1
|
Jiang L, Hu SW, Wang Z, Zhou Y, Tang H, Chen Y, Wang D, Fan X, Han L, Li H, Shi D, He Y, Shu Y. Hearing restoration by gene replacement therapy for a multisite-expressed gene in a mouse model of human DFNB111 deafness. Am J Hum Genet 2024; 111:2253-2264. [PMID: 39241775 PMCID: PMC11480802 DOI: 10.1016/j.ajhg.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
Gene therapy has made significant progress in the treatment of hereditary hearing loss. However, most research has focused on deafness-related genes that are primarily expressed in hair cells with less attention given to multisite-expressed deafness genes. MPZL2, the second leading cause of mild-to-moderate hereditary deafness, is widely expressed in different inner ear cells. We generated a mouse model with a deletion in the Mpzl2 gene, which displayed moderate and slowly progressive hearing loss, mimicking the phenotype of individuals with DFNB111. We developed a gene replacement therapy system mediated by AAV-ie for efficient transduction in various types of cochlear cells. AAV-ie-Mpzl2 administration significantly lowered the auditory brainstem response and distortion product otoacoustic emission thresholds of Mpzl2-/- mice for at least seven months. AAV-ie-Mpzl2 delivery restored the structural integrity in both outer hair cells and Deiters cells. This study suggests the potential of gene therapy for MPZL2-related deafness and provides a proof of concept for gene therapy targeting other deafness-related genes that are expressed in different cell populations in the cochlea.
Collapse
Affiliation(s)
- Luoying Jiang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shao Wei Hu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zijing Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yi Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Honghai Tang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuxin Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xintai Fan
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Dazhi Shi
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Huang K, Cai J, Lu Y, Wang T, Yue S, Wei Q, Yao J, Chen Z, Cao X. GPRASP2 deficiency contributes to apoptosis in the spiral ganglion cells via the AMPK/DRP1 signaling pathway. Heliyon 2024; 10:e36140. [PMID: 39253164 PMCID: PMC11381771 DOI: 10.1016/j.heliyon.2024.e36140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
G protein-coupled receptor-associated sorting protein 2 (GPRASP2) deficiency has been implicated in immunological inflammation, cancers, and neurological disorders. Our previous work revealed that the pathogenic mutation in GPRASP2 was responsible for X-linked recessive syndromic hearing loss (SHL). Given the specific high expression of GPRASP2 in the spiral ganglion, GPRASP2 likely contributes to the maintenance and functionality of neurons, potentially playing a role in synaptic transmission. The impact of GPRASP2 deficiency on spiral ganglion cells (SGCs) and their underlying pathogenic mechanisms will be investigated in this study. The primary culture of SGCs obtained from mouse cochleae was treated with Gprasp2-targeting short hairpin RNA (Gprasp2-shRNA) via lentivirus infection. The results showed that GPRASP2 deficiency enhanced SGCs apoptosis and decreased cell viability. Meanwhile, a significant abnormality of mitochondrial morphology and decreased membrane potential were observed in GPRASP2-deficient SGCs. These effects could be mitigated by treatment with the mitochondrial division inhibitor 1 (Mdivi-1). In addition to enhancing SGCs apoptosis and decreasing cell viability, GPRASP2 deficiency also inhibited the development of SGCs in mouse cochlear explant culture. Our study further revealed that this deficiency resulted in increased phosphorylation of AMPK and activation of the AMPK/DRP1 pathway, promoting SGCs apoptosis. These findings provide insight into the pathogenic mechanisms by which GPRASP2 deficiency is implicated in auditory dysfunction.
Collapse
Affiliation(s)
- Kun Huang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jing Cai
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Tianming Wang
- Central Laboratory, Translational Medicine Research Center, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Shen Yue
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Liu J, Bai Y, Feng Y, Liu X, Pang B, Zhang S, Jiang M, Chen A, Huang H, Chen Y, Ling J, Mei L. ABCC1 deficiency potentiated noise-induced hearing loss in mice by impairing cochlear antioxidant capacity. Redox Biol 2024; 74:103218. [PMID: 38870779 PMCID: PMC11225891 DOI: 10.1016/j.redox.2024.103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
The ABCC1 gene belongs to the ATP-binding cassette membrane transporter superfamily, which plays a crucial role in the efflux of various endogenous and exogenous substances. Mutations in ABCC1 can result in autosomal dominant hearing loss. However, the specific roles of ABCC1 in auditory function are not fully understood. Through immunofluorescence, we found that ABCC1 was expressed in microvascular endothelial cells (ECs) of the stria vascularis (StV) in the murine cochlea. Then, an Abcc1 knockout mouse model was established by using CRISPR/Cas9 technology to elucidate the role of ABCC1 in the inner ear. The ABR threshold did not significantly differ between WT and Abcc1-/- mice at any age studied. After noise exposure, the ABR thresholds of the WT and Abcc1-/- mice were significantly elevated. Interestingly, after 14 days of noise exposure, ABR thresholds largely returned to pre-exposure levels in WT mice but not in Abcc1-/- mice. Our subsequent experiments showed that microvascular integrity in the StV was compromised and that the number of outer hair cells and the number of ribbons were significantly decreased in the cochleae of Abcc1-/- mice post-exposure. Besides, the production of ROS and the accumulation of 4-HNE significantly increased. Furthermore, StV microvascular ECs were cultured to elucidate the role of ABCC1 in these cells under glucose oxidase challenge. Notably, 30 U/L glucose oxidase (GO) induced severe oxidative stress damage in Abcc1-/- cells. Compared with WT cells, the ROS and 4-HNE levels and the apoptotic rate were significantly elevated in Abcc1-/- cells. In addition, the reduced GSH/GSSG ratio was significantly decreased in Abcc1-/- cells after GO treatment. Taken together, Abcc1-/- mice are more susceptible to noise-induced hearing loss, possibly because ABCC1 knockdown compromises the GSH antioxidant system of StV ECs. The exogenous antioxidant N-acetylcysteine (NAC) may protect against oxidative damage in Abcc1-/- murine cochleae and ECs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yijiang Bai
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Feng
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Otolaryngology-Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Xianlin Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bo Pang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Shuai Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengzhu Jiang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anhai Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huping Huang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongjia Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Ling
- Medical Functional Experiment Center, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Lingyun Mei
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Andersen RE, Alkuraya IF, Ajeesh A, Sakamoto T, Mena EL, Amr SS, Romi H, Kenna MA, Robson CD, Wilch ES, Nalbandian K, Piña-Aguilar R, Walsh CA, Morton CC. Rare germline disorders implicate long non-coding RNAs disrupted by chromosomal structural rearrangements. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.16.24307499. [PMID: 38946951 PMCID: PMC11213069 DOI: 10.1101/2024.06.16.24307499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In recent years, there has been increased focus on exploring the role the non-protein-coding genome plays in Mendelian disorders. One class of particular interest is long non-coding RNAs (lncRNAs), which has recently been implicated in the regulation of diverse molecular processes. However, because lncRNAs do not encode protein, there is uncertainty regarding what constitutes a pathogenic lncRNA variant, and thus annotating such elements is challenging. The Developmental Genome Anatomy Project (DGAP) and similar projects recruit individuals with apparently balanced chromosomal abnormalities (BCAs) that disrupt or dysregulate genes in order to annotate the human genome. We hypothesized that rearrangements disrupting lncRNAs could be the underlying genetic etiology for the phenotypes of a subset of these individuals. Thus, we assessed 279 cases with BCAs and selected 191 cases with simple BCAs (breakpoints at only two genomic locations) for further analysis of lncRNA disruptions. From these, we identified 66 cases in which the chromosomal rearrangements directly disrupt lncRNAs. Strikingly, the lncRNAs MEF2C-AS1 and ENSG00000257522 are each disrupted in two unrelated cases. Furthermore, in 30 cases, no genes of any other class aside from lncRNAs are directly disrupted, consistent with the hypothesis that lncRNA disruptions could underly the phenotypes of these individuals. To showcase the power of this genomic approach for annotating lncRNAs, here we focus on clinical reports and genetic analysis of two individuals with BCAs and additionally highlight six individuals with likely developmental etiologies due to lncRNA disruptions.
Collapse
Affiliation(s)
- Rebecca E. Andersen
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ibrahim F. Alkuraya
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Abna Ajeesh
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tyler Sakamoto
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Elijah L. Mena
- Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sami S. Amr
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hila Romi
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Margaret A. Kenna
- Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA, USA
| | - Caroline D. Robson
- Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA, USA
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
| | - Ellen S. Wilch
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Katarena Nalbandian
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Raul Piña-Aguilar
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Cynthia C. Morton
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- University of Manchester, Manchester Center for Audiology and Deafness, UK
| |
Collapse
|
5
|
Reda Del Barrio S, García Fernández A, Quesada-Espinosa JF, Sánchez-Calvín MT, Gómez-Manjón I, Sierra-Tomillo O, Juárez-Rufián A, de Vergas Gutiérrez J. Genetic diagnosis of childhood sensorineural hearing loss. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2024; 75:83-93. [PMID: 38224868 DOI: 10.1016/j.otoeng.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/03/2023] [Indexed: 01/17/2024]
Abstract
INTRODUCTION Congenital/early-onset sensorineural hearing loss (SNHL) is one of the most common hereditary disorders in our environment. There is increasing awareness of the importance of an etiologic diagnosis, and genetic testing with next-generation sequencing (NGS) has the highest diagnostic yield. Our study shows the genetic results obtained in a cohort of patients with bilateral congenital/early-onset SNHL. MATERIALS AND METHODS We included 105 children with bilateral SNHL that received genetic testing between 2019 and 2022. Genetic tests were performed with whole exome sequencing, analyzing genes related to hearing loss (virtual panel with 244 genes). RESULTS 48% (50/105) of patients were genetically diagnosed. We identified pathogenic and likely pathogenic variants in 26 different genes, and the most frequently mutated genes were GJB2, USH2A and STRC. 52% (26/50) of variants identified produced non-syndromic hearing loss, 40% (20/50) produced syndromic hearing loss, and the resting 8% (4/50) could produce both non-syndromic and syndromic hearing loss. CONCLUSIONS Genetic testing plays a vital role in the etiologic diagnosis of bilateral SNHL. Our cohort shows that genetic testing with NGS has a high diagnostic yield and can provide useful information for the clinical workup of patients.
Collapse
Affiliation(s)
- Sara Reda Del Barrio
- Servicio de Otorrinolaringología, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | | | | | | | - Irene Gómez-Manjón
- Servicio de Genética, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Mazzola S, Schreiber A. Genetics evaluation outcomes of patients with pediatric hearing loss: 2008-2022 retrospective study. Am J Otolaryngol 2024; 45:104196. [PMID: 38134852 DOI: 10.1016/j.amjoto.2023.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE This study aims to explore how genetics evaluation and testing for patients with pediatric onset hearing loss affects their diagnosis and management. METHODS Retrospective chart review was completed for patients with pediatric hearing loss that were evaluated by a genetic counselor from 2008 to 2022 with data entry into a REDCap database. Descriptive statistical analysis was completed. RESULTS Four hundred twenty-nine patients with pediatric onset hearing loss were evaluated by genetics. Majority of patients presented with bilateral (67 %) and sensorineural (83 %) hearing loss. Genetic testing was recommended for 76 % of patients with pediatric hearing loss evaluated by a genetic counselor with 70 % completing some or all recommended tests. Overall genetic testing diagnostic rate was 34 %, with 41 % of diagnoses syndromic. Yearly trends noted an increasing number of patients evaluated, tests ordered, and subsequently an increased number of diagnoses overtime. For diagnostic results, management recommendations were made for 45 % of patients (35/78) and for 92 % of family members (72/78). This compared to total management recommendations for all patients (82/429, 19 %) and family members (110/429, 26 %). CONCLUSION This study identified a genetic testing diagnostic rate for pediatric hearing loss of 34 % over 14 years. This study notes the beneficial outcomes of patients with hearing loss and their families meeting with a genetic counselor and the importance of collaboration with hearing loss management colleagues. It highlights the value a genetic counselor consult can add to a patient's diagnostic journey, in addition to how genetic testing impacts management for patients and their families.
