1
|
Palumbo F, Gabelli G, Pasquali E, Vannozzi A, Farinati S, Draga S, Ravi S, Della Lucia MC, Bertoldo G, Barcaccia G. RNA-seq analyses on gametogenic tissues of alfalfa (Medicago sativa) revealed plant reproduction- and ploidy-related genes. BMC PLANT BIOLOGY 2024; 24:826. [PMID: 39227784 PMCID: PMC11370029 DOI: 10.1186/s12870-024-05542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND In alfalfa (Medicago sativa), the coexistence of interfertile subspecies (i.e. sativa, falcata and coerulea) characterized by different ploidy levels (diploidy and tetraploidy) and the occurrence of meiotic mutants capable of producing unreduced (2n) gametes, have been efficiently combined for the establishment of new polyploids. The wealth of agronomic data concerning forage quality and yield provides a thorough insight into the practical benefits of polyploidization. However, many of the underlying molecular mechanisms regarding gene expression and regulation remained completely unexplored. In this study, we aimed to address this gap by examining the transcriptome profiles of leaves and reproductive tissues, corresponding to anthers and pistils, sampled at different time points from diploid and tetraploid Medicago sativa individuals belonging to progenies produced by bilateral sexual polyploidization (dBSP and tBSP, respectively) and tetraploid individuals stemmed from unilateral sexual polyploidization (tUSP). RESULTS Considering the crucial role played by anthers and pistils in the reduced and unreduced gametes formation, we firstly analyzed the transcriptional profiles of the reproductive tissues at different stages, regardless of the ploidy level and the origin of the samples. By using and combining three different analytical methodologies, namely weighted-gene co-expression network analysis (WGCNA), tau (τ) analysis, and differentially expressed genes (DEGs) analysis, we identified a robust set of genes and transcription factors potentially involved in both male sporogenesis and gametogenesis processes, particularly in crossing-over, callose synthesis, and exine formation. Subsequently, we assessed at the same floral stage, the differences attributable to the ploidy level (tBSP vs. dBSP) or the origin (tBSP vs. tUSP) of the samples, leading to the identification of ploidy and parent-specific genes. In this way, we identified, for example, genes that are specifically upregulated and downregulated in flower buds in the comparison between tBSP and dBSP, which could explain the reduced fertility of the former compared to the latter materials. CONCLUSIONS While this study primarily functions as an extensive investigation at the transcriptomic level, the data provided could represent not only a valuable original asset for the scientific community but also a fully exploitable genomic resource for functional analyses in alfalfa.
Collapse
Affiliation(s)
- Fabio Palumbo
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Giovanni Gabelli
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | | | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Samela Draga
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Samathmika Ravi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Maria Cristina Della Lucia
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Giovanni Bertoldo
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, PD, 35020, Italy.
| |
Collapse
|
2
|
Assour HR, Ashman TL, Turcotte MM. Neopolyploidy-induced changes in giant duckweed (Spirodela polyrhiza) alter herbivore preference and performance and plant population performance. AMERICAN JOURNAL OF BOTANY 2024; 111:e16301. [PMID: 38468124 DOI: 10.1002/ajb2.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/13/2024]
Abstract
PREMISE Polyploidy is a widespread mutational process in angiosperms that may alter population performance of not only plants but also their interacting species. Yet, knowledge of whether polyploidy affects plant-herbivore dynamics is scarce. Here, we tested whether aphid herbivores exhibit preference for diploid or neopolyploid plants, whether polyploidy impacts plant and herbivore performance, and whether these interactions depend on the plant genetic background. METHODS Using independently synthesized neotetraploid strains paired with their diploid progenitors of greater duckweed (Spirodela polyrhiza), we evaluated the effect of neopolyploidy on duckweed's interaction with the water-lily aphid (Rhopalosiphum nymphaeae). Using paired-choice experiments, we evaluated feeding preference of the herbivore. We then evaluated the consequences of polyploidy on aphid and plant performance by measuring population growth over multiple generations. RESULTS Aphids preferred neopolyploids when plants were provided at equal abundances but not at equal surface areas, suggesting the role of plant population surface area in driving this preference. Additionally, neopolyploidy increased aphid population performance, but this result was dependent on the plant's genetic lineage. Lastly, the impact of herbivory on neopolyploid vs. diploid duckweed varied greatly with genetic lineage, where neopolyploids appeared to be variably tolerant compared to diploids, sometimes mirroring the effect on herbivore performance. CONCLUSIONS By experimentally testing the impacts of polyploidy on trophic species interactions, we showed that polyploidization can impact the preference and performance of herbivores on their plant hosts. These results have significant implications for the establishment and persistence of plants and herbivores in the face of plant polyploidy.
Collapse
Affiliation(s)
- Hannah R Assour
- Department of Biological Sciences, University of Pittsburgh, Dietrich School of Arts and Sciences, Pittsburgh, 15260, PA, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Dietrich School of Arts and Sciences, Pittsburgh, 15260, PA, USA
| | - Martin M Turcotte
- Department of Biological Sciences, University of Pittsburgh, Dietrich School of Arts and Sciences, Pittsburgh, 15260, PA, USA
| |
Collapse
|
3
|
Aufiero G, Fruggiero C, D’Angelo D, D’Agostino N. Homoeologs in Allopolyploids: Navigating Redundancy as Both an Evolutionary Opportunity and a Technical Challenge-A Transcriptomics Perspective. Genes (Basel) 2024; 15:977. [PMID: 39202338 PMCID: PMC11353593 DOI: 10.3390/genes15080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Allopolyploidy in plants involves the merging of two or more distinct parental genomes into a single nucleus, a significant evolutionary process in the plant kingdom. Transcriptomic analysis provides invaluable insights into allopolyploid plants by elucidating the fate of duplicated genes, revealing evolutionary novelties and uncovering their environmental adaptations. By examining gene expression profiles, scientists can discern how duplicated genes have evolved to acquire new functions or regulatory roles. This process often leads to the development of novel traits and adaptive strategies that allopolyploid plants leverage to thrive in diverse ecological niches. Understanding these molecular mechanisms not only enhances our appreciation of the genetic complexity underlying allopolyploidy but also underscores their importance in agriculture and ecosystem resilience. However, transcriptome profiling is challenging due to genomic redundancy, which is further complicated by the presence of multiple chromosomes sets and the variations among homoeologs and allelic genes. Prior to transcriptome analysis, sub-genome phasing and homoeology inference are essential for obtaining a comprehensive view of gene expression. This review aims to clarify the terminology in this field, identify the most challenging aspects of transcriptome analysis, explain their inherent difficulties, and suggest reliable analytic strategies. Furthermore, bulk RNA-seq is highlighted as a primary method for studying allopolyploid gene expression, focusing on critical steps like read mapping and normalization in differential gene expression analysis. This approach effectively captures gene expression from both parental genomes, facilitating a comprehensive analysis of their combined profiles. Its sensitivity in detecting low-abundance transcripts allows for subtle differences between parental genomes to be identified, crucial for understanding regulatory dynamics and gene expression balance in allopolyploids.
