cg22984282' and 'cg13423887' on HLA-DQB1 gene (meplotype UU, p-value = 2.90E - 6, OR = 1.68, 95% CI = [1.35, 2.10]) may increase the risk of RA. Our results demonstrates the potential of methylation haplotype analysis to identify RA-related genes from a new perspective and its applicability to the study of other disease.
Collapse
Affiliation(s)
- Jing Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haiyan Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chen Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Siyu Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Junxian Tao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhe Jia
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xingyu Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenhua Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Guoping Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingming Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Garau J, Charras A, Varesio C, Orcesi S, Dragoni F, Galli J, Fazzi E, Gagliardi S, Pansarasa O, Cereda C, Hedrich CM. Altered DNA methylation and gene expression predict disease severity in patients with Aicardi-Goutières syndrome. Clin Immunol 2023; 249:109299. [PMID: 36963449 DOI: 10.1016/j.clim.2023.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
Aicardi-Goutières Syndrome (AGS) is a rare neuro-inflammatory disease characterized by increased expression of interferon-stimulated genes (ISGs). Disease-causing mutations are present in genes associated with innate antiviral responses. Disease presentation and severity vary, even between patients with identical mutations from the same family. This study investigated DNA methylation signatures in PBMCs to understand phenotypic heterogeneity in AGS patients with mutations in RNASEH2B. AGS patients presented hypomethylation of ISGs and differential methylation patterns (DMPs) in genes involved in "neutrophil and platelet activation". Patients with "mild" phenotypes exhibited DMPs in genes involved in "DNA damage and repair", whereas patients with "severe" phenotypes had DMPs in "cell fate commitment" and "organ development" associated genes. DMPs in two ISGs (IFI44L, RSAD2) associated with increased gene expression in patients with "severe" when compared to "mild" phenotypes. In conclusion, altered DNA methylation and ISG expression as biomarkers and potential future treatment targets in AGS.
Collapse
Affiliation(s)
- Jessica Garau
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Amandine Charras
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Costanza Varesio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Molecular Biology and Transcriptomics, IRCCS Mondino Foundation, Pavia, Italy
| | - Jessica Galli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Model and Neuroepigenetics, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom.
| |
Collapse
|
8
|
Ehtesham N, Habibi Kavashkohie MR, Mazhari SA, Azhdari S, Ranjbar H, Mosallaei M, Hazrati E, Behroozi J. DNA methylation alterations in systemic lupus erythematosus: A systematic review of case-control studies. Lupus 2023; 32:363-379. [PMID: 36573333 DOI: 10.1177/09612033221148099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Traditionally, the diagnosis and monitoring of disease activity in systemic lupus erythematosus (SLE) are contingent upon clinical manifestations and serological markers. However, researchers are struggling to find biomarkers with higher sensitivity and specificity. DNA methylation has been the most studied epigenetic feature in SLE. So, in this study, we performed a systematic review of studies about DNA methylation alterations in SLE patients compared to healthy controls. METHODS By searching PubMed, Scopus, and Google Scholar up to July 2022, all case-control studies in which DNA methylation of specific genes was assessed by a non-high-throughput technique and passed the quality of bias assessment were included. RESULTS In total, 44 eligible studies underwent a data extraction process. In all, 3471 SLE patients and 1028 healthy individuals were included. Among the studies that reported the patients' gender (n = 2853), 89.41% were female and 10.59% were male. Forty studies have been conducted on adult patients. The number of works on fractionated and unfractionated blood cells was almost equal. In this regard, 22 studies were conducted on whole blood or peripheral blood mononuclear cells and two studies on unfractionated white blood cells. Sorted blood cells were biological sources in 20 studies. The most investigated gene was IFI44L. Sensitivity, specificity, and diagnostic power of methylation levels were only reported for IFI44L in five studies. The most employed methylation profiling method was bisulfite sequencing polymerase chain reaction. The correlation between methylation patterns and clinical parameters was explored in 22 studies, which of them 16 publications displayed a remarkable association between DNA methylation status and clinical indices. CONCLUSIONS The methylation status of some genes especially IFI44L, FOXP3, and MX1 has been suggested as promising SLE biomarkers. However, given the conflicting findings between studies because of potential confounders such as different sample types, methylation profiling methods, and ethnicity as well as shared DNA methylation patterns of SLE and other autoimmune diseases, DNA methylation biomarkers are currently not reliable diagnostic biomarkers and do not represent surrogate markers of SLE disease activity. Future investigations on a larger scale with the discarding of limitations of previous studies would probably lead to a consensus.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, 162996AJA University of Medical Sciences, Tehran, Iran.,Student Research Committee, 48533University of Social Welfare and Rehabilitation Science, Tehran, Iran
| | | | - Seyed Amirhossein Mazhari
- Department of Medical Biology and Genetics, 217747Azerbaijan Medical University (AMU), Baku, Azerbaijan
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, 394237Bam University of Medical Sciences, Bam, Iran
| | - Hamta Ranjbar
- Student Research Committee, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Mosallaei
- Student Research Committee, 48533University of Social Welfare and Rehabilitation Science, Tehran, Iran.,Department of Genetics and Molecular Biology, School of Medicine, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Hazrati
- Department of Anesthesiology and Intensive Care, Medical Faculty, 162996AJA University of Medical Sciences, Tehran, Iran
| | - Javad Behroozi
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, 162996AJA University of Medical Sciences, Tehran, Iran.,Research Center for Cancer Screening and Epidemiology, 162996AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Sung WY, Lin YZ, Hwang DY, Lin CH, Li RN, Tseng CC, Wu CC, Ou TT, Yen JH. Methylation of TET2 Promoter Is Associated with Global Hypomethylation and Hypohydroxymethylation in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients. Diagnostics (Basel) 2022; 12:diagnostics12123006. [PMID: 36553013 PMCID: PMC9776498 DOI: 10.3390/diagnostics12123006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
(1) Background: It is widely accepted that aberrant methylation patterns contribute to the development of systemic lupus erythematosus (SLE). Ten-eleven translocation (TET) methylcytosine dioxygenase is an essential enzyme of which there are three members, TET1, 2, and 3, involved in hydroxymethylation, a newly uncovered mechanism of active DNA methylation. The epigenomes of gene transcription are regulated by 5-hydroxymethylcytocine (5-hmC) and TETs, leading to dysregulation of the immune system in SLE. The purpose of this study was to investigate the global hydroxymethylation status in SLE peripheral blood mononuclear cells (PBMCs) and to explore the role of TETs in changing the patterns of methylation. (2) Methods: We collected PBMCs from 101 SLE patients and 100 healthy donors. TaqMan real-time polymerase chain-reaction assay was performed for the detection of 5-methylcytosine (5-mC), 5-hmC, and TET2 mRNA expression and single-nucleotide polymorphism genotyping. The methylation rates in different CpG sites of TET2 promoters were examined using next-generation sequencing-based deep bisulfite sequencing. Putative transcription factors were investigated using the UCSC Genome Browser on the Human Dec. 2013 (GRCh38/hg38) Assembly. (3) Results: 5-mC and 5-hmC were both decreased in SLE. The mRNA expression level of TET2 was notably high and found to be correlated with the levels of immunologic biomarkers that are indicative of SLE disease activity. The analysis of methylation rates in the TET2 promoter revealed that SLE patients had significantly higher and lower rates of methylation in TET2 105146072-154 and TET2 105146218-331, respectively. (4) Conclusions: TET2 may play an important role in 5-mC/5-hmC dynamics in the PBMCs of SLE patients. The epigenetic modification of TET2 promoters could contribute to the pathogenesis of SLE and the intensity of the immunologic reaction.
