1
|
Lv A, Chen M, Zhang S, Zhao W, Li J, Lin S, Zheng Y, Lin N, Xu L, Huang H. Upregulation of miR‑6747‑3p affects red blood cell lineage development and induces fetal hemoglobin expression by targeting BCL11A in β‑thalassemia. Mol Med Rep 2025; 31:7. [PMID: 39450557 PMCID: PMC11529187 DOI: 10.3892/mmr.2024.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
In β‑thalassemia, excessive α‑globin chain impedes the normal development of red blood cells resulting in anemia. Numerous miRNAs, including miR‑6747‑3p, are aberrantly expressed in β‑thalassemia major (β‑TM), but there are no reports on the mechanism of miR‑6747‑3p in regulating red blood cell lineage development and fetal hemoglobin (HbF) expression. In the present study, RT‑qPCR was utilized to confirm miR‑6747‑3p expression in patients with β‑TM and the healthy controls. Electrotransfection was employed to introduce the miR‑6747‑3p mimic and inhibitor in both HUDEP‑2 and K562 cells, and red blood cell lineage development was evaluated by CCK‑8 assay, flow cytometry, Wright‑Giemsa staining and Benzidine blue staining. B‑cell lymphoma/leukemia 11A (BCL11A) was selected as a candidate target gene of miR‑6747‑3p for further validation through FISH assay, dual luciferase assay and Western blotting. The results indicated that miR‑6747‑3p expression was notably higher in patients with β‑TM compared with healthy controls and was positively related to HbF levels. Functionally, miR‑6747‑3p overexpression resulted in the hindrance of cell proliferation, promotion of cell apoptosis, facilitation of cellular erythroid differentiation and γ‑globin expression in HUDEP‑2 and K562 cells. Mechanistically, miR‑6747‑3p could specifically bind to the 546‑552 loci of BCL11A 3'‑UTR and induce γ‑globin expression. These data indicate that upregulation of miR‑6747‑3p affects red blood cell lineage development and induces HbF expression by targeting BCL11A in β‑thalassemia, highlighting miR‑6747‑3p as a potential molecular target for β‑thalassemia therapy.
Collapse
Affiliation(s)
- Aixiang Lv
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Siwen Zhang
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Wantong Zhao
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Jingmin Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Siyang Lin
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Yanping Zheng
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Hailong Huang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
2
|
Udeze C, Ly NF, Ingleby FC, Fleming SD, Conner SC, Howard J, Li N, Shah F. Clinical Burden and Healthcare Resource Utilization Associated With Managing Transfusion-dependent β-Thalassemia in England. Clin Ther 2024:S0149-2918(24)00287-X. [PMID: 39488494 DOI: 10.1016/j.clinthera.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/19/2024] [Accepted: 09/26/2024] [Indexed: 11/04/2024]
Abstract
PURPOSE Patients with transfusion-dependent β-thalassemia (TDT) have reduced levels of β-globin, leading to ineffective erythropoiesis and iron overload. Patients with TDT depend on regular red blood cell transfusions (RBCTs) and iron chelation therapy for survival and management of disease- and treatment-related clinical complications. This study describes the clinical and economic burden in patients with TDT in England. METHODS This longitudinal, retrospective study linked the Clinical Practice Research Datalink (CPRD) database with secondary care data from the Hospital Episode Statistics database to identify patients with a diagnosis of β-thalassemia between July 1, 2008, and June 30, 2018. Included patients had a diagnosis of β-thalassemia prior to the index date, ≥8 RBCTs per year for ≥2 consecutive years, and ≥1 year of follow-up data available from the index date. Each eligible patient was exact matched with up to 5 controls in the CPRD. Proportions of deaths and rates of mortality, acute and chronic complications, and healthcare resource utilization (HCRU) were calculated during the follow-up period. FINDINGS Of 11,359 identified patients with β-thalassemia, 237 patients with TDT met the eligibility criteria and were matched with 1184 controls. The mean age at the index date was approximately 25 years in the patient and control groups. The proportion of deaths (7.17% vs 1.18%; P < 0.05) and mortality rate (1.19 deaths per 100 person-years vs 0.20 deaths per 100 person-years) were higher among patients with TDT compared to controls. Endocrine complications and bone disorders were the most prevalent complications among patients with TDT (58.23%) and included osteoporosis (29.11%), diabetes mellitus (28.27%), and hypopituitarism (28.27%). Patients with TDT had a mean of 13.62 RBCTs per patient per year (PPPY). HCRU was substantially higher among patients with TDT, wherein patients with TDT had higher rates of prescriptions recorded in primary care (24.09 vs 8.61 PPPY), outpatient visits (16.69 vs 1.31 PPPY), and inpatient hospitalizations (17.41 vs 0.24 PPPY) than controls. Inpatient hospitalizations were primarily <1 day, with 16.62 events PPPY lasting <1 day and 0.79 events PPPY lasting ≥1 day. Patients with TDT aged ≥18 years had increased rates of mortality, clinical complications, and HCRU than those aged <18 years. IMPLICATIONS Patients with TDT in England have higher mortality than matched controls, substantial disease-related clinical complications, and substantial HCRU. High mortality and clinical complications highlight the need for additional innovative therapies for TDT.
Collapse
Affiliation(s)
- Chuka Udeze
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts.
| | | | | | | | - Sarah C Conner
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Jo Howard
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Nanxin Li
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | | |
Collapse
|
3
|
Al-Jubouri AM, Eliwa A, Haithm Y, Al-Qahtani N, Jolo L, Yassin M. Relationship between hemoglobinopathies and male infertility: a scoping review. Int J Hematol 2024; 120:566-574. [PMID: 39331276 PMCID: PMC11513741 DOI: 10.1007/s12185-024-03844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Infertility is a common issue that threatens couples worldwide. Infertility can result from the male or female partner alone, or both partners. It can be due to multiple factors related to the patient's overall health or lifestyle. Causes related to patient health can be systemic or related to gonadal dysfunction. One of the systematic causes can be hematological. The two most common hemoglobinopathies that are thought to cause infertility, especially male infertility, are sickle cell disease (SCD) and thalassemia major (TM). These two hemoglobinopathies cause male infertility through pathophysiological alterations. Specifically, they alter the oxygen carrying ability of red blood cells (RBCs), causing tissue hypoxia that affects the normal physiological process of spermatogenesis, eventually inducing infertility. Semen analyses and other systemic blood testing can be used to investigate male infertility. Both hemoglobinopathies can be helped by blood transfusions, which can then alleviate male infertility. This paper aims to explore the relationship between hemoglobinopathies (SCD and TM) and their role in contributing to male infertility, in addition to the role of blood transfusions in addressing male infertility by correcting the root cause.
Collapse
Affiliation(s)
| | - Ahmed Eliwa
- College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar
| | - Yunes Haithm
- College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar
| | - Noof Al-Qahtani
- College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar
| | - Lolwa Jolo
- College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar
| | - Mohamed Yassin
- College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar.
- Department of Hematology, Hamad Medical Center, Doha, Qatar.
| |
Collapse
|
4
|
Rabie MAF, El Benhawy SA, Masoud IM, Arab ARR, Saleh SAM. Impact of met-haemoglobin and oxidative stress on endothelial function in patients with transfusion dependent β-thalassemia. Sci Rep 2024; 14:25328. [PMID: 39455629 PMCID: PMC11512062 DOI: 10.1038/s41598-024-74930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Transfusion dependent β-thalassemia is a genetic blood disorder characterized by chronic anaemia. Blood transfusion is lifesaving but comes at a cost. Iron overload emerges as a prime culprit as a free radicals damage endothelial cells. Chronic anaemia further disrupts oxygen delivery, exacerbating the oxidative stress. Increased levels of met-haemoglobin and malondialdehyde compromise endothelial function. This research sheds light on the impact of met-haemoglobin and oxidative stress on endothelial function in 50 patients with transfusion dependent β-thalassemia major compared to 50 healthy individuals as control. Blood samples were collected & subjected to CBC, biochemical analysis including creatinine, ferritin, CRP, LDH, and HCV antibodies. Oxidative stress was assessed using met-haemoglobin & malondialdehyde. Endothelial dysfunction was evaluated by endothelial activation and stress index (EASIX). EASIX, met-haemoglobin and malondialdehyde were significantly increased in patients (1.44 ± 0.75, 2.07 ± 0.2, 4.8 ± 0.63; respectively) compared to the control (0.52 ± 0.24,0.88 ± 0.34,0.8 ± 0.34; respectively). Significant strong positive correlation was found between EASIX and met-haemoglobin, malondialdehyde, serum ferritin and CRP (P = 0.00, r = 0.904, P = 0.00, r = 0.948, P = 0.00, r = 0.772, P = 0.00, r = 0.971; respectively. Met-haemoglobin as well as EASIX should be routinely estimated to assess endothelial function especially before the decision of splenectomy. Antioxidant drugs should be supplemented.
Collapse
Affiliation(s)
- Maha Abubakr Feissal Rabie
- Department of Basic Science, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, Alexandria, Egypt.
| | - Sanaa A El Benhawy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Inas M Masoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amal R R Arab
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sally A M Saleh
- Department of Clinical Haematology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
da Silva LC, Marques PAC, Oliveira Dos Santos BC, Cruz TCSDS, de Andrade BAB, Ortega KL, Munhoz L, Tenório JR. Mandibular bone imaging assessment in thalassemia - a systematic review. SPECIAL CARE IN DENTISTRY 2024. [PMID: 39444140 DOI: 10.1111/scd.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This systematic review aimed to verify if individuals with thalassemia present changes in radiomorphometric indices and fractal analysis that can be accessed using panoramic radiographs. MATERIAL AND METHODS Observational studies that evaluated cortical and trabecular bone patterns in dental routine radiographs were selected from six bibliographic databases. Risk of bias was analyzed using the Joanna Briggs Institute Critical Appraisal Checklists. Quality of evidence was verified using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. RESULTS Two hundred three studies were initially retrieved from databases. Three cross-sectional studies, encompassing a total of 129 thalassemic patients, were deemed eligible after applying the inclusion criteria. Bone mineral density (BMD) evaluations were performed using panoramic radiographs and considered the following radiomorphometric indexes: mandibular cortical index (MCI), mandibular cortical width (MCW), panoramic mandibular index (PMI). Fractal dimension analysis (FDA) and simple visual estimation (SVE) were also employed. Overall, FDA and MCW from thalassemia individuals were lower than controls. CONCLUSION FDA and MCW are frequently altered in patients with thalassemia and may be employed as screening tools for reduced BMD. However, the certainty of evidence for this outcome was very low, mainly due to methodological flaws.
Collapse
Affiliation(s)
- Larissa Conrado da Silva
- Department of Pathology and Oral Diagnosis, School of Dentistry, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Pedro Albuquerque Counago Marques
- Department of Pathology and Oral Diagnosis, School of Dentistry, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Bruna Cristina Oliveira Dos Santos
- Department of Pathology and Oral Diagnosis, School of Dentistry, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | | | | | - Karem L Ortega
- Department of Stomatology, Special Care Dentistry Centre, School of Dentistry, University of São Paulo, Florianopolis, São Paulo, Brazil
- Oral Medicine, Oral Surgery and Implantology, Unit (MedOralRes), Faculty of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Luciana Munhoz
- Department of Stomatology, Public Healthy and Forensic Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jefferson R Tenório
- Department of Pathology and Oral Diagnosis, School of Dentistry, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Abbas RA, Hassan RH, Taghlubee IM, Mohammed SI, Mohammed HH, Hasan HH, Judi AT, Ali LS, Mohammed WJ, Shihab HM, Hussein TA, Al-Kareem NA, Hassan MK, Al-Allawi N. Prevalence and Molecular Characterization of β-Thalassemia in Kirkuk Province of Northern Iraq. Hemoglobin 2024:1-6. [PMID: 39434590 DOI: 10.1080/03630269.2024.2418507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
To determine the prevalence and molecular basis of β-thalassemia in the Northeastern Iraqi province of Kirkuk, a total of 3954 individuals attending the provincial premarital screening center were recruited. The prevalence of β-thalassemia minor among the screened individuals was found to be 3.0%, while those of Hemoglobin E, and δβ-thalassemia carrier states were 0.05%, and 0.03% respectively. Molecular characterization of the β-thalassemia mutations was achieved by multiplex PCR and reverse hybridization, followed by next generation sequencing for those left uncharacterized by the former technique. Among 19 β-thalassemia mutations identified, seven were the most frequent, namely: IVS-II-1 (G > A), codon 8/9 (+G), IVS-I-6 (T > C), IVS-I-110 (G > A), IVS-I-I (G > A), IVS-I-5 (G > C) and codon 44 (-C) accounting for 78.5% of the mutations. This study further illustrates the heterogeneity of the spectrum of β-thalassemia in different parts of Iraq, and provides an essential step to facilitate prenatal diagnosis in the setting of a future national thalassemia prevention program.