Collapse
Affiliation(s)
| | | | | | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (G.A.); (C.F.); (D.D.)
| |
Collapse
|
4
|
Pungaršek Š, Frajman B. Influence of polyploidy on morphology and distribution of the Cypress Spurge (Euphorbia cyparissias, Euphorbiaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38979801 DOI: 10.1111/plb.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/26/2024] [Indexed: 07/10/2024]
Abstract
Polyploidy can cause differences in phenotypic and physiological traits among different cytotypes of the same species. Polyploids may have larger organs or occupy different ecological niches than their diploid counterparts, therefore they are hypothesized to have larger distributions or prosper in stressful environments, such as higher elevations. The Cypress spurge (Euphorbia cyparissias L.; Euphorbiaceae) is a widespread European heteroploid species including di- (2x), tetra- (4x) and hexaploid (6x) cytotypes. We tested the hypotheses that polyploids are more widespread and more abundant at higher elevations and have larger organs than their diploid ancestors in the case of E. cyparissias. We also analysed whether genome downsizing had occurred after polyploidisation. We conducted a comprehensive geographic sampling of 617 populations of E. cyparissias throughout Europe. We estimated their relative genome size using flow cytometry and inferred ploidy level of each population. We scored 13 morphological traits of vegetative and seed characters and performed statistical analyses. The study indicates that polyploidisation facilitated colonisation of new areas in E. cyparissias, where the tetraploids are most widespread, whereas the diploids are limited to putative Pleistocene refugia, mostly in southern Europe. On the other hand, the three ploidies do not differ in their elevational distribution. Although some quantitative morphological traits exhibited an increasing trend with increasing ploidy, most traits did not differ significantly among the three ploidies, and there was no overall phenotypic differentiation among them. Given that individuals of different ploidies thrive in similar habitats across the same elevations, we suggest that ecological segregation following polyploidisation is a more important trigger for morphological differentiation than polyploidisation itself in autopolyploid plants. The study demonstrates that polyploidisation can be crucial for the colonisation of new areas and for range expansion, but it does not necessarily influence elevational distribution nor confer a different phenotype.
Collapse
Affiliation(s)
- Š Pungaršek
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | - B Frajman
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Feng H, Banerjee AK, Guo W, Yuan Y, Duan F, Ng WL, Zhao X, Liu Y, Li C, Liu Y, Li L, Huang Y. Origin and evolution of a new tetraploid mangrove species in an intertidal zone. PLANT DIVERSITY 2024; 46:476-490. [PMID: 39280974 PMCID: PMC11390703 DOI: 10.1016/j.pld.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 09/18/2024]
Abstract
Polyploidy is a major factor in the evolution of plants, yet we know little about the origin and evolution of polyploidy in intertidal species. This study aimed to identify the evolutionary transitions in three true-mangrove species of the genus Acanthus distributed in the Indo-West Pacific region. For this purpose, we took an integrative approach that combined data on morphology, cytology, climatic niche, phylogeny, and biogeography of 493 samples from 42 geographic sites. Our results show that the Acanthus ilicifolius lineage distributed east of the Thai-Malay Peninsula possesses a tetraploid karyotype, which is morphologically distinct from that of the lineage on the west side. The haplotype networks and phylogenetic trees for the chloroplast genome and eight nuclear genes reveal that the tetraploid species has two sub-genomes, one each from A. ilicifolius and A . ebracteatus, the paternal and maternal parents, respectively. Population structure analysis also supports the hybrid speciation history of the new tetraploid species. The two sub-genomes of the tetraploid species diverged from their diploid progenitors during the Pleistocene. Environmental niche models revealed that the tetraploid species not only occupied the near-entire niche space of the diploids, but also expanded into novel environments. Our findings suggest that A. ilicifolius species distributed on the east side of the Thai-Malay Peninsula should be regarded as a new species, A. tetraploideus, which originated from hybridization between A. ilicifolius and A. ebracteatus, followed by chromosome doubling. This is the first report of a true-mangrove allopolyploid species that can reproduce sexually and clonally reproduction, which explains the long-term adaptive potential of the species.
Collapse
Affiliation(s)
- Hui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wuxia Guo
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong, China
| | - Yang Yuan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Fuyuan Duan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia
| | - Xuming Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yuting Liu
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Chunmei Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Ying Liu
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Linfeng Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| |
Collapse
|
6
|
Fechete LI, Larking AC, Heslop A, Hannaford R, Anderson CB, Hong W, Prakash S, Mace W, Alikhani S, Hofmann RW, Tausen M, Schierup MH, Andersen SU, Griffiths AG. Harnessing cold adaptation for postglacial colonisation: Galactinol synthase expression and raffinose accumulation in a polyploid and its progenitors. PLANT, CELL & ENVIRONMENT 2024. [PMID: 38873953 DOI: 10.1111/pce.15009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/20/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Allotetraploid white clover (Trifolium repens) formed during the last glaciation through hybridisation of two European diploid progenitors from restricted niches: one coastal, the other alpine. Here, we examine which hybridisation-derived molecular events may have underpinned white clover's postglacial niche expansion. We compared the transcriptomic frost responses of white clovers (an inbred line and an alpine-adapted ecotype), extant descendants of its progenitor species and a resynthesised white clover neopolyploid to identify genes that were exclusively frost-induced in the alpine progenitor and its derived subgenomes. From these analyses we identified galactinol synthase, the rate-limiting enzyme in biosynthesis of the cryoprotectant raffinose, and found that the extant descendants of the alpine progenitor as well as the neopolyploid white clover rapidly accumulated significantly more galactinol and raffinose than the coastal progenitor under cold stress. The frost-induced galactinol synthase expression and rapid raffinose accumulation derived from the alpine progenitor likely provided an advantage during early postglacial colonisation for white clover compared to its coastal progenitor.