Collapse
Affiliation(s)
- Wan-Yu Sung
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Correspondence: (W.-Y.S.); (J.-H.Y.)
| | - Yuan-Zhao Lin
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 350401, Taiwan
- Division of Nephrology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Chia-Hui Lin
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chia-Chun Tseng
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Jeng-Hsien Yen
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- College of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Correspondence: (W.-Y.S.); (J.-H.Y.)
| |
Collapse
|
10
|
Dai R, Wang Z, Ahmed SA. Epigenetic Contribution and Genomic Imprinting Dlk1-Dio3 miRNAs in Systemic Lupus Erythematosus. Genes (Basel) 2021; 12:680. [PMID: 34062726 PMCID: PMC8147206 DOI: 10.3390/genes12050680] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease that afflicts multiple organs, especially kidneys and joints. In addition to genetic predisposition, it is now evident that DNA methylation and microRNAs (miRNAs), the two major epigenetic modifications, are critically involved in the pathogenesis of SLE. DNA methylation regulates promoter accessibility and gene expression at the transcriptional level by adding a methyl group to 5' cytosine within a CpG dinucleotide. Extensive evidence now supports the importance of DNA hypomethylation in SLE etiology. miRNAs are small, non-protein coding RNAs that play a critical role in the regulation of genome expression. Various studies have identified the signature lupus-related miRNAs and their functional contribution to lupus incidence and progression. In this review, the mutual interaction between DNA methylation and miRNAs regulation in SLE is discussed. Some lupus-associated miRNAs regulate DNA methylation status by targeting the DNA methylation enzymes or methylation pathway-related proteins. On the other hand, DNA hyper- and hypo-methylation are linked with dysregulated miRNAs expression in lupus. Further, we specifically discuss the genetic imprinting Dlk1-Dio3 miRNAs that are subjected to DNA methylation regulation and are dysregulated in several autoimmune diseases, including SLE.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA 24061, USA;
| | | | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
11
|
Wang M, Liang Y, Ibeagha-Awemu EM, Li M, Zhang H, Chen Z, Sun Y, Karrow NA, Yang Z, Mao Y. Genome-Wide DNA Methylation Analysis of Mammary Gland Tissues From Chinese Holstein Cows With Staphylococcus aureus Induced Mastitis. Front Genet 2020; 11:550515. [PMID: 33193625 PMCID: PMC7604493 DOI: 10.3389/fgene.2020.550515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus intramammary infection is one of the most common causes of chronic mastitis in dairy cows, whose development may be associated with epigenetic changes in the expression of important host defense genes. This study aimed to construct a genome-wide DNA methylation profile of the mammary gland of Chinese Holstein cows (n = 3) following experimentally induced S. aureus mastitis, and to explore the potential gene regulatory mechanisms affected by DNA methylation during S. aureus mastitis. DNA was extracted from S. aureus-positive (n = 3) and S. aureus-negative (n = 3) mammary gland quarters and subjected to methylation-dependent restriction-site associated DNA sequencing (Methyl-RAD Seq). Results showed that CmCGG/CmCWGG DNA methylation sites were unevenly distributed and concentrated on chromosomes 5, 11, and 19, and within intergenic regions and intron regions of genes. Compared with healthy control quarters, 9,181 significantly differentially methylated (DM) CmCGG sites and 1,790 DM CmCWGG sites were found in the S. aureus-positive quarters (P < 0.05, |log2FC| > 1). Furthermore, 363 CmCGG differently methylated genes (DMGs) and 301 CmCWGG DMGs (adjusted P < 0.05, |log2FC| > 1) were identified. Gene ontology and KEGG enrichment analysis indicated that CmCGG DMGs are involved in immune response pathways, while the CmCWGG DMGs were mainly enriched in gene ontology terms related to metabolism. The mRNAs of 526 differentially methylated CmCGG genes and 124 differentially methylated CmCWGG genes were also significantly differentially expressed (RNA-Seq data) in the same samples, herein denoted differentially methylated and expressed genes (DMEGs) (P < 0.05). Functional enrichment analysis of DMEGs revealed roles related to biological processes, especially the regulation of immune response to diseases. CmCGG DMEGs like IL6R, TNF, BTK, IL1R2, and TNFSF8 enriched in several immune-related GO terms and pathways indicated their important roles in host immune response and their potential as candidate genes for S. aureus mastitis. These results suggest potential regulatory roles for DNA methylation in bovine mammary gland processes during S. aureus mastitis and serves as a reference for future epigenetic regulation and mechanistic studies.
Collapse
Affiliation(s)
- Mengqi Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Yan Liang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Mingxun Li
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Huimin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Niel A. Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Zhangping Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yongjiang Mao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Zheng Z, Huang G, Gao T, Huang T, Zou M, Zou Y, Duan S. Epigenetic Changes Associated With Interleukin-10. Front Immunol 2020; 11:1105. [PMID: 32582189 PMCID: PMC7287023 DOI: 10.3389/fimmu.2020.01105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
IL-10 is a regulator of inflammation and immunosuppression. IL-10 regulates a variety of immune cells to limit and stop the inflammatory response, and thus plays an important role in autoimmune diseases, inflammatory diseases and cancer. IL-10 is closely related to epigenetic modification, in which changes in DNA methylation of IL-10 gene can affect mRNA and protein levels of IL-10. In addition, changes in histone modifications, especially histone acetylation, can also lead to abnormal expression of IL-10 mRNA. At the same time, a handful of IL-10 related microRNAs (miRNAs) are found to be aberrantly expressed in multiple diseases. Besides, long non-coding RNA (lncRNA) growth arrest specific transcript 5 (GAS5) also inhibits IL-10 expression. Here, we reviewed the epigenetic changes related to IL-10 in various diseases, as well as the regulation of IL-10 gene expression in various diseases by epigenetic modifications such as DNA methylation, histone modification, miRNA, and lncRNA.
Collapse
Affiliation(s)
- Zhonghua Zheng
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Gang Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Tong Gao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Tianyi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Mengsha Zou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Yuhao Zou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
The Development of Epigenetics in the Study of Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:57-94. [PMID: 32445091 DOI: 10.1007/978-981-15-3449-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The study of epigenetics has its roots in the study of organism change over time and response to environmental change, although over the past several decades the definition has been formalized to include heritable alterations in gene expression that are not a result of alterations in underlying DNA sequence. In this chapter, we discuss first the history and milestones in the 100+ years of epigenetic study, including early discoveries of DNA methylation, histone posttranslational modification, and noncoding RNA. We then discuss how epigenetics has changed the way that we think of both health and disease, offering as examples studies examining the epigenetic contributions to aging, including the recent development of an epigenetic "clock", and explore how antiaging therapies may work through epigenetic modifications. We then discuss a nonpathogenic role for epigenetics in the clinic: epigenetic biomarkers. We conclude by offering two examples of modern state-of-the-art integrated multi-omics studies of epigenetics in disease pathogenesis, one which sought to capture shared mechanisms among multiple diseases, and another which used epigenetic big data to better understand the pathogenesis of a single tissue from one disease.
Collapse
|
14
|
Brandt B, Rashidiani S, Bán Á, Rauch TA. DNA Methylation-Governed Gene Expression in Autoimmune Arthritis. Int J Mol Sci 2019; 20:E5646. [PMID: 31718084 PMCID: PMC6888626 DOI: 10.3390/ijms20225646] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease hallmarked by progressive and irreversible joint destruction. RA pathogenesis is a T cell-regulated and B cell-mediated process in which activated lymphocyte-produced chemokines and cytokines promote leukocyte infiltration that ultimately leads to destruction of the joints. There is an obvious need to discover new drugs for RA treatment that have different biological targets or modes of action than the currently employed therapeutics. Environmental factors such as cigarette smoke, certain diet components, and oral pathogens can significantly affect gene regulation via epigenetic factors. Epigenetics opened a new field for pharmacology, and DNA methylation and histone modification-implicated factors are feasible targets for RA therapy. Exploring RA pathogenesis involved epigenetic factors and mechanisms is crucial for developing more efficient RA therapies. Here we review epigenetic alterations associated with RA pathogenesis including DNA methylation and interacting factors. Additionally, we will summarize the literature revealing the involved molecular structures and interactions. Finally, potential epigenetic factor-based therapies will be discussed that may help in better management of RA in the future.
Collapse
Affiliation(s)
- Barbara Brandt
- Department of Medical Biology, Medical School, University of Pécs, Pécs 7624, Hungary; (B.B.); (S.R.)
| | - Shima Rashidiani
- Department of Medical Biology, Medical School, University of Pécs, Pécs 7624, Hungary; (B.B.); (S.R.)
| | - Ágnes Bán
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, Pécs 7621, Hungary;
| | - Tibor A. Rauch
- Department of Medical Biology, Medical School, University of Pécs, Pécs 7624, Hungary; (B.B.); (S.R.)
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs 7624, Hungary
| |
Collapse
|
15
|
Zhang X, Lu M, Xu Y, He G, Liu Q, Zhu J, Zhang C, Zhang X. IL-10 promoter hypomethylation is associated with increased IL-10 expression and poor survival in hepatocellular carcinoma. Transl Cancer Res 2019; 8:1466-1475. [PMID: 35116889 PMCID: PMC8797925 DOI: 10.21037/tcr.2019.07.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022]
Abstract
Background Epigenetic alterations of tumor-associated genes contribute to the pathogenesis of virtually all cancer types. We evaluated the methylation status of the interleukin-10 (IL-10) gene promoter and assessed its association with IL-10 mRNA expression and clinical prognosis in hepatocellular carcinoma (HCC) patients. Methods Methylation-specific polymerase chain reaction (MSP) and real-time polymerase chain reaction (PCR) were used to define the methylation index (MI) of the IL-10 gene and quantify IL-10 mRNA expression in 120 HCC samples and paired non-tumor tissues. Results Mean MI was 0.47 in HCC specimens and 0.59 in non-tumor controls, and was associated with metastasis classification and serum α-fetoprotein (AFP) levels. IL-10 mRNA levels [mean –∆∆Ct of 1.678 in HCC cases with hypomethylation (∆MI ≤0) and –0.18 in HCC cases with hypermethylation (∆MI >0)] also correlated with metastasis classification and serum AFP. An association was detected between IL-10 mRNA and its gene’s MI in HCC. Also, an association was found between IL-10 hypomethylation, but not IL-10 mRNA expression and reduced postoperative HCC survival. Conclusions These results indicate that IL-10 promoter hypomethylation is associated with increased IL-10 mRNA levels and indicative of poor survival in HCC.