Collapse
Affiliation(s)
- Sarah Mazzola
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH, United States of America.
| | - Allison Schreiber
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH, United States of America
| |
Collapse
|
7
|
Alkhidir S, El-Akouri K, Al-Dewik N, Khodjet-El-Khil H, Okashah S, Islam N, Ben-Omran T, Al-Shafai M. The genetic basis and the diagnostic yield of genetic testing related to nonsyndromic hearing loss in Qatar. Sci Rep 2024; 14:4202. [PMID: 38378725 PMCID: PMC10879212 DOI: 10.1038/s41598-024-52784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Hearing loss is the most predominant sensory defect occurring in pediatrics, of which, 66% cases are attributed to genetic factors. The prevalence of hereditary hearing loss increases in consanguineous populations, and the prevalence of hearing loss in Qatar is 5.2%. We aimed to investigate the genetic basis of nonsyndromic hearing loss (NSHL) in Qatar and to evaluate the diagnostic yield of different genetic tests available. A retrospective chart review was conducted for 59 pediatric patients with NSHL referred to the Department of Adult and Pediatric Medical Genetics at Hamad Medical Corporation in Qatar, and who underwent at least one genetic test. Out of the 59 patients, 39 were solved cases due to 19 variants in 11 genes and two copy number variants that explained the NSHL phenotype. Of them 2 cases were initially uncertain and were reclassified using familial segregation. Around 36.8% of the single variants were in GJB2 gene and c.35delG was the most common recurrent variant seen in solved cases. We detected the c.283C > T variant in FGF3 that was seen in a Qatari patient and found to be associated with NSHL for the first time. The overall diagnostic yield was 30.7%, and the diagnostic yield was significantly associated with genetic testing using GJB2 sequencing and using the hearing loss (HL) gene panel. The diagnostic yield for targeted familial testing was 60% (n = 3 patients) and for gene panel was 50% (n = 5). Thus, we recommend using GJB2 gene sequencing as a first-tier genetic test and HL gene panel as a second-tier genetic test for NSHL. Our work provided new insights into the genetic pool of NSHL among Arabs and highlights its unique diversity, this is believed to help further in the diagnostic and management options for NSHL Arab patients.
Collapse
Affiliation(s)
- Shaza Alkhidir
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
| | - Karen El-Akouri
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Nader Al-Dewik
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
| | - Houssein Khodjet-El-Khil
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Sarah Okashah
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Nazmul Islam
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Tawfeg Ben-Omran
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar.
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar.
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
- Biomedical Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
8
|
Liu Y, Wang L, Yuan L, Li Y, Chen Z, Yang B, Wang D, Sun Y. Hereditary deafness carrier screening in 9,993 Chinese individuals. Front Genet 2024; 14:1327258. [PMID: 38274112 PMCID: PMC10808513 DOI: 10.3389/fgene.2023.1327258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Background: Preconception or prenatal carrier screening plays an important role in reproductive decision-making, but current research on hereditary deafness is limited. This study aimed to investigate the carrier frequencies of common deafness genes in the Chinese population who underwent carrier screening and to follow up on pregnancy outcomes in high-chance couples. Methods: Individual females or couples in preconception or early pregnancy were recruited from two hospitals in China. Carrier screening for common deafness genes in the Chinese population, including the GJB2 and SLC26A4 genes, was performed using next-generation sequencing technology. Genetic counseling was provided to subjects before and after testing. Results: Of the 9,993 subjects screened, the carrier rate was 2.86% for the GJB2 gene and 2.63% for the SLC26A4 gene. The variant with the highest carrier frequency in GJB2 was c.235delC (1.89%), and c.919-2A>G (1.08%) in SLC26A4. Of the six high-chance couples, four made alternative reproductive decisions (three with prenatal diagnosis and one with preimplantation genetic testing), with consequent termination of the birth of two affected fetuses. Conclusion: These findings confirmed the clinical utility of preconception or prenatal carrier screening for hereditary deafness.
Collapse
Affiliation(s)
- Yanqiu Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Lei Wang
- Dalian Women and Children’s Medical Center (Group), Dalian, China
| | - Lanlai Yuan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqing Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Bicheng Yang
- Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Daqing Wang
- Dalian Women and Children’s Medical Center (Group), Dalian, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Yang T, Fan X, Fan Y, Song W, Liu X, Wang J, Chen X. Co-Occurrence of Sensorineural Hearing Loss and Congenital Heart Disease: Etiologies and Management. Laryngoscope 2024; 134:400-409. [PMID: 37254944 DOI: 10.1002/lary.30799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 06/01/2023]
Abstract
OBJECTIVES/HYPOTHESIS The co-occurrence of sensorineural hearing loss (SNHL) and congenital heart disease (CHD) is a rare condition with complex etiologies. The purpose of this study is to assess the etiologies, clinical features, and outcomes of cochlear implant (CI) in this patient population. STUDY DESIGN Case series and literature review. METHODS Clinical data of children who were diagnosed with SNHL and CHD and received CIs at a tertiary hospital from 2016 to 2021 were retrospectively analyzed. A literature review was performed to identify patients with SNHL and CHD. FINDINGS Of the 382 children who underwent cochlear implantation at our center, eight (2.1%) were diagnosed with SNHL and CHD. A literature review identified 1525 patients from 254 studies; the database therefore consisted of 1533 patients. The most common genetic etiologies of co-occurring SNHL and CHD were CHARGE syndrome (36.3%), Turner syndrome (8.4%), 22q11.2 deletion (3.0%), Noonan syndrome (2.9%), and Down syndrome (2.5%), whereas the most common non-genetic etiologies were congenital rubella syndrome (22.9%) and SNHL after early cardiac surgery (5.5%). Most of the patients presented with congenital, bilateral, severe-profound SNHL requiring early rehabilitation. Of the 126 children who received CIs at a median age of 2.5 years, half showed delayed speech development at last follow-up. CONCLUSIONS Co-occurring SNHL and CHD is a rare condition with complex etiologies. Timely hearing intervention with long-term follow-up and proper timing of heart surgery is essential for these children. LEVEL OF EVIDENCE 4, case series Laryngoscope, 134:400-409, 2024.
Collapse
Affiliation(s)
- Tengyu Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Xinmiao Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Yue Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Wenjie Song
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Xingrong Liu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Jian Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
10
|
Cheng J, Li T, Tan Q, Fu J, Zhang L, Yang L, Zhou B, Yang L, Fu S, Linehan AG, Fu J. Novel, pathogenic insertion variant of GSDME associates with autosomal dominant hearing loss in a large Chinese pedigree. J Cell Mol Med 2024; 28:e18004. [PMID: 37864300 PMCID: PMC10805510 DOI: 10.1111/jcmm.18004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Nonsyndromic hearing loss (NSHL) is a genetically diverse, highly heterogeneous condition characterised by deafness, and Gasdermin E (GSDME) variants have been identified as directly inducing autosomal dominant NSHL. While many NSHL cases associated with GSDME involve the skipping of exon 8, there is another, less understood pathogenic insertion variant specifically found in Chinese pedigrees that causes deafness, known as autosomal dominant 5 (DFNA5) hearing loss. In this study, we recruited a large Chinese pedigree, conducted whole-exome and Sanger sequencing to serve as a comprehensive clinical examination, and extracted genomic DNA samples for co-segregation analysis of the members. Conservation and expression analyses for GSDME were also conducted. Our clinical examinations revealed an autosomal dominant phenotype of hearing loss in the family. Genetic analysis identified a novel insertion variant in GSDME exon 8 (GSDME: NM_004403.3: c.1113_1114insGGGGTGCAGCTTACAGGGTGGGTGT: p. P372fs*36). This variant is segregated with the deafness phenotype of this pedigree. The GSDME gene was highly conserved in the different species we analysed, and its mRNA expression was ubiquitously low in different human tissues. In conclusion, we have successfully identified a novel pathogenic insertion variant of GSDME in a Chinese pedigree that causes deafness, shedding light on the genetic basis of hearing loss within this specific family. Our findings expand the spectrum of known variants associated with GSDME-related deafness and may further support both the underlying gain-of-function mechanism and functional associations of GSDME hearing loss variants.
Collapse
Affiliation(s)
- Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouChina
| | - Ting Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouChina
| | - Qi Tan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouChina
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouChina
| | - Lianmei Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouChina
- Department of PathologyThe Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - Luquan Yang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouChina
| | - Baixu Zhou
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouChina
- Department of Gynecology and ObstetricsGuangdong Women and Children HospitalGuangzhouChina
| | - Lisha Yang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouChina
- Department of ObstetricsThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Shangyi Fu
- Department of Molecular and Human GeneticsHuman Genome Sequencing Center, Baylor College of MedicineHoustonTexasUSA
| | | | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
11
|
Hahn R, Avraham KB. Gene Therapy for Inherited Hearing Loss: Updates and Remaining Challenges. Audiol Res 2023; 13:952-966. [PMID: 38131808 PMCID: PMC10740825 DOI: 10.3390/audiolres13060083] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Hearing loss stands as the most prevalent sensory deficit among humans, posing a significant global health challenge. Projections indicate that by 2050, approximately 10% of the world's population will grapple with disabling hearing impairment. While approximately half of congenital hearing loss cases have a genetic etiology, traditional interventions such as hearing aids and cochlear implants do not completely restore normal hearing. The absence of biological treatment has prompted significant efforts in recent years, with a strong focus on gene therapy to address hereditary hearing loss. Although several studies have exhibited promising recovery from common forms of genetic deafness in mouse models, existing challenges must be overcome to make gene therapy applicable in the near future. Herein, we summarize the primary gene therapy strategies employed over past years, provide an overview of the recent achievements in preclinical studies for genetic hearing loss, and outline the current key obstacles to cochlear gene therapy.
Collapse
Affiliation(s)
| | - Karen B. Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
12
|
Lu Y, Hu Y, Wang S, Pan S, An K, Wang T, He Y, Tian C, Lei J. Hereditary Hearing Loss: A Systematic Review of Potential Treatments and Interventions. Am J Audiol 2023; 32:972-989. [PMID: 37889166 DOI: 10.1044/2023_aja-23-00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
PURPOSE The purpose of this study was to systematically review the research literature with regards to treatments and intervention methods for hereditary hearing loss. Our goal was to provide reference guidelines for the rational use of medication and gene-targeted therapy for patients with hereditary hearing loss and discuss the future development of research in this area. METHOD We searched two core databases, PubMed and Web of Science, for relevant literature relating to potential treatments and interventional methods for hereditary hearing loss. Then, we used Microsoft Excel to perform basic statistical analysis of the data, the R language to perform bibliometric analyses, and VOSviewer and CiteSpace to visualize data. In addition, we clustered and descriptively analyzed the data and identified the relative importance of each approach with regard to precise patient outcomes. RESULTS In this study, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standardized screening process and identified a total of 103 research articles. The average annual growth rate of publications in this area was 12.73%. The country with the highest number of publications and citations was the United States; 80 of these publications (associated with 76.92% of funding) were supported by grants from 16 countries. Potential treatments and interventions were clustered according to the stage of research and showed that 8.74% remain in the research design stage, 59.22% are in the clinical validation stage, and 32.04% are being applied in the clinic. The main research focus in this field is cochlear implants and gene therapy. CONCLUSIONS Hereditary hearing loss is in a critical period of transition from preventive to therapeutic research. Gene-targeted interventions represent one of the most promising and effective treatments. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24309193.