Collapse
Affiliation(s)
| | - Anna C Larking
- Grasslands Research Centre, AgResearch Grasslands, Palmerston North, New Zealand
| | - Angus Heslop
- Research Centre, AgResearch Lincoln, Lincoln, New Zealand
| | - Rina Hannaford
- Grasslands Research Centre, AgResearch Grasslands, Palmerston North, New Zealand
| | - Craig B Anderson
- Grasslands Research Centre, AgResearch Grasslands, Palmerston North, New Zealand
| | - Won Hong
- Grasslands Research Centre, AgResearch Grasslands, Palmerston North, New Zealand
| | - Sushma Prakash
- Grasslands Research Centre, AgResearch Grasslands, Palmerston North, New Zealand
| | - Wade Mace
- Grasslands Research Centre, AgResearch Grasslands, Palmerston North, New Zealand
| | - Salome Alikhani
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Rainer W Hofmann
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Marni Tausen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | - Andrew G Griffiths
- Grasslands Research Centre, AgResearch Grasslands, Palmerston North, New Zealand
| |
Collapse
|
7
|
Sun W, Li M, Wang J. Characteristics of duplicated gene expression and DNA methylation regulation in different tissues of allopolyploid Brassica napus. BMC PLANT BIOLOGY 2024; 24:518. [PMID: 38851683 PMCID: PMC11162574 DOI: 10.1186/s12870-024-05245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Plant polyploidization increases the complexity of epigenomes and transcriptional regulation, resulting in genome evolution and enhanced adaptability. However, few studies have been conducted on the relationship between gene expression and epigenetic modification in different plant tissues after allopolyploidization. In this study, we studied gene expression and DNA methylation modification patterns in four tissues (stems, leaves, flowers and siliques) of Brassica napusand its diploid progenitors. On this basis, the alternative splicing patterns and cis-trans regulation patterns of four tissues in B. napus and its diploid progenitors were also analyzed. It can be seen that the number of alternative splicing occurs in the B. napus is higher than that in the diploid progenitors, and the IR type increases the most during allopolyploidy. In addition, we studied the fate changes of duplicated genes after allopolyploidization in B. napus. We found that the fate of most duplicated genes is conserved, but the number of neofunctionalization and specialization is also large. The genetic fate of B. napus was classified according to five replication types (WGD, PD, DSD, TD, TRD). This study also analyzed generational transmission analysis of expression and DNA methylation patterns. Our study provides a reference for the fate differentiation of duplicated genes during allopolyploidization.
Collapse
Affiliation(s)
- Weiqi Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
8
|
Ghosh S, Choudhury D, Ghosh D, Mondal M, Singha D, Malakar P. Characterization of polyploidy in cancer: Current status and future perspectives. Int J Biol Macromol 2024; 268:131706. [PMID: 38643921 DOI: 10.1016/j.ijbiomac.2024.131706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Various cancers frequently exhibit polyploidy, observed in a condition where a cell possesses more than two sets of chromosomes, which is considered a hallmark of the disease. The state of polyploidy often leads to aneuploidy, where cells possess an abnormal number or structure of chromosomes. Recent studies suggest that oncogenes contribute to aneuploidy. This finding significantly underscores its impact on cancer. Cancer cells exposed to certain chemotherapeutic drugs tend to exhibit an increased incidence of polyploidy. This occurrence is strongly associated with several challenges in cancer treatment, including metastasis, resistance to chemotherapy and the recurrence of malignant tumors. Indeed, it poses a significant hurdle to achieve complete tumor eradication and effective cancer therapy. Recently, there has been a growing interest in the field of polyploidy related to cancer for developing effective anti-cancer therapies. Polyploid cancer cells confer both advantages and disadvantages to tumor pathogenicity. This review delineates the diverse characteristics of polyploid cells, elucidates the pivotal role of polyploidy in cancer, and explores the advantages and disadvantages it imparts to cancer cells, along with the current approaches tried in lab settings to target polyploid cells. Additionally, it considers experimental strategies aimed at addressing the outstanding questions within the realm of polyploidy in relation to cancer.
Collapse
Affiliation(s)
- Srijonee Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Debopriya Choudhury
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Dhruba Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Didhiti Singha
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India.
| |
Collapse
|
9
|
Bezborodkina NN, Brodsky VY, Kudryavtsev BN. The role of cellular polyploidy in the regeneration of the cirrhotic liver in rats and humans. COMPARATIVE CYTOGENETICS 2024; 18:51-57. [PMID: 38601956 PMCID: PMC11004551 DOI: 10.3897/compcytogen.18.121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/17/2024] [Indexed: 04/12/2024]
Abstract
Polyploidy is a condition in which a cell has multiple diploid sets of chromosomes. Two forms of polyploidy are known. One of them, generative polyploidy, is characteristic of all cells of the organism, while the other form develops only in some somatic tissues at certain stages of postnatal ontogenesis. Whole genome duplication has played a particularly important role in the evolution of plants and animals, while the role of cellular (somatic) polyploidy in organisms remains largely unclear. In this work we investigated the contribution of cellular polyploidy to the normal and the reparative liver growth of Rattusnorvegicus (Berkenhout, 1769) and Homosapiens Linnaeus, 1758. It is shown that polyploidy makes a significant contribution to the increase of the liver mass both in the course of normal postnatal development and during pathological process.
Collapse
Affiliation(s)
- Natalia N. Bezborodkina
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb.1, St Petersburg 199034, RussiaZoological Institute, Russian Academy of SciencesSt PetersburgRussia
| | - Vsevolod Ya. Brodsky
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov str., Moscow 119334, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| | - Boris N. Kudryavtsev
- Saint-Petersburg State University, University ave 26, St Petersburg 198504, RussiaSaint-Petersburg State UniversitySt PetersburgRussia
| |
Collapse
|
10
|
Penin AA, Kasianov AS, Klepikova AV, Omelchenko DO, Makarenko MS, Logacheva MD. Origin and diversity of Capsella bursa-pastoris from the genomic point of view. BMC Biol 2024; 22:52. [PMID: 38439107 PMCID: PMC10913212 DOI: 10.1186/s12915-024-01832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Capsella bursa-pastoris, a cosmopolitan weed of hybrid origin, is an emerging model object for the study of early consequences of polyploidy, being a fast growing annual and a close relative of Arabidopsis thaliana. The development of this model is hampered by the absence of a reference genome sequence. RESULTS We present here a subgenome-resolved chromosome-scale assembly and a genetic map of the genome of Capsella bursa-pastoris. It shows that the subgenomes are mostly colinear, with no massive deletions, insertions, or rearrangements in any of them. A subgenome-aware annotation reveals the lack of genome dominance-both subgenomes carry similar number of genes. While most chromosomes can be unambiguously recognized as derived from either paternal or maternal parent, we also found homeologous exchange between two chromosomes. It led to an emergence of two hybrid chromosomes; this event is shared between distant populations of C. bursa-pastoris. The whole-genome analysis of 119 samples belonging to C. bursa-pastoris and its parental species C. grandiflora/rubella and C. orientalis reveals introgression from C. orientalis but not from C. grandiflora/rubella. CONCLUSIONS C. bursa-pastoris does not show genome dominance. In the earliest stages of evolution of this species, a homeologous exchange occurred; its presence in all present-day populations of C. bursa-pastoris indicates on a single origin of this species. The evidence coming from whole-genome analysis challenges the current view that C. grandiflora/rubella was a direct progenitor of C. bursa-pastoris; we hypothesize that it was an extinct (or undiscovered) species sister to C. grandiflora/rubella.
Collapse
Affiliation(s)
- Aleksey A Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia.
| | - Artem S Kasianov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Anna V Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Denis O Omelchenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Maksim S Makarenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Maria D Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
11
|
Zhu F, Lu J, Sun K, Deng C, Xu Y. Polyploidization of Indotyphlops braminus: evidence from isoform-sequencing. BMC Genom Data 2024; 25:23. [PMID: 38408920 PMCID: PMC10895795 DOI: 10.1186/s12863-024-01208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Indotyphlops braminus, the only known triploid parthenogenetic snake, is a compelling species for revealing the mechanism of polyploid emergence in vertebrates. METHODS In this study, we applied PacBio isoform sequencing technology to generate the first full-length transcriptome of I. braminus, aiming to improve the understanding of the molecular characteristics of this species. RESULTS A total of 51,849 nonredundant full-length transcript assemblies (with an N50 length of 2980 bp) from I. braminus were generated and fully annotated using various gene function databases. Our analysis provides preliminary evidence supporting a recent genome duplication event in I. braminus. Phylogenetic analysis indicated that the divergence of I. braminus subgenomes occurred approximately 11.5 ~ 15 million years ago (Mya). The full-length transcript resource generated as part of this research will facilitate transcriptome analysis and genomic evolution studies in the future.