Collapse
Affiliation(s)
- Xianjing Zhang
- The Second Clinical Department, Medical School of Nanchang University, Nanchang 330006, China.,Department of Laboratory, Suzhou Science& Technology Town Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215153, China
| | - Mingzhu Lu
- Clinical Oncology Laboratory, Changzhou Cancer Hospital, Soochow University, Changzhou 213032, China
| | - Yun Xu
- Department of Oncology, Nanyang Center Hospital, Nanyang 473000, China
| | - Guangzhao He
- Clinical Oncology Laboratory, Changzhou Cancer Hospital, Soochow University, Changzhou 213032, China
| | - Qian Liu
- Clinical Oncology Laboratory, Changzhou Cancer Hospital, Soochow University, Changzhou 213032, China
| | - Jing Zhu
- Department of Laboratory, Suzhou Science& Technology Town Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215153, China
| | - Changsong Zhang
- Department of Laboratory, Suzhou Science& Technology Town Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215153, China.,Clinical Oncology Laboratory, Changzhou Cancer Hospital, Soochow University, Changzhou 213032, China
| | - Xiaoli Zhang
- Department of Clinical Medicine, Hubei College of Chinese Medicine, Jingzhou 434100, China
| |
Collapse
|
16
|
Abstract
Biomarker discovery and validation are necessary for improving the prediction of clinical outcomes and patient monitoring. Despite considerable interest in biomarker discovery and development, improvements in the range and quality of biomarkers are still needed. The main challenge is how to integrate preclinical data to obtain a reliable biomarker that can be measured with acceptable costs in routine clinical practice. Epigenetic alterations are already being incorporated as valuable candidates in the biomarker field. Furthermore, their reversible nature offers a promising opportunity to ameliorate disease symptoms by using epigenetic-based therapy. Thus, beyond helping to understand disease biology, clinical epigenetics is being incorporated into patient management in oncology, as well as being explored for clinical applicability for other human pathologies such as neurological and infectious diseases and immune system disorders.
Collapse
|
17
|
Ramos PS, Zimmerman KD, Haddad S, Langefeld CD, Medsger TA, Feghali-Bostwick CA. Integrative analysis of DNA methylation in discordant twins unveils distinct architectures of systemic sclerosis subsets. Clin Epigenetics 2019; 11:58. [PMID: 30947741 PMCID: PMC6449959 DOI: 10.1186/s13148-019-0652-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/11/2019] [Indexed: 02/08/2023] Open
Abstract
Background Systemic sclerosis (SSc) is a rare autoimmune fibrosing disease with an incompletely understood genetic and non-genetic etiology. Defining its etiology is important to allow the development of effective predictive, preventative, and therapeutic strategies. We conducted this epigenomic study to investigate the contributions of DNA methylation to the etiology of SSc while minimizing confounding due to genetic heterogeneity. Methods Genomic methylation in whole blood from 27 twin pairs discordant for SSc was assayed over 450 K CpG sites. In silico integration with reported differentially methylated cytosines, differentially expressed genes, and regulatory annotation was conducted to validate and interpret the results. Results A total of 153 unique cytosines in limited cutaneous SSc (lcSSc) and 266 distinct sites in diffuse cutaneous SSc (dcSSc) showed suggestive differential methylation levels in affected twins. Integration with available data revealed 76 CpGs that were also differentially methylated in blood cells from lupus patients, suggesting their role as potential epigenetic blood biomarkers of autoimmunity. It also revealed 27 genes with concomitant differential expression in blood from SSc patients, including IFI44L and RSAD2. Regulatory annotation revealed that dcSSc-associated CpGs (but not lcSSc) are enriched at Encyclopedia of DNA Elements-, Roadmap-, and BLUEPRINT-derived regulatory regions, supporting their potential role in disease presentation. Notably, the predominant enrichment of regulatory regions in monocytes and macrophages is consistent with the role of these cells in fibrosis, suggesting that the observed cellular dysregulation might be, at least partly, due to altered epigenetic mechanisms of these cells in dcSSc. Conclusions These data implicate epigenetic changes in the pathogenesis of SSc and suggest functional mechanisms in SSc etiology. Electronic supplementary material The online version of this article (10.1186/s13148-019-0652-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paula S Ramos
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Kip D Zimmerman
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas A Medsger
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carol A Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
18
|
Wang Z, Long H, Chang C, Zhao M, Lu Q. Crosstalk between metabolism and epigenetic modifications in autoimmune diseases: a comprehensive overview. Cell Mol Life Sci 2018; 75:3353-3369. [PMID: 29974127 PMCID: PMC11105184 DOI: 10.1007/s00018-018-2864-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Little information is available regarding mechanistic links between epigenetic modifications and autoimmune diseases. It seems plausible to surmise that aberrant gene expression and energy metabolism would disrupt immune tolerance, which could ultimately result in autoimmune responses. Metaboloepigenetics is an emerging paradigm that defines the interrelationships between metabolism and epigenetics. Epigenetic modifications, such as the methylation/demethylation of DNA and histone proteins and histone acetylation/deacetylation can be dynamically produced and eliminated by a group of enzymes that consume several metabolites derived from various physiological pathways. Recent insights into cellular metabolism have demonstrated that environmental stimuli such as dietary exposure and nutritional status act through the variation in concentration of metabolites to affect epigenetic regulation and breakdown biochemical homeostasis. Metabolites, including S-adenosylmethionine, acetyl-CoA, nicotinamide adenine dinucleotide, α-ketoglutarate, and ATP serve as cofactors for chromatin-modifying enzymes, such as methyltransferases, deacetylases and kinases, which are responsible for chromatin remodelling. The concentration of crucial nutrients, such as glucose, glutamine, and oxygen, spatially and temporally modulate epigenetic modifications to regulate gene expression and the reaction to stressful microenvironments in disease pathology. In this review, we focus on the interaction between metabolic intermediates and epigenetic modifications, integrating environmental signals with programmes through modification of the epigenome-metabolome to speculate as to how this may influence autoimmune diseases.
Collapse
Affiliation(s)
- Zijun Wang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139 Renmin Middle Rd, Changsha, 410011, Hunan, China
| | - Hai Long
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139 Renmin Middle Rd, Changsha, 410011, Hunan, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Suite 6510, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139 Renmin Middle Rd, Changsha, 410011, Hunan, China.
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139 Renmin Middle Rd, Changsha, 410011, Hunan, China.
| |
Collapse
|
19
|
Lanata CM, Chung SA, Criswell LA. DNA methylation 101: what is important to know about DNA methylation and its role in SLE risk and disease heterogeneity. Lupus Sci Med 2018; 5:e000285. [PMID: 30094041 PMCID: PMC6069928 DOI: 10.1136/lupus-2018-000285] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
SLE is a complex autoimmune disease that results from the interplay of genetics, epigenetics and environmental exposures. DNA methylation is an epigenetic mechanism that regulates gene expression and tissue differentiation. Among all the epigenetic modifications, DNA methylation perturbations have been the most widely studied in SLE. It mediates processes relevant to SLE, including lymphocyte development, X-chromosome inactivation and the suppression of endogenous retroviruses. The establishment of most DNA methylation marks occurs in utero; however, a small percentage of epigenetic marks are dynamic and can change throughout a person’s lifetime and in relation to exposures. In this review, we discuss the current understanding of the biology of DNA methylation and its regulators, the measurement and interpretation of methylation marks, the effects of genetics on DNA methylation and the role of environmental exposures with relevance to SLE. We also summarise research findings associated with SLE disease risk and heterogeneity. The robust finding of hypomethylation of interferon-responsive genes in patients with SLE and new associations beyond interferon-responsive genes such as cell-specific methylation abnormalities are described. We also discuss methylation changes associated with lupus nephritis, autoantibody status and disease activity. Lastly, we explore future research directions, emphasising the need for longitudinal studies, cell tissue and context-specific profiling, as well as integrative approaches. With new technologies, DNA methylation perturbations could be targeted and edited, offering novel therapeutic approaches.