Collapse
Affiliation(s)
- Yang Lu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanjia Hu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengyue Wang
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sijia Pan
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kai An
- Peking University Third Hospital, Beijing, China
- Center for Medical Informatics, Peking University, Beijing, China
| | - Tong Wang
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, China
| | - Yunfan He
- School of Public Health, Zhejiang University, Hangzhou City, China
| | - Chenghua Tian
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianbo Lei
- Center for Medical Informatics, Peking University, Beijing, China
- Institute of Medical Technology, Peking University, Beijing, China
- School of Medical Informatics and Engineering, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Moore M, Fitzgibbons EJ, Driscoll C, Beswick R. Neonatal bacterial meningitis: hearing screening and audiological monitoring outcomes. Int J Audiol 2023; 62:1101-1107. [PMID: 36409649 DOI: 10.1080/14992027.2022.2145514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study reviewed the outcomes of universal newborn hearing screening (UNHS) and ongoing hearing monitoring in children following recovery from neonatal bacterial meningitis to determine (a) whether screening may be a suitable alternative to diagnostic audiology for detecting permanent childhood hearing loss (PCHL) and (b) whether infants who pass UNHS should be monitored throughout childhood. DESIGN Retrospective analysis of a UNHS database. STUDY SAMPLE Data were extracted from the state-wide UNHS database for all children born in Queensland Australia between 1 September 2004 and 30 June 2020 with the risk factor of bacterial meningitis (in isolation or in combination with other risk factors) identified at the time of the UNHS. This cohort included 231 children. RESULTS Results showed that all post-meningitic infants diagnosed with PCHL had a refer result on the UNHS or were medically excluded from screening. Additionally, no cases of PCHL were identified through the targeted surveillance program following a pass result on UNHS. CONCLUSIONS UNHS may be sufficient to detect PCHL in post-meningitic neonates and routine audiological monitoring may not be required for children who pass the screen.
Collapse
Affiliation(s)
- Megan Moore
- Healthy Hearing Program, Children's Health Queensland Hospital and Health Service, Brisbane, Australia
| | - E Jane Fitzgibbons
- Healthy Hearing Program, Children's Health Queensland Hospital and Health Service, Brisbane, Australia
| | - Carlie Driscoll
- School of Health and Rehabilitation Services, University of Queensland, Brisbane, Australia
| | - Rachael Beswick
- Healthy Hearing Program, Children's Health Queensland Hospital and Health Service, Brisbane, Australia
| |
Collapse
|
14
|
Mohamed T, Melfi V, Colciago A, Magnaghi V. Hearing loss and vestibular schwannoma: new insights into Schwann cells implication. Cell Death Dis 2023; 14:629. [PMID: 37741837 PMCID: PMC10517973 DOI: 10.1038/s41419-023-06141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Hearing loss (HL) is the most common and heterogeneous disorder of the sensory system, with a large morbidity in the worldwide population. Among cells of the acoustic nerve (VIII cranial nerve), in the cochlea are present the hair cells, the spiral ganglion neurons, the glia-like supporting cells, and the Schwann cells (SCs), which alterations have been considered cause of HL. Notably, a benign SC-derived tumor of the acoustic nerve, named vestibular schwannoma (VS), has been indicated as cause of HL. Importantly, SCs are the main glial cells ensheathing axons and forming myelin in the peripheral nerves. Following an injury, the SCs reprogram, expressing some stemness features. Despite the mechanisms and factors controlling their biological processes (i.e., proliferation, migration, differentiation, and myelination) have been largely unveiled, their role in VS and HL was poorly investigated. In this review, we enlighten some of the mechanisms at the base of SCs transformation, VS development, and progression, likely leading to HL, and we pose great attention on the environmental factors that, in principle, could contribute to HL onset or progression. Combining the biomolecular bench-side approach to the clinical bedside practice may be helpful for the diagnosis, prediction, and therapeutic approach in otology.
Collapse
Affiliation(s)
- Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
15
|
Heyward A, Hagerty K, Lichten L, Howell J, Tey CS, Dedhia K, Kavalieratos D, Govil N. The qualitative experiences of otolaryngologists with genetic services in pediatric hearing loss evaluation. J Community Genet 2023; 14:377-385. [PMID: 37156903 PMCID: PMC10444707 DOI: 10.1007/s12687-023-00649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Genetic testing is one of the most high-yield diagnostic tests in the evaluation of pediatric sensorineural (SNHL) hearing loss, leading to a genetic diagnosis in 40-65% of patients. Previous research has focused on the utility of genetic testing in pediatric SNHL and otolaryngologists' general understanding of genetics. This qualitative study examines otolaryngologists' perceptions about facilitators and barriers when ordering genetic testing in the workup of pediatric hearing loss. Potential solutions for overcoming barriers are also explored. Eleven (N = 11) semi-structured interviews were conducted with otolaryngologists in the USA. Most participants were currently practicing in a southern, academic, urban setting and had completed a pediatric otolaryngology fellowship. Insurance was one of the main barriers to testing, and increased genetics provider accessibility was the most frequently cited solution to increase utilization of genetic services. Difficulty acquiring insurance coverage and unfamiliarity with the genetic testing process were the most common reasons otolaryngologists referred patients to genetics clinics for genetic testing, as opposed to ordering testing themselves. This study suggests that otolaryngologists recognize the importance and utility of genetic testing, but a lack of genetics-specific skills, knowledge, and resources makes it difficult for them to facilitate testing. Multidisciplinary hearing loss clinics that include genetics providers may increase the overall accessibility of genetic services.
Collapse
Affiliation(s)
- Aaliyah Heyward
- Genetics Department, Ochsner Health Medical Center, New Orleans, LA, 70121, USA
- Genetic Counseling Training Program, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Kelsi Hagerty
- Genetic Counseling Training Program, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, 30322, USA
- Pediatric Hematology/ Oncology, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lauren Lichten
- Pediatric Hematology/ Oncology, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Julie Howell
- Genetics Department, Kaiser Permanente, 20 Glenlake Pkwy NE, Sandy Springs, GA, 30328, USA
| | - Ching Siong Tey
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, 1400 Tullie Road, Atlanta, GA, 30323, USA
| | - Kavita Dedhia
- Otolaryngology Head and Neck Surgery, The Children's Hospital of Philadelphia and University of Pennsylvania, 3500 Civic Center Blvd, 5Th Floor, Philadelphia, PA, 19104, USA
| | - Dio Kavalieratos
- Division of Palliative Medicine, Department of Family and Preventive Medicine, Emory University, 100 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Nandini Govil
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, 1400 Tullie Road, Atlanta, GA, 30323, USA.
| |
Collapse
|
16
|
Peter B, Bruce L, Finestack L, Dinu V, Wilson M, Klein-Seetharaman J, Lewis CR, Braden BB, Tang YY, Scherer N, VanDam M, Potter N. Precision Medicine as a New Frontier in Speech-Language Pathology: How Applying Insights From Behavior Genomics Can Improve Outcomes in Communication Disorders. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 32:1397-1412. [PMID: 37146603 PMCID: PMC10484627 DOI: 10.1044/2023_ajslp-22-00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/07/2022] [Accepted: 03/01/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Precision medicine is an emerging intervention paradigm that leverages knowledge of risk factors such as genotypes, lifestyle, and environment toward proactive and personalized interventions. Regarding genetic risk factors, examples of interventions informed by the field of medical genomics are pharmacological interventions tailored to an individual's genotype and anticipatory guidance for children whose hearing impairment is predicted to be progressive. Here, we show how principles of precision medicine and insights from behavior genomics have relevance for novel management strategies of behaviorally expressed disorders, especially disorders of spoken language. METHOD This tutorial presents an overview of precision medicine, medical genomics, and behavior genomics; case examples of improved outcomes; and strategic goals toward enhancing clinical practice. RESULTS Speech-language pathologists (SLPs) see individuals with various communication disorders due to genetic variants. Ways of using insights from behavior genomics and implementing principles of precision medicine include recognizing early signs of undiagnosed genetic disorders in an individual's communication patterns, making appropriate referrals to genetics professionals, and incorporating genetic findings into management plans. Patients benefit from a genetics diagnosis by gaining a deeper and more prognostic understanding of their condition, obtaining more precisely targeted interventions, and learning about their recurrence risks. CONCLUSIONS SLPs can achieve improved outcomes by expanding their purview to include genetics. To drive this new interdisciplinary framework forward, goals should include systematic training in clinical genetics for SLPs, enhanced understanding of genotype-phenotype associations, leveraging insights from animal models, optimizing interprofessional team efforts, and developing novel proactive and personalized interventions.
Collapse
Affiliation(s)
- Beate Peter
- College of Health Solutions, Arizona State University, Tempe
| | - Laurel Bruce
- College of Health Solutions, Arizona State University, Tempe
| | - Lizbeth Finestack
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Twin Cities, Minneapolis
| | - Valentin Dinu
- College of Health Solutions, Arizona State University, Tempe
| | - Melissa Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe
| | | | - Candace R. Lewis
- School of Life Sciences, Arizona State University, Tempe
- Department of Psychology, Arizona State University, Tempe
| | - B. Blair Braden
- College of Health Solutions, Arizona State University, Tempe
| | - Yi-Yuan Tang
- College of Health Solutions, Arizona State University, Tempe
| | - Nancy Scherer
- College of Health Solutions, Arizona State University, Tempe
| | - Mark VanDam
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Nancy Potter
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| |
Collapse
|
17
|
Chang YL, Hsiao TH, Wu MF, Chen CH. The Prevalence and Features of Medications With Actionable Pharmacogenomic Biomarkers Prescribed to Kidney Transplant Recipients. Transplant Proc 2023:S0041-1345(23)00222-1. [PMID: 37127518 DOI: 10.1016/j.transproceed.2023.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Genetic variants are associated with pharmacokinetic and pharmacodynamic changes, leading to variability in drug effects and safety profiles in the clinical response. The role of genetic variants in kidney transplant recipients (KTRs) has not been extensively studied. Here, we explored the potential of incorporating pharmacogenomic (PGx) gene biomarkers into prescription practices for KTRs. METHODS This study analyzed 490 KTRs participating in the Taiwan Precision Medicine Initiative program and used medications with actionable PGx biomarkers. The analysis included prescriptions issued between January 2000 and December 2021 with 206 CPIC-recommended level A or B gene-drug pairs, encompassing 363 single or combination drug products. RESULTS All KTRs had the potential to receive at least one prescription that could be adjusted based on their genetic profiles after the day of surgery. The top 5 medications prescribed within the first 3 months after transplantation were mycophenolic acid, tacrolimus, pantoprazole, labetalol, and tramadol. These findings highlight the significant potential of PGx-guided prescriptions for KTRs. Additionally, some drug-gene pairs, such as tramadol/CYP2D6, pantoprazole/CYP2C19, and atorvastatin/SLCO1B1, were considered high-quality evidence by the Clinical Pharmacogenetics Implementation Consortium and were included in the Food and Drug Administration's drug labels, indicating that they have the potential for clinical application. CONCLUSIONS Overall, this study demonstrated the potential of incorporating PGx gene biomarkers into prescribing practices for KTRs, which could improve personalized pharmacotherapy for these patients.