Collapse
Affiliation(s)
- Fei Zhu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China.
| | - Jing Lu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China
| | - Ke Sun
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China
| | - Cao Deng
- Department of Bioinformatics, DNA Stories Bioinformatics Center, 610000, Chengdu, China
| | - Yu Xu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Záveská E, Šída O, Leong-Škorničková J, Chumová Z, Trávníček P, Newman MF, Poulsen AD, Böhmová A, Chudáčková H, Fér T. Testing the large genome constraint hypothesis in tropical rhizomatous herbs: life strategies, plant traits and habitat preferences in gingers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1223-1238. [PMID: 37991980 DOI: 10.1111/tpj.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Plant species with large genomes tend to be excluded from climatically more extreme environments with a shorter growing season. Species that occupy such environments are assumed to be under natural selection for more rapid growth and smaller genome size (GS). However, evidence for this is available only for temperate organisms. Here, we study the evolution of GS in two subfamilies of the tropical family Zingiberaceae to find out whether species with larger genomes are confined to environments where the vegetative season is longer. We tested our hypothesis on 337 ginger species from regions with contrasting climates by correlating their GS with an array of plant traits and environmental variables. We revealed 16-fold variation in GS which was tightly related to shoot seasonality. Negative correlations of GS with latitude, temperature and precipitation emerged in the subfamily Zingiberoidae, demonstrating that species with larger GS are excluded from areas with a shorter growing season. In the subfamily Alpinioideae, GS turned out to be correlated with the type of stem and light requirements and its members cope with seasonality mainly by adaptation to shady and moist habitats. The Ornstein-Uhlenbeck models suggested that evolution in regions with humid climates favoured larger GS than in drier regions. Our results indicate that climate seasonality exerts an upper constraint on GS not only in temperate regions but also in the tropics, unless species with large genomes find alternative ways to escape from that constraint.
Collapse
Affiliation(s)
- E Záveská
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - O Šída
- Department of Botany, National Museum in Prague, Prague, Czech Republic
| | - J Leong-Škorničková
- The Herbarium, Singapore Botanic Gardens, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Z Chumová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - P Trávníček
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - M F Newman
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - A D Poulsen
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - A Böhmová
- Department of Botany, National Museum in Prague, Prague, Czech Republic
- Department of Botany, Charles University, Prague, Czech Republic
| | - H Chudáčková
- Department of Botany, Charles University, Prague, Czech Republic
| | - T Fér
- Department of Botany, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Yoo MJ, Koh J, Boatwright JL, Soltis DE, Soltis PS, Barbazuk WB, Chen S. Investigation of regulatory divergence between homoeologs in the recently formed allopolyploids, Tragopogon mirus and T. miscellus (Asteraceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1191-1205. [PMID: 37997015 DOI: 10.1111/tpj.16553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Polyploidy is an important evolutionary process throughout eukaryotes, particularly in flowering plants. Duplicated gene pairs (homoeologs) in allopolyploids provide additional genetic resources for changes in molecular, biochemical, and physiological mechanisms that result in evolutionary novelty. Therefore, understanding how divergent genomes and their regulatory networks reconcile is vital for unraveling the role of polyploidy in plant evolution. Here, we compared the leaf transcriptomes of recently formed natural allotetraploids (Tragopogon mirus and T. miscellus) and their diploid parents (T. porrifolius X T. dubius and T. pratensis X T. dubius, respectively). Analysis of 35 400 expressed loci showed a significantly higher level of transcriptomic additivity compared to old polyploids; only 22% were non-additively expressed in the polyploids, with 5.9% exhibiting transgressive expression (lower or higher expression in the polyploids than in the diploid parents). Among approximately 7400 common orthologous regions (COREs), most loci in both allopolyploids exhibited expression patterns that were vertically inherited from their diploid parents. However, 18% and 20.3% of the loci showed novel expression bias patterns in T. mirus and T. miscellus, respectively. The expression changes of 1500 COREs were explained by cis-regulatory divergence (the condition in which the two parental subgenomes do not interact) between the diploid parents, whereas only about 423 and 461 of the gene expression changes represent trans-effects (the two parental subgenomes interact) in T. mirus and T. miscellus, respectively. The low degree of both non-additivity and trans-effects on gene expression may present the ongoing evolutionary processes of the newly formed Tragopogon polyploids (~80-90 years).
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, New York, 13699, USA
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, 32610, USA
| | - J Lucas Boatwright
- Plant and Environmental Science Department, Clemson University, Clemson, South Carolina, 29634, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
| | - Pamela S Soltis
- Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
| | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, Mississippi, 38677, USA
| |
Collapse
|
14
|
Wang Y, Tamori Y. Polyploid Cancer Cell Models in Drosophila. Genes (Basel) 2024; 15:96. [PMID: 38254985 PMCID: PMC10815460 DOI: 10.3390/genes15010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cells with an abnormal number of chromosomes have been found in more than 90% of solid tumors, and among these, polyploidy accounts for about 40%. Polyploidized cells most often have duplicate centrosomes as well as genomes, and thus their mitosis tends to promote merotelic spindle attachments and chromosomal instability, which produces a variety of aneuploid daughter cells. Polyploid cells have been found highly resistant to various stress and anticancer therapies, such as radiation and mitogenic inhibitors. In other words, common cancer therapies kill proliferative diploid cells, which make up the majority of cancer tissues, while polyploid cells, which lurk in smaller numbers, may survive. The surviving polyploid cells, prompted by acute environmental changes, begin to mitose with chromosomal instability, leading to an explosion of genetic heterogeneity and a concomitant cell competition and adaptive evolution. The result is a recurrence of the cancer during which the tenacious cells that survived treatment express malignant traits. Although the presence of polyploid cells in cancer tissues has been observed for more than 150 years, the function and exact role of these cells in cancer progression has remained elusive. For this reason, there is currently no effective therapeutic treatment directed against polyploid cells. This is due in part to the lack of suitable experimental models, but recently several models have become available to study polyploid cells in vivo. We propose that the experimental models in Drosophila, for which genetic techniques are highly developed, could be very useful in deciphering mechanisms of polyploidy and its role in cancer progression.