Collapse
Affiliation(s)
- Cristina M Lanata
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sharon A Chung
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Wang Z, Chang C, Peng M, Lu Q. Translating epigenetics into clinic: focus on lupus. Clin Epigenetics 2017; 9:78. [PMID: 28785369 PMCID: PMC5541721 DOI: 10.1186/s13148-017-0378-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/26/2017] [Indexed: 01/17/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic relapsing–remitting autoimmune disease with highly heterogeneous phenotypes. Biomarkers with high sensitivity and specificity are useful for early diagnosis as well as monitoring disease activity and long-term complications. Epigenetics potentially provide novel biomarkers in autoimmune diseases. These may include DNA methylation changes in relevant lupus-prone genes or histone modifications and microRNAs to upregulate and downregulate relevant gene expression. The timing and nature of epigenetic modification provide such changes. In lupus, DNA methylation alterations in cytokine genes, such as IFN-related gene and retrovirus gene, have been found to offer biomarkers for lupus diagnosis. Histone modifications such as histone methylation and acetylation lead to transcriptional alterations of several genes such as PTPN22, LRP1B, and TNFSF70. There are varieties of microRNAs applied as lupus biomarkers, including DNMT1-related microRNAs, renal function-associated microRNAs, microRNAs involved in the immune system, and microRNAs for phenotype classification. Thus, we conclude a wide range of promising roles of epigenetic biomarkers aiding in the diagnosing and monitoring of lupus diseases and the risk of organ damage.
Collapse
Affiliation(s)
- Zijun Wang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan 410011 China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA USA
| | - Mou Peng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan 410011 China
| |
Collapse
|
21
|
Foma AM, Aslani S, Karami J, Jamshidi A, Mahmoudi M. Epigenetic involvement in etiopathogenesis and implications in treatment of systemic lupus erythematous. Inflamm Res 2017; 66:1057-1073. [DOI: 10.1007/s00011-017-1082-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/22/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022] Open
|
22
|
Hudson M, Bernatsky S, Colmegna I, Lora M, Pastinen T, Klein Oros K, Greenwood CMT. Novel insights into systemic autoimmune rheumatic diseases using shared molecular signatures and an integrative analysis. Epigenetics 2017; 12:433-440. [PMID: 28387599 DOI: 10.1080/15592294.2017.1303581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We undertook this study to identify DNA methylation signatures of three systemic autoimmune rheumatic diseases (SARDs), namely rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis, compared to healthy controls. Using a careful design to minimize confounding, we restricted our study to subjects with incident disease and performed our analyses on purified CD4+ T cells, key effector cells in SARD. We identified differentially methylated (using the Illumina Infinium HumanMethylation450 BeadChip array) and expressed (using the Illumina TruSeq stranded RNA-seq protocol) sites between cases and controls, and investigated the biological significance of this SARD signature using gene annotation databases. We recruited 13 seropositive rheumatoid arthritis, 19 systemic sclerosis, 12 systemic lupus erythematosus subjects, and 8 healthy controls. We identified 33 genes that were both differentially methylated and expressed (26 over- and 7 under-expressed) in SARD cases versus controls. The most highly overexpressed gene was CD1C (log fold change in expression = 1.85, adjusted P value = 0.009). In functional analysis (Ingenuity Pathway Analysis), the top network identified was lipid metabolism, molecular transport, small molecule biochemistry. The top canonical pathways included the mitochondrial L-carnitine shuttle pathway (P = 5E-03) and PTEN signaling (P = 8E-03). The top upstream regulator was HNF4A (P = 3E-05). This novel SARD signature contributes to ongoing work to further our understanding of the molecular mechanisms underlying SARD and provides novel targets of interest.
Collapse
Affiliation(s)
- Marie Hudson
- a Lady Davis Research Institute , Montréal , QC , Canada.,b Division of Rheumatology , Jewish General Hospital , Montréal , QC , Canada.,c Department of Medicine , McGill University , Montréal , QC , Canada
| | - Sasha Bernatsky
- c Department of Medicine , McGill University , Montréal , QC , Canada.,d The Research Institute of the McGill University Health Centre , Montréal , QC , Canada
| | - Ines Colmegna
- c Department of Medicine , McGill University , Montréal , QC , Canada.,d The Research Institute of the McGill University Health Centre , Montréal , QC , Canada
| | - Maximilien Lora
- d The Research Institute of the McGill University Health Centre , Montréal , QC , Canada
| | - Tomi Pastinen
- e McGill University and Genome Quebec Innovation Centre , McGill University , Montréal , QC , Canada
| | | | - Celia M T Greenwood
- a Lady Davis Research Institute , Montréal , QC , Canada.,f Department of Human Genetics , McGill University , Montréal , QC , Canada.,g Department of Oncology , McGill University , Montréal , QC , Canada.,h Department of Epidemiology , Biostatistics & Occupational Health, McGill University , Montréal , QC , Canada
| |
Collapse
|
23
|
Ye Z, Xu J, Li S, Cai C, Li T, Sun L. Lnc‑IL7R promotes the growth of fibroblast‑like synoviocytes through interaction with enhancer of zeste homolog 2 in rheumatoid arthritis. Mol Med Rep 2017; 15:1412-1418. [PMID: 28138707 DOI: 10.3892/mmr.2017.6150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/25/2016] [Indexed: 11/06/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory and autoimmune disease that affects ~1% of the world's population. Although the precise mechanism of RA has yet to be elucidated, accumulating evidence suggests that fibroblast‑like synoviocytes (FLSs) serve critical roles in the initiation and progression of RA. However, the underlying molecular mechanisms of FLS proliferation have yet to be elucidated. Long noncoding‑interleukin‑7 receptor (lnc‑IL7R) has been recently identified, which is activated by lipopolysaccharide (LPS) stimulation and diminishes the LPS‑induced inflammatory response. In the present study, gain‑ and loss‑of‑function assays were performed in order to investigate the role of lnc‑IL7R in FLS. It is demonstrated, to the best of the authors' knowledge for the first time, that lnc‑IL7R promotes cell proliferation, cell cycle progression and inhibits apoptosis in FLS. Further investigation identified that lnc‑IL7 interacts with enhancer of zeste homolog 2 (EZH2) and is required for polycomb repressive complex 2 (PRC2)‑mediated suppression, including cyclin‑dependent kinase inhibitor 1A and cyclin‑dependent kinase inhibitor 2A. Lnc‑IL7R may be a promising therapeutic target for the treatment of RA.
Collapse
Affiliation(s)
- Zhao Ye
- Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Juan Xu
- Department of Ultrasound, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Shukui Li
- Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Cheng Cai
- Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Tiejun Li
- Department of Teaching, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Lishan Sun
- Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
24
|
Yeung KS, Chung BHY, Choufani S, Mok MY, Wong WL, Mak CCY, Yang W, Lee PPW, Wong WHS, Chen YA, Grafodatskaya D, Wong RWS, Lau CS, Chan DTM, Weksberg R, Lau YL. Genome-Wide DNA Methylation Analysis of Chinese Patients with Systemic Lupus Erythematosus Identified Hypomethylation in Genes Related to the Type I Interferon Pathway. PLoS One 2017; 12:e0169553. [PMID: 28085900 PMCID: PMC5234836 DOI: 10.1371/journal.pone.0169553] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022] Open
Abstract
Background Epigenetic variants have been shown in recent studies to be important contributors to the pathogenesis of systemic lupus erythematosus (SLE). Here, we report a 2-step study of discovery followed by replication to identify DNA methylation alterations associated with SLE in a Chinese population. Using a genome-wide DNA methylation microarray, the Illumina Infinium HumanMethylation450 BeadChip, we compared the methylation levels of CpG sites in DNA extracted from white blood cells from 12 female Chinese SLE patients and 10 healthy female controls. Results We identified 36 CpG sites with differential loss of DNA methylation and 8 CpG sites with differential gain of DNA methylation, representing 25 genes and 7 genes, respectively. Surprisingly, 42% of the hypomethylated CpG sites were located in CpG shores, which indicated the functional importance of the loss of DNA methylation. Microarray results were replicated in another cohort of 100 SLE patients and 100 healthy controls by performing bisulfite pyrosequencing of four hypomethylated genes, MX1, IFI44L, NLRC5 and PLSCR1. In addition, loss of DNA methylation in these genes was associated with an increase in mRNA expression. Gene ontology analysis revealed that the hypomethylated genes identified in the microarray study were overrepresented in the type I interferon pathway, which has long been implicated in the pathogenesis of SLE. Conclusion Our epigenetic findings further support the importance of the type I interferon pathway in SLE pathogenesis. Moreover, we showed that the DNA methylation signatures of SLE can be defined in unfractionated white blood cells.