Collapse
Affiliation(s)
- Yen-Lin Chang
- Department of Pharmacy, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Fen Wu
- Department of Pharmacy, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung VeteransTaichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, NationalTaichung, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
18
|
Jiang L, Wang D, He Y, Shu Y. Advances in gene therapy hold promise for treating hereditary hearing loss. Mol Ther 2023; 31:934-950. [PMID: 36755494 PMCID: PMC10124073 DOI: 10.1016/j.ymthe.2023.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gene therapy focuses on genetic modification to produce therapeutic effects or treat diseases by repairing or reconstructing genetic material, thus being expected to be the most promising therapeutic strategy for genetic disorders. Due to the growing attention to hearing impairment, an increasing amount of research is attempting to utilize gene therapy for hereditary hearing loss (HHL), an important monogenic disease and the most common type of congenital deafness. Several gene therapy clinical trials for HHL have recently been approved, and, additionally, CRISPR-Cas tools have been attempted for HHL treatment. Therefore, in order to further advance the development of inner ear gene therapy and promote its broad application in other forms of genetic disease, it is imperative to review the progress of gene therapy for HHL. Herein, we address three main gene therapy strategies (gene replacement, gene suppression, and gene editing), summarizing the strategy that is most appropriate for particular monogenic diseases based on different pathogenic mechanisms, and then focusing on their successful applications for HHL in preclinical trials. Finally, we elaborate on the challenges and outlooks of gene therapy for HHL.
Collapse
Affiliation(s)
- Luoying Jiang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China.
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
19
|
Calcium signaling and genetic rare diseases: An auditory perspective. Cell Calcium 2023; 110:102702. [PMID: 36791536 DOI: 10.1016/j.ceca.2023.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Deafness is a highly heterogeneous disorder which stems, for 50%, from genetic origins. Sensory transduction relies mainly on sensory hair cells of the cochlea, in the inner ear. Calcium is key for the function of these cells and acts as a fundamental signal transduction. Its homeostasis depends on three factors: the calcium influx, through the mechanotransduction channel at the apical pole of the hair cell as well as the voltage-gated calcium channel at the base of the cells; the calcium buffering via Ca2+-binding proteins in the cytoplasm, but also in organelles such as mitochondria and the reticulum endoplasmic mitochondria-associated membranes with specialized proteins; and the calcium extrusion through the Ca-ATPase pump, located all over the plasma membrane. In addition, the synaptic transmission to the central nervous system is also controlled by calcium. Genetic studies of inherited deafness have tremendously helped understand the underlying molecular pathways of calcium signaling. In this review, we discuss these different factors in light of the associated genetic diseases (syndromic and non-syndromic deafness) and the causative genes.
Collapse
|
20
|
Lopes J, Vidal-Folch N, Lundquist P, Schimmenti LA, Demirel N, Dean V, Olson J, Auth T, Butz M, Reed K, Wylam M, Balcom J, Boczek NJ, Hasadsri L. Aminoglycoside induced ototoxicity risk in the cystic fibrosis population: The utility of large-scale screening. Pediatr Pulmonol 2023; 58:819-824. [PMID: 36437230 DOI: 10.1002/ppul.26259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND MT-RNR1 variants are a well-known cause of aminoglycoside-induced hearing loss (AIHL). Individuals with cystic fibrosis (CF) routinely receive aminoglycosides and are at high risk of AIHL. However, genetic testing before treatment is not routinely performed due to perceived rarity of risk, and cost ineffectiveness with traditional technologies. AIM Assess the utility of large-scale screening for AIHL risk in the CF population, using digital droplet polymerase chain reaction (ddPCR), a novel and scalable low-cost molecular technique. METHODS Using a clinically validated ddPCR assay, we performed retrospective testing on 122 and prospective testing on 32 individuals with CF for the two most common pathogenic variants associated with AIHL, MT-RNR1 m.1555 A > G and m.1494 C > T. Our study screened the largest known cohort of pediatric cases of CF (94/154) for these specific alterations. RESULTS We identified two individuals positive for MT-RNR1 m.1555 A > G and no positives for m.1494 C > T. Of 32 prospective cases, 17 had aminoglycoside exposure. The positive case in our prospective group recently began inhaled tobramycin and denied hearing issues. The clinician adjusted to care for both the patient and sibling with CF (not included in cohort) who is presumed positive for m.1555 A > G due to the nature of mitochondrial inheritance. CONCLUSION Our findings demonstrate the utility of pretreatment screening in the cystic fibrosis population for AIHL risk using ddPCR, a scalable and robust testing methodology at a fraction of the cost as compared to other sequencing-based methods. Therefore, the use of large-scale screening for AIHL risk in the cystic fibrosis community should be re-visited.
Collapse
Affiliation(s)
- Jaime Lopes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Noemi Vidal-Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick Lundquist
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa A Schimmenti
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Nadir Demirel
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
| | - Vicki Dean
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Olson
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
| | - Tom Auth
- Department of Research Services, Mayo Clinic, Rochester, Minnesota, USA
| | - Malinda Butz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katelyn Reed
- Department of Research Services, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark Wylam
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jessica Balcom
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicole J Boczek
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Tollefson MR, Gogal RA, Weaver AM, Schaefer AM, Marini RJ, Azaiez H, Kolbe DL, Wang D, Weaver AE, Casavant TL, Braun TA, Smith RJH, Schnieders M. Assessing Variants of Uncertain Significance Implicated in Hearing Loss Using a Comprehensive Deafness Proteome. RESEARCH SQUARE 2023:rs.3.rs-2508462. [PMID: 36778238 PMCID: PMC9915777 DOI: 10.21203/rs.3.rs-2508462/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6,328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆G Fold ) for all DVD missense variants. We find that 5,772 VUSs have a large, destabilizing ∆∆G Fold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3,456 VUSs are likely pathogenic at a probability of 99.0%. These VUSs affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.
Collapse
|
22
|
[Hereditary hearing loss]. HNO 2023; 71:131-142. [PMID: 36526931 DOI: 10.1007/s00106-022-01254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 12/23/2022]
Abstract
Understanding the genetic basis of hearing loss is becoming increasingly relevant, as 50-70% of congenital hearing loss is hereditary and postlingual hearing loss is also often of hereditary origin. To date, more than 220 genes for hearing loss have been identified and more than 600 syndromes with hearing loss described. This review article explains the classification of genetic hearing loss into syndromic versus non-syndromic forms and the modes of inheritance involved. Some of the most common syndromes (Usher, Pendred, Jervell-Lange-Nielsen, Waardenburg, branchiootorenal, and Alport syndrome) are introductorily described. New sequencing technologies have significantly expanded the diagnostic options for genetic hearing loss and made them more accessible. This text aims to encourage initiation of genetic diagnosis in hearing-impaired patients with suspected hereditary genesis in order to provide the best possible counseling for affected individuals and their families.
Collapse
|
23
|
Moon PK, Qian ZJ, Stevenson DA, Chang KW. Single Versus Multigene Testing for Hereditary Hearing Loss: Use and Costs in a Commercially Insured Cohort. Otolaryngol Head Neck Surg 2023; 168:1472-1476. [PMID: 36939467 DOI: 10.1002/ohn.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The objectives of this study were to describe trends in single-gene GJB2/6 (connexin 26/30) and multigene hearing loss panel (HLP) testing for hereditary hearing loss using real-world evidence. STUDY DESIGN Retrospective study using insurance claims data. SETTING Optum Data Mart database from 2015 to 2020. METHODS Rates of overall and hearing-specific genetic testing and costs to insurers and patients were reported. Linear regression models were used to assess the proportion of single-gene GJB2/6 testing over time. Additional linear regression models were used to assess changes in costs over time. RESULTS From 2015 to 2020, 91,986 children received genetic testing for any indication, of which 601 (0.65%) received hearing-specific tests. The proportion of single-gene GJB2/6 testing remained similar over time (mean difference [MD]: -1.3% per year; 95% confidence interval [CI]: -4.3%, 1.7%), while multigene HLP use increased over time (MD: 4.0% per year; 95% CI: 0.4%, 7.5%). The median charge for single-gene GJB2/6 testing remained constant during the study period (MD: -$34; 95% CI: -$86, $18), while the median charge for multigene HLP decreased during the study period (MD: -$145 per year; 95% CI: -$278, -$12). CONCLUSION Compared to molecular testing for GJB2/6, HLPs are becoming more common for hereditary hearing loss. The comprehensiveness of HLP and decreasing costs provide justification for its more widespread adoption moving forward.
Collapse
Affiliation(s)
- Peter K Moon
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Z Jason Qian
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - David A Stevenson
- Department of Pediatrics-Medical Genetics, Stanford University School of Medicine, California, USA
| | - Kay W Chang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
24
|
Clabout T, Maes L, Acke F, Wuyts W, Van Schil K, Coucke P, Janssens S, De Leenheer E. Negative Molecular Diagnostics in Non-Syndromic Hearing Loss: What Next? Genes (Basel) 2022; 14:genes14010105. [PMID: 36672845 PMCID: PMC9859074 DOI: 10.3390/genes14010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Congenital hearing loss has an impact on almost every facet of life. In more than 50% of cases, a genetic cause can be identified. Currently, extensive genetic testing is available, although the etiology of some patients with obvious familial hearing loss remains unknown. We selected a cohort of mutation-negative patients to optimize the diagnostic yield for genetic hearing impairment. In this retrospective study, 21 patients (17 families) with negative molecular diagnostics for non-syndromic hearing loss (gene panel analysis) were included based on a positive family history with a similar type of hearing loss. Additional genetic testing was performed using a whole exome sequencing panel (WESHL panel v2.0) in four families with the strongest likelihood of genetic hearing impairment. In this cohort (n = 21), the severity of hearing loss was most commonly moderate (52%). Additional genetic testing revealed pathogenic copy number variants in the STRC gene in two families. In summary, regular re-evaluation of hearing loss patients with presumably genetic etiology after negative molecular diagnostics is recommended, as we might miss newly discovered deafness genes. The switch from gene panel analysis to whole exome sequencing or whole genome sequencing for the testing of congenital hearing loss seems promising.
Collapse
Affiliation(s)
- Thomas Clabout
- Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Laurence Maes
- Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Frederic Acke
- Department of Otorhinolaryngology, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Wim Wuyts
- Center of Medical Genetics, Antwerp University Hospital and University of Antwerp, Prins Boudewijnlaan 43, B-2650 Edegem, Belgium
| | - Kristof Van Schil
- Center of Medical Genetics, Antwerp University Hospital and University of Antwerp, Prins Boudewijnlaan 43, B-2650 Edegem, Belgium
| | - Paul Coucke
- Center for Medical Genetics, Ghent University, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Sandra Janssens
- Center for Medical Genetics, Ghent University, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Els De Leenheer
- Department of Otorhinolaryngology, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-93322332
| |
Collapse
|
25
|
Zeng B, Xu H, Yu Y, Li S, Tian Y, Li T, Yang Z, Wang H, Wang G, Chang M, Tang W. Increased diagnostic yield in a cohort of hearing loss families using a comprehensive stepwise strategy of molecular testing. Front Genet 2022; 13:1057293. [PMID: 36568381 PMCID: PMC9768221 DOI: 10.3389/fgene.2022.1057293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Hearing loss is one of the most common sensory disorders in humans. This study proposes a stepwise strategy of deafness gene detection using multiplex PCR combined with high-throughput sequencing, Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), and whole-exome sequencing (WES) to explore its application in molecular diagnosis of hearing loss families. A total of 152 families with hearing loss were included in this study, the highest overall diagnosis rate was 73% (111/152). The diagnosis rate of multiplex PCR combined with high-throughput sequencing was 52.6% (80/152). One families was diagnosed by Sanger sequencing of GJB2 exon 1. Two families were diagnosed by MLPA analysis of the STRC gene. The diagnosis rate with additional contribution from WES was 18.4% (28/152). We identified 21 novel variants from 15 deafness genes by WES. Combining WES and deep clinical phenotyping, we diagnosed 11 patients with syndromic hearing loss (SHL). This study demonstrated improved diagnostic yield in a cohort of hearing loss families and confirmed the advantages of a stepwise strategy in the molecular diagnosis of hearing loss.