Collapse
Affiliation(s)
- Raghad A Abbas
- Reproductive Health and School Health Department, Ministry of Health, Baghdad, Iraq
| | - Riyad H Hassan
- Public Health Directorate, Ministry of Health, Baghdad, Iraq
| | - Israa M Taghlubee
- Reproductive Health and School Health Department, Ministry of Health, Baghdad, Iraq
| | - Safaa I Mohammed
- Premarital Screening center, Public Health Laboratory, Kirkuk, Iraq
| | - Huda H Mohammed
- Molecular Biology Department, Central Public Health Laboratory, Ministry of Health, Baghdad, Iraq
| | | | - Ashwaq T Judi
- Premarital Screening unit, reproductive Health and School Health Department, Ministry of Health, Baghdad, Iraq
| | - Luqman S Ali
- Premarital Screening center, Public Health Laboratory, Kirkuk, Iraq
| | - Wisam J Mohammed
- Molecular Biology Department, Central Public Health Laboratory, Ministry of Health, Baghdad, Iraq
| | - Hiba M Shihab
- Premarital Screening center, Public Health Laboratory, Kirkuk, Iraq
| | - Thamir A Hussein
- Molecular Biology Department, Central Public Health Laboratory, Ministry of Health, Baghdad, Iraq
| | - Nawras A Al-Kareem
- Molecular Biology Department, Central Public Health Laboratory, Ministry of Health, Baghdad, Iraq
| | - Meaad K Hassan
- Department of Pediatrics, College of Medicine, University of Basrah, Basrah, Iraq
| | - Nasir Al-Allawi
- Department of Pathology, College of Medicine, University of Duhok, Duhok, Iraq
| |
Collapse
|
7
|
Kong C, Yin G, Wang X, Sun Y. In Utero Gene Therapy and its Application in Genetic Hearing Loss. Adv Biol (Weinh) 2024; 8:e2400193. [PMID: 39007241 DOI: 10.1002/adbi.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Indexed: 07/16/2024]
Abstract
For monogenic genetic diseases, in utero gene therapy (IUGT) shows the potential for early prevention against irreversible and lethal pathological changes. Moreover, animal models have also demonstrated the effectiveness of IUGT in the treatment of coagulation disorders, hemoglobinopathies, neurogenetic disorders, and metabolic and pulmonary diseases. For major alpha thalassemia and severe osteogenesis imperfecta, in utero stem cell transplantation has entered the phase I clinical trial stage. Within the realm of the inner ear, genetic hearing loss significantly hampers speech, cognitive, and intellectual development in children. Nowadays, gene therapies offer substantial promise for deafness, with the success of clinical trials in autosomal recessive deafness 9 using AAV-OTOF gene therapy. However, the majority of genetic mutations that cause deafness affect the development of cochlear structures before the birth of fetuses. Thus, gene therapy before alterations in cochlear structure leading to hearing loss has promising applications. In this review, addressing advances in various fields of IUGT, the progress, and application of IUGT in the treatment of genetic hearing loss are focused, in particular its implementation methods and unique advantages.
Collapse
Affiliation(s)
- Chenyang Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
8
|
Ren Z, Huang P, Wang Y, Yao Y, Ren J, Xu L, Shu J, Zhou L, Zhao D, Li X, Zhang Z, Zhang C, Sun B, Lu S, Qian W, Zhou H, Fang C. Technically feasible solutions to challenges in preimplantation genetic testing for thalassemia: experiences of multiple centers between 2019 and 2022. J Assist Reprod Genet 2024:10.1007/s10815-024-03240-4. [PMID: 39256293 DOI: 10.1007/s10815-024-03240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
PURPOSE In clinical practice, the success of preimplantation genetic testing for monogenic diseases (PGT-M) for thalassemia was hindered by the absence of probands, incomplete family members, or failure in detecting embryonic gene mutation sites. This study aimed to address these issues. METHODS This retrospective study included 342 couples undergoing PGT-M for α- or β-thalassemia at three reproductive medicine centers from 2019 to 2022. Various methods were used to construct parental haplotypes. A total of 1778 embryos were analyzed and selected for transfer based on chromosomal ploidy and PGT-M results. Follow-up involved amniocentesis results and clinical outcomes. RESULTS Haplotypes were established using DNA samples from probands or parents, as well as sibling blood samples, single sperm, and affected embryos, achieving an overall success rate was 99.4% (340/342). For α-thalassemia and β-thalassemia, the concordance between embryo single nucleotide polymorphism (SNP) haplotype analysis results and mutation loci detection results was 93.8% (1011/1078) and 98.2% (538/548), respectively. Multiple annealing and looping-based amplification cycles (MALBAC) showed a higher whole genome amplification success rate than multiple displacement amplification (MDA) (98.8% (1031/1044) vs. 96.2% (703/731), p < 0.001). Amniocentesis confirmed PGT-M outcomes in 100% of cases followed up (99/99). CONCLUSION This study summarizes feasible solutions to various challenging scenarios encountered in PGT-M for thalassemia, providing valuable insights to enhance success rate of PGT-M in clinical practice.
Collapse
Affiliation(s)
- Zi Ren
- Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Peng Huang
- Genetic Metabolism Center Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, China
| | - Yong Wang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Yaxin Yao
- Yikon Genomics Co., Ltd, Suzhou, 215000, China
| | - Jun Ren
- Yikon Genomics Co., Ltd, Suzhou, 215000, China
| | - Linan Xu
- Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Jinhui Shu
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, China
| | - Liang Zhou
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Dunmei Zhao
- Yikon Genomics Co., Ltd, Suzhou, 215000, China
| | - Xiaolan Li
- Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Zhiqiang Zhang
- Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Chunhui Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Bolan Sun
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Sijia Lu
- Yikon Genomics Co., Ltd, Suzhou, 215000, China.
| | - Weiping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518000, China.
| | - Hong Zhou
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, China.
| | - Cong Fang
- Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| |
Collapse
|
9
|
Rohimi S, Siswanto BB, Mansyur M, Gatot D, Sutanto I, Pandelaki J, Soesanto AM, Ontoseno T. The predicting formula and scoring system for cardiac iron overload for thalassaemia children: Study from a middle-income country. PLoS One 2024; 19:e0309663. [PMID: 39231181 PMCID: PMC11373841 DOI: 10.1371/journal.pone.0309663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Magnetic resonance imaging T2* screening is the gold standard for detecting cardiac iron overload in thalassemia, but its implementation in Indonesia is limited by the high costs. A predicting formula and scoring system based on low-cost investigations is needed. This cross-sectional study was conducted among thalassemia aged 6-18 years at Rumah Sakit Anak dan Bunda RSAB Harapan Kita Indonesia, during October 2017 to April 2019. All subjects were scheduled for clinical examination, laboratory tests, ECGs, echocardiography, tissue Doppler imaging, and MRIT2*. Multivariate logistic regression was used to identify the formula, simplifying to a scoring system, and risk classification for myocardial iron overload using odds ratio (OR) and 95% confidence interval (CI). Significance was set as p<0,05. We recruited 80 children, of those, 8 (10%) were classified as cardiac iron overload based on MRI T2* screening. Multivariate logistic regression showed determinant factors for cardiac iron overload were hemoglobin (95% CI:1.92-369.14), reticulocyte (95% CI:1.14-232.33), mitral deceleration time (DT) (95% CI:1.80-810.62,), and tricuspid regurgitation (TR Vmax) (95% CI:1.87-1942.56) with aOR of 26.65, 14.27, 38.22, and 60.27 respectively. The formula for cardiac iron overload was decided as 9.32 + 3.28 (Hb) + 2.9 (reticulocyte) + 3.64 (DT) + 4.1 (TR Vmax). A scoring system was defined by simplifying the formula of Hb ≤ 8.2 g/L, reticulocyte ≤0.33%, DT ≤ 114.5 cm/s, and TR Vmax ≥ 2.37 m/s were given a score of 1, while others were assigned 0. Total scores of 0 or 1, 2 and 3 or 4 were categorized as low, moderate, and high risk for iron cardiac overload. The cardiac iron overload formula was 9.32 + 3.28 (Hb) + 2.9 (reticulocyte) + 3.64 (DT) + 4.1 (TR Vmax). Variables of Hb ≤ 8.2 g/L, reticulocyte ≤0.33%, DT ≤ 114.5 cm/s, and TR Vmax ≥ 2.37 m/s were given a score of 1, while others were assigned 0. Total scores of 0 or 1, 2, and 3 or 4 were categorized as low, moderate, and high risk for iron cardiac overload.
Collapse
Affiliation(s)
- Syarif Rohimi
- Rumah Sakit Anak dan Bunda RSAB Harapan Kita, Jakarta, Indonesia
| | | | - Muchtaruddin Mansyur
- Department of Community Medicine, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Djajadiman Gatot
- Department of Paediatrics, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Ina Sutanto
- Department of Clinical Pathology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Jacub Pandelaki
- Department of Radiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | | | - Teddy Ontoseno
- Department of Paediatrics, Faculty of Medicine Universitas Airlangga, Jakarta, Indonesia
| |
Collapse
|
10
|
Rujito L, Wardana T, Siswandari W, Nainggolan IM, Sasongko TH. Potential Use of MicroRNA Technology in Thalassemia Therapy. J Clin Med Res 2024; 16:411-422. [PMID: 39346566 PMCID: PMC11426174 DOI: 10.14740/jocmr5245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/17/2024] [Indexed: 10/01/2024] Open
Abstract
Thalassemia encompasses a group of inherited hemoglobin disorders characterized by reduced or absent production of the α- or β-globin chains, leading to anemia and other complications. Current management relies on lifelong blood transfusions and iron chelation, which is burdensome for patients. This review summarizes the emerging therapeutic potential of modulating microRNAs (miRNAs) to treat thalassemia. MiRNAs are small non-coding RNAs that regulate gene expression through sequence-specific binding to messenger RNAs (mRNAs). While they commonly repress gene expression by binding to the 3' untranslated regions (UTRs) of target mRNAs, miRNAs can also interact with 5'UTRs and gene promoters to activate gene expression. Many miRNAs are now recognized as critical regulators of erythropoiesis and are abnormally expressed in β-thalassemia. Therapeutically restoring levels of deficient miRNAs or inhibiting overexpression through miRNA mimics or inhibitors (antagomir), respectively, has shown preclinical efficacy in ameliorating thalassemic phenotypes. The miR-144/451 cluster is especially compelling for targeted upregulation to reactivate fetal hemoglobin synthesis. Advances in delivery systems are addressing previous challenges in stability and targeting of miRNA-based drugs. While still early, gene therapy studies suggest combinatorial approaches with miRNA modulation may provide synergistic benefits. Several key considerations remain including enhancing delivery, minimizing off-target effects, and demonstrating long-term safety and efficacy. While no miRNA therapies have yet progressed to clinical testing for thalassemia specifically, important lessons are being learned through clinical trials for other diseases and conditions, such as cancer, cardiovascular diseases, and viral. If limitations can be overcome through multi-disciplinary collaboration, miRNAs hold great promise to expand and transform treatment options for thalassemia in the future by precisely targeting pathogenic molecular networks. Ongoing innovations, such as advancements in miRNA delivery systems, improved targeting mechanisms, and enhanced understanding of miRNA biology, continue to drive progress in this emerging field towards realizing the clinical potential of miRNA-based medicines for thalassemia patients.
Collapse
Affiliation(s)
- Lantip Rujito
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Tirta Wardana
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Wahyu Siswandari
- Department of Clinical Pathology, Faculty of Medicine, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Ita Margaretha Nainggolan
- Clinical Pathology Department, School of Medicine and Health Sciences, Atma Jaya Catholic University, Jakarta, Indonesia
| | - Teguh Haryo Sasongko
- Department of Physiology, School of Medicine, International Medical University, Kualalumpur, Malaysia
| |
Collapse
|
11
|
Saeidnia M, Shadfar F, Sharifi S, Babashahi M, Ghaderi A, Shokri M. Skin complications during iron chelation therapy for beta-thalassemia: overview and treatment approach. Int J Hematol 2024; 120:271-277. [PMID: 39088188 DOI: 10.1007/s12185-024-03825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Thalassemia is an inherited genetic disorder of hemoglobin that affects a large population worldwide, and it is estimated that between 50,000 and 60,000 infants with thalassemia are born each year. The most common treatment for thalassemia is blood transfusion, which leads to iron overload. This in itself is a serious clinical condition, and is commonly managed with iron chelation therapy. However, iron chelators can cause various skin complications, including hyperpigmentation, skin rash, itching, and photosensitivity. These skin side effects can impact patients' quality of life. Therefore, this article provides a comprehensive overview of skin complications caused by iron chelators, along with a proposed comprehensive approach to their management in patients with beta-thalassemia. Key strategies include patient education, regular skin assessment, sun protection measures, symptomatic relief with topical corticosteroids and antihistamines, and consideration of treatment modification if severe complications occur. Collaboration between hematologists and dermatologists, along with psychological support and regular follow-up, is an essential component of this multidisciplinary approach. By implementing these strategies, healthcare providers can optimize skin care for patients with beta-thalassemia treated with iron chelators and improve their quality of life.