Collapse
Affiliation(s)
- Kit San Yeung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- * E-mail:
| | - Sanaa Choufani
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Mo Yin Mok
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, The City University of Hong Kong, Hong Kong, China
| | - Wai Lap Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Christopher Chun Yu Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pamela Pui Wah Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wilfred Hing Sang Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi-an Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Daria Grafodatskaya
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Raymond Woon Sing Wong
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chak Sing Lau
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Daniel Tak Mao Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science and Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
De Luca M, Pels K, Moleirinho S, Curtale G. The epigenetic landscape of innate immunity. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.1.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
26
|
Microarray to deep sequencing: transcriptome and miRNA profiling to elucidate molecular pathways in systemic lupus erythematosus. Immunol Res 2016; 64:14-24. [PMID: 26188428 DOI: 10.1007/s12026-015-8672-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with diverse clinical manifestations and autoantibody repertoires. The etiology of SLE is multifactorial involving genetic, epigenetic and environmental factors. This complexity leads to poor prognosis, which poses major challenges in the treatment of SLE. Understanding the complex genetic pathways and regulatory mechanisms operative in SLE was feasible by utilizing several highly efficient molecular biological tools during the past few years. In this perspective, DNA microarray technology offered a high-throughput platform in unraveling SLE-associated genes. Additionally, extensive microarray analysis had demonstrated aberrant DNA methylation pattern and differential microRNAs, thus contributing to the knowledge of epigenetic modulators and posttranscriptional regulatory machinery in SLE. It was through the aid of these technologies that interferon signature was identified as an important contributor in SLE pathogenesis along with dysregulation of cytokine-, chemokine- and apoptosis-related genes. The emergence of next-generation sequencing technologies such as RNA sequencing has added new dimensions in understanding the dynamics of the disease processes. Compared with microarrays, deep sequencing has provided higher resolution in gene expression measurement along with identification of different splicing events, noncoding RNAs and novel loci in SLE. The focus, therefore, has now been shifted toward the identification of novel gene loci and their isoforms, and their implication in disease pathogenesis. This advancement in the technology from microarray to deep sequencing has helped in deciphering the molecular pathways involved in pathogenesis of SLE and opens new avenues to develop novel treatment strategies for SLE.
Collapse
|
27
|
Jones BE, Yang J, Muthigi A, Hogan SL, Hu Y, Starmer J, Henderson CD, Poulton CJ, Brant EJ, Pendergraft WF, Jennette JC, Falk RJ, Ciavatta DJ. Gene-Specific DNA Methylation Changes Predict Remission in Patients with ANCA-Associated Vasculitis. J Am Soc Nephrol 2016; 28:1175-1187. [PMID: 27821628 DOI: 10.1681/asn.2016050548] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022] Open
Abstract
ANCA-associated vasculitis is an autoimmune condition characterized by vascular inflammation and organ damage. Pharmacologically induced remission of this condition is complicated by relapses. Potential triggers of relapse are immunologic challenges and environmental insults, both of which associate with changes in epigenetic silencing modifications. Altered histone modifications implicated in gene silencing associate with aberrant autoantigen expression. To establish a link between DNA methylation, a model epigenetic gene silencing modification, and autoantigen gene expression and disease status in ANCA-associated vasculitis, we measured gene-specific DNA methylation of the autoantigen genes myeloperoxidase (MPO) and proteinase 3 (PRTN3) in leukocytes of patients with ANCA-associated vasculitis observed longitudinally (n=82) and of healthy controls (n=32). Patients with active disease demonstrated hypomethylation of MPO and PRTN3 and increased expression of the autoantigens; in remission, DNA methylation generally increased. Longitudinal analysis revealed that patients with ANCA-associated vasculitis could be divided into two groups, on the basis of whether DNA methylation increased or decreased from active disease to remission. In patients with increased DNA methylation, MPO and PRTN3 expression correlated with DNA methylation. Kaplan-Meier estimate of relapse revealed patients with increased DNA methylation at the PRTN3 promoter had a significantly greater probability of a relapse-free period (P<0.001), independent of ANCA serotype. Patients with decreased DNA methylation at the PRTN3 promoter had a greater risk of relapse (hazard ratio, 4.55; 95% confidence interval, 2.09 to 9.91). Thus, changes in the DNA methylation status of the PRTN3 promoter may predict the likelihood of stable remission and explain autoantigen gene regulation.
Collapse
Affiliation(s)
- Britta E Jones
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension.,Department of Pathology and Laboratory Medicine, and
| | - Jiajin Yang
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Akhil Muthigi
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Susan L Hogan
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Yichun Hu
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Joshua Starmer
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Candace D Henderson
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Caroline J Poulton
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Elizabeth J Brant
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | | | - J Charles Jennette
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension.,Department of Pathology and Laboratory Medicine, and
| | - Ronald J Falk
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Dominic J Ciavatta
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, .,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
28
|
Zhan Y, Guo Y, Lu Q. Aberrant Epigenetic Regulation in the Pathogenesis of Systemic Lupus Erythematosus and Its Implication in Precision Medicine. Cytogenet Genome Res 2016; 149:141-155. [PMID: 27607472 DOI: 10.1159/000448793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Great progress has been made in the last decades in understanding the complex immune dysregulation in systemic lupus erythematosus (SLE), yet the efforts to pursue an effective treatment of SLE proved to be futile. The pathoetiology of SLE involves extremely complicated and multifactorial interaction among various genetic and epigenetic factors. Multiple gene loci predispose to disease susceptibility, and the interaction with epigenetic modifications mediated through sex, hormones, and the hypothalamo-pituitary-adrenal axis complicates susceptibility and manifestations of this disease. Finally, certain environmental and psychological factors probably trigger the disease via epigenetic mechanisms. In this review, we summarize and discuss recent epigenetic studies of SLE and suggest a personalized approach to the dissection of disease onset and therapy or precision medicine. We speculate that in the future, precision medicine based on epigenetic and genetic information could help guide more effective targeted therapeutic intervention.
Collapse
Affiliation(s)
- Yi Zhan
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, PR China
| | | | | |
Collapse
|
29
|
Chen YC, Chen TW, Su MC, Chen CJ, Chen KD, Liou CW, Tang P, Wang TY, Chang JC, Wang CC, Lin HC, Chin CH, Huang KT, Lin MC, Hsiao CC. Whole Genome DNA Methylation Analysis of Obstructive Sleep Apnea: IL1R2, NPR2, AR, SP140 Methylation and Clinical Phenotype. Sleep 2016; 39:743-55. [PMID: 26888452 DOI: 10.5665/sleep.5620] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022] Open
Abstract
STUDY OBJECTIVES We hypothesized that DNA methylation patterns may contribute to disease severity or the development of hypertension and excessive daytime sleepiness (EDS) in patients with obstructive sleep apnea (OSA). METHODS Illumina's (San Diego, CA, USA) DNA methylation 27-K assay was used to identify differentially methylated loci (DML). DNA methylation levels were validated by pyrosequencing. A discovery cohort of 15 patients with OSA and 6 healthy subjects, and a validation cohort of 72 patients with sleep disordered breathing (SDB). RESULTS Microarray analysis identified 636 DMLs in patients with OSA versus healthy subjects, and 327 DMLs in patients with OSA and hypertension versus those without hypertension. In the validation cohort, no significant difference in DNA methylation levels of six selected genes was found between the primary snoring subjects and OSA patients (primary outcome). However, a secondary outcome analysis showed that interleukin-1 receptor 2 (IL1R2) promoter methylation (-114 cytosine followed by guanine dinucleotide sequence [CpG] site) was decreased and IL1R2 protein levels were increased in the patients with SDB with an oxygen desaturation index > 30. Androgen receptor (AR) promoter methylation (-531 CpG site) and AR protein levels were both increased in the patients with SDB with an oxygen desaturation index > 30. Natriuretic peptide receptor 2 (NPR2) promoter methylation (-608/-618 CpG sites) were decreased, whereas levels of both NPR2 and serum C type natriuretic peptide protein were increased in the SDB patients with EDS. Speckled protein 140 (SP140) promoter methylation (-194 CpG site) was increased, and SP140 protein levels were decreased in the patients with SDB and EDS. CONCLUSIONS IL1R2 hypomethylation and AR hypermethylation may constitute an important determinant of disease severity, whereas NPR2 hypomethylation and SP140 hypermethylation may provide a biomarker for vulnerability to EDS in OSA. COMMENTARY A commentary on this article appears in this issue on page 723.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taiwan.,Bioinformatics Center, Chang Gung University, Taiwan
| | - Mao-Chang Su
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Chang Gung University of Science and Technology, Chia-yi, Taiwan
| | - Chung-Jen Chen
- Division of Rheumatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Den Chen
- Center of Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Petrus Tang
- Molecular Medicine Research Center, Chang Gung University, Taiwan.,Bioinformatics Center, Chang Gung University, Taiwan
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jen-Chieh Chang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan
| | - Chin-Chou Wang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Chang Gung University of Science and Technology, Chia-yi, Taiwan
| | - Hsin-Ching Lin
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Hung Chin
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan
| |
Collapse
|
30
|
Konsta OD, Le Dantec C, Charras A, Cornec D, Kapsogeorgou EK, Tzioufas AG, Pers JO, Renaudineau Y. Defective DNA methylation in salivary gland epithelial acini from patients with Sjögren's syndrome is associated with SSB gene expression, anti-SSB/LA detection, and lymphocyte infiltration. J Autoimmun 2015; 68:30-8. [PMID: 26725749 DOI: 10.1016/j.jaut.2015.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022]
Abstract
The pathogenesis of primary Sjögren's syndrome (pSS) is complex, in part due to DNA methylation abnormalities. This study was undertaken to evaluate the importance of global DNA methylation ((5m)C) as determined in minor salivary glands (MSG) from well characterized pSS patients. Twenty-two pSS patients and ten controls were selected, and MSG were stained with anti-(5m)C, anti-(5m)C/anti-cytokeratin (KRT)19, or with anti-SSB/La antibodies (Ab). The DNA methylation status at the SSB gene promoter P1 and P1' was evaluated by methylation-sensitive restriction enzymes (MSRE) coupled with PCR. The effect of the DNA demethylating drug 5 azacytidine (5-Aza) was tested in the human salivary gland (HSG) cell line. In pSS, the reduction of global DNA methylation ((5m)C) was associated with lymphocyte infiltration, the emergence of (5m)C(low) and KRT19(high) acini, and the detection of circulating anti-SSB/La Ab, but not with disease activity (ESSDAI). Next, treating HSG cells with 5-Aza was effective in inducing SSB expression. Finally in pSS patients positive for anti-SSB/La Ab, we further observed DNA demethylation at the SSB gene promoter P1 with consequent SSB overexpression at both the transcriptional and protein levels in salivary gland epithelial cells. In conclusion, our results highlight the importance of DNA methylation in the pathophysiology of pSS and to the emergence of anti-SSB/La Ab.