Collapse
Affiliation(s)
- Beiping Zeng
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China,National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China,The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Yu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Siqi Li
- Department of Physiology and Neurobiology, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yongan Tian
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zengguang Yang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Haili Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
| | - Guangke Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Mingxiu Chang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China,*Correspondence: Mingxiu Chang, ; Wenxue Tang,
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Mingxiu Chang, ; Wenxue Tang,
| |
Collapse
|
26
|
Corriols-Noval P, López Simón EC, Cadiñanos J, Diñeiro M, Capín R, González Aguado R, Costales Marcos M, Morales Angulo C, Cabanillas Farpón R. Clinical Impact of Genetic Diagnosis of Sensorineural Hearing Loss in Adults. Otol Neurotol 2022; 43:1125-1136. [PMID: 36190904 DOI: 10.1097/mao.0000000000003706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Adult genetic sensorineural hearing loss (SNHL) may be underestimated. BACKGROUND The diagnosis of genetic hearing loss is challenging, given its extreme genetic and phenotypic heterogeneity, particularly in adulthood. This study evaluated the utility of next-generation sequencing (NGS) in the etiological diagnosis of adult-onset SNHL. MATERIALS AND METHODS Adults (>16 yr old) with SNHL were recruited at the Otolaryngology Department at Marqués de Valdecilla University Hospital (Spain). Environmental factors, acoustic trauma, endolymphatic hydrops, and age-related hearing loss were excluding criteria. An NGS gene panel was used, including 196 genes (OTOgenics v3) or 229 genes (OTOgenics v4) related to syndromic and nonsyndromic hearing loss. RESULTS Sixty-five patients were included in the study (average age at the onset of SNHL, 41 yr). Fifteen pathogenic/likely pathogenic variants considered to be causative were found in 15 patients (23% diagnostic yield) in TECTA (4), KCNQ4 (3), GJB2 (2), ACTG1 (1), COL2A1 (1), COCH (1), COCH/COL2A1 (1), STRC (1), and ABHD12 (1). Three patients had syndromic associations (20% of patients with genetic diagnosis) that had not been previously diagnosed (two Stickler type I and one polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, cataract syndrome). Seven variants of unknown significance were found in COL11A1 (1), GSMDE (2), DNTM1 (1), SOX10 (1), EYA4 (1), and TECTA (1). CONCLUSION NGS gene panels can provide diagnostic yields greater than 20% for adult SNHL, with a significant proportion of variant of unknown significance that could potentially contribute to increasing diagnostic output. Identifying a genetic cause enables genetic counseling, provides prognostic information and can reveal unrecognized syndromes contributing to an accurate management of their associated manifestations.
Collapse
Affiliation(s)
- Patricia Corriols-Noval
- Department of Otolaryngology-Head and Neck Surgery, Marques de Valdecilla University Hospital, Santander, Spain
| | - Eugenia Carmela López Simón
- Department of Otolaryngology-Head and Neck Surgery, Marques de Valdecilla University Hospital, Santander, Spain
| | - Juan Cadiñanos
- Institute of Oncological and Molecular Medicine of Asturias
| | - Marta Diñeiro
- Institute of Oncological and Molecular Medicine of Asturias
| | - Raquel Capín
- Institute of Oncological and Molecular Medicine of Asturias
| | - Rocío González Aguado
- Department of Otolaryngology-Head and Neck Surgery, Marques de Valdecilla University Hospital, Santander, Spain
| | - María Costales Marcos
- Department of Otolaryngology-Head and Neck Surgery, Central University Hospital of Asturias, Asturias, Spain
| | - Carmelo Morales Angulo
- Department of Otolaryngology-Head and Neck Surgery, Marques de Valdecilla University Hospital, Santander, Spain
| | | |
Collapse
|
27
|
Silva VAR, Pauna HF, Lavinsky J, Hyppolito MA, Vianna MF, Leal M, Massuda ET, Hamerschmidt R, Bahmad F, Cal RV, Sampaio ALL, Felix F, Chone CT, Castilho AM. Task force Guideline of Brazilian Society of Otology ‒ hearing loss in children - Part I ‒ Evaluation. Braz J Otorhinolaryngol 2022; 89:159-189. [PMID: 36529647 PMCID: PMC9874360 DOI: 10.1016/j.bjorl.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To provide an overview of the main evidence-based recommendations for the diagnosis of hearing loss in children and adolescents aged 0 to 18 years. METHODS Task force members were educated on knowledge synthesis methods, including electronic database search, review and selection of relevant citations, and critical appraisal of selected studies. Articles written in English or Portuguese on childhood hearing loss were eligible for inclusion. The American College of Physicians' guideline grading system and the American Thyroid Association's guideline criteria were used for critical appraisal of evidence and recommendations for therapeutic interventions. RESULTS The evaluation and diagnosis of hearing loss: universal newborn hearing screening, laboratory testing, congenital infections (especially cytomegalovirus), genetic testing and main syndromes, radiologic imaging studies, vestibular assessment of children with hearing loss, auditory neuropathy spectrum disorder, autism spectrum disorder, and noise-induced hearing loss. CONCLUSIONS Every child with suspected hearing loss has the right to diagnosis and appropriate treatment if necessary. This task force considers 5 essential rights: (1) Otolaryngologist consultation; (2) Speech assessment and therapy; (3) Diagnostic tests; (4) Treatment; (5) Ophthalmologist consultation.
Collapse
Affiliation(s)
- Vagner Antonio Rodrigues Silva
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil.
| | - Henrique Furlan Pauna
- Hospital Universitário Cajuru, Departamento de Otorrinolaringologia, Curitiba, PR, Brazil
| | - Joel Lavinsky
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Cirurgia, Porto Alegre, RS, Brazil
| | - Miguel Angelo Hyppolito
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil
| | - Melissa Ferreira Vianna
- Irmandade Santa Casa de Misericórdia de São Paulo, Departamento de Otorrinolaringologia, São Paulo, SP, Brazil
| | - Mariana Leal
- Universidade Federal de Pernambuco (UFPE), Departamento de Cirurgia, Recife, PE, Brazil
| | - Eduardo Tanaka Massuda
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil
| | - Rogério Hamerschmidt
- Universidade Federal do Paraná (UFPR), Hospital de Clínicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Curitiba, PR, Brazil
| | - Fayez Bahmad
- Universidade de Brasília (UnB), Programa de Pós-Graduação em Ciências da Saúde, Brasília, DF, Brazil; Instituto Brasiliense de Otorrinolaringologia (IBO), Brasília, DF, Brazil
| | - Renato Valério Cal
- Centro Universitário do Estado do Pará (CESUPA), Departamento de Otorrinolaringologia, Belém, PA, Brazil
| | - André Luiz Lopes Sampaio
- Universidade de Brasília (UnB), Faculdade de Medicina, Laboratório de Ensino e Pesquisa em Otorrinolaringologia, Brasília, DF, Brazil
| | - Felippe Felix
- Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho (HUCFF), Departamento de Otorrinolaringologia, Rio de Janeiro, RJ, Brazil
| | - Carlos Takahiro Chone
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil
| | - Arthur Menino Castilho
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil
| |
Collapse
|
28
|
Liu C, Huang Y, Zhang Y, Ding H, Yu L, Wang A, Wang Y, Zeng Y, Liu L, Liu Y, Qi Y, Li F, Wu J, Du L, Mai F, Zhang Q, Wang X, Yin A. Next-generation sequencing facilitates genetic diagnosis and improves the management of patients with hearing loss in clinical practice. Int J Pediatr Otorhinolaryngol 2022; 161:111258. [PMID: 35939872 DOI: 10.1016/j.ijporl.2022.111258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hearing loss (HL) is a prevalent sensorineural disorder, and is among the most etiologically heterogeneous disorders. With the advent of next-generation sequencing (NGS) technologies, hundreds of candidate genes can be analyzed simultaneously in a cost-effective manner. METHODS Ninety-four patients from 87 families diagnosed with non-syndromic or syndromic HL were enrolled. A custom-designed HL panel and clinical exome sequencing (CES) were applied to explore molecular etiology in the cohort, and the efficacy of the two panels was examined. RESULTS The etiologic diagnosis for HL has been identified for 36 out of 87 probands (41.4%), 28 with an autosomal recessive (AR) inheritance pattern and 8 with an autosomal dominant (AD) pattern. Candidate variants in 18 different genes were identified in the study cohort, 10 with AR inheritance pattern and 8 with AD pattern. Fourteen of the variants identified in the study were novel. CONCLUSIONS The custom-designed HL panel covers almost all known HL-associated genes, and can be used as an effective clinical diagnostic platform; CES evaluates all exons related to clinical symptoms, and is also suitable for clinical diagnosis of HL. Next-generation sequencing facilitates genetic diagnosis and improves the management of patients with HL in the clinical practice.
Collapse
Affiliation(s)
- Chang Liu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Yanlin Huang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Yan Zhang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Hongke Ding
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Lihua Yu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Anshi Wang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Yunan Wang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Yukun Zeng
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Ling Liu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Yuan Liu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Yiming Qi
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Fake Li
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Jing Wu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Li Du
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Fei Mai
- Department of ENT, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Qi Zhang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Xingwang Wang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
| |
Collapse
|
29
|
Molecular diagnose of a large hearing loss population from China by targeted genome sequencing. J Hum Genet 2022; 67:643-649. [PMID: 35982127 PMCID: PMC9592555 DOI: 10.1038/s10038-022-01066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Hereditary hearing loss is genetically heterogeneous, with diverse clinical manifestations. Here we performed targeted genome sequencing of 227 hearing loss related genes in 1027 patients with bilateral hearing loss and 520 healthy volunteers with normal hearing to comprehensively identify the molecular etiology of hereditary hearing loss in a large cohort from China. We obtained a diagnostic rate of 57.25% (588/1027) for the patients, while 4.67% (48/1027) of the patients were identified with uncertain diagnoses. Of the implicated 35 hearing loss genes, three common genes, including SLC26A4(278/588), GJB2(207/588), MT-RNR1(19/588), accounted for 85.54% (503/588) of the diagnosed cases, while 32 uncommon hearing loss genes, including MYO15A, MITF, OTOF, POU3F4, PTPN11, etc. accounted for the remaining diagnostic rate of 14.46% (85/588). Apart from Pendred syndrome, other eight types of syndromic hearing loss were also identified. Of the 64 uncertain significant variants and 244 pathogenic/likely pathogenic variants identified in the patients, 129 novel variants were also detected. Thus, the molecular etiology presented with high heterogeneity with the leading causes to be SLC26A4 and GJB2 genes in the Chinese hearing loss population. It’s urgent to develop a database of the ethnicity-matched healthy population as well as to perform functional studies for further classification of uncertain significant variants.