Collapse
Affiliation(s)
| | - Yoichiro Tamori
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Lee J, Kang YJ, Park H, Shim S, Ha J, Lee T, Kim MY, Lee SH. Unraveling the maternal and paternal origins of allotetraploid Vigna reflexo-pilosa. Sci Rep 2023; 13:22951. [PMID: 38135720 PMCID: PMC10746702 DOI: 10.1038/s41598-023-49908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The genomic structures of Vigna hirtella Ridl. and Vigna trinervia (B.Heyne ex Wight & Arn.) Tateishi & Maxted, key ancestral species of the allotetraploid Vigna reflexo-pilosa var. glabra (Roxb.) N.Tomooka & Maxted, remain poorly understood. This study presents a comprehensive genomic comparison of these species to deepen our knowledge of their evolutionary trajectories. By comparing the genomic profiles of V. hirtella and V. trinervia with those of V. reflexo-pilosa, we investigate the complex genomic mechanisms underlying allopolyploid evolution within the genus Vigna. Comparison of the chloroplast genome revealed that V. trinervia is closely related to V. reflexo-pilosa. De novo assembly of the whole genome, followed by synteny analysis and Ks value calculations, confirms that V. trinervia is closely related to the A genome of V. reflexo-pilosa, and V. hirtella to its B genome. Furthermore, the comparative analyses reveal that V. reflexo-pilosa retains residual signatures of a previous polyploidization event, particularly evident in higher gene family copy numbers. Our research provides genomic evidence for polyploidization within the genus Vigna and identifies potential donor species of allotetraploid species using de novo assembly techniques. Given the Southeast Asian distribution of both V. hirtella and V. trinervia, natural hybridization between these species, with V. trinervia as the maternal ancestor and V. hirtella as the paternal donor, seems plausible.
Collapse
Affiliation(s)
- Jayern Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- , Macrogen, Seoul, Republic of Korea
| | - Yang Jae Kang
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science Department at, Gyeongsang National University, Jinju, Republic of Korea
| | - Halim Park
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, Republic of Korea
| | - Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Jungmin Ha
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | | | - Moon Young Kim
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Yang L, Harris AJ, Wen F, Li Z, Feng C, Kong H, Kang M. Phylogenomic Analyses Reveal an Allopolyploid Origin of Core Didymocarpinae (Gesneriaceae) Followed by Rapid Radiation. Syst Biol 2023; 72:1064-1083. [PMID: 37158589 PMCID: PMC10627561 DOI: 10.1093/sysbio/syad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Allopolyploid plants have long been regarded as possessing genetic advantages under certain circumstances due to the combined effects of their hybrid origins and duplicated genomes. However, the evolutionary consequences of allopolyploidy in lineage diversification remain to be fully understood. Here, we investigate the evolutionary consequences of allopolyploidy using 138 transcriptomic sequences of Gesneriaceae, including 124 newly sequenced, focusing particularly on the largest subtribe Didymocarpinae. We estimated the phylogeny of Gesneriaceae using concatenated and coalescent-based methods based on five different nuclear matrices and 27 plastid genes, focusing on relationships among major clades. To better understand the evolutionary affinities in this family, we applied a range of approaches to characterize the extent and cause of phylogenetic incongruence. We found that extensive conflicts between nuclear and chloroplast genomes and among nuclear genes were caused by both incomplete lineage sorting (ILS) and reticulation, and we found evidence of widespread ancient hybridization and introgression. Using the most highly supported phylogenomic framework, we revealed multiple bursts of gene duplication throughout the evolutionary history of Gesneriaceae. By incorporating molecular dating and analyses of diversification dynamics, our study shows that an ancient allopolyploidization event occurred around the Oligocene-Miocene boundary, which may have driven the rapid radiation of core Didymocarpinae.
Collapse
Affiliation(s)
- Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fang Wen
- Guangxi Institute of Botany, Guangxi Zhang Autonomous Region and the Chinese Academy of Sciences, 541006 Guilin, China
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hanghui Kong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
17
|
Ma’ruf M, Fadli JC, Mahendra MR, Irham LM, Sulistyani N, Adikusuma W, Chong R, Septama AW. A bioinformatic approach to identify pathogenic variants for Stevens-Johnson syndrome. Genomics Inform 2023; 21:e26. [PMID: 37704211 PMCID: PMC10326529 DOI: 10.5808/gi.23010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 07/08/2023] Open
Abstract
Stevens-Johnson syndrome (SJS) produces a severe hypersensitivity reaction caused by Herpes simplex virus or mycoplasma infection, vaccination, systemic disease, or other agents. Several studies have investigated the genetic susceptibility involved in SJS. To provide further genetic insights into the pathogenesis of SJS, this study prioritized high-impact, SJS-associated pathogenic variants through integrating bioinformatic and population genetic data. First, we identified SJS-associated single nucleotide polymorphisms from the genome-wide association studies catalog, followed by genome annotation with HaploReg and variant validation with Ensembl. Subsequently, expression quantitative trait locus (eQTL) from GTEx identified human genetic variants with differential gene expression across human tissues. Our results indicate that two variants, namely rs2074494 and rs5010528, which are encoded by the HLA-C (human leukocyte antigen C) gene, were found to be differentially expressed in skin. The allele frequencies for rs2074494 and rs5010528 also appear to significantly differ across continents. We highlight the utility of these population-specific HLA-C genetic variants for genetic association studies, and aid in early prognosis and disease treatment of SJS.
Collapse
Affiliation(s)
- Muhammad Ma’ruf
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta 55164, Indonesia
| | | | | | - Lalu Muhammad Irham
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta 55164, Indonesia
- Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia
| | - Nanik Sulistyani
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta 55164, Indonesia
| | - Wirawan Adikusuma
- Departement of Pharmacy, University of Muhammadiyah Mataram, Mataram 83127, Indonesia
- Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia
| | - Rockie Chong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, CA, USA
| | - Abdi Wira Septama
- Departement of Pharmacy, University of Muhammadiyah Mataram, Mataram 83127, Indonesia
| |
Collapse
|
18
|
Anneberg TJ, O'Neill EM, Ashman TL, Turcotte MM. Polyploidy impacts population growth and competition with diploids: multigenerational experiments reveal key life-history trade-offs. THE NEW PHYTOLOGIST 2023; 238:1294-1304. [PMID: 36740596 DOI: 10.1111/nph.18794] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Ecological theory predicts that early generation polyploids ('neopolyploids') should quickly go extinct owing to the disadvantages of rarity and competition with their diploid progenitors. However, polyploids persist in natural habitats globally. This paradox has been addressed theoretically by recognizing that reproductive assurance of neopolyploids and niche differentiation can promote establishment. Despite this, the direct effects of polyploidy at the population level remain largely untested despite establishment being an intrinsically population-level process. We conducted population-level experiments where life-history investment in current and future growth was tracked in four lineage pairs of diploids and synthetic autotetraploids of the aquatic plant Spirodela polyrhiza. Population growth was evaluated with and without competition between diploids and neopolyploids across a range of nutrient treatments. Although neopolyploid populations produce more biomass, they reach lower population sizes and have reduced carrying capacities when growing alone or in competition across all nutrient treatments. Thus, contrary to individual-level studies, our population-level data suggest that neopolyploids are competitively inferior to diploids. Conversely, neopolyploid populations have greater investment in dormant propagule production than diploids. Our results show that neopolyploid populations should not persist based on current growth dynamics, but high potential future growth may allow polyploids to establish in subsequent seasons.