Collapse
Affiliation(s)
- O D Konsta
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO "Immunotherapy Graft Oncology", Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France; Department of Pathophysiology, School of Medicine, National University of Athens, Greece
| | - C Le Dantec
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO "Immunotherapy Graft Oncology", Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France
| | - A Charras
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO "Immunotherapy Graft Oncology", Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France
| | - D Cornec
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO "Immunotherapy Graft Oncology", Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France
| | - E K Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National University of Athens, Greece
| | - A G Tzioufas
- Department of Pathophysiology, School of Medicine, National University of Athens, Greece
| | - J O Pers
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO "Immunotherapy Graft Oncology", Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France
| | - Y Renaudineau
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO "Immunotherapy Graft Oncology", Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France; Laboratory of Immunology and Immunotherapy, CHU Morvan, Brest, France.
| |
Collapse
|
31
|
Dozmorov MG, Dominguez N, Bean K, Macwana SR, Roberts V, Glass E, James JA, Guthridge JM. B-Cell and Monocyte Contribution to Systemic Lupus Erythematosus Identified by Cell-Type-Specific Differential Expression Analysis in RNA-Seq Data. Bioinform Biol Insights 2015; 9:11-9. [PMID: 26512198 PMCID: PMC4599594 DOI: 10.4137/bbi.s29470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by complex interplay among immune cell types. SLE activity is experimentally assessed by several blood tests, including gene expression profiling of heterogeneous populations of cells in peripheral blood. To better understand the contribution of different cell types in SLE pathogenesis, we applied the two methods in cell-type-specific differential expression analysis, csSAM and DSection, to identify cell-type-specific gene expression differences in heterogeneous gene expression measures obtained using RNA-seq technology. We identified B-cell-, monocyte-, and neutrophil-specific gene expression differences. Immunoglobulin-coding gene expression was altered in B-cells, while a ribosomal signature was prominent in monocytes. On the contrary, genes differentially expressed in the heterogeneous mixture of cells did not show any functional enrichment. Our results identify antigen binding and structural constituents of ribosomes as functions altered by B-cell- and monocyte-specific gene expression differences, respectively. Finally, these results position both csSAM and DSection methods as viable techniques for cell-type-specific differential expression analysis, which may help uncover pathogenic, cell-type-specific processes in SLE.
Collapse
Affiliation(s)
- Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicolas Dominguez
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Krista Bean
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Susan R Macwana
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Virginia Roberts
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Edmund Glass
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
32
|
Abstract
Rheumatoid arthritis (RA) is an immune-mediated disease of unknown cause that primarily affects the joints and ultimately leads to joint destruction. In recent years, the potential role of DNA methylation in the development of RA is raising great expectations among clinicians and researchers. DNA methylation influences diverse aspects of the disease and regulates epigenetic silencing of genes and behavior of several cell types, especially fibroblast-like synoviocytes (FLS), the most resident cells in joints. The activation of FLS is generally regarded as a key process in the development of RA that actively results in the promotion of ongoing inflammation and joint damage. It has also been shown that aberrant DNA methylation occurs in the pathogenesis of RA and contributes to the development of the disease. Recently, there has been an impressive increase in studies involving DNA methylation in RA. In this paper, we consider the role of DNA methylation in the development of RA.
Collapse
Affiliation(s)
- Feng-Lai Yuan
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China
| | | | | | | | | |
Collapse
|
33
|
Gagné-Ouellet V, Guay SP, Boucher-Lafleur AM, Bouchard L, Laprise C. DNA methylation signature of interleukin 1 receptor type II in asthma. Clin Epigenetics 2015; 7:80. [PMID: 26246860 PMCID: PMC4526162 DOI: 10.1186/s13148-015-0114-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/13/2015] [Indexed: 12/25/2022] Open
Abstract
Interleukin 1 and its receptors are associated with allergic diseases such as asthma. In the present study, we measured DNA methylation at the IL1R1 and IL1R2 gene loci and assessed for associations with asthma-related phenotypes and gene expressions. We found that asthmatic and atopic individuals have higher IL1R2 promoter DNA methylation than control subjects. Additionally, we observed a negative correlation between DNA methylation at the IL1R2 promoter and IL1R2 mRNA expression. These results suggest for the first time that IL1R2 promoter DNA methylation is associated with its gene repression in allergic diseases such as asthma.
Collapse
Affiliation(s)
- Valérie Gagné-Ouellet
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC Canada
| | - Simon-Pierre Guay
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC Canada ; ECOGENE-21 and Lipid Clinic, Hôpital de Chicoutimi, Saguenay, QC Canada
| | | | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC Canada ; ECOGENE-21 and Lipid Clinic, Hôpital de Chicoutimi, Saguenay, QC Canada
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC Canada
| |
Collapse
|
34
|
Mar AC, Chu CH, Lee HJ, Chien CW, Cheng JJ, Yang SH, Jiang JK, Lee TC. Interleukin-1 Receptor Type 2 Acts with c-Fos to Enhance the Expression of Interleukin-6 and Vascular Endothelial Growth Factor A in Colon Cancer Cells and Induce Angiogenesis. J Biol Chem 2015. [PMID: 26209639 DOI: 10.1074/jbc.m115.644823] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interleukin-1 receptor type 2 (IL1R2) acts as a decoy receptor of exogenous IL-1; however, its intracellular activity is poorly understood. We previously demonstrated that IL1R2 intracellularly activates the expression of several proinflammatory cytokines and affects cell migration. In this study, we found that intracellular IL1R2 expression was increased in human colorectal cancer cells (CRCs) compared with normal colon cells. We also observed that the mRNA levels of IL1R2 were highly correlated with IL-6 in tumor tissues of CRC patients. By modulating its expression in CRC cells, we verified that enhanced IL1R2 expression transcriptionally activated the expression of IL-6 and VEGF-A. Conditioned medium harvested from IL1R2-overexpressing CRC cells contained higher levels of IL-6 and VEGF-A than that from vector control cells and significantly enhanced the proliferation, migration, and tube formation of cultured endothelial cells. We further demonstrated a positive association of intracellular IL1R2 levels with tumor growth and microvessel density in xenograft mouse models. These results revealed that IL1R2 activates the expression of angiogenic factors. Mechanistically, we revealed that IL1R2 complexes with c-Fos and binds to the AP-1 site at the IL-6 and VEGF-A promoters. Together, these results reveal a novel function of intracellular IL1R2 that acts with c-Fos to enhance the transcription of IL-6 and VEGF-A, which promotes angiogenesis in CRC.