Collapse
Affiliation(s)
- Mohammadreza Saeidnia
- Department of Hematology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Clinical Research Development Unit, Imam Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran.
| | - Fariba Shadfar
- Department of Dermatology, School of Medicine, Imam Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Shokoufeh Sharifi
- Department of Dermatology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mashallah Babashahi
- Department of Pathobiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Abolhassan Ghaderi
- Clinical Research Development Unit, Imam Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Mehdi Shokri
- Department of Pediatrics, School of Medicine, Imam Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
12
|
Ibraheem A, Al Tameemi WF. Impact of Empagliflozin on the Outcomes of β-Thalassemia Major in Patients With Type 2 Diabetes Mellitus: The THALEMPA Observational Study. Cureus 2024; 16:e69837. [PMID: 39435207 PMCID: PMC11492160 DOI: 10.7759/cureus.69837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
OBJECTIVE Beta-thalassemia major (β-TM) is a genetic disorder characterized by ineffective erythropoiesis and chronic hemolytic anemia, necessitating lifelong blood transfusions and leading to severe complications. This study, termed THALEMPA by the authors, investigated the effect of empagliflozin (EMPA) on β-TM outcomes in patients with type 2 diabetes mellitus (T2DM), focusing on disease severity and associated complications of iron overload and hyperuricemia. METHODOLOGY This study conducted a single-center prospective observational investigation involving adults diagnosed with β-TM and T2DM. A total of 20 carefully selected patients were stratified into two groups based on their medical condition: the EMPA group, receiving 10 mg of empagliflozin, and a control group, receiving standard care. This focused cohort size was chosen to ensure a detailed, in-depth analysis of the treatment effects within this specific patient population. Over three months, both groups were closely monitored for β-TM outcomes. The study assessed β-TM severity parameters such as hemoglobin levels, blood transfusion frequency, aspartate aminotransferase (AST), alanine aminotransferase (ALT), left ventricular ejection fraction percentage, and spleen size. Additionally, β-TM complications were evaluated through serum ferritin and uric acid levels. RESULTS Our analysis revealed that EMPA increased hemoglobin levels by up to 0.56 g/dL compared to baseline (P < 0.05). Liver enzyme levels significantly improved with EMPA by the third month. AST and ALT decreased by 36.22% and 33.36%, respectively, from baseline levels (P < 0.05), highlighting EMPA's potential benefits for β-TM severity. Serum ferritin and uric acid levels decreased by 27.93% and 21.29%, respectively, over three months on EMPA (P < 0.05). However, other parameters did not show significant changes post-EMPA. CONCLUSIONS This study demonstrates the significant impact of EMPA treatment over three months on β-TM patients with T2DM, evidenced by notable improvements in hemoglobin levels and reductions in liver enzymes, as well as in complications related to iron overload and hyperuricemia. Future research should confirm these benefits over longer durations and assess broader patient outcomes such as quality of life.
Collapse
Affiliation(s)
- Anas Ibraheem
- Department of Hematology, King's College Hospital, London, GBR
| | - Waseem F Al Tameemi
- Department of Internal Medicine, Section of Hematology, Al-Nahrain University College of Medicine, Baghdad, IRQ
- Department of Internal Medicine, Section of Hematology, Al-Immamain Al-Kadhumein Medical City, Baghdad, IRQ
| |
Collapse
|
13
|
Shchemeleva E, Salomashkina VV, Selivanova D, Tsvetaeva N, Melikyan A, Doronina L, Surin VL. Active spread of β-thalassemia beyond the thalassemia belt: A study on a Russian population. Clin Genet 2024. [PMID: 39143497 DOI: 10.1111/cge.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
β-Thalassemia is a disease traditionally associated with thalassemia belt countries. Nonetheless, as global migration intensifies, β-thalassemia-causing variants spread far from their origin. We investigated this process to detect some patterns underlying its course. We analyzed β-thalassemia-causing variants and the origin of 676 unrelated participants in Moscow, the largest city of Russia, far away from the thalassemia belt. Our analyses revealed that modern Russia has one of the broadest spectra of thalassemia-causing variants: 46 different variants, including two novel β0 variants. Only a small proportion of the reported pathogenic variants likely originated in the resident subpopulation. Almost half of the variants that supposedly had emerged outside the Russian borders have already been assimilated by (were found in) the resident subpopulation. The primary modern source of immigration transferring thalassemia to a nonthalassemic part of Russia is the Caucasus region. We also found traces of ancient migration flows from non-Caucasus countries. Our data indicate that β-thalassemia-causing variants are actively spilling over into resident populations of countries outside thalassemia belt regions. Therefore, viewing thalassemia as a disease exclusive to specific ethnic groups creates a mind trap that can complicate the diagnosis.
Collapse
Affiliation(s)
- Ekaterina Shchemeleva
- Laboratory of Genetic Engineering, National Medical Research Center for Hematology, Moscow, Russia
| | - Valentina V Salomashkina
- Laboratory of Genetic Engineering, National Medical Research Center for Hematology, Moscow, Russia
| | - Daria Selivanova
- Laboratory of Genetic Engineering, National Medical Research Center for Hematology, Moscow, Russia
| | - Nina Tsvetaeva
- Department of Orphan Diseases, National Medical Research Center for Hematology, Moscow, Russia
| | - Anait Melikyan
- Department for Standardization of Treatments of Hematological Diseases, National Medical Research Center for Hematology, Moscow, Russia
| | - Liliya Doronina
- Laboratory of Genetic Engineering, National Medical Research Center for Hematology, Moscow, Russia
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- JICE - Joint Institute for Individualisation in a Changing Environment, University of Münster, Münster, Germany
| | - Vadim L Surin
- Laboratory of Genetic Engineering, National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
14
|
Lam WKJ, Gai W, Bai J, Tam THC, Cheung WF, Ji L, Tse IOL, Tsang AFC, Li MZJ, Jiang P, Law MF, Wong RSM, Chan KCA, Lo YMD. Differential detection of megakaryocytic and erythroid DNA in plasma in hematological disorders. NPJ Genom Med 2024; 9:39. [PMID: 39103426 DOI: 10.1038/s41525-024-00423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
The tissues of origin of plasma DNA can be revealed by methylation patterns. However, the relative DNA contributions from megakaryocytes and erythroblasts into plasma appeared inconsistent among studies. To shed light into this phenomenon, we developed droplet digital PCR (ddPCR) assays for the differential detection of contributions from these cell types in plasma based on megakaryocyte-specific and erythroblast-specific methylation markers. Megakaryocytic DNA and erythroid DNA contributed a median of 44.2% and 6.2% in healthy individuals, respectively. Patients with idiopathic thrombocytopenic purpura had a significantly higher proportion of megakaryocytic DNA in plasma compared to healthy controls (median: 59.9% versus 44.2%; P = 0.03). Similarly, patients with β-thalassemia were shown to have higher proportions of plasma erythroid DNA compared to healthy controls (median: 50.9% versus 6.2%) (P < 0.0001). Hence, the concurrent analysis of megakaryocytic and erythroid lineage-specific markers could facilitate the dissection of their relative contributions and provide information on patients with hematological disorders.
Collapse
Affiliation(s)
- W K Jacky Lam
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wanxia Gai
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jinyue Bai
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tommy H C Tam
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Fung Cheung
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Lu Ji
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Irene O L Tse
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Amy F C Tsang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Maggie Z J Li
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Man Fai Law
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond S M Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - K C Allen Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
15
|
Meshram RM, Salodkar MA, Yesambare SR, Mohite SM, Gite RB, Mugali VS, Ambatkar KK, Bankar NJ, Bandre GR, Badge A. Assessment of Serum Vitamin D and Parathyroid Hormone in Children With Beta Thalassemia Major: A Case-Control Study. Cureus 2024; 16:e66146. [PMID: 39233987 PMCID: PMC11372246 DOI: 10.7759/cureus.66146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/04/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND A defective synthesis of vitamin D contributes to alterations in calcium homeostasis due to chronic endocrinopathies, leading to metabolic bone diseases. This study aimed to ascertain the levels of calcium, vitamin D, and parathyroid hormone (PTH) in children with β-thalassemia. METHODS In this case-control study, 36 children with major β-thalassemia receiving iron chelation therapy were included. For the control group, 36 cases matched for age and sex were selected. The packed cell volume (PCV) requirements varied among the thalassemic children, with an average PCV requirement of 78.57±49.07. The study was conducted for six months in the Department of Pediatrics at the Government Medical College, Nagpur, India. Serum PTH levels were determined by immunoassay, and serum vitamin D levels were assessed using electrochemiluminescence technique. Additional tests looked at liver function, serum ferritin, calcium, phosphorus, and complete blood count. The student's t-test, Mann-Whitney, and chi-square tests were used for statistical analysis. RESULT In comparison to the control group (10.4±1.21 g/dL), the case group's mean hemoglobin level was considerably lower (5.62±1.9 g/dL) (p<0.001). The mean serum ferritin level in the cases was notably higher (3073±1262.24 ng/mL) compared to the control group's level (58.37±29.67 ng/mL) (p<0.001). A total of 80.6% of cases compared to 5.6% of controls had vitamin D deficiency, and 72.2% of cases compared to 2.8% of controls had PTH deficit, both of which showed statistically significant differences (p<0.001). Significant differences were observed between the case and control groups for the mean levels of total serum calcium (8.51±0.84 mg/dL), vitamin D (15.23±10.07 ng/mL), and PTH (14.66±19.86 pg/mL) (9.13±0.6 mg/dL, p=0.05; 34.94±9.57 ng/mL, p<0.001; 32.08±12.42 pg/mL, p<0.001; respectively). CONCLUSION Growth failure may result from the markedly reduced serum calcium, vitamin D, and PTH levels in children with β-thalassemia. The relevance of treatment approaches is highlighted by the possibility that these anomalies are caused by excessive iron and inadequate nutritional support.
Collapse
Affiliation(s)
| | - Manan A Salodkar
- Paediatrics, Government Medical College and Hospital, Nagpur, IND
| | | | - Somnath M Mohite
- Paediatrics, Government Medical College and Hospital, Nagpur, IND
| | - Renuka B Gite
- Paediatrics, Government Medical College and Hospital, Nagpur, IND
| | - Veena S Mugali
- Paediatrics, Government Medical College and Hospital, Nagpur, IND
| | | | - Nandkishor J Bankar
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Gulshan R Bandre
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ankit Badge
- Microbiology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, IND
| |
Collapse
|
16
|
Han Y, Jia Z, Xu K, Li Y, Lu S, Guan L. CRISPR-Cpf1 system and its applications in animal genome editing. Mol Genet Genomics 2024; 299:75. [PMID: 39085660 DOI: 10.1007/s00438-024-02166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein (Cas) system is a gene editing technology guided by RNA endonuclease. The CRISPR-Cas12a (also known as CRISPR-Cpf1) system is extensively utilized in genome editing research due to its accuracy and high efficiency. In this paper, we primarily focus on the application of CRISPR-Cpf1 technology in the construction of disease models and gene therapy. Firstly, the structure and mechanism of the CRISPR-Cas system are introduced. Secondly, the similarities and differences between CRISPR-Cpf1 and CRISPR-Cas9 technologies are compared. Thirdly, the main focus is on the application of the CRISPR-Cpf1 system in cell and animal genome editing. Finally, the challenges faced by CRISPR-Cpf1 technology and corresponding strategies are analyzed. Although CRISPR-Cpf1 technology has certain off-target effects, it can effectively and accurately edit cell and animal genomes, and has significant advantages in the preclinical research.
Collapse
Affiliation(s)
- Yawei Han
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Zisen Jia
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Yangyang Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Suxiang Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China.
| |
Collapse
|
17
|
Petiwathayakorn T, Paradee N, Hantrakool S, Jarujareet U, Intharah T, Srichairatanakool S, Koonyosying P. A Compact Differential Dynamic Microscopy-based Device (cDDM): An Approach Tool for Early Detection of Hypercoagulable State in Transfusion-Dependent-β-Thalassemia Patients. ACS APPLIED BIO MATERIALS 2024; 7:4710-4724. [PMID: 38920024 PMCID: PMC11253095 DOI: 10.1021/acsabm.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
β-Thalassemia especially transfusion-dependent thalassemia (TDT) associates with a hypercoagulable state, which is the main cause of thromboembolic events (TEE). Plasma viscosity and rheological parameters could be essential markers for determining hypercoagulable state in β-thalassemia patients. The traditional methods for measuring viscosity are often limited by large sample volumes and are impractical for routine clinical monitoring. The compact differential dynamic microscopy-based device (cDDM), an optical microscopy for quantitative rheological assessment, was developed and applied for prognosis of the hypercoagulable state in β-TDT with and without splenectomy. The device was performed plasma viscosity measurement using low plasma volume (8 μL) and revealed a value as modulus of complex viscosity |η(ω)| in 7 min. We also parallelly demonstrated the correlation of the viscosity and related-coagulable parameters: complete blood count, prothrombin time (PT), activated partial thromboplastin time (APTT), protein C (PC), protein S (PS), CD62P and CD63 expression, and platelet aggregation test. The thalassemia plasma exhibited a higher value of |η(ω)| than healthy plasma, which can represent a different viscoelastic property among the groups. Even all related-coagulable parameters indicated hypercoagulable state in both nonsplenectomies and splenectomies β-TDT patients when compared to control, only high platelet numbers significantly correlated to high plasma viscosity in the splenectomy group. However, the other coagulable parameters have shown a trend of positive relationship with high plasma viscosity in all β-1thalassemia TDT patients. The relative results suggested that our device would be an approach tool for early detection of hypercoagulable state in transfusion-dependent-β-thalassemia patients, which can help to prevent TEE and the critical consequent-complications.