Collapse
Affiliation(s)
- Thomas J Anneberg
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Elizabeth M O'Neill
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Martin M Turcotte
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
19
|
Saidi MN, Mahjoubi H, Yacoubi I. Transcriptome meta-analysis of abiotic stresses-responsive genes and identification of candidate transcription factors for broad stress tolerance in wheat. PROTOPLASMA 2023; 260:707-721. [PMID: 36063229 DOI: 10.1007/s00709-022-01807-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Under field conditions, wheat is subjected to single or multiple stress conditions. The elucidation of the molecular mechanism of stress response is a key step to identify candidate genes for stress resistance in plants. In this study, RNA-seq data analysis identified 17.324, 10.562, 5.510, and 8.653 differentially expressed genes (DEGs) under salt, drought, heat, and cold stress, respectively. Moreover, the comparison of DEGs from each stress revealed 2374 shared genes from which 40% showed highly conserved expression patterns. Moreover, co-expression network analysis and GO enrichment revealed co-expression modules enriched with genes involved in transcription regulation, protein kinase pathway, and genes responding to phytohormones or modulating hormone levels. The expression of 15 selected transcription factor encoding genes was analyzed under abiotic stresses and ABA treatment in durum wheat. The identified transcription factor genes are excellent candidates for genetic engineering of stress tolerance in wheat.
Collapse
Affiliation(s)
- Mohamed Najib Saidi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, Road Sidi Mansour 6 km, P.O. Box 1177, 3018, Sfax, Tunisia.
| | - Habib Mahjoubi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, Road Sidi Mansour 6 km, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Ines Yacoubi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, Road Sidi Mansour 6 km, P.O. Box 1177, 3018, Sfax, Tunisia
| |
Collapse
|
20
|
Skubic M, Záveská E, Frajman B. Meeting in Liguria: hybridisation between Apennine endemic Euphorbia barrelieri and western Mediterranean E. nicaeensis led to the allopolyploid origin of E. ligustica. Mol Phylogenet Evol 2023; 185:107805. [PMID: 37127112 DOI: 10.1016/j.ympev.2023.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
The Mediterranean Basin is renowned for its extremely rich biota and is considered as one of the 25 Global Biodiversity Hotspots, but its diversity is not homogeneously distributed. Outstanding in the number of (endemic) species are the Ligurian Alps (Italy). At the foot of the Ligurian Alps, little above the Mediterranean Sea, a disjunct occurrence of Italian endemic Euphorbia barrelieri was reported. Using an array of integrative methods ranging from cytogenetic (chromosome number and relative genome size estimation), over phylogenetic approaches (plastid, ITS and RAD sequencing) to multivariate morphometrics we disentangled the origin of these populations that were shown to be tetraploid. We performed phylogenetic analyses of the nuclear ITS and plastid regions of a broad taxonomic sampling of Euphorbia sect. Pithyusa to identify possible species involved in the origin of the tetraploid populations and then applied various analyses of RADseq data to identify the putative parental species. Our results have shown that the Ligurian populations of E. barrelieri are of allotetraploid origin that involved E. barrelieri and western Mediterranean E. nicaeensis as parental species. We thus describe a new species, E. ligustica, and hypothesise that its adaptation to similar environments in which E. barrelieri occurs, triggered development of similar morphology, whereas its genetic composition appears to be closer to that of E. nicaeensis. Our study emphasises the importance of polyploidisation for plant diversification, highlights the value of the Ligurian Alps as a hotspot of biodiversity and endemism and underlines the importance of integrative taxonomic approaches in uncovering cryptic diversity.
Collapse
Affiliation(s)
- Maruša Skubic
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria; Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Eliška Záveská
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 25243 Průhonice, Czech Republic
| | - Božo Frajman
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria.
| |
Collapse
|
21
|
Quintanilla LG, Aranda I, Clemente-Moreno MJ, Pons-Perpinyà J, Gago J. Ecophysiological Differentiation among Two Resurrection Ferns and Their Allopolyploid Derivative. PLANTS (BASEL, SWITZERLAND) 2023; 12:1529. [PMID: 37050155 PMCID: PMC10096763 DOI: 10.3390/plants12071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Theoretically, the coexistence of diploids and related polyploids is constrained by reproductive and competitive mechanisms. Although niche differentiation can explain the commonly observed co-occurrence of cytotypes, the underlying ecophysiological differentiation among cytotypes has hardly been studied. We compared the leaf functional traits of the allotetraploid resurrection fern Oeosporangium tinaei (HHPP) and its diploid parents, O. hispanicum (HH) and O. pteridioides (PP), coexisting in the same location. Our experimental results showed that all three species can recover physiological status after severe leaf dehydration, which confirms their 'resurrection' ability. However, compared with PP, HH had much higher investment per unit area of light-capturing surface, lower carbon assimilation rate per unit mass for the same midday water potential, higher non-enzymatic antioxidant capacity, higher carbon content, and lower contents of nitrogen, phosphorus, and other macronutrients. These traits allow HH to live in microhabitats with less availability of water and nutrients (rock crevices) and to have a greater capacity for resurrection. The higher assimilation capacity and lower antioxidant capacity of PP explain its more humid and nutrient-rich microhabitats (shallow soils). HHPP traits were mostly intermediate between those of HH and PP, and they allow the allotetraploid to occupy the free niche space left by the diploids.
Collapse
Affiliation(s)
- Luis G. Quintanilla
- School of Environmental Sciences and Technology (ESCET), University Rey Juan Carlos, 28922 Móstoles, Spain
| | - Ismael Aranda
- National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council, 28040 Madrid, Spain
| | - María José Clemente-Moreno
- Agro-Environmental and Water Economics Institute (INAGEA), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Joan Pons-Perpinyà
- Agro-Environmental and Water Economics Institute (INAGEA), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Jorge Gago
- Agro-Environmental and Water Economics Institute (INAGEA), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| |
Collapse
|
22
|
Mezzasalma M, Brunelli E, Odierna G, Guarino FM. Evolutionary and Genomic Diversity of True Polyploidy in Tetrapods. Animals (Basel) 2023; 13:ani13061033. [PMID: 36978574 PMCID: PMC10044425 DOI: 10.3390/ani13061033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
True polyploid organisms have more than two chromosome sets in their somatic and germline cells. Polyploidy is a major evolutionary force and has played a significant role in the early genomic evolution of plants, different invertebrate taxa, chordates, and teleosts. However, the contribution of polyploidy to the generation of new genomic, ecological, and species diversity in tetrapods has traditionally been underestimated. Indeed, polyploidy represents an important pathway of genomic evolution, occurring in most higher-taxa tetrapods and displaying a variety of different forms, genomic configurations, and biological implications. Herein, we report and discuss the available information on the different origins and evolutionary and ecological significance of true polyploidy in tetrapods. Among the main tetrapod lineages, modern amphibians have an unparalleled diversity of polyploids and, until recently, they were considered to be the only vertebrates with closely related diploid and polyploid bisexual species or populations. In reptiles, polyploidy was thought to be restricted to squamates and associated with parthenogenesis. In birds and mammals, true polyploidy has generally been considered absent (non-tolerated). These views are being changed due to an accumulation of new data, and the impact as well as the different evolutionary and ecological implications of polyploidy in tetrapods, deserve a broader evaluation.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
- Correspondence: (M.M.); (E.B.)
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
- Correspondence: (M.M.); (E.B.)
| | - Gaetano Odierna
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy (F.M.G.)
| | - Fabio Maria Guarino
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy (F.M.G.)
| |
Collapse
|
23
|
Haworth M, Marino G, Materassi A, Raschi A, Scutt CP, Centritto M. The functional significance of the stomatal size to density relationship: Interaction with atmospheric [CO 2] and role in plant physiological behaviour. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160908. [PMID: 36535478 DOI: 10.1016/j.scitotenv.2022.160908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The limits for stomatal conductance are set by stomatal size (SS) and density (SD). An inverse relationship between SS and SD has been observed in fossil and living plants. This has led to hypotheses proposing that the ratio of SS to SD influences the diffusion pathway for CO2 and degree of physiological stomatal control. However, conclusive evidence supportive of a functional role of the SS-SD relationship is not evident, and patterns in SS-SD may simply reflect geometric constraints in stomatal spacing over a leaf surface. We examine published and new data to investigate the potential functional significance of the relationship between SS and SD to atmospheric [CO2] in multiple generation adaptive responses and short-term acclamatory adjustment of stomatal morphology. Consistent patterns in SS and SD were not evident in fossil and living plants adapted to high [CO2] over many generations. However, evolutionary adaptation to [CO2] strongly affected SS and SD responses to elevated [CO2], with plants adapted to the 'low' [CO2] of the past 10 million years (Myr) showing adjustment of SS-SD, while members of the same species adapted to 'high' [CO2] showed no response. This may suggest that SS and SD responses to future [CO2] will likely constrain the stimulatory effect of 'CO2-fertilisation' on photosynthesis. Angiosperms generally possessed higher densities of smaller stomata that corresponded to a greater degree of physiological stomatal control consistent with selective pressures induced by declining [CO2] over the past 90 Myr. Atmospheric [CO2] has likely shaped stomatal size and density relationships alongside the interaction with stomatal physiological behaviour. The rate and predicted extent of future increases in [CO2] will have profound impacts on the selective pressures shaping SS and SD. Understanding the trade-offs involved in SS-SD and the interaction with [CO2], will be central to the development of more productive climate resilient crops.
Collapse
Affiliation(s)
- Matthew Haworth
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR-IPSP), Via Madonna del Piano 10 Sesto Fiorentino, 50019 Firenze, Italy.
| | - Giovanni Marino
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR-IPSP), Via Madonna del Piano 10 Sesto Fiorentino, 50019 Firenze, Italy
| | - Alessandro Materassi
- The Institute of BioEconomy, National Research Council of Italy (CNR-IBE), Via Giovanni Caproni 8, 50145 Firenze, Italy
| | - Antonio Raschi
- The Institute of BioEconomy, National Research Council of Italy (CNR-IBE), Via Giovanni Caproni 8, 50145 Firenze, Italy
| | - Charles P Scutt
- Laboratoire de Reproduction et Développement des Plantes, UMR5667, CNRS, INRA, Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France
| | - Mauro Centritto
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR-IPSP), Via Madonna del Piano 10 Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
24
|
Omeershffudin UNM, Kumar S. Antibiotic resistance in Neisseria gonorrhoeae: broad-spectrum drug target identification using subtractive genomics. Genomics Inform 2023; 21:e5. [PMID: 37037463 PMCID: PMC10085745 DOI: 10.5808/gi.22066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 04/03/2023] Open
Abstract
Neisseria gonorrhoeae is a Gram-negative aerobic diplococcus bacterium that primarily causes sexually transmitted infections through direct human sexual contact. It is a major public health threat due to its impact on reproductive health, the widespread presence of antimicrobial resistance, and the lack of a vaccine. In this study, we used a bioinformatics approach and performed subtractive genomic methods to identify potential drug targets against the core proteome of N. gonorrhoeae (12 strains). In total, 12,300 protein sequences were retrieved, and paralogous proteins were removed using CD-HIT. The remaining sequences were analyzed for non-homology against the human proteome and gut microbiota, and screened for broad-spectrum analysis, druggability, and anti-target analysis. The proteins were also characterized for unique interactions between the host and pathogen through metabolic pathway analysis. Based on the subtractive genomic approach and subcellular localization, we identified one cytoplasmic protein, 2Fe-2S iron-sulfur cluster binding domain-containing protein (NGFG RS03485), as a potential drug target. This protein could be further exploited for drug development to create new medications and therapeutic agents for the treatment of N. gonorrhoeae infections.
Collapse
Affiliation(s)
| | - Suresh Kumar
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia
| |
Collapse
|
25
|
Hajrudinović-Bogunić A, Frajman B, Schönswetter P, Siljak-Yakovlev S, Bogunić F. Apomictic Mountain Whitebeam (Sorbus austriaca, Rosaceae) Comprises Several Genetically and Morphologically Divergent Lineages. BIOLOGY 2023; 12:biology12030380. [PMID: 36979072 PMCID: PMC10045669 DOI: 10.3390/biology12030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The interplay of polyploidisation, hybridization, and apomixis contributed to the exceptional diversity of Sorbus (Rosaceae), giving rise to a mosaic of genetic and morphological entities. The Sorbus austriaca species complex from the mountains of Central and South-eastern Europe represents an allopolyploid apomictic system of populations that originated following hybridisation between S. aria and S. aucuparia. However, the mode and frequency of such allopolyploidisations and the relationships among different, morphologically more or less similar populations that have often been described as different taxa remain largely unexplored. We used amplified fragment length polymorphism (AFLP) fingerprinting, plastid DNA sequencing, and analyses of nuclear microsatellites, along with multivariate morphometrics and ploidy data, to disentangle the relationships among populations within this intricate complex. Our results revealed a mosaic of genetic lineages—many of which have not been taxonomically recognised—that originated via multiple allopolyploidisations. The clonal structure within and among populations was then maintained via apomixis. Our results thus support previous findings that hybridisation, polyploidization, and apomixis are the main drivers of Sorbus diversification in Europe.