Collapse
Affiliation(s)
- Ai-Chung Mar
- From the Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan, the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Ho Chu
- the Institute of Pharmacology and the Department of Surgery, Koo Foundation, Sun Yat-Sen Cancer Center, Taipei 11221, Taiwan
| | - Hui-Ju Lee
- the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Wen Chien
- the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jing-Jy Cheng
- the National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, and
| | - Shung-Haur Yang
- the Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11221, Taiwan the School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Jeng-Kai Jiang
- the Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11221, Taiwan the School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Te-Chang Lee
- the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan,
| |
Collapse
|
35
|
Relle M, Foehr B, Schwarting A. Epigenetic Aspects of Systemic Lupus Erythematosus. Rheumatol Ther 2015; 2:33-46. [PMID: 27747498 PMCID: PMC4883254 DOI: 10.1007/s40744-015-0014-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
Autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis, multiple sclerosis, autoimmune hepatitis, and inflammatory bowel disease have complex pathogeneses and the courses of events leading to these diseases are not well understood. The immune surveillance is a delicate balance between self and foreign as well as between tolerance and immune response. Exposure to certain environmental factors may impair this equilibrium, leading to autoimmune diseases, cancer, and the so-called “lifestyle diseases” such as atherosclerosis, heart attack, stroke, and obesity, among others. These external stimuli may also alter the epigenetic status quo and may trigger autoimmune diseases such as SLE in genetically susceptible individuals. This review aims to highlight the role of epigenetic (dys-)regulation in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Manfred Relle
- Department of Medicine I, Mainz University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Bernd Foehr
- Department of Medicine I, Mainz University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Andreas Schwarting
- Department of Medicine I, Mainz University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| |
Collapse
|
36
|
DNA methylation at IL32 in juvenile idiopathic arthritis. Sci Rep 2015; 5:11063. [PMID: 26057774 PMCID: PMC4603785 DOI: 10.1038/srep11063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/11/2015] [Indexed: 12/15/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common autoimmune rheumatic disease of childhood. We recently showed that DNA methylation at the gene encoding the pro-inflammatory cytokine interleukin-32 (IL32) is reduced in JIA CD4+ T cells. To extend this finding, we measured IL32 methylation in CD4+ T-cells from an additional sample of JIA cases and age- and sex-matched controls, and found a reduction in methylation associated with JIA consistent with the prior data (combined case-control dataset: 25.0% vs 37.7%, p = 0.0045). Further, JIA was associated with reduced IL32 methylation in CD8+ T cells (15.2% vs 25.5%, p = 0.034), suggesting disease-associated changes to a T cell precursor. Additionally, we measured regional SNPs, along with CD4+ T cell expression of total IL32, and the γ and β isoforms. Several SNPs were associated with methylation. Two SNPs were also associated with JIA, and we found evidence of interaction such that methylation was only associated with JIA in minor allele carriers (e.g. rs10431961 pinteraction = 0.011). Methylation at one measured CpG was inversely correlated with total IL32 expression (Spearman r = −0.73, p = 0.0009), but this was not a JIA-associated CpG. Overall, our data further confirms that reduced IL32 methylation is associated with JIA, and that SNPs play an interactive role.
Collapse
|
37
|
Epigenetic control of autoimmune diseases: From bench to bedside. Clin Immunol 2015; 157:1-15. [DOI: 10.1016/j.clim.2014.12.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/17/2014] [Accepted: 12/18/2014] [Indexed: 01/10/2023]
|
38
|
Shimizu K, Nakajima A, Sudo K, Liu Y, Mizoroki A, Ikarashi T, Horai R, Kakuta S, Watanabe T, Iwakura Y. IL-1 Receptor Type 2 Suppresses Collagen-Induced Arthritis by Inhibiting IL-1 Signal on Macrophages. THE JOURNAL OF IMMUNOLOGY 2015; 194:3156-68. [DOI: 10.4049/jimmunol.1402155] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Kottyan L, Kelly JA, Harley JB. Genetics of lupus. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
40
|
Mau T, Yung R. Potential of epigenetic therapies in non-cancerous conditions. Front Genet 2014; 5:438. [PMID: 25566322 PMCID: PMC4271720 DOI: 10.3389/fgene.2014.00438] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/25/2014] [Indexed: 12/20/2022] Open
Abstract
There has been an explosion of knowledge in the epigenetics field in the past 20 years. The first epigenetic therapies have arrived in the clinic for cancer treatments. In contrast, much of the promise of epigenetic therapies for non-cancerous conditions remains in the laboratories. The current review will focus on the recent progress that has been made in understanding the pathogenic role of epigenetics in immune and inflammatory conditions, and how the knowledge may provide much needed new therapeutic targets for many autoimmune diseases. Dietary factors are increasingly recognized as potential modifiers of epigenetic marks that can influence health and diseases across generations. The current epigenomics revolution will almost certainly complement the explosion of personal genetics medicine to help guide treatment decisions and disease risk stratification.
Collapse
Affiliation(s)
- Theresa Mau
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan Ann Arbor, MI, USA
| | - Raymond Yung
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan Ann Arbor, MI, USA ; Department of Veterans Affairs Ann Arbor Health System, Geriatric Research, Education and Clinical Care Center Ann Arbor, MI, USA
| |
Collapse
|
41
|
Interleukin-10 receptor-1 expression in monocyte-derived antigen-presenting cell populations: dendritic cells partially escape from IL-10's inhibitory mechanisms. Genes Immun 2014; 16:8-14. [PMID: 25472783 DOI: 10.1038/gene.2014.69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 12/30/2022]
Abstract
Interleukin (IL)-10 is an important immunoregulatory cytokine that mediates its effects via a transmembrane receptor complex consisting of two different chains, IL-10R1 and IL-10R2. While IL-10R2 is ubiquitously expressed and does not bind IL-10 primarily, the expression of IL-10R1 determines cellular responsiveness. However, the current knowledge about the expression and regulation of IL-10R1 is still limited. Here we analyzed the expression of IL-10R1 on monocytic cells and demonstrated that human blood monocytes carried about 720 IL-10-binding sites on their surface. Compared with lymphocytes and various tissue cells and tissues, blood monocytes expressed the highest IL-10R1 levels. The in vitro differentiation of these cells into macrophages provoked a further increase of IL-10R1 surface expression. In contrast, their differentiation into myeloid dendritic cells (mDCs) resulted in reduced surface IL-10R1 levels. The different IL-10R1 levels expressed by monocyte-derived antigen-presenting cell populations were reflected in their different responsiveness toward IL-10. Importantly, also in vivo developed immature macrophages and mDCs showed different IL-10 sensitivity. These data suggest that, compared with monocytes and macrophages, mDCs partially escape from IL-10's inhibitory mechanisms by downregulating IL-10R1.
Collapse
|
42
|
Epigenetics in the treatment of systemic lupus erythematosus: potential clinical application. Clin Immunol 2014; 155:79-90. [PMID: 25218424 DOI: 10.1016/j.clim.2014.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
The current treatments of systemic lupus erythematosus (SLE) have been based on the use of immunosuppressive drugs which are linked to serious side effects. The more effective therapeutic approaches with minimal or no side effects for SLE patients are hard to develop, mainly due to the complexity of the disease. The discovery of pharmacoepigenetics provides a new way to solve this problem. Epigenetic modifications can influence drug efficacy by altering gene expression via changing chromatin structure. Although still in early development, epigenetic studies in SLE are expected to reveal novel therapeutic targets and disease biomarkers in autoimmunity. For example, miRNAs, which have been identified to govern many genes including drug targets, are altered in disease development and after drug administration. This review aims to present an overview of current epigenetic mechanisms involved in the pathogenesis of SLE, and discuss their potential roles in clinical and pharmacological applications.