Collapse
Affiliation(s)
- Touchwin Petiwathayakorn
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Narisara Paradee
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Sasinee Hantrakool
- Division
of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ungkarn Jarujareet
- NECTEC, National
Science and Technology Development Agency
(NSTDA), 111 Thailand
Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Thanapong Intharah
- Visual
Intelligence Laboratory, Department of Statistics, Faculty of Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somdet Srichairatanakool
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Pimpisid Koonyosying
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
18
|
Gamaleldin MM, Abraham IL, Meabed MH, Elberry AA, Abdelhalim SM, Mahmoud Hussein AF, Hussein RR. Manuka combinations with nigella sativa and hydroxyurea in treating iron overload of pediatric β-thalassemia major, randomized clinical trial. Heliyon 2024; 10:e33707. [PMID: 39044986 PMCID: PMC11263651 DOI: 10.1016/j.heliyon.2024.e33707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Background β-thalassemia major is microcytic hypochromic anemia disorder inherited from parents, resulting from a mutation in the β-globin locus. As a result, a quantitative defective hemoglobin synthesis and relative excess in α-globin is occurred. As such, frequent blood transfusion is required, that leads to iron overload. Iron overload results in several pathological complications, including cell death, tissue injury, organ dysfunction, and liver fibrosis. The present study examined the effectiveness of nigella Sativa and manuka honey combination or manuka honey alone to the conventional therapy (Deferasirox + blood transfusion) used for preventing and managing iron overload in pediatric β-thalassemia major patients. Methods One hundred sixty-five patients participated in this randomized, double-blind, standard therapy-controlled, parallel-design multisite trial. The patients were randomly allocated into three groups, receiving either 500 mg nigella sativa oil combined with manuka honey lozenge (344 mg) daily or manuka honey alone plus the conventional therapy for ten treatment months. Ferritin level, serum iron, transferrin saturation, total iron binding capacity, alanine transaminase, and aspartate transaminase were determined at baseline and month 10. Results Eventually, serum ferritin and iron were decreased significantly in the nigella sativa + manuka honey group as compared with the control group. Other clinical parameters were significantly impacted. The level of alanine transaminase and aspartate transaminase were significantly decreased in the nigella sativa plus manuka honey group compared with the control group. Conclusion Results showed that nigella sativa plus manuka honey was more effective than manuka alone or the conventional treatment alone in managing iron overload of β-thalassemia major patients.
Collapse
Affiliation(s)
- Mohamed M. Gamaleldin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Department of Pharmacy Practice & Science, R. K. Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
- Department of Pharmaceutical Sciences (Pharm-D Program), Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Ivo L. Abraham
- Department of Pharmacy Practice & Science, R. K. Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
- Department of Family and Community Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
- Clinical Translational Sciences, University of Arizona Health Sciences, Arizona, USA
| | | | - Ahmed A. Elberry
- Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Shaimaa M. Abdelhalim
- Department of Pharmaceutical Sciences (Pharm-D Program), Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | | | - Raghda R.S. Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
19
|
Yetim Şahin A, Kandemir I, Dağ H, Türkkan E, Tuğrul Aksakal M, Sahin M, Baş F, Karakaş Z. Assessing Psychological Disorders in Turkish Adolescents with Transfusion-Dependent Thalassemia. CHILDREN (BASEL, SWITZERLAND) 2024; 11:837. [PMID: 39062286 PMCID: PMC11275219 DOI: 10.3390/children11070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
We investigated depression and anxiety levels and related psychological disorders in adolescents with transfusion-dependent thalassemia (TDT) in this study. The study was conducted in two pediatric hematology outpatient clinics and included adolescents with TDT (14.8 ± 2.4 years, n = 40) in the study and compared them with the healthy age-matched control group (14.3 ± 2.3 years, n = 62). The Turkish version of the Revised Child Anxiety and Depression Scale (RCADS) was used to determine depression, anxiety, and related psychologic disorders (obsession, panic disorder, social phobia). Depression, anxiety, obsession, panic disorder, and social phobia scores were significantly higher in the patient group compared with the control (all p < 0.05). Ferritin levels were positively correlated with total depression, general anxiety, separation anxiety, and social phobia scores, but transfusion frequency and young age were the confounding factors. Patients in early adolescence and those who require more frequent blood transfusions are at higher risk of developing psychological disorders; routine screening for mood disorders should be warranted. Serum ferritin level may be a good warning indicator for early recognition of psychologic disorders in TDT patients.
Collapse
Affiliation(s)
- Aylin Yetim Şahin
- Department of Pediatrics, Division of Adolescent Medicine, Faculty of Medicine, Istanbul University, 34452 Istanbul, Turkey; (A.Y.Ş.); (M.T.A.); (F.B.)
| | - Ibrahim Kandemir
- Department of Pediatrics, Faculty of Medicine, Biruni University, 34452 Istanbul, Turkey
| | - Hüseyin Dağ
- Department of Pediatrics, University of Health Sciences, Istanbul Prof. Dr. Cemil Tascioglu City Hospital, 34452 Istanbul, Turkey;
| | - Emine Türkkan
- Department of Pediatric Hematology and Oncology, University of Health Sciences, Istanbul Prof. Dr. Cemil Tascioglu City Hospital, 34452 Istanbul, Turkey;
| | - Melike Tuğrul Aksakal
- Department of Pediatrics, Division of Adolescent Medicine, Faculty of Medicine, Istanbul University, 34452 Istanbul, Turkey; (A.Y.Ş.); (M.T.A.); (F.B.)
| | - Memduh Sahin
- Department of Internal Medicine, University of Health Sciences, Istanbul Basaksehir Cam and Sakura Hospital, 34452 Istanbul, Turkey;
| | - Firdevs Baş
- Department of Pediatrics, Division of Adolescent Medicine, Faculty of Medicine, Istanbul University, 34452 Istanbul, Turkey; (A.Y.Ş.); (M.T.A.); (F.B.)
| | - Zeynep Karakaş
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Istanbul University, 34452 Istanbul, Turkey;
| |
Collapse
|
20
|
Li S, Ling S, Wang D, Wang X, Hao F, Yin L, Yuan Z, Liu L, Zhang L, Li Y, Chen Y, Luo L, Dai Y, Zhang L, Chen L, Deng D, Tang W, Zhang S, Wang S, Cai Y. Modified lentiviral globin gene therapy for pediatric β 0/β 0 transfusion-dependent β-thalassemia: A single-center, single-arm pilot trial. Cell Stem Cell 2024; 31:961-973.e8. [PMID: 38759653 DOI: 10.1016/j.stem.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/24/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
β0/β0 thalassemia is the most severe type of transfusion-dependent β-thalassemia (TDT) and is still a challenge facing lentiviral gene therapy. Here, we report the interim analysis of a single-center, single-arm pilot trial (NCT05015920) evaluating the safety and efficacy of a β-globin expression-optimized and insulator-engineered lentivirus-modified cell product (BD211) in β0/β0 TDT. Two female children were enrolled, infused with BD211, and followed up for an average of 25.5 months. Engraftment of genetically modified hematopoietic stem and progenitor cells was successful and sustained in both patients. No unexpected safety issues occurred during conditioning or after infusion. Both patients achieved transfusion independence for over 22 months. The treatment extended the lifespan of red blood cells by over 42 days. Single-cell DNA/RNA-sequencing analysis of the dynamic changes of gene-modified cells, transgene expression, and oncogene activation showed no notable adverse effects. Optimized lentiviral gene therapy may safely and effectively treat all β-thalassemia.
Collapse
Affiliation(s)
- Shiqi Li
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Sikai Ling
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; BDgene Therapeutics, Shanghai 200240, China
| | - Dawei Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | - Liufan Yin
- Sequanta Technologies, Shanghai 200131, China
| | - Zhongtao Yuan
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Lin Liu
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Lin Zhang
- BDgene Therapeutics, Shanghai 200240, China
| | - Yu Li
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Yingnian Chen
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Le Luo
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Ying Dai
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Lihua Zhang
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | - Lvzhe Chen
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China
| | | | - Wei Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sanbin Wang
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan 650100, China.
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
21
|
Mohammadian Gol T, Zahedipour F, Trosien P, Ureña-Bailén G, Kim M, Antony JS, Mezger M. Gene therapy in pediatrics - Clinical studies and approved drugs (as of 2023). Life Sci 2024; 348:122685. [PMID: 38710276 DOI: 10.1016/j.lfs.2024.122685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Gene therapy in pediatrics represents a cutting-edge therapeutic strategy for treating a range of genetic disorders that manifest in childhood. Gene therapy involves the modification or correction of a mutated gene or the introduction of a functional gene into a patient's cells. In general, it is implemented through two main modalities namely ex vivo gene therapy and in vivo gene therapy. Currently, a noteworthy array of gene therapy products has received valid market authorization, with several others in various stages of the approval process. Additionally, a multitude of clinical trials are actively underway, underscoring the dynamic progress within this field. Pediatric genetic disorders in the fields of hematology, oncology, vision and hearing loss, immunodeficiencies, neurological, and metabolic disorders are areas for gene therapy interventions. This review provides a comprehensive overview of the evolution and current progress of gene therapy-based treatments in the clinic for pediatric patients. It navigates the historical milestones of gene therapies, currently approved gene therapy products by the U.S. Food and Drug Administration (FDA) and/or European Medicines Agency (EMA) for children, and the promising future for genetic disorders. By providing a thorough compilation of approved gene therapy drugs and published results of completed or ongoing clinical trials, this review serves as a guide for pediatric clinicians to get a quick overview of the situation of clinical studies and approved gene therapy products as of 2023.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Fatemeh Zahedipour
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul Trosien
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Guillermo Ureña-Bailén
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Miso Kim
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Justin S Antony
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Markus Mezger
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Coskun C, Unal S. Dominant Beta Thalassemia: A Very Rare Cause of Thalassemia in a Mediterranean Country. Hemoglobin 2024; 48:258-260. [PMID: 39092788 DOI: 10.1080/03630269.2024.2386067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Beta thalassemia is one of the monogenic disorders characterized by decreased production of β-globin chains and various types of mutations have been reported to cause thalassemia phenotype. On the other hand, rare mutations also affect and diversify the disease spectrum. Herein, we present an anemic patient from Turkey diagnosed with dominant β thalassemia due to a heterozygous mutation in exon 3 of the HBB gene.
Collapse
Affiliation(s)
- Cagri Coskun
- Department of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| | - Sule Unal
- Department of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
23
|
Drahos J, Boateng-Kuffour A, Calvert M, Levine L, Dongha N, Li N, Pakbaz Z, Shah F, Martin AP. Health-Related Quality-of-Life Impacts Associated with Transfusion-Dependent β-Thalassemia in the USA and UK: A Qualitative Assessment. THE PATIENT 2024; 17:421-439. [PMID: 38530509 PMCID: PMC11189963 DOI: 10.1007/s40271-024-00678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Individuals living with transfusion-dependent β-thalassemia (TDT) experience reduced health-related quality of life due to fatigue and chronic pain, which cause disruptions to daily life. Currently, limited qualitative data exist that describe these impacts. OBJECTIVE This study aimed to examine the ways in which symptoms and current treatments of TDT impact health-related quality of life, to holistically describe the humanistic burden of TDT, and to identify the unmet needs of individuals living with TDT. METHODS Adults (aged ≥ 18 years) with TDT and caregivers of adolescents (aged 12‒17 years) with TDT participated in semi-structured one-on-one virtual interviews and focus group discussions. Interviews were conducted in the USA and UK and lasted approximately 60 minutes. After transcription, the interviews were analyzed thematically using a framework approach. RESULTS A total of ten interviews/focus group discussions (six interviews and four focus group discussions) were conducted with 14 adults with TDT and two caregivers of adolescents with TDT. A framework analysis revealed five themes describing health-related quality of life (negative impacts on daily activities, social life, family life, work and education, and psychological well-being) and three themes describing the lived experience of TDT (impact of red blood cell transfusions and iron chelation therapy, treatment, and stigma). Physical, psychological, and treatment-related factors contributed to negative impacts on daily activities, social and family life, and work and education. Concerns about reduced lifespan, relationships and family planning, and financial independence were detrimental to participants' mental well-being. Participants reported having high resilience to the many physical and psychological challenges of living with TDT. A lack of TDT-specific knowledge among healthcare professionals, particularly regarding chronic pain associated with the disease, left some participants feeling ignored or undermined. Additionally, many participants experienced stigma and were reluctant to disclose their disease to others. CONCLUSIONS Individuals living with TDT experience substantial negative impacts on health-related quality of life that disrupt their daily lives, disruptions that are intensified by inadequate healthcare interactions, demanding treatment schedules, and stigma. Our study highlights the unmet needs of individuals living with TDT, especially for alternative treatments that reduce or eliminate the need for red blood cell transfusions and iron chelation therapy.