Collapse
|
30
|
Kim YS, Kim Y, Jeon HW, Yi N, Lee SY, Kim Y, Han JH, Kim MY, Kim BH, Choi HY, Carandang M, Koo JW, Kim BJ, Bae YJ, Choi BY. Full etiologic spectrum of pediatric severe to profound hearing loss of consecutive 119 cases. Sci Rep 2022; 12:12335. [PMID: 35853923 PMCID: PMC9296524 DOI: 10.1038/s41598-022-16421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Determining the etiology of severe-to-profound sensorineural hearing loss (SP-SNHL) in pediatric subjects is particularly important in aiding the decision for auditory rehabilitation. We aimed to update the etiologic spectrum of pediatric SP-SNHL by combining internal auditory canal (IAC)-MRI with comprehensive and state-of-the-art genetic testings. From May 2013 to September 2020, 119 cochlear implantees under the age of 15 years with SP-SNHL were all prospectively recruited. They were subjected to genetic tests, including exome sequencing, and IAC-MRI for etiologic diagnosis. Strict interpretation of results were made based on ACMG/AMP guidelines and by an experienced neuroradiologist. The etiology was determined in of 65.5% (78/119) of our cohort. If only one of the two tests was done, the etiologic diagnostic rate would be reduced by at least 21.8%. Notably, cochlear nerve deficiency (n = 20) detected by IAC-MRI topped the etiology list of our cohort, followed by DFNB4 (n = 18), DFNB1 (n = 10), DFNB9 (n = 10) and periventricular leukomalacia associated with congenital CMV infection (n = 8). Simultaneous application of state-of-the-art genetic tests and IAC-MRI is essential for etiologic diagnosis, and if lesions of the auditory nerve or central nerve system are carefully examined on an MRI, we can identify the cause of deafness in more than 65% of pediatric SP-SNHL cases.
Collapse
Affiliation(s)
- Young Seok Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
| | - Yoonjoong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
| | - Hyoung Won Jeon
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
| | - Nayoung Yi
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital, Sejong, South Korea
- College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Yehree Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
- College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Min Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
| | - Bo Hye Kim
- College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyeong Yun Choi
- Information Science Major, University of Maryland, College Park, MD, USA
| | - Marge Carandang
- Department of Otorhinolaryngology-Head and Neck Surgery, East Avenue Medical Center, Metro Manila, Philippines
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea
| | - Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital, Sejong, South Korea
- College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yun Jung Bae
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, South Korea.
| |
Collapse
|
31
|
Li MM, Tayoun AA, DiStefano M, Pandya A, Rehm HL, Robin NH, Schaefer AM, Yoshinaga-Itano C. Clinical evaluation and etiologic diagnosis of hearing loss: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2022; 24:1392-1406. [PMID: 35802133 DOI: 10.1016/j.gim.2022.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Hearing loss is a common and complex condition that can occur at any age, can be inherited or acquired, and is associated with a remarkably wide array of etiologies. The diverse causes of hearing loss, combined with the highly variable and often overlapping presentations of different forms of hearing loss, challenge the ability of traditional clinical evaluations to arrive at an etiologic diagnosis for many deaf and hard-of-hearing individuals. However, identifying the etiology of hearing loss may affect clinical management, improve prognostic accuracy, and refine genetic counseling and assessment of the likelihood of recurrence for relatives of deaf and hard-of-hearing individuals. Linguistic and cultural identities associated with being deaf or hard-of-hearing can complicate access to and the effectiveness of clinical care. These concerns can be minimized when genetic and other health care services are provided in a linguistically and culturally sensitive manner. This clinical practice resource offers information about the frequency, causes, and presentations of hearing loss and suggests approaches to the clinical and genetic evaluation of deaf and hard-of-hearing individuals aimed at identifying an etiologic diagnosis and providing informative and effective patient education and genetic counseling.
Collapse
Affiliation(s)
- Marilyn M Li
- Department of Pathology and Laboratory Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center, Al Jalila Children's Specialty Hospital, Mohammed Bin Rashid University, Dubai, United Arab Emirates
| | | | - Arti Pandya
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Nathaniel H Robin
- Departments of Genetics and Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Amanda M Schaefer
- Department of Otolaryngology-Head & Neck Surgery, Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA
| | | |
Collapse
|
32
|
Hearing Features and Cochlear Implantation Outcomes in Patients With PathogenicMYO15AVariants: a Multicenter Observational Study. Ear Hear 2022; 43:1198-1207. [DOI: 10.1097/aud.0000000000001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Hearing loss drug discovery and medicinal chemistry: Current status, challenges, and opportunities. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:1-91. [PMID: 35753714 DOI: 10.1016/bs.pmch.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hearing loss is a severe high unmet need condition affecting more than 1.5 billion people globally. There are no licensed medicines for the prevention, treatment or restoration of hearing. Prosthetic devices, such as hearing aids and cochlear implants, do not restore natural hearing and users struggle with speech in the presence of background noise. Hearing loss drug discovery is immature, and small molecule approaches include repurposing existing drugs, combination therapeutics, late-stage discovery optimisation of known chemotypes for identified molecular targets of interest, phenotypic tissue screening and high-throughput cell-based screening. Hearing loss drug discovery requires the integration of specialist therapeutic area biology and otology clinical expertise. Small molecule drug discovery projects in the global clinical portfolio for hearing loss are here collated and reviewed. An overview is provided of human hearing, inner ear anatomy, inner ear delivery, types of hearing loss and hearing measurement. Small molecule experimental drugs in clinical development for hearing loss are reviewed, including their underpinning biology, discovery strategy and activities, medicinal chemistry, calculated physicochemical properties, pharmacokinetics and clinical trial status. SwissADME BOILED-Egg permeability modelling is applied to the molecules reviewed, and these results are considered. Non-small molecule hearing loss assets in clinical development are briefly noted in this review. Future opportunities in hearing loss drug discovery for human genomics and targeted protein degradation are highlighted.
Collapse
|
34
|
Mutations in MINAR2 encoding membrane integral NOTCH2-associated receptor 2 cause deafness in humans and mice. Proc Natl Acad Sci U S A 2022; 119:e2204084119. [PMID: 35727972 PMCID: PMC9245706 DOI: 10.1073/pnas.2204084119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Discovery of deafness genes and elucidating their functions have substantially contributed to our understanding of hearing physiology and its pathologies. Here we report on DNA variants in MINAR2, encoding membrane integral NOTCH2-associated receptor 2, in four families underlying autosomal recessive nonsyndromic deafness. Neurologic evaluation of affected individuals at ages ranging from 4 to 80 y old does not show additional abnormalities. MINAR2 is a recently annotated gene with limited functional understanding. We detected three MINAR2 variants, c.144G > A (p.Trp48*), c.412_419delCGGTTTTG (p.Arg138Valfs*10), and c.393G > T, in 13 individuals with congenital- or prelingual-onset severe-to-profound sensorineural hearing loss (HL). The c.393G > T variant is shown to disrupt a splice donor site. We show that Minar2 is expressed in the mouse inner ear, with the protein localizing mainly in the hair cells, spiral ganglia, the spiral limbus, and the stria vascularis. Mice with loss of function of the Minar2 protein (Minar2tm1b/tm1b) present with rapidly progressive sensorineural HL associated with a reduction in outer hair cell stereocilia in the shortest row and degeneration of hair cells at a later age. We conclude that MINAR2 is essential for hearing in humans and mice and its disruption leads to sensorineural HL. Progressive HL observed in mice and in some affected individuals and as well as relative preservation of hair cells provides an opportunity to interfere with HL using genetic therapies.
Collapse
|
35
|
Xiang J, Jin Y, Song N, Chen S, Shen J, Xie W, Sun X, Peng Z, Sun Y. Comprehensive genetic testing improves the clinical diagnosis and medical management of pediatric patients with isolated hearing loss. BMC Med Genomics 2022; 15:142. [PMID: 35761346 PMCID: PMC9235092 DOI: 10.1186/s12920-022-01293-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose Genetic testing is widely used in diagnosing genetic hearing loss in patients. Other than providing genetic etiology, the benefits of genetic testing in pediatric patients with hearing loss are less investigated. Methods From 2018–2020, pediatric patients who initially presented isolated hearing loss were enrolled. Comprehensive genetic testing, including GJB2/SLC26A4 multiplex amplicon sequencing, STRC/OTOA copy number variation analysis, and exome sequencing, were hierarchically offered. Clinical follow-up and examinations were performed. Results A total of 80 pediatric patients who initially presented isolated hearing loss were considered as nonsyndromic hearing loss and enrolled in this study. The definitive diagnosis yield was 66% (53/80) and the likely diagnosis yield was 8% (6/80) through comprehensive genetic testing. With the aid of genetic testing and further clinical follow-up and examinations, the clinical diagnoses and medical management were altered in eleven patients (19%, 11/59); five were syndromic hearing loss; six were nonsyndromic hearing loss mimics. Conclusion Syndromic hearing loss and nonsyndromic hearing loss mimics are common in pediatric patients who initially present with isolated hearing loss. The comprehensive genetic testing provides not only a high diagnostic yield but also valuable information for clinicians to uncover subclinical or pre-symptomatic phenotypes, which allows early diagnosis of SHL, and leads to precise genetic counseling and changes the medical management. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01293-x.
Collapse
|
36
|
Rayat S, Farhadi M, Emamdjomeh H, Morovvati S, Falah M. Analysis of TMIE gene mutations including the first large deletion of exon 1 with autosomal recessive non-syndromic deafness. BMC Med Genomics 2022; 15:133. [PMID: 35710363 PMCID: PMC9204965 DOI: 10.1186/s12920-022-01287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Transmembrane inner ear (TMIE) protein is an essential component of the mechanotransduction complex. In collaboration with other components, TMIE aids the maintenance and function of the sensory hair cells. Autosomal recessive deafness-6 (DFNB6) is caused by mutated TMIE, a gene in the high genetic heterogeneity spectrum of deafness. Hearing loss has a significant impact on the global economy and the quality of life of affected persons, their families, and society. Here, three unrelated families with TMIE variants are presented. All three cases were found while studying the genetic causes of an Iranian cohort of subjects with cochlear implants. Methods Whole exome sequencing was performed to find possible genetic etiology in probands of families after a comprehensive medical evaluation for hearing loss. Co-segregation analysis in probands and other family members was performed by Sanger sequencing. The variants were interpreted per the American College of Medical Genetics and Genomics guidelines. Results Three different variants associated with TMIE were confirmed as reasons for autosomal recessive non-syndromic deafness. The first novel ~ 10-kb deletion surrounding exon 1 of TMIE along with two previously reported variants co-segregated with families including a frameshift variant c.122_125dup (p.Pro43fs) and a missense variant c.250 C > T; p.(Arg84Trp) in exons 2, and 3, respectively. Conclusion This study increases the mutational spectrum of the TMIE gene and highlights the importance of the large deletion of this gene as a reason for hearing loss. Moreover, an efficient and simple multiplex PCR assay was developed to determine the exact breakpoints of the TMIE deletion. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01287-9.