Collapse
|
43
|
Ramming A, Distler J, Schett G, Gay S, Jüngel A. Epigenetische Modifikationen bei Autoimmunerkrankungen. Z Rheumatol 2014; 73:636-8. [DOI: 10.1007/s00393-014-1388-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Kalani A, Kamat PK, Voor MJ, Tyagi SC, Tyagi N. Mitochondrial epigenetics in bone remodeling during hyperhomocysteinemia. Mol Cell Biochem 2014; 395:89-98. [PMID: 24939359 DOI: 10.1007/s11010-014-2114-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/02/2014] [Indexed: 01/19/2023]
Abstract
Increased levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), is an independent risk factor of various diseases. Clinical studies report that people born with severe HHcy develop skeletal malformations with weaker bone. Studies also report that altered mitochondrial dynamics and altered epigenetics contribute to weaker bones and bone diseases. Although Hcy-induced mitochondrial dysfunction has been shown to affect bone metabolism, the role of mitochondrial epigenetics (mito-epigenetics) has not been studied in bones. The epigenetics in mitochondria is interesting as the mitochondrial genome size is small (16 kb) with fewer CpG, and without histones and introns. Recently, fascinating works on epigenetics along with the discovery of histone-like proteins in mitochondria are giving exciting areas for novel studies on mitochondria epigenetics. There are mutual cause and effect relationships between bone, mitochondria, Hcy, and epigenetics, but unfortunately, studies are lacking that describe the involvement of all these together in bone disease progression. This review describes the reciprocal relationships and mechanisms of Hcy-bone-mitochondria-epigenetics along with a short discussion of techniques which could be employed to assess Hcy-induced anomaly in bone, mediated through alterations in mito-epigenetics.
Collapse
Affiliation(s)
- Anuradha Kalani
- Department of Physiology and Biophysics, School of Medicine, Health Sciences Centre, A-1201, University of Louisville, 500 South Preston Street, Louisville, KY, 40202, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
DNA methylation is a heritable, stable, and also reversible way of DNA modification; it can regulate gene expression without changing the nucleotide sequences. Because it takes part in regulation of immune responses, the loss of methylation homeostasis in immune cells will result in autoimmune disease by inducing aberrant gene expression. Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease with many immune deficiencies. Recently, it was well documented that abnormal DNA methylation is also involved in the etiology of ITP. In this review, we elucidate the role of DNA methylation in autoimmune diseases by summarizing the DNA methylation-sensitive genes and the relationship between DNA methylation and ITP.
Collapse
Affiliation(s)
- Huiyuan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China
| | | | | |
Collapse
|
46
|
Zufferey F, Williams FM, Spector TD. Epigenetics and methylation in the rheumatic diseases. Semin Arthritis Rheum 2014; 43:692-700. [DOI: 10.1016/j.semarthrit.2013.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/01/2013] [Accepted: 10/10/2013] [Indexed: 11/29/2022]
|
47
|
Abstract
Rheumatic disease is a large spectrum of heterogeneous conditions affecting the loco-motor system including joints, muscles, connective tissues, and soft tissues around the joints and bones. Many rheumatic diseases have an element of autoimmunity including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Aberrant epigenetic regulation of gene expression is emerging as a major factor within rheumatic disease, and indicates potential new therapeutic avenues of approach to these debilitating conditions. Understanding the precise role of epigenetics in the development and treatment of rheumatic diseases particularly those which have an associated autoimmune element may be important for the long-term management of such conditions.
Collapse
|
48
|
Miao CG, Yang JT, Yang YY, Du CL, Huang C, Huang Y, Zhang L, Lv XW, Jin Y, Li J. Critical role of DNA methylation in the pathogenesis of systemic lupus erythematosus: new advances and future challenges. Lupus 2014; 23:730-42. [PMID: 24644011 DOI: 10.1177/0961203314527365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/10/2014] [Indexed: 01/12/2023]
Abstract
Systemic lupus erythematosus (SLE) is a systemic multi-organ autoimmune disease with different immunological characteristics and clinical manifestations characterized by an autoantibody response to nuclear and cytoplasmic antigens; the etiology of this disease remains largely unknown. Most recent genome-wide association studies demonstrate that genetics significantly predispose to SLE onset, but the incomplete disease concordance rates between monozygotic twins indicates a role for other complementary factors in SLE pathogenesis. Recently, much evidence strongly supports other molecular mechanisms involved in the regulation of gene expression ultimately causing autoimmune disease, and several studies, both in clinical settings and experimental models, have demonstrated that epigenetic modifications may hold the key to a better understanding of SLE initiation and development. DNA methylation changes the structure of chromatin, being typically able to modulate the fine interactions between promoter-transcription factors and encoding genes within the transcription machinery. Alteration in DNA methylation has been confirmed as a major epigenetic mechanism that may potentially cause a breakdown of immune tolerance and perpetuation of SLE. Based on recent findings, DNA methylation treatments already being used in oncology may soon prove beneficial to patients with SLE. We herein discuss what we currently know, and what we expect in the future.
Collapse
Affiliation(s)
- C-G Miao
- School of Food and Drug, Anhui Science and Technology University, Bengbu, China School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China
| | - J-T Yang
- School of Food and Drug, Anhui Science and Technology University, Bengbu, China
| | - Y-Y Yang
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China
| | - C-L Du
- School of Food and Drug, Anhui Science and Technology University, Bengbu, China
| | - C Huang
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China
| | - Y Huang
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China
| | - L Zhang
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China
| | - X-W Lv
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China
| | - Y Jin
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China
| | - J Li
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China
| |
Collapse
|
49
|
Yasutake K, Kohjima M, Kotoh K, Nakashima M, Nakamuta M, Enjoji M. Dietary habits and behaviors associated with nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20:1756-67. [PMID: 24587653 PMCID: PMC3930974 DOI: 10.3748/wjg.v20.i7.1756] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent causes of health problems in Western (industrialized) countries. Moreover, the incidence of infantile NAFLD is increasing, with some of these patients progressing to nonalcoholic steatohepatitis. These trends depend on dietary habits and life-style. In particular, overeating and its associated obesity affect the development of NAFLD. Nutritional problems in patients with NAFLD include excess intake of energy, carbohydrates, and lipids, and shortages of polyunsaturated fatty acids, vitamins, and minerals. Although nutritional therapeutic approaches are required for prophylaxis and treatment of NAFLD, continuous nutrition therapy is difficult for many patients because of their dietary habits and lifestyle, and because the motivation for treatment differs among patients. Thus, it is necessary to assess the nutritional background and to identify nutritional problems in each patient with NAFLD. When assessing dietary habits, it is important to individually evaluate those that are consumed excessively or insufficiently, as well as inappropriate eating behaviors. Successful nutrition therapy requires patient education, based on assessments of individual nutrients, and continuing the treatment. In this article, we update knowledge about NAFLD, review the important aspects of nutritional assessment targeting treatment success, and present some concrete nutritional care plans which can be applied generally.
Collapse
|
50
|
Huang X, Su G, Wang Z, Shangguan S, Cui X, Zhu J, Kang M, Li S, Zhang T, Wu F, Wang L. Hypomethylation of long interspersed nucleotide element-1 in peripheral mononuclear cells of juvenile systemic lupus erythematosus patients in China. Int J Rheum Dis 2013; 17:280-90. [PMID: 24330152 DOI: 10.1111/1756-185x.12239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM Methylation abnormalities in T lymphocytes have been reported to correlate with systemic lupus erythematosus (SLE). Previous studies identified hypomethylation in the promoter of several genes linked to SLE. Long interspersed nucleotide element-1 (LINE-1) constitutes 17-25% of the human genome, and LINE-1 hypomethylation has been reported in SLE. Limited information is available regarding LINE-1 methylation in juvenile SLE (JSLE). METHOD Methylation levels of LINE-1 in peripheral blood mononuclear cells (PBMCs) from 59 JSLE and 47 control samples were examined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Total homocysteine (tHcy) concentrations in plasma were measured by immunoassay. RESULTS Significant hypomethylation of LINE-1 was observed in PBMCs from JSLE patients (60.93% in cases compared with 62.88% in controls, P = 0.001). Significant LINE-1 hypomethylation was observed in active SLE compared to controls (60.66% vs. 62.88%, P = 0.001). According to other clinical parameters, a significant correlation was found between LINE-1 methylation levels and the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2000) of the cases (r = -0.285, P = 0.032). The risk of JSLE increased with decreasing levels of LINE-1 methylation, with an odds ratio of 14.5 (95% CI: 2.8-75.6, P = 0.002). Cases had significantly higher plasma concentrations of tHcy than controls (15.11 vs. 11.02 μmol/L, P = 0.028); the correlation between LINE-1 methylation levels and tHcy was significant (r = -0.4, P = 0.013). Correlations between methylation levels of LINE-1 and complement component 3 were significant (r = 0.317, P = 0.044; r = 0.387, P = 0.031, in total JSLE and active JSLE, respectively). CONCLUSION Hypomethylation of LINE-1 is associated with risk of JSLE, and LINE-1 methylation levels were related to disease activity and clinical manifestations. The correlation between tHcy levels and LINE-1 methylation was significant.
Collapse
Affiliation(s)
- Xiaolan Huang
- Central Laboratory for Clinical Research, Capital Institute of Pediatrics, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|