Collapse
Affiliation(s)
- Jennifer Drahos
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA.
| | | | - Melanie Calvert
- Centre for Patient-Reported Outcomes Research, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
- NIHR Applied Research Collaboration, West Midlands, University of Birmingham, Birmingham, UK
- NIHR Blood and Transplant Research Unit in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, UK
| | | | | | - Nanxin Li
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Zahra Pakbaz
- Division of Hematology Oncology, University of California Irvine School of Medicine, Orange, CA, USA
| | | | | |
Collapse
|
24
|
Naiisseh B, Papasavva PL, Papaioannou NY, Tomazou M, Koniali L, Felekis X, Constantinou CG, Sitarou M, Christou S, Kleanthous M, Lederer CW, Patsali P. Context base editing for splice correction of IVSI-110 β-thalassemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102183. [PMID: 38706633 PMCID: PMC11068610 DOI: 10.1016/j.omtn.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/28/2024] [Indexed: 05/07/2024]
Abstract
β-Thalassemia is brought about by defective β-globin (HBB [hemoglobin subunit β]) formation and, in severe cases, requires regular blood transfusion and iron chelation for survival. Genome editing of hematopoietic stem cells allows correction of underlying mutations as curative therapy. As potentially safer alternatives to double-strand-break-based editors, base editors (BEs) catalyze base transitions for precision editing of DNA target sites, prompting us to reclone and evaluate two recently published adenine BEs (ABEs; SpRY and SpG) with relaxed protospacer adjacent motif requirements for their ability to correct the common HBBIVSI-110(G>A) splice mutation. Nucleofection of ABE components as RNA into patient-derived CD34+ cells achieved up to 90% editing of upstream sequence elements critical for aberrant splicing, allowing full characterization of the on-target base-editing profile of each ABE and the detection of differences in on-target insertions and deletions. In addition, this study identifies opposing effects on splice correction for two neighboring context bases, establishes the frequency distribution of multiple BE editing events in the editing window, and shows high-efficiency functional correction of HBBIVSI-110(G>A) for our ABEs, including at the levels of RNA, protein, and erythroid differentiation.
Collapse
Affiliation(s)
- Basma Naiisseh
- Molecular Genetics of Thalassemia Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Agios Dometios, Nicosia 2371, Cyprus
| | - Panayiota L. Papasavva
- Molecular Genetics of Thalassemia Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Agios Dometios, Nicosia 2371, Cyprus
| | - Nikoletta Y. Papaioannou
- Molecular Genetics of Thalassemia Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Agios Dometios, Nicosia 2371, Cyprus
| | - Marios Tomazou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, Agios Dometios, Nicosia 2371, Cyprus
| | - Lola Koniali
- Molecular Genetics of Thalassemia Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Agios Dometios, Nicosia 2371, Cyprus
| | - Xenia Felekis
- Molecular Genetics of Thalassemia Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Agios Dometios, Nicosia 2371, Cyprus
| | - Constantina G. Constantinou
- Molecular Genetics of Thalassemia Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Agios Dometios, Nicosia 2371, Cyprus
| | - Maria Sitarou
- Thalassemia Clinic Larnaca, State Health Services Organization, Larnaca 6301, Cyprus
| | - Soteroula Christou
- Thalassemia Clinic Nicosia, State Health Services Organization, Strovolos, Nicosia 2012, Cyprus
| | - Marina Kleanthous
- Molecular Genetics of Thalassemia Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Agios Dometios, Nicosia 2371, Cyprus
| | - Carsten W. Lederer
- Molecular Genetics of Thalassemia Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Agios Dometios, Nicosia 2371, Cyprus
| | - Petros Patsali
- Molecular Genetics of Thalassemia Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Agios Dometios, Nicosia 2371, Cyprus
| |
Collapse
|
25
|
Abbas Z, Rahman A, Aslam B, Aftab S, Feng C, Baloch Z. Precision genome editing offers hope for treatment of β-thalassemia and other genetic disorders. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102204. [PMID: 38800557 PMCID: PMC11126523 DOI: 10.1016/j.omtn.2024.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
- Zeeshan Abbas
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
- Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdul Rahman
- Guangdong Key Laboratory of Food Intelligent Manufacturing, and School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Bilal Aslam
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Aftab
- School of Automation, University of Engineering Science and Technology, Chengdu, China
| | - Chunjing Feng
- Jiangxi Health-Biotech United Stem Cell Technology Co., Ltd., Shangrao, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| |
Collapse
|
26
|
Shah FT, Nicolle S, Garg M, Pancham S, Lieberman G, Anthony K, Mensah AK. Guideline for the management of conception and pregnancy in thalassaemia syndromes: A British Society for Haematology Guideline. Br J Haematol 2024; 204:2194-2209. [PMID: 38715390 DOI: 10.1111/bjh.19362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 06/15/2024]
Abstract
This comprehensive guideline, developed by a representative group of UK-based medical experts specialising in haemoglobinopathies, addresses the management of conception and pregnancy in patients with thalassaemia. A systematic search of PubMed and EMBASE using specific keywords, formed the basis of the literature review. Key terms included "thalassaemia," "pregnancy," "Cooley's anaemia," "Mediterranean anaemia," and others, covering aspects such as fertility, iron burden and ultrasonography. The guideline underwent rigorous review by prominent organisations, including the Endocrine Society, the Royal College of Obstetricians and Gynaecologists (RCOG), the United Kingdom Thalassaemia Society and the British Society of Haematology (BSH) guideline writing group. Additional feedback was solicited from a sounding board of UK haematologists, ensuring a thorough and collaborative approach. The objective of the guideline is to equip healthcare professionals with precise recommendations for managing conception and pregnancy in patients with thalassaemia.
Collapse
Affiliation(s)
- Farrukh T Shah
- Department of Haematology, Whittington Health, London, UK
| | - Sarah Nicolle
- Department of Haematology, University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Mamta Garg
- Department of Haematology, Leicester Royal infirmary, Leicester, UK
| | - Shivan Pancham
- Department of Haematology, Sandwell and West Birmingham NHS Trust, West Bromwich, UK
| | - Gidon Lieberman
- Department of Obstetrics and Gynaecology Whittington Health, London, UK
| | - Karen Anthony
- Department of Endocrinology, Whittington Health, London, UK
| | - Amma Kyei Mensah
- Department of Obstetrics and Gynaecology Whittington Health, London, UK
| |
Collapse
|
27
|
Ling L, Wang F, Li Y, He S, Wu F, Yang L, Xu L, Wang T, Zhou S, Yang F, Wei Z, Yang L, Yang Z, Fang X, Zhou Y, Xue J, Yin X, Wei H, Yu D. Depletion of miR-144/451 alleviates anemia in β-thalassemic mice. Blood Adv 2024; 8:2565-2570. [PMID: 37285799 PMCID: PMC11145754 DOI: 10.1182/bloodadvances.2022008757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 06/09/2023] Open
Affiliation(s)
- Ling Ling
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Fangfang Wang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- Department of Hematology, Yangzhou University Clinical Medical College, Yangzhou, China
| | - Yaoyao Li
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- Central Laboratory, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Sheng He
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning, Guangxi, China
| | - Fan Wu
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Lei Yang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Lei Xu
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- Central Laboratory, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ting Wang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Shuting Zhou
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Fan Yang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Zichen Wei
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Lan Yang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Zhe Yang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Xiao Fang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Yali Zhou
- Department of Hematology, The 923 Hospital of the Joint Logistics Support Force of the People's Liberation Army, Nanning, Guangxi, China
| | - Jun Xue
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaolin Yin
- Department of Hematology, The 923 Hospital of the Joint Logistics Support Force of the People's Liberation Army, Nanning, Guangxi, China
| | - Hongwei Wei
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning, Guangxi, China
| | - Duonan Yu
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning, Guangxi, China
| |
Collapse
|
28
|
Melo D, Ferreira F, Teles MJ, Porto G, Coimbra S, Rocha S, Santos-Silva A. Catalase, Glutathione Peroxidase, and Peroxiredoxin 2 in Erythrocyte Cytosol and Membrane in Hereditary Spherocytosis, Sickle Cell Disease, and β-Thalassemia. Antioxidants (Basel) 2024; 13:629. [PMID: 38929068 PMCID: PMC11201268 DOI: 10.3390/antiox13060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Catalase (CAT), glutathione peroxidase (GPx), and peroxiredoxin 2 (Prx2) can counteract the deleterious effects of oxidative stress (OS). Their binding to the red blood cell (RBC) membrane has been reported in non-immune hemolytic anemias (NIHAs). Our aim was to evaluate the relationships between CAT, GPx, and Prx2, focusing on their role at the RBC membrane, in hereditary spherocytosis (HS), sickle cell disease (SCD), β-thalassemia (β-thal), and healthy individuals. The studies were performed in plasma and in the RBC cytosol and membrane, evaluating OS biomarkers and the enzymatic activities and/or the amounts of CAT, GPx, and Prx2. The binding of the enzymes to the membrane appears to be the primary protective mechanism against oxidative membrane injuries in healthy RBCs. In HS (unsplenectomized) and β-thal, translocation from the cytosol to the membrane of CAT and Prx2, respectively, was observed, probably to counteract lipid peroxidation. RBCs from splenectomized HS patients showed the highest membrane-bound hemoglobin, CAT, and GPx amounts in the membrane. SCD patients presented the lowest amount of enzyme linkage, possibly due to structural changes induced by sickle hemoglobin. The OS-induced changes and antioxidant response were different between the studied NIHAs and may contribute to the different clinical patterns in these patients.
Collapse
Affiliation(s)
- Daniela Melo
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Fátima Ferreira
- Hematology Service, Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal;
| | - Maria José Teles
- Laboratory Hematology Service, Santo António Hospital, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
- Imuno-Hemotherapy Service, Santo António Hospital, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
| | - Graça Porto
- Imuno-Hemotherapy Service, Santo António Hospital, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
- Center for Predictive and Preventive Genetics (CGPP), Institute for Molecular and Cellular Biology (CGPP/IBMC), 4200-135 Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Susana Coimbra
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
- 1H-TOXRUN–One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Susana Rocha
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| |
Collapse
|
29
|
Locatelli F, Lang P, Wall D, Meisel R, Corbacioglu S, Li AM, de la Fuente J, Shah AJ, Carpenter B, Kwiatkowski JL, Mapara M, Liem RI, Cappellini MD, Algeri M, Kattamis A, Sheth S, Grupp S, Handgretinger R, Kohli P, Shi D, Ross L, Bobruff Y, Simard C, Zhang L, Morrow PK, Hobbs WE, Frangoul H. Exagamglogene Autotemcel for Transfusion-Dependent β-Thalassemia. N Engl J Med 2024; 390:1663-1676. [PMID: 38657265 DOI: 10.1056/nejmoa2309673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
BACKGROUND Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis through ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of the erythroid-specific enhancer region of BCL11A in autologous CD34+ hematopoietic stem and progenitor cells (HSPCs). METHODS We conducted an open-label, single-group, phase 3 study of exa-cel in patients 12 to 35 years of age with transfusion-dependent β-thalassemia and a β0/β0, β0/β0-like, or non-β0/β0-like genotype. CD34+ HSPCs were edited by means of CRISPR-Cas9 with a guide mRNA. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was transfusion independence, defined as a weighted average hemoglobin level of 9 g per deciliter or higher without red-cell transfusion for at least 12 consecutive months. Total and fetal hemoglobin concentrations and safety were also assessed. RESULTS A total of 52 patients with transfusion-dependent β-thalassemia received exa-cel and were included in this prespecified interim analysis; the median follow-up was 20.4 months (range, 2.1 to 48.1). Neutrophils and platelets engrafted in each patient. Among the 35 patients with sufficient follow-up data for evaluation, transfusion independence occurred in 32 (91%; 95% confidence interval, 77 to 98; P<0.001 against the null hypothesis of a 50% response). During transfusion independence, the mean total hemoglobin level was 13.1 g per deciliter and the mean fetal hemoglobin level was 11.9 g per deciliter, and fetal hemoglobin had a pancellular distribution (≥94% of red cells). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No deaths or cancers occurred. CONCLUSIONS Treatment with exa-cel, preceded by myeloablation, resulted in transfusion independence in 91% of patients with transfusion-dependent β-thalassemia. (Supported by Vertex Pharmaceuticals and CRISPR Therapeutics; CLIMB THAL-111 ClinicalTrials.gov number, NCT03655678.).