Collapse
Affiliation(s)
- Sima Rayat
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hessamaldin Emamdjomeh
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Morovvati
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Masoumeh Falah
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Choffor-Nchinda E, Fokouo Fogha JV, Ngo Nyeki AR, Dalil AB, Meva’a Biouélé RC, Me-Meke GP. Approach and solutions to congenital hearing impairment in Cameroon: perspective of hearing professionals. Trop Med Health 2022; 50:36. [PMID: 35637511 PMCID: PMC9150302 DOI: 10.1186/s41182-022-00430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES To bring out the diagnostic attitude of hearing professionals in Cameroon towards congenital hearing impairment (CHI), assess availability of tests, neonatal screening, and create a national map of availability of treatment opportunities. METHODS We conducted a cross-sectional online-based survey from June to December 2021, concerning ear-nose-throat (ENT) specialists, hearing care professionals, speech therapists and ENT nurses. A Google Forms online questionnaire was used to collect data, filled by eligible professionals involved in hearing care in Cameroon. RESULTS A total of 93 professionals working in 31 different health facilities participated. A cumulative percentage of 79.9% of ENTs were found in just two out of 10 regions. Specialists sought by ENTs for assessment of patients with CHI included neurologists/neuro-pediatricians (96.8%), pediatricians (47.6%), other ENTs (34.9%), and psychologists (3.2%). Investigations requested included auditory-evoked brainstem response (ABR; 87.3%), otoacoustic emissions recording (OAE; 71.4%), and tympanometry (66.7%). There were eight OAE and nine ABR machines in the country. Twenty-five (88.6%) out of 31 facilities with otolaryngologists did not carry out systematic neonatal screening. Reasons included unavailability of equipment (21; 84%), and administrative delays (14; 56%). Sixteen (51.6%) facilities had ENTs with additional training in otologic surgery and 11 (35.5%) were equipped to perform ear surgery. Three centers (9.7%) specialized in hearing aid provision and maintenance services. Three hospitals (9.7%) had performed cochlear implantation. CONCLUSION Our results show scarcity and overt unevenness in distribution of specialists, equipment and solutions to CHI in Cameroon. A serious negative health care consequence of this shortage is the unavailability of universal newborn hearing screening and implementation programs.
Collapse
Affiliation(s)
- Emmanuel Choffor-Nchinda
- Department of Surgery and Specialties, Faculty of Health Sciences, University of Buea, PO Box 63, Buea, Cameroon
- COCHLEES Research Group, Yaoundé, Cameroon
| | | | - Adèle-Rose Ngo Nyeki
- COCHLEES Research Group, Yaoundé, Cameroon
- Department of Ophthalmology, Otolaryngology and Stomatology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, PO Box 1364, Yaoundé, Cameroon
| | - Asmaou Bouba Dalil
- COCHLEES Research Group, Yaoundé, Cameroon
- Department of Ophthalmology, Otolaryngology and Stomatology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, PO Box 1364, Yaoundé, Cameroon
| | - Roger Christian Meva’a Biouélé
- COCHLEES Research Group, Yaoundé, Cameroon
- Department of Ophthalmology, Otolaryngology and Stomatology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, PO Box 1364, Yaoundé, Cameroon
| | | |
Collapse
|
38
|
Smith RJH. The hearing-impaired patient: what the future holds. Hum Genet 2022; 141:307-310. [PMID: 35290517 PMCID: PMC9093598 DOI: 10.1007/s00439-022-02447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa Graduate College, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
39
|
Pan C, Li J, Wang S, Shi C, Zhang Y, Yu Y. Novel heterozygous mutations in the otogelin-like (OTOGL) gene in a child with bilateral mild nonsyndromic sensorineural hearing loss. Gene 2022; 808:146000. [PMID: 34626719 DOI: 10.1016/j.gene.2021.146000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Hearing loss is a common disease, of which genetic factors are the main cause. The incidence of mild or moderate postlingual deafness in children is not high, and the impact on life and learning is not as severe as that of prelingual deafness. This leads to insufficient attention to the disorder in the clinic. To date, only a few disease-causing genes have been reported. This report describe a case of novel heterozygous mutations in OTOGL that causes nonsyndromic mild sensorineural hearing loss. Basic information, imaging examinations, audiological examination, and vestibular function tests of the proband were collected. Blood samples of the proband's family were collected and analyzed by whole exome sequencing and Sanger sequencing. A pedigree diagram was drawn and the genetic patterns were analyzed. The proband is a 16-year-old female student with mild sensorineural hearing loss. High-resolution CT of the inner ear and vestibular function tests showed no abnormalities. The age of onset was approximately 4 years old. Except for hearing loss, no lesions were seen in other organs. The parents of the proband were not close relatives and had normal hearing. Two novel heterozygous mutations were found in the OTOGL gene. The c.5038del (p.D1680Ifs*6) variant was inherited from the father, and the c.2770C > T (p.R924X) variant from the mother. They enriched the mutation spectrum of OTOGL, which provides the basis for gene function research and genetic consultation.
Collapse
Affiliation(s)
- Chen Pan
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun Li
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shixin Wang
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chen Shi
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yunmei Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yafeng Yu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
40
|
Isherwood B, Gonçalves AC, Cousins R, Holme R. The global hearing therapeutic pipeline: 2021. Drug Discov Today 2021; 27:912-922. [PMID: 34775104 DOI: 10.1016/j.drudis.2021.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/20/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
Hearing loss is a serious condition affecting more than 1.5 billion people globally. Many affected people benefit from the use of devices, such as hearing aids, but these do not restore natural hearing, and many users still struggle to follow speech in the presence of background noise. Consequently, there is rapid growth in work to discover therapeutics to address this need. Our analysis of the therapeutic pipeline for inner ear and central processing disorders identified 23 assets in clinical trials and 56 in preclinical development, of which 25% have entered the pipeline in the past three years. The innovative potential of this pipeline is encouraging, but there are translational hurdles to be overcome. We highlight challenges for the pipeline and comment on opportunities to support and strengthen it.
Collapse
Affiliation(s)
| | | | - Rick Cousins
- University College London Ear Institute, London, UK; Cinnabar Consulting, Bedford, UK
| | - Ralph Holme
- Royal National Institute for Deaf People, Peterborough, UK.
| |
Collapse
|
41
|
Diagnostic Yield of Targeted Hearing Loss Gene Panel Sequencing in a Large German Cohort With a Balanced Age Distribution from a Single Diagnostic Center: An Eight-year Study. Ear Hear 2021; 43:1049-1066. [PMID: 34753855 PMCID: PMC9007094 DOI: 10.1097/aud.0000000000001159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objectives: Hereditary hearing loss exhibits high degrees of genetic and clinical heterogeneity. To elucidate the population-specific and age-related genetic and clinical spectra of hereditary hearing loss, we investigated the sequencing data of causally associated hearing loss genes in a large cohort of hearing-impaired probands with a balanced age distribution from a single center in Southwest Germany. Design: Genetic testing was applied to 305 hearing-impaired probands/families with a suspected genetic hearing loss etiology and a balanced age distribution over a period of 8 years (2011–2018). These individuals were representative of the regional population according to age and sex distributions. The genetic testing workflow consisted of single-gene screening (n = 21) and custom-designed hearing loss gene panel sequencing (n = 284) targeting known nonsyndromic and syndromic hearing loss genes in a diagnostic setup. Retrospective reanalysis of sequencing data was conducted by applying the current American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines. Results: A genetic diagnosis was established for 75 (25%) of the probands that involved 75 causal variants in 35 genes, including 16 novel causal variants and 9 medically significant variant reclassifications. Nearly half of the solved cases (47%; n = 35) were related to variants in the five most frequently affected genes: GJB2 (25%), MYO15A, WFS1, SLC26A4, and COL11A1 (all 5%). Nearly one-quarter of the cases (23%; n = 17) were associated with variants in seven additional genes (TMPRSS3, COL4A3, LOXHD1, EDNRB, MYO6, TECTA, and USH2A). The remaining one-third of single cases (33%; n = 25) were linked to variants in 25 distinct genes. Diagnostic rates and gene distribution were highly dependent on phenotypic characteristics. A positive family history of autosomal-recessive inheritance in combination with early onset and higher grades of hearing loss significantly increased the solve rate up to 60%, while late onset and lower grades of hearing loss yielded significantly fewer diagnoses. Regarding genetic diagnoses, autosomal-dominant genes accounted for 37%, autosomal-recessive genes for 60%, and X-linked genes for 3% of the solved cases. Syndromic/nonsyndromic hearing loss mimic genes were affected in 27% of the genetic diagnoses. Conclusions: The genetic epidemiology of the largest German cohort subjected to comprehensive targeted sequencing for hereditary hearing loss to date revealed broad causal gene and variant spectra in this population. Targeted hearing loss gene panel analysis proved to be an effective tool for ensuring an appropriate diagnostic yield in a routine clinical setting including the identification of novel variants and medically significant reclassifications. Solve rates were highly sensitive to phenotypic characteristics. The unique population-adapted and balanced age distribution of the cohort favoring late hearing loss onset uncovered a markedly large contribution of autosomal-dominant genes to the diagnoses which may be a representative for other age balanced cohorts in other populations.
Collapse
|
42
|
Patel MJ, DiStefano MT, Oza AM, Hughes MY, Wilcox EH, Hemphill SE, Cushman BJ, Grant AR, Siegert RK, Shen J, Chapin A, Boczek NJ, Schimmenti LA, Nara K, Kenna M, Azaiez H, Booth KT, Avraham KB, Kremer H, Griffith AJ, Rehm HL, Amr SS, Tayoun ANA. Disease-specific ACMG/AMP guidelines improve sequence variant interpretation for hearing loss. Genet Med 2021; 23:2208-2212. [PMID: 34230634 PMCID: PMC8556313 DOI: 10.1038/s41436-021-01254-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The ClinGen Variant Curation Expert Panels (VCEPs) provide disease-specific rules for accurate variant interpretation. Using the hearing loss-specific American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines, the Hearing Loss VCEP (HL VCEP) illustrates the utility of expert specifications in variant interpretation. METHODS A total of 157 variants across nine HL genes, previously submitted to ClinVar, were curated by the HL VCEP. The curation process involved collecting published and unpublished data for each variant by biocurators, followed by bimonthly meetings of an expert curation subgroup that reviewed all evidence and applied the HL-specific ACMG/AMP guidelines to reach a final classification. RESULTS Before expert curation, 75% (117/157) of variants had single or multiple variants of uncertain significance (VUS) submissions (17/157) or had conflicting interpretations in ClinVar (100/157). After applying the HL-specific ACMG/AMP guidelines, 24% (4/17) of VUS and 69% (69/100) of discordant variants were resolved into benign (B), likely benign (LB), likely pathogenic (LP), or pathogenic (P). Overall, 70% (109/157) variants had unambiguous classifications (B, LB, LP, P). We quantify the contribution of the HL-specified ACMG/AMP codes to variant classification. CONCLUSION Expert specification and application of the HL-specific ACMG/AMP guidelines effectively resolved discordant interpretations in ClinVar. This study highlights the utility of ClinGen VCEPs in supporting more consistent clinical variant interpretation.