Collapse
Affiliation(s)
| | - Božo Frajman
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
- Correspondence: (B.F.); (F.B.)
| | - Peter Schönswetter
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Sonja Siljak-Yakovlev
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Faruk Bogunić
- Faculty of Forestry, University of Sarajevo, Zagrebačka 20, 71000 Sarajevo, Bosnia and Herzegovina
- Correspondence: (B.F.); (F.B.)
| |
Collapse
|
26
|
Pungaršek Š, Dolenc Koce J, Bačič M, Barfuss MHJ, Schönswetter P, Frajman B. Disentangling Relationships among the Alpine Species of Luzula Sect. Luzula (Juncaceae) in the Eastern Alps. PLANTS (BASEL, SWITZERLAND) 2023; 12:973. [PMID: 36840321 PMCID: PMC9960804 DOI: 10.3390/plants12040973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Polyploidisation, agmatoploidy and symploidy have driven the diversification of Luzula sect. Luzula. Several morphologically very similar species with different karyotypes have evolved, but their evolutionary origins and relationships are unknown. In this study, we used a combination of relative genome size and karyotype estimations as well amplified fragment length polymorphism (AFLP) fingerprinting to investigate the relationships among predominately (sub)alpine Luzula alpina, L. exspectata, L multiflora and L. sudetica in the Eastern Alps, including also some samples of L. campestris and L. taurica as outgroup. Our study revealed common co-occurrence of two or three different ploidies (di-, tetra- and hexaploids) at the same localities, and thus also common co-occurrence of different species, of which L. sudetica was morphologically, ecologically and genetically most divergent. Whereas agmatoploid L. exspectata likely originated only once from the Balkan L. taurica, and hexaploid L. multiflora once from tetraploid L. multiflora, the AFLP data suggest multiple origins of tetraploid L. multiflora, from which partly agmatoploid individuals of L. alpina likely originated recurrently by partial fragmentation of the chromosomes. In contrast to common recurrent formation of polyploids in flowering plants, populations of agmatoploids resulting by fission of complete chromosome sets appear to have single origins, whereas partial agmatoploids are formed recurrently. Whether this is a general pattern in Luzula sect. Luzula, and whether segregation of ecological niches supports the frequent co-occurrence of closely related cytotypes in mixed populations, remains the subject of ongoing research.
Collapse
Affiliation(s)
- Špela Pungaršek
- Slovenian Museum of Natural History, Prešernova 20, SI-1000 Ljubljana, Slovenia
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Jasna Dolenc Koce
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Martina Bačič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Michael H. J. Barfuss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Peter Schönswetter
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Božo Frajman
- Slovenian Museum of Natural History, Prešernova 20, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
Haist G, Sidjimova B, Vladimirov V, Georgieva L, Nikolova M, Bastida J, Berkov S. Morphological, cariological, and phytochemical studies of diploid and autotetraploid Hippeastrum papilio plants. PLANTA 2023; 257:51. [PMID: 36757512 DOI: 10.1007/s00425-023-04084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The polyploidization of Hippeastrum papilio influences its primary and secondary metabolism including the biosynthesis of bioactive alkaloids. Hippeastrum papilio is an ornamental plant that has advantages in comparison to the currently used plants for the extraction of galanthamine, a natural compound used for the cognitive treatment of Alzheimer's disease. In the present study, an autotetraploid line of H. papilio was induced for the first time, after treatment with 0.05% colchicine for 48 h. The chromosome number in diploids was found to be 2n = 2x = 22 and for autotetraploids 2n = 4x = 44. The flow cytometric analyses detected a DNA C-value of 14.88 ± 0.03 pg (1C) in diploids and 26.57 ± 0.12 pg in autotetraploids. The morphological, cytological, and phytochemical studies showed significant differences between diploids and autotetraploids. The length and width of stomata in autotetraploids were 22.47% and 17.94%, respectively, larger than those observed in the diploid leaves. The biomass of one-year-old autotetraploid H. papilio plants was reduced by 53.99% for plants' fresh weight, 56.53% for leaves' fresh weight, and 21.70% for bulb diameter. The GC-MS analysis of methanol extracts from one-year-old diploid and autotetraploid H. papilio plants revealed over 60 primary and secondary metabolites including alkaloids, phenolic acids, sterols, saccharides, and alcohols, among others. Principal component analysis of the metabolite profiles indicates a divergence of the metabolism between diploid and autotetraploid plants. The content of galanthamine and haemanthamine was found to be 49.73% and 80.10%, respectively, higher in the leaves of autotetraploids, compared to the diploid ones. The biosynthesis of the saccharides shows a tendency to be upregulated in tetraploid plants, while that of phenolic acids was downregulated. Polyploidization of H. papilio creates possibilities for further crop improvement aimed at high-galanthamine-producing genotypes.
Collapse
Affiliation(s)
- Gabriela Haist
- Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 23, 1113, Sofia, Bulgaria
| | - Boriana Sidjimova
- Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 23, 1113, Sofia, Bulgaria
| | - Vladimir Vladimirov
- Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 23, 1113, Sofia, Bulgaria
| | | | - Milena Nikolova
- Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 23, 1113, Sofia, Bulgaria
| | - Jaume Bastida
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de la Salut, Universitat de Barcelona, Av. Joan XXIII #27-31, Catalonia, 08028, Barcelona, Spain
| | - Strahil Berkov
- Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 23, 1113, Sofia, Bulgaria.
| |
Collapse
|
28
|
Eisenring M, Lindroth RL, Flansburg A, Giezendanner N, Mock KE, Kruger EL. Genotypic variation rather than ploidy level determines functional trait expression in a foundation tree species in the presence and absence of environmental stress. ANNALS OF BOTANY 2023; 131:229-242. [PMID: 35641114 PMCID: PMC9904343 DOI: 10.1093/aob/mcac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/28/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS At the population level, genetic diversity is a key determinant of a tree species' capacity to cope with stress. However, little is known about the relative importance of the different components of genetic diversity for tree stress responses. We compared how two sources of genetic diversity, genotype and cytotype (i.e. differences in ploidy levels), influence growth, phytochemical and physiological traits of Populus tremuloides in the presence and absence of environmental stress. METHODS In a series of field studies, we first assessed variation in traits across diploid and triploid aspen genotypes from Utah and Wisconsin under non-stressed conditions. In two follow-up experiments, we exposed diploid and triploid aspen genotypes from Wisconsin to individual and interactive drought stress and defoliation treatments and quantified trait variations under stress. KEY RESULTS We found that (1) tree growth and associated traits did not differ significantly between ploidy levels under non-stressed conditions. Instead, variation in tree growth and most other traits was driven by genotypic and population differences. (2) Genotypic differences were critical for explaining variation of most functional traits and their responses to stress. (3) Ploidy level played a subtle role in shaping traits and trait stress responses, as its influence was typically obscured by genotypic differences. (4) As an exception to the third conclusion, we showed that triploid trees expressed 17 % higher foliar defence (tremulacin) levels, 11 % higher photosynthesis levels and 23 % higher rubisco activity under well-watered conditions. Moreover, triploid trees displayed greater drought resilience than diploids as they produced 35 % more new tissue than diploids when recovering from drought stress. CONCLUSION Although ploidy level can strongly influence the ecology of tree species, those effects may be relatively small in contrast to the effects of genotypic variation in highly diverse species.
Collapse
Affiliation(s)
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, USA
| | - Amy Flansburg
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WIUSA
| | - Noreen Giezendanner
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, USA
| | - Karen E Mock
- Department of Wildland Resources and Ecology Center, 5230 Old Main Hill, Utah State University, Logan