Collapse
Affiliation(s)
- Franco Locatelli
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Peter Lang
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Donna Wall
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Roland Meisel
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Selim Corbacioglu
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Amanda M Li
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Josu de la Fuente
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Ami J Shah
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Ben Carpenter
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Janet L Kwiatkowski
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Markus Mapara
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Robert I Liem
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Maria Domenica Cappellini
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Mattia Algeri
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Antonis Kattamis
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Sujit Sheth
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Stephan Grupp
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Rupert Handgretinger
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Puja Kohli
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Daoyuan Shi
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Leorah Ross
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Yael Bobruff
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Christopher Simard
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Lanju Zhang
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Phuong Khanh Morrow
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - William E Hobbs
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Haydar Frangoul
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| |
Collapse
|
30
|
Rai HP, Stuart AJ. Beta-Thalassemia in Adulthood Previously Suspected as Treatment-Resistant Iron Deficiency Anemia: A Case Report. Cureus 2024; 16:e60275. [PMID: 38872652 PMCID: PMC11170228 DOI: 10.7759/cureus.60275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Beta-thalassemia (β-thalassemia) is a hematologic genetic condition that causes microcytic anemia due to defective synthesis of the hemoglobin beta chain. As a hypochromic microcytic anemia that is commonly associated with symptoms such as fatigue and pallor when identified in adulthood, β-thalassemia may be commonly underdiagnosed or misdiagnosed as iron deficiency anemia. This study presents a case of a patient with β-thalassemia who was initially misdiagnosed with treatment-resistant iron deficiency anemia. Here, we present the case of a 66-year-old male of Mediterranean descent with a history of military service who presented with persistent fatigue. He had a past medical history of hypertension, diabetes mellitus type 2, sleep apnea, and iron deficiency anemia. Despite undergoing unnecessarily prolonged iron supplementation for suspected iron deficiency anemia, the patient's complete blood count and peripheral blood smear continued to identify hypochromic microcytic anemia. Ultimately, hemoglobin electrophoresis was performed, and mutations were identified in the hemoglobin beta chain consistent with β-thalassemia minor. Due to its rarity and wide variation in presentation, β-thalassemia may be frequently misdiagnosed. β-thalassemia is a spectrum of disorders ranging from β-thalassemia minor, which may be asymptomatic and incidentally discovered in adulthood, to β-thalassemia major, which may include bone marrow deformities from extramedullary hematopoiesis and require frequent blood transfusions to sustain life. Therefore, patients who present with symptoms of β-thalassemia minor may not be identified until later in life after undergoing decades of ineffective treatment. β-thalassemia is a multifactorial disease with a variety of clinical presentations that can easily be misdiagnosed as other types of anemia. This case highlights the importance of performing thorough laboratory testing and casting a wide net of differential diagnoses when evaluating patients with treatment-resistant anemia. This case calls for further research on the genetic contributions to β-thalassemia as well as improved ways to identify this disorder, particularly in patients who may not have a severe form that is easily diagnosed in early childhood.
Collapse
Affiliation(s)
- Hitesh P Rai
- Research, Edward Via College of Osteopathic Medicine, Monroe, USA
| | - Anthony J Stuart
- Internal Medicine, Willis Knighton Tri-State Medical Clinic, Shreveport, USA
| |
Collapse
|
31
|
Weber MA. Editorial for "Marrow Fat-Cortical Bone Relationship in β-Thalassemia: A Study Using MRI". J Magn Reson Imaging 2024. [PMID: 38597767 DOI: 10.1002/jmri.29385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Affiliation(s)
- Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
32
|
Almahmoud R, Hussein A, Khaja FA, Soliman AF, Dewedar H, Shareef ZA, Mathai S. Growth and endocrinopathies among children with β-Thalassemia major treated at Dubai Thalassemia centre. BMC Pediatr 2024; 24:244. [PMID: 38580952 PMCID: PMC10996095 DOI: 10.1186/s12887-024-04670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/23/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND β-Thalassemia major (BTM) is one of the most common hereditary anemias worldwide. Patients suffer from iron overload that results from repeated blood transfusion This in turn leads to multiple organ damage and endocrinopathies. This study aims to assess the prevalence of growth retardation, hypothyroidism, and diabetes mellitus in children and adolescents with BTM treated at Dubai Thalassemia Centre. METHODS A total of 105 children and adolescents were included in this retrospective observational study. RESULTS 39 children and 66 adolescents' data were analyzed. Females composed 51.3% (n = 20) of children and 53.0% (n = 35) of adolescents. Pretransfusion hemoglobin below 9 gm/dl was observed in 10.8% (n = 4) and 10.6% (n = 7) in children and adolescents, respectively. The mean age of menarche was 13.5 years. Among all study participants, 22.6% (n = 14) had normal height velocity whereas 37.1% (n = 23) had reduced height velocity in one year and 40.3% (n = 25) had reduced height velocity in two consecutive years. The proportion of children and adolescents showing reduced height velocity was significantly higher in females compared to the males (90.6% versus 63.3%, respectively, Chi-square = 6.597, p-value = 0.010). Although none of the study participants had diabetes mellitus, 26.1% (n = 12/46) had pre-diabetes. Elevated TSH was observed in 14.7% (n = 5) children and 8.1% (n = 5) adolescents while low FT4 was reported in one child and one adolescent. CONCLUSION Of all endocrinopathies seen among children and adolescents with BTM, growth delay remains the main concern for this group of patients. Effective treatment is key to further reducing endocrinopathies. Although the sample size is limited, we postulate that the low percentage of endocrinopathies among children with BTM treated at Dubai thalassemia center and the low level of pretransfusion anemia reflect the effective transfusion and chelation at the center.
Collapse
Affiliation(s)
- Rabah Almahmoud
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Amal Hussein
- Department of Family & Community Medicine and Behavioral Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Fatheya Al Khaja
- Dubai Thalassemia Centre, Dubai Health Authority, Dubai, United Arab Emirates
| | | | - Hany Dewedar
- Dubai Thalassemia Centre, Dubai Health Authority, Dubai, United Arab Emirates
| | - Zainab Al Shareef
- Department of Basic Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sarah Mathai
- Department of Pediatrics, Christian Medical College, Vellore, India
| |
Collapse
|
33
|
Manjunath LE, Singh A, Devi Kumar S, Vasu K, Kar D, Sellamuthu K, Eswarappa SM. Transcript-specific induction of stop codon readthrough using a CRISPR-dCas13 system. EMBO Rep 2024; 25:2118-2143. [PMID: 38499809 PMCID: PMC11015002 DOI: 10.1038/s44319-024-00115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Stop codon readthrough (SCR) is the process where translation continues beyond a stop codon on an mRNA. Here, we describe a strategy to enhance or induce SCR in a transcript-selective manner using a CRISPR-dCas13 system. Using specific guide RNAs, we target dCas13 to the region downstream of canonical stop codons of mammalian AGO1 and VEGFA mRNAs, known to exhibit natural SCR. Readthrough assays reveal enhanced SCR of these mRNAs (both exogenous and endogenous) caused by the dCas13-gRNA complexes. This effect is associated with ribosomal pausing, which has been reported for several SCR events. Our data show that CRISPR-dCas13 can also induce SCR across premature termination codons (PTCs) in the mRNAs of green fluorescent protein and TP53. We demonstrate the utility of this strategy in the induction of readthrough across the thalassemia-causing PTC in HBB mRNA and hereditary spherocytosis-causing PTC in SPTA1 mRNA. Thus, CRISPR-dCas13 can be programmed to enhance or induce SCR in a transcript-selective and stop codon-specific manner.
Collapse
Affiliation(s)
- Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sangeetha Devi Kumar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Kirtana Vasu
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Debaleena Kar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Karthi Sellamuthu
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
- University of Texas Medical Branch, Galveston, TX, USA
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| |
Collapse
|
34
|
Ahmadi A, Hosseini S, Dorgalaleh A, Hassani S, Tabibian S, Tavasoli B, Shabannezhad A, Taheri M, Shams M. Natural Anticoagulant Protein Levels in Patients With Beta-Thalassemia Major: A Case-Control Study. J Hematol 2024; 13:23-28. [PMID: 38644988 PMCID: PMC11027775 DOI: 10.14740/jh1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/22/2024] [Indexed: 04/23/2024] Open
Abstract
Background β-thalassemia is a group of inherited blood disorders that affect the production of β-globin chains, leading to the reduction or absence of these chains. One of the complications observed in patients with β-thalassemia major (β-TM) is thrombosis, especially in those who receive frequent blood transfusions. This may be due to a decrease in the levels of the natural anticoagulants: protein C (PC), total protein S (PS), and antithrombin (AT). Methods In this case-control study, patients with β-TM, who had received at least 20 packed cell transfusions during their lifetime, were included. Patients with other underlying diseases like bleeding or thrombotic disorders were excluded. Totally, 118 patients with β-TM and 120 healthy individuals were included. Results The mean level of PC and AT was significantly lower in patients with β-TM (48.2 ± 65.4 and 57.42 ± 13.6, respectively) compared to the control group (97.1 ± 21.46 and 81.79 ± 14.3, respectively), with P value of 0.001 and 0.01, respectively. Although the difference was not statistically significant (P = 0.1), a similar trend was observed for total PS (61.12 ± 21.12 for patients versus 72.2 ± 35.2 for the control group). Of note, the decrease in PC, AT, and total PS levels compared to the control group was 50.36%, 27.5%, and 15.34%, respectively. Conclusions It seems that β-TM patients who receive prolonged blood transfusions frequently are at an increased risk of decreased in natural anticoagulants levels and therefore potentially are at risk of thrombosis.
Collapse
Affiliation(s)
- Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Molecular Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Soudabeh Hosseini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Aliasghar Children Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Hassani
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Shadi Tabibian
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Behnaz Tavasoli
- Department of Hematology, Faculty of Paramedical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ashkan Shabannezhad
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Taheri
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Shams
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
35
|
Yang L, Chen Y, He S, Yu D. The crucial role of NRF2 in erythropoiesis and anemia: Mechanisms and therapeutic opportunities. Arch Biochem Biophys 2024; 754:109948. [PMID: 38452967 DOI: 10.1016/j.abb.2024.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor crucial in cellular defense against oxidative and electrophilic stresses. Recent research has highlighted the significance of NRF2 in normal erythropoiesis and anemia. NRF2 regulates genes involved in vital aspects of erythroid development, including hemoglobin catabolism, inflammation, and iron homeostasis in erythrocytes. Disrupted NRF2 activity has been implicated in various pathologies involving abnormal erythropoiesis. In this review, we summarize the progress made in understanding the mechanisms of NRF2 activation in erythropoiesis and explore the roles of NRF2 in various types of anemia. This review also discusses the potential of targeting NRF2 as a new therapeutic approach to treat anemia.
Collapse
Affiliation(s)
- Lei Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yong Chen
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225003, China
| | - Sheng He
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning, Guangxi, 530000, China
| | - Duonan Yu
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610000, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, 225009, China; Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning, Guangxi, 530000, China.
| |
Collapse
|
36
|
Kalai M, Moumni I, Ouragini H, Chaouechi D, Boudriga I, Menif S. Coinheritance of HbO Arab/β0-thalassemia with Severe Manifestation in Newborn. Am J Perinatol 2024; 41:594-597. [PMID: 35189650 DOI: 10.1055/s-0042-1743185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE In this study, we report a Tunisian newborn boy referred for neonatal hemolytic anemia with yellowish skin and enlarged spleen due to coinheritance of hemoglobin O (HbO) Arab and β-thalassemia. STUDY DESIGN Hematological parameters were collected using an automated blood cell counter. The amounts of Hb fractions were measured by capillary electrophoresis of Hb. Amplification and sequencing of the HBB gene were performed by Sanger's method. RESULTS Family study and genetic analysis revealed that the proband was a carrier of two hemoglobinopathies: HbO Arab and β0-thalassemia. CONCLUSION The coexistence of these two pathologies complicated the general state of the newborn boy and led to a severe anemia at birth. KEY POINTS · Severe neonatal anemia can be caused by hemoglobinopathy.. · Coinheritance of HbO Arab/β0-thalassemia complicated the general state of the newborn.. · Diagnosing hemoglobinopathy at an early age improves patient care..
Collapse
Affiliation(s)
- Miniar Kalai
- Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imen Moumni
- Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Houyem Ouragini
- Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Dorra Chaouechi
- Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imen Boudriga
- Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Samia Menif
- Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
37
|
Costa CJ, Nguyen MTT, Vaziri H, Wu GY. Genetics of Gallstone Disease and Their Clinical Significance: A Narrative Review. J Clin Transl Hepatol 2024; 12:316-326. [PMID: 38426197 PMCID: PMC10899874 DOI: 10.14218/jcth.2023.00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Gallstone (GS) disease is common and arises from a combination of genetic and environmental factors. Although genetic abnormalities specifically leading to cholesterol GSs are rare, there are clinically significant gene variants associated with cholesterol GSs. In contrast, most bilirubin GSs can be attributed to genetic defects. The pathogenesis of cholesterol and bilirubin GSs differs greatly. Cholesterol GSs are notably influenced by genetic variants within the ABC protein superfamily, including ABCG8, ABCG5, ABCB4, and ABCB11, as well as genes from the apolipoprotein family such as ApoB100 and ApoE (especially the E3/E3 and E3/E4 variants), and members of the MUC family. Conversely, bilirubin GSs are associated with genetic variants in highly expressed hepatic genes, notably UGT1A1, ABCC2 (MRP2), ABCC3 (MRP3), CFTR, and MUC, alongside genetic defects linked to hemolytic anemias and conditions impacting erythropoiesis. While genetic cases constitute a small portion of GS disease, recognizing genetic predisposition is essential for proper diagnosis, treatment, and genetic counseling.
Collapse
Affiliation(s)
- Christopher J. Costa
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Minh Thu T. Nguyen
- Division of Gastroenterology and Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - Haleh Vaziri
- Division of Gastroenterology and Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - George Y. Wu
- Division of Gastroenterology and Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
38
|
Corbacioglu S, Frangoul H, Locatelli F, Hobbs W, Walters M. Defining curative endpoints for transfusion-dependent β-thalassemia in the era of gene therapy and gene editing. Am J Hematol 2024; 99:422-429. [PMID: 38100154 DOI: 10.1002/ajh.27166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 02/15/2024]
Abstract
β-thalassemia is a monogenic disease that results in varying degrees of anemia. In the most severe form, known as transfusion-dependent β-thalassemia (TDT), the clinical hallmarks are ineffective erythropoiesis and a requirement of regular, life-long red blood cell transfusions, with the development of secondary clinical complications such as iron overload, end-organ damage, and a risk of early mortality. With the exception of allogeneic hematopoietic cell transplantation, current treatments for TDT address disease symptoms and not the underlying cause of disease. Recently, a growing number of gene addition and gene editing-based treatments for patients with TDT with the potential to provide a one-time functional cure have entered clinical trials. A key challenge in the design and evaluation of these trials is selecting endpoints to evaluate if these novel genetic therapies have a curative versus an ameliorative effect. Here, we present an overview of the pathophysiology of TDT, review emerging gene addition or gene editing therapeutic approaches for TDT currently in clinical trials, and identify a series of endpoints that can quantify therapeutic effects, including a curative outcome.
Collapse
Affiliation(s)
| | - Haydar Frangoul
- Sarah Cannon Research Institute and the Children's Hospital at TriStar Centennial, Nashville, Tennessee, USA
| | - Franco Locatelli
- IRCCS, Ospedale Pediatrico Bambino, Gesù Rome, Catholic University of the Sacred Heart, Rome, Italy
| | - William Hobbs
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts, USA
| | - Mark Walters
- Department of Pediatrics, UCSF Benioff Children's Hospital Oakland, Oakland, California, USA
| |
Collapse
|
39
|
Li Y, Jin J, Tuo Y, Huang P, Huang J, Yang H, He Z. Molecular Characterization of α- and β-Thalassemia Among Children Less Than 18 Years Old in Guizhou, China. J Clin Lab Anal 2024; 38:e25022. [PMID: 38506255 PMCID: PMC10997815 DOI: 10.1002/jcla.25022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Thalassemia is an inherited hemolytic disease, the complications and sequelae of which have posed a huge impact on both patients and society. But limited studies have investigated the molecular characterization of α- and β-thalassemia in children from Guizhou, China. METHODS Between January 2019 and December 2022, a total of 3301 children, aged 6 months to 18 years, suspected of having thalassemia underwent molecular analysis. RESULTS Out of the total sample, 824 (25%) children were found to carry thalassemia mutations. The carrier rates of α-thalassemia, β-thalassemia, and α + β-thalassemia were determined as 8.1%, 15.6%, and 1.3%, respectively. Approximately 96.5% of the α-thalassemia gene mutations were --SEA (51%), ααCS (20.9%), -α3.7 (19.6%), and -α4.2 (5.0%). The most prevalent mutations of β-thalassemia were βCD17(A>T) (41.5%), βCD41-42(-TTCT) (37.7%), and βIVS-II-654(C>T) (11.3%). Additionally, we identified rare cases, including one case with ααHb Nunobiki/αα, two cases with triplicated α-thalassemia (one case with ααα/ααα and βCD41-42/βN and the other with ααα-3.7/αα and βE CD26/βN), and also one case with α Q-Thailandα/-α4.2 and βCD41-42/βN. CONCLUSIONS Our study findings provide important insights into the heterogeneity of thalassemia carrier rates and molecular profiles among children in the Guizhou region. The findings support the development of prevention strategies to reduce the incidence of severe thalassemia in the future.
Collapse
Affiliation(s)
- Yan Li
- Department of Pediatrics, School of Clinical MedicineGuizhou Medical UniversityGuiyangChina
- Department of Pediatric HematologyAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Jiao Jin
- Department of Pediatric HematologyAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Yuanyuan Tuo
- Department of Pediatric HematologyAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Pei Huang
- Department of PediatricAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Jing Huang
- Department of Pediatric HematologyAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Honglan Yang
- Department of Pediatric HematologyAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Zhixu He
- Department of Pediatrics, School of Clinical MedicineGuizhou Medical UniversityGuiyangChina
- Department of PediatricAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
40
|
Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. Cell 2024; 187:1076-1100. [PMID: 38428389 DOI: 10.1016/j.cell.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.
Collapse
Affiliation(s)
- Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Station 19, CH-1015 Lausanne, Switzerland
| | - Oana Pelea
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
41
|
Lin S, Zheng Y, Chen M, Xu L, Huang H. The interactions between ineffective erythropoiesis and ferroptosis in β-thalassemia. Front Physiol 2024; 15:1346173. [PMID: 38468700 PMCID: PMC10925657 DOI: 10.3389/fphys.2024.1346173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
In Guangxi, Hainan, and Fujian Province in southern China, β-thalassemia is a frequent monogenic hereditary disorder that is primarily defined by hemolytic anemia brought on by inefficient erythropoiesis. It has been found that ineffective erythropoiesis in β-thalassemia is closely associated with a high accumulation of Reactive oxygen species, a product of oxidative stress, in erythroid cells. During recent years, ferroptosis is an iron-dependent lipid peroxidation that involves abnormalities in lipid and iron metabolism as well as reactive oxygen species homeostasis. It is a recently identified kind of programmed cell death. β-thalassemia patients experience increased iron release from reticuloendothelial cells and intestinal absorption of iron, ultimately resulting in iron overload. Additionally, the secretion of Hepcidin is inhibited in these patients. What counts is both ineffective erythropoiesis and ferroptosis in β-thalassemia are intricately linked to the iron metabolism and Reactive oxygen species homeostasis. Consequently, to shed further light on the pathophysiology of β-thalassemia and propose fresh ideas for its therapy, this paper reviews ferroptosis, ineffective erythropoiesis, and the way they interact.
Collapse
Affiliation(s)
- Siyang Lin
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Yanping Zheng
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Meihuan Chen
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Liangpu Xu
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Hailong Huang
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| |
Collapse
|
42
|
Hevessy Z, Toth G, Antal-Szalmas P, Tokes-Fuzesi M, Kappelmayer J, Karai B, Ajzner E. Algorithm of differential diagnosis of anemia involving laboratory medicine specialists to advance diagnostic excellence. Clin Chem Lab Med 2024; 62:410-420. [PMID: 37823455 DOI: 10.1515/cclm-2023-0807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVES Anemia is a severe global public health issue. Testing practices for anemia suggest overuse of screening laboratory tests and misinterpretation of studies even in "easy-to-diagnose" underlying causes, leading to late diagnoses and missed treatment opportunities. We aimed to develop a complete and efficient algorithm for clinical pathologists and laboratory medicine physicians for the differential diagnosis of anemia. METHODS Comprehensive literature search encompassing original articles, studies, reviews, gold standard books, and other evidence. RESULTS We created a complex algorithm, primarily for clinical pathology/laboratory use, that explores all major and several rare causes of anemia in an efficient and evidence-based manner. The algorithm includes gold-standard diagnostic laboratory tests available in most clinical laboratories and indices that can be easily calculated to provide an evidence-based differential diagnosis of anemia. CONCLUSIONS The diagnostic strategy combines previously available diagnostic tests and protocols in an efficient order. Clinical pathologists following the algorithm can independently provide valuable diagnostic support for healthcare providers. Clinical pathologists providing complete differential diagnostic services with the proposed algorithm may create an opportunity for an advanced diagnostic service that supports diagnostic excellence and helps patients receive a timely diagnosis and early treatment opportunities.
Collapse
Affiliation(s)
- Zsuzsanna Hevessy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Toth
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Antal-Szalmas
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Margit Tokes-Fuzesi
- Department of Laboratory Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Janos Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bettina Karai
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Ajzner
- Central Laboratory of Szabolcs-Szatmar-Bereg County Teaching Hospital, Nyiregyhaza, Hungary
- Hematology Unit of South-Pest Central Hospital and National Institute of Hematology and Infectology, Budapest, Hungary
| |
Collapse
|
43
|
Vlachodimitropoulou E, Mogharbel H, Kuo KHM, Hwang M, Ward R, Shehata N, Malinowski AK. Pregnancy outcomes and iron status in β-thalassemia major and intermedia: a systematic review and meta-analysis. Blood Adv 2024; 8:746-757. [PMID: 38181780 PMCID: PMC10847873 DOI: 10.1182/bloodadvances.2023011636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
ABSTRACT Advancements in orally bioavailable iron chelators and MRI methods have improved life expectancy and reproductive potential in thalassemia major (TM) and thalassemia intermedia (TI). Pregnancy is associated with adverse maternal and neonatal outcomes, frequency of which has not been well delineated. This systematic review aims to provide risk estimates of maternal and fetal outcomes in TM and TI and explore pregnancy's impact on iron homeostasis. Fifteen studies (429 participants, 684 pregnancies) were included. Meta-analysis revealed a higher thrombosis risk in TI (3.7%) compared to TM (0.92%), unchanged from prepregnancy. Heart failure risks in the earlier years appeared similar (TM 1.6% vs TI 1.1%), and maternal mortality in TM was 3.7%, but with current management, these risks are rare. Gestational diabetes and pre-eclampsia occurred in 3.9% and 11.3% of TM pregnancies, respectively. Caesarean section rates were 83.9% in TM and 67% in TI. No significant difference in stillbirth, small for gestational age neonates, or preterm birth incidence between TM and TI was observed. In TM pregnancies, red cell requirements significantly increased (from 102 to 139 ml/kg/year, P = 0.001), and 70% of TI pregnancies required blood transfusions. As expected, increased transfusion alongside chelation cessation led to a significant increase in serum ferritin during pregnancy (TM by 1005 ng/mL; TI by 332 ng/mL, P < 0.0001). Deterioration in iron status was further reflected by an increase in liver iron concentration (from 4.6 to 11.9 mg/g dry weight, P < 0.0001), and myocardial T2-star (T2∗) magnetic resonance imaging decreased (from 36.2 ± 2.5 ms to 31.1 ms) during pregnancy. These findings emphasize the elevated maternal risk of iron-related cardiomyopathy during pregnancy and labor, stressing the importance of cardiac monitoring and postpartum chelation therapy resumption.
Collapse
Affiliation(s)
| | - Hussain Mogharbel
- Division of Maternal-Fetal Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Kevin H. M. Kuo
- Division of Haematology, University of Toronto, Toronto, ON, Canada
| | - Michelle Hwang
- Sidney Liswood Health Sciences Library, Mount Sinai Hospital, Toronto, ON, Canada
| | - Richard Ward
- Division of Haematology, University of Toronto, Toronto, ON, Canada
| | - Nadine Shehata
- Departments of Medicine and Laboratory Medicine and Pathobiology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Ann Kinga Malinowski
- Division of Maternal-Fetal Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
44
|
Melo D, Ferreira F, Teles MJ, Porto G, Coimbra S, Rocha S, Santos-Silva A. Reticulocyte Antioxidant Enzymes mRNA Levels versus Reticulocyte Maturity Indices in Hereditary Spherocytosis, β-Thalassemia and Sickle Cell Disease. Int J Mol Sci 2024; 25:2159. [PMID: 38396832 PMCID: PMC10889157 DOI: 10.3390/ijms25042159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and peroxiredoxin 2 (Prx2) are particularly important in erythroid cells. Reticulocytes and other erythroid precursors may adapt their biosynthetic mechanisms to cell defects or to changes in the bone marrow environment. Our aim was to perform a comparative study of the mRNA levels of CAT, GPX1, PRDX2 and SOD1 in reticulocytes from healthy individuals and from patients with hereditary spherocytosis (HS), sickle cell disease (SCD) and β-thalassemia (β-thal), and to study the association between their transcript levels and the reticulocyte maturity indices. In controls, the enzyme mRNA levels were significantly correlated with reticulocyte maturity indices for all genes except for SOD1. HS, SCD and β-thal patients showed younger reticulocytes, with higher transcript levels of all enzymes, although with different patterns. β-thal and HS showed similar reticulocyte maturity, with different enzyme mRNA levels; SCD and HS, with different reticulocyte maturity, presented similar enzyme mRNA levels. Our data suggest that the transcript profile for these antioxidant enzymes is not entirely related to reticulocyte maturity; it appears to also reflect adaptive mechanisms to abnormal erythropoiesis and/or to altered erythropoietic environments, leading to reticulocytes with distinct antioxidant potential according to each anemia.
Collapse
Affiliation(s)
- Daniela Melo
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Fátima Ferreira
- Hematology Service, Centro Hospitalar e Universitário de São João, 4051-401 Porto, Portugal;
| | - Maria José Teles
- Clinical Pathology, Centro Hospitalar e Universitário de São João, 4051-401 Porto, Portugal;
- Imuno-Hemotherapy Service, Centro Hospitalar Universitário de Santo António, 4051-401 Porto, Portugal;
| | - Graça Porto
- Imuno-Hemotherapy Service, Centro Hospitalar Universitário de Santo António, 4051-401 Porto, Portugal;
- Center for Predictive and Preventive Genetics (CGPP)/Institute for Molecular and Cellular Biology (IBMC), 4051-401 Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4051-401 Porto, Portugal
| | - Susana Coimbra
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Susana Rocha
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| |
Collapse
|
45
|
An R, Avanaki A, Thota P, Nemade S, Mehta A, Gurkan UA. Point-of-Care Diagnostic Test for Beta-Thalassemia. BIOSENSORS 2024; 14:83. [PMID: 38392002 PMCID: PMC10886532 DOI: 10.3390/bios14020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Hemoglobin (Hb) disorders are among the most common monogenic diseases affecting nearly 7% of the world population. Among various Hb disorders, approximately 1.5% of the world population carries β-thalassemia (β-Thal), affecting 40,000 newborns every year. Early screening and a timely diagnosis are essential for β-thalassemia patients for the prevention and management of later clinical complications. However, in Africa, Southern Europe, the Middle East, and Southeast Asia, where β-thalassemia is most prevalent, the diagnosis and screening for β-thalassemia are still challenging due to the cost and logistical burden of laboratory diagnostic tests. Here, we present Gazelle, which is a paper-based microchip electrophoresis platform that enables the first point-of-care diagnostic test for β-thalassemia. We evaluated the accuracy of Gazelle for the β-Thal screening across 372 subjects in the age range of 4-63 years at Apple Diagnostics lab in Mumbai, India. Additionally, 30 blood samples were prepared to mimic β-Thal intermediate and β-Thal major samples. Gazelle-detected levels of Hb A, Hb F, and Hb A2 demonstrated high levels of correlation with the results reported through laboratory gold standard high-performance liquid chromatography (HPLC), yielding a Pearson correlation coefficient = 0.99. This ability to obtain rapid and accurate results suggests that Gazelle may be suitable for the large-scale screening and diagnosis of β-Thal.
Collapse
Affiliation(s)
- Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
- Department of Biomedical Sciences, University of Houston, Houston, TX 77004, USA
| | | | | | - Sai Nemade
- Plasma Lab, Jalgaon 425001, India (A.M.)
- Apple Diagnostics Lab, Ghatkopar, Mumbai 400077, India
| | - Amrish Mehta
- Plasma Lab, Jalgaon 425001, India (A.M.)
- Apple Diagnostics Lab, Ghatkopar, Mumbai 400077, India
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
46
|
Klaihmon P, Pattanapanyasat K, Phannasil P. An update on recent studies of extracellular vesicles and their role in hypercoagulability in thalassemia (Review). Biomed Rep 2024; 20:31. [PMID: 38259586 PMCID: PMC10801351 DOI: 10.3892/br.2023.1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Thromboembolic events are a significant clinical concern in thalassemia and hemoglobinopathies, highlighting the need for new strategies to treat and detect these specific hematologic complications. In recent years, extracellular vesicles (EVs) have garnered interest due to their role in cell-to-cell communication, including angiogenesis, immune responses and coagulation activation. Their multifaceted role depends on the cellular origin and cargo, making them potential diagnostic biomarkers and therapeutic agents. The present review highlights recent advances in understanding the involvement of EVs in hypercoagulability in thalassemia, the characterization of circulating EVs and the potential for using EVs as predictive biomarkers. β-Thalassemia intermedia exhibits a high incidence of thromboembolic events, contributing to significant morbidity and mortality. Advanced technologies have enabled the profiling and characterization of circulating EVs in patients with β-thalassemia through various techniques, including flow cytometry, proteomic studies, reverse transcription-quantitative PCR, transmission electron microscopy, nanoparticle tracking analysis and western blot analysis. Microparticles from splenectomized β-thalassemia/hemoglobin E patients induce platelet activation and aggregation, potentially contributing to thrombus formation. The abundance of these microparticles, primarily released from platelets and damaged red cells, may have a role in thromboembolic events and other clinical complications in thalassemia. This suggests a promising future for EVs as diagnostic and predictive biomarkers in thalassemia management.
Collapse
Affiliation(s)
- Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kovit Pattanapanyasat
- Center of Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Phatchariya Phannasil
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
47
|
Yang Y, He L, Xie Y, Zhu L, Wu J, Fan Y, Yang Y, Sun X. In situ correction of various β-thalassemia mutations in human hematopoietic stem cells. Front Cell Dev Biol 2024; 11:1276890. [PMID: 38333188 PMCID: PMC10850376 DOI: 10.3389/fcell.2023.1276890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/08/2023] [Indexed: 02/10/2024] Open
Abstract
β-thalassemia (β-thal) is the most common monogenic disorder caused by various mutations in the human hemoglobin β (HBB) gene and affecting millions of people worldwide. Electroporation of Cas9 and single-guide RNA (sgRNA)-ribonucleoprotein (RNP) complex-mediated gene targeting in patient-derived hematopoietic stem cells (HSCs), followed by autologous transplantation, holds the promise to cure patients lacking a compatible bone marrow donor. In this study, a universal gene correction method was devised to achieve in situ correction of most types of HBB mutations by using validated CRISPR/sgRNA-RNP complexes and recombinant adeno-associated viral 6 (rAAV6) donor-mediated homology-directed repair (HDR) in HSCs. The gene-edited HSCs exhibited multi-lineage formation abilities, and the expression of β-globin transcripts was restored in differentiated erythroid cells. The method was applied to efficiently correct different mutations in β-thal patient-derived HSCs, and the edited HSCs retained the ability to engraft into the bone marrow of immunodeficient NOD-scid-IL2Rg-/- (NSI) mice. This study provides an efficient and safe approach for targeting HSCs by HDR at the HBB locus, which provides a potential therapeutic approach for treating other types of monogenic diseases in patient-specific HSCs.
Collapse
Affiliation(s)
- Yinghong Yang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lina He
- Department of Reproductive Medicine, Zigong Hospital of Women and Children Health Care, Guangzhou, China
| | - Yingjun Xie
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lifen Zhu
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianfeng Wu
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong Fan
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Yang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaofang Sun
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
48
|
Duong HQ, Nguyen TH, Hoang MC, Ngo VL, Le VT. RNA therapeutics for β-thalassemia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:97-107. [PMID: 38458745 DOI: 10.1016/bs.pmbts.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
β-thalassemia is an autosomal recessive disease, caused by one or more mutations in the β-globin gene that reduces or abolishes β-globin chain synthesis causing an imbalance in the ratio of α- and β-globin chain. Therefore, the ability to target mutations will provide a good result in the treatment of β-thalassemia. RNA therapeutics represents a promising class of drugs inclusive antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and APTAMER have investigated in clinical trials for treatment of human diseases as β-thalassemia; Especially, ASO therapeutics can completely treat β-thalassemia patients by the way of making ASO infiltrating through erythrocyte progenitor cells, migrating to the nucleus and hybridizing with abnormal splicing sites to suppress an abnormal splicing pattern of β-globin pre-mRNA. As a result, the exactly splicing process is restored to increase the expression of β-globin which increases the amount of mature hemoglobin of red blood cells of β-thalassemia patients. Furthermore, current study demonstrates that RNA-based therapeutics get lots of good results for β-thalassemia patients. Then, this chapter focuses on current advances of RNA-based therapeutics and addresses current challenges with their development and application for treatment of β-thalassemia patients.
Collapse
Affiliation(s)
| | | | | | - Van-Lang Ngo
- Hanoi University of Public Health, Hanoi, Vietnam
| | - Van-Thu Le
- Hanoi University of Public Health, Hanoi, Vietnam
| |
Collapse
|
49
|
Zuccato C, Cosenza LC, Tupini C, Finotti A, Sacchetti G, Simoni D, Gambari R, Lampronti I. New Synthetic Isoxazole Derivatives Acting as Potent Inducers of Fetal Hemoglobin in Erythroid Precursor Cells Isolated from β-Thalassemic Patients. Molecules 2023; 29:8. [PMID: 38202591 PMCID: PMC10779815 DOI: 10.3390/molecules29010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Induction of fetal hemoglobin (HbF) is highly beneficial for patients carrying β-thalassemia, and novel HbF inducers are highly needed. Here, we describe a new class of promising HbF inducers characterized by an isoxazole chemical skeleton and obtained through modification of two natural molecules, geldanamycin and radicicol. After preliminary biological assays based on benzidine staining and RT-qPCR conducted on human erythroleukemic K562 cells, we employed erythroid precursors cells (ErPCs) isolated from β-thalassemic patients. ErPCs weretreated with appropriate concentrations of isoxazole derivatives. The accumulation of globin mRNAs was studied by RT-qPCR, and hemoglobin production by HPLC. We demonstrated the high efficacy of isozaxoles in inducing HbF. Most of these derivatives displayed an activity similar to that observed using known HbF inducers, such as hydroxyurea (HU) or rapamycin; some of the analyzed compounds were able to induce HbF with more efficiency than HU. All the compounds were active in reducing the excess of free α-globin in treated ErPCs. All the compounds displayed a lack of genotoxicity. These novel isoxazoles deserve further pre-clinical study aimed at verifying whether they are suitable for the development of therapeutic protocols for β-thalassemia.
Collapse
Affiliation(s)
- Cristina Zuccato
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
| | - Chiara Tupini
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
| | - Daniele Simoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, Ferrara University, 44121 Ferrara, Italy;
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (C.T.); (A.F.); (G.S.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
50
|
Meloni A, Pistoia L, Vassalle C, Spasiano A, Fotzi I, Bagnato S, Putti MC, Cossu A, Massei F, Giovangrossi P, Maffei S, Positano V, Cademartiri F. Low Vitamin D Levels Are Associated with Increased Cardiac Iron Uptake in Beta-Thalassemia Major. Diagnostics (Basel) 2023; 13:3656. [PMID: 38132240 PMCID: PMC10742632 DOI: 10.3390/diagnostics13243656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
We evaluated the association of vitamin D and parathormone (PTH) levels with cardiac iron and function in beta-thalassemia major (β-TM) patients. Two-hundred and seventy-eight TM patients (39.04 ± 8.58 years, 56.8% females) underwent magnetic resonance imaging for the assessment of iron overload (T2* technique), biventricular function parameters (cine images), and replacement myocardial fibrosis (late gadolinium enhancement technique). Vitamin D levels were deficient (<20 ng/dL) in 107 (38.5%) patients, insufficient (20-30 ng/dL) in 96 (34.5%) patients, and sufficient (≥30 ng/dL) in 75 (27.0%) patients. Deficient vitamin D patients had a significantly higher frequency of myocardial iron overload (MIO; global heart T2* < 20 ms) than patients with sufficient and insufficient vitamin D levels and a significantly higher left ventricular end-diastolic volume index and mass index than patients with sufficient vitamin D levels. PTH was not associated with cardiac iron, function, or fibrosis. In the multivariate regression analysis, vitamin D, serum ferritin, and pancreatic iron levels were the strongest predictors of global heart T2* values. In receiver operating characteristic curve analysis, a vitamin D level ≤ 17.3 ng/dL predicted MIO with a sensitivity of 81.5% and a specificity of 75.3% (p < 0.0001). In TM, the periodic and regular assessment of vitamin D levels can be beneficial for the prevention of cardiac iron accumulation and subsequent overt dysfunction.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR—Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR—Regione Toscana, 56124 Pisa, Italy;
| | - Laura Pistoia
- Department of Radiology, Fondazione G. Monasterio CNR—Regione Toscana, 56124 Pisa, Italy;
- Unità Operativa Complessa Ricerca Clinica, Fondazione G. Monasterio CNR—Regione Toscana, 56124 Pisa, Italy
| | - Cristina Vassalle
- Medicina di Laboratorio, Fondazione G. Monasterio CNR—Regione Toscana, 56124 Pisa, Italy;
| | - Anna Spasiano
- Unità Operativa Semplice Dipartimentale Malattie Rare del Globulo Rosso, Azienda Ospedaliera di Rilievo Nazionale “A. Cardarelli”, 80131 Napoli, Italy;
| | - Ilaria Fotzi
- Oncologia, Ematologia e Trapianto di Cellule Staminali Emopoietiche, Meyer Children’s Hospital IRCCS, 50139 Firenze, Italy;
| | - Sergio Bagnato
- Ematologia Microcitemia, Ospedale San Giovanni di Dio—ASP Crotone, 88900 Crotone, Italy;
| | - Maria Caterina Putti
- Dipartimento della Salute della Donna e del Bambino, Clinica di Emato-Oncologia Pediatrica, Azienda Ospedaliero Università di Padova, 35128 Padova, Italy;
| | - Antonella Cossu
- Ambulatorio Trasfusionale—Servizio Immunoematologia e Medicina Trasfusionale Dipartimento dei Servizi, Presidio Ospedaliero “San Francesco”, 08100 Nuoro, Italy;
| | - Francesco Massei
- Unità Operativa Oncoematologia Pediatrica, Azienda Ospedaliero Universitaria Pisana—Stabilimento S. Chiara, 56126 Pisa, Italy;
| | - Piera Giovangrossi
- Servizio di Immunoematologia e Medicina Trasfusionale, Ospedale S. M. Goretti, 04100 Latina, Italy;
| | - Silvia Maffei
- Cardiovascular and Gynaecological Endocrinology Unit, Fondazione G. Monasterio CNR—Regione Toscana, 56124 Pisa, Italy;
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR—Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR—Regione Toscana, 56124 Pisa, Italy;
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR—Regione Toscana, 56124 Pisa, Italy;
| |
Collapse
|