Collapse
Affiliation(s)
- Mayher J Patel
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marina T DiStefano
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA,Precision Health Program, Geisinger, Danville, PA, USA
| | - Andrea M Oza
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, MA, USA,Dept. of Otolaryngology and Communication Enhancement, Boston Children’s Hospital, Boston, MA, USA
| | | | - Emma H Wilcox
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah E Hemphill
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, MA, USA
| | - Brandon J Cushman
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, MA, USA
| | - Andrew R Grant
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jun Shen
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA
| | | | - Nicole J Boczek
- Dept of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lisa A Schimmenti
- Department of Otorhinolaryngology, Clinical Genomics and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Kiyomitsu Nara
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Margaret Kenna
- Dept. of Otolaryngology and Communication Enhancement, Boston Children’s Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospital and Clinics, Iowa City, IA, USA,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hannie Kremer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andrew J. Griffith
- Department of Otolaryngology Head-Neck Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heidi L Rehm
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA,Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, MA, USA
| | - Sami S Amr
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Ahmad N Abou Tayoun
- Al Genomics Center, Al Jalila Children’s Specialty Hospital, Dubai, United Arab Emirates,Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | |
Collapse
|
43
|
Kılıç S, Bouzaher MH, Cohen MS, Lieu JEC, Kenna M, Anne S. Comprehensive medical evaluation of pediatric bilateral sensorineural hearing loss. Laryngoscope Investig Otolaryngol 2021; 6:1196-1207. [PMID: 34667865 PMCID: PMC8513426 DOI: 10.1002/lio2.657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022] Open
Abstract
Children with bilateral sensorineural hearing loss (SNHL) should undergo a comprehensive medical evaluation to determine the underlying etiology and help guide treatment and counseling. In this article, we review the indications and rationale for medical evaluation of pediatric bilateral SNHL, including history and physical examination, imaging, genetic testing, specialist referrals, cytomegalovirus (CMV) testing, and other laboratory tests. Workup begins with a history and physical examination, which can provide clues to the etiology of SNHL, particularly with syndromic causes. If SNHL is diagnosed within the first 3 weeks of life, CMV testing should be performed to identify patients that may benefit from antiviral treatment. If SNHL is diagnosed after 3 weeks, testing can be done using dried blood spots samples, if testing capability is available. Genetic testing is oftentimes successful in identifying causes of hearing loss as a result of recent technological advances in testing and an ever-increasing number of identified genes and genetic mutations. Therefore, where available, genetic testing should be performed, ideally with next generation sequencing techniques. Ophthalmological evaluation must be done on all children with SNHL. Imaging (high-resolution computed tomography and/or magnetic resonance imaging) should be performed to assess for anatomic causes of hearing loss and to determine candidacy for cochlear implantation when indicated. Laboratory testing is indicated for certain etiologies, but should not be ordered indiscriminately since the yield overall is low.
Collapse
Affiliation(s)
- Suat Kılıç
- Head and Neck InstituteCleveland ClinicClevelandOhioUSA
| | | | - Michael S. Cohen
- Department of Otolaryngology, Head and Neck SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| | - Judith E. C. Lieu
- Department of Otolaryngology‐Head and Neck SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Margaret Kenna
- Department of Otolaryngology and Communication EnhancementBoston Children's HospitalBostonMassachusettsUSA
| | - Samantha Anne
- Head and Neck InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
44
|
Batissoco AC, Pedroso-Campos V, Pardono E, Sampaio-Silva J, Sonoda CY, Vieira-Silva GA, da Silva de Oliveira Longati EU, Mariano D, Hoshino ACH, Tsuji RK, Jesus-Santos R, Abath-Neto O, Bento RF, Oiticica J, Lezirovitz K. Molecular and genetic characterization of a large Brazilian cohort presenting hearing loss. Hum Genet 2021; 141:519-538. [PMID: 34599368 DOI: 10.1007/s00439-021-02372-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022]
Abstract
Hearing loss is one of the most common sensory defects, affecting 5.5% of the worldwide population and significantly impacting health and social life. It is mainly attributed to genetic causes, but their relative contribution reflects the geographical region's socio-economic development. Extreme genetic heterogeneity with hundreds of deafness genes involved poses challenges for molecular diagnosis. Here we report the investigation of 542 hearing-impaired subjects from all Brazilian regions to search for genetic causes. Biallelic GJB2/GJB6 causative variants were identified in 12.9% (the lowest frequency was found in the Northern region, 7.7%), 0.4% carried GJB2 dominant variants, and 0.6% had the m.1555A > G variant (one aminoglycoside-related). In addition, other genetic screenings, employed in selected probands according to clinical presentation and presumptive inheritance patterns, identified causative variants in 2.4%. Ear malformations and auditory neuropathy were diagnosed in 10.8% and 3.5% of probands, respectively. In 3.8% of prelingual/perilingual cases, Waardenburg syndrome was clinically diagnosed, and in 71.4%, these diagnoses were confirmed with pathogenic variants revealed; seven out of them were novel, including one CNV. All these genetic screening strategies revealed causative variants in 16.2% of the cases. Based on causative variants in the molecular diagnosis and genealogy analyses, a probable genetic etiology was found in ~ 50% of the cases. The present study highlights the relevance of GJB2/GJB6 as a cause of hearing loss in all Brazilian regions and the importance of screening unselected samples for estimating frequencies. Moreover, when a comprehensive screening is not available, molecular diagnosis can be enhanced by selecting probands for specific screenings.
Collapse
Affiliation(s)
- Ana Carla Batissoco
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Vinicius Pedroso-Campos
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Eliete Pardono
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto de Ciências de Saúde da UNIP, São Paulo, SP, Brasil
| | - Juliana Sampaio-Silva
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Cindy Yukimi Sonoda
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Gleiciele Alice Vieira-Silva
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Diego Mariano
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ana Cristina Hiromi Hoshino
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Robinson Koji Tsuji
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Rafaela Jesus-Santos
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Osório Abath-Neto
- Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ricardo Ferreira Bento
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Jeanne Oiticica
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Karina Lezirovitz
- Laboratório de Otorrinolaringologia/LIM 32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.
- ENT Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
45
|
Núñez-Batalla F, Jáudenes-Casaubón C, Sequí-Canet JM, Vivanco-Allende A, Zubicaray-Ugarteche J, Olleta Lascarro I. New-born Hearing Screening Programmes in 2020: CODEPEH Recommendations. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2021; 72:312-323. [PMID: 34535222 DOI: 10.1016/j.otoeng.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 10/20/2022]
Abstract
Programmes for early detection of congenital hearing loss have been successfully implemented mainly in developed countries, after overcoming some conceptual errors argued against their implementation and some criticism of their efficacy. However, some difficulties and weaknesses are still identified in these programmes: the detection of late-onset hearing loss and the percentage of children who did not pass the screening and did not complete the process of diagnosis and treatment, these being cases that are lost in the process. The purpose of this Document is to analyse these problems to determine areas for improvement and to emphasize one of the basic principles for the success of the programmes: continuous training for the interdisciplinary team. The result of the review process carried out by CODEPEH has been drafted as Recommendations for updating the Programmes with the evidence of the last decade, including advances in screening technology, the impact of the present knowledge on congenital infection by cytomegalovirus, genetic hearing loss research and control systems of lost to follow-up cases, treatment and follow up.
Collapse
|
46
|
Gustafson SJ, Corbin NE. Pediatric Hearing Loss Guidelines and Consensus Statements-Where Do We Stand? Otolaryngol Clin North Am 2021; 54:1129-1142. [PMID: 34535279 DOI: 10.1016/j.otc.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A large number of guidelines and position statements have been published with the aim of improving outcomes for children with hearing loss. The purpose of this article is to review the current state of clinical practice guidelines as they relate to screening, diagnosis, and management of hearing loss in children. This summary is intended for the practicing otolaryngologist.
Collapse
Affiliation(s)
- Samantha J Gustafson
- University of Utah, 390 South 1530 East, BEH-S 1201, Salt Lake City, UT 84112, USA.
| | - Nicole E Corbin
- University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA 15260, USA
| |
Collapse
|
47
|
Genetic and Non Genetic Hearing Loss and Associated Disabilities: An Epidemiological Survey in Emilia-Romagna Region. Audiol Res 2021; 11:463-473. [PMID: 34562881 PMCID: PMC8482153 DOI: 10.3390/audiolres11030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Hearing loss is one of the most common congenital sensory disorders. It can be associated with several comorbidities, in particular developmental disabilities (DD). In Emilia-Romagna (ER), a region in Northern Italy, Child and Adolescent Mental Health Services (CAMHS) provide the diagnostic framework and treatment for these conditions. The aim of the present study is to evaluate the prevalence of hearing loss, both isolated or in association with comorbidities, in the juvenile population. The study draws its data from the ER Childhood and Adolescent Neuropsychiatry Information System (SINPIAER), an Administrative Healthcare Database collecting the clinical data of all those who have attended CAMHS since 2010. The most frequent type of hearing loss was bilateral sensorineural hearing loss, which was present in 69–72% of the cases, while bilateral conductive hearing loss was the second most common type, ranging from 8 to 10%. Among DD, congenital malformations, mental retardation, visual impairment, and cerebral palsy were the most common. In particular, autism spectrum disorders show increasing incidence and prevalence among CAMHS users in ER region. In-depth knowledge of hearing loss epidemiology and related conditions, such as developmental disabilities, in the juvenile population is crucial for disease prevention, health planning, and resource allocation.
Collapse
|
48
|
Tasdemir-Yilmaz OE, Druckenbrod NR, Olukoya OO, Dong W, Yung AR, Bastille I, Pazyra-Murphy MF, Sitko AA, Hale EB, Vigneau S, Gimelbrant AA, Kharchenko PV, Goodrich LV, Segal RA. Diversity of developing peripheral glia revealed by single-cell RNA sequencing. Dev Cell 2021; 56:2516-2535.e8. [PMID: 34469751 DOI: 10.1016/j.devcel.2021.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
The peripheral nervous system responds to a wide variety of sensory stimuli, a process that requires great neuronal diversity. These diverse neurons are closely associated with glial cells originating from the neural crest. However, the molecular nature and diversity among peripheral glia are not understood. Here, we used single-cell RNA sequencing to profile developing and mature glia from somatosensory dorsal root ganglia and auditory spiral ganglia. We found that glial precursors (GPs) in these two systems differ in their transcriptional profiles. Despite their unique features, somatosensory and auditory GPs undergo convergent differentiation to generate molecularly uniform myelinating and non-myelinating Schwann cells. By contrast, somatosensory and auditory satellite glial cells retain system-specific features. Lastly, we identified a glial signature gene set, providing new insights into commonalities among glia across the nervous system. This survey of gene expression in peripheral glia constitutes a resource for understanding functions of glia across different sensory modalities.
Collapse
Affiliation(s)
- Ozge E Tasdemir-Yilmaz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Noah R Druckenbrod
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Weixiu Dong
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isle Bastille
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maria F Pazyra-Murphy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Austen A Sitko
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Evan B Hale
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sébastien Vigneau
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Sánchez-Espino LF, Gil-Téllez CI, Cantú-Reyna C, Martínez-Longoria CA. Ichthyosiform Erythroderma, a Multifaceted Syndromic Entity. Pediatr Rev 2021; 42:112-117. [PMID: 34470889 DOI: 10.1542/pir.2018-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Luis F Sánchez-Espino
- Instituto de Seguridad Social para los trabajadores del Estado de Nuevo León (ISSSTELEON), Hospital San José del Tecnológico de Monterrey, Mexico.,Department of Pediatrics, Tecnológico de Monterrey, School of Medicine and Health Science, Mexico
| | - Claudia I Gil-Téllez
- Instituto de Seguridad Social para los trabajadores del Estado de Nuevo León (ISSSTELEON), Hospital San José del Tecnológico de Monterrey, Mexico
| | - Consuelo Cantú-Reyna
- Instituto de Seguridad Social para los trabajadores del Estado de Nuevo León (ISSSTELEON), Hospital San José del Tecnológico de Monterrey, Mexico
| | - César A Martínez-Longoria
- Instituto de Seguridad Social para los trabajadores del Estado de Nuevo León (ISSSTELEON), Hospital San José del Tecnológico de Monterrey, Mexico
| |
Collapse
|
50
|
Núñez-Batalla F, Jáudenes-Casaubón C, Sequí-Canet JM, Vivanco-Allende A, Zubicaray-Ugarteche J, Olleta Lascarro I. Programas de cribado de la hipoacusia congénita en 2020: recomendaciones CODEPEH. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2021. [DOI: 10.1016/j.otorri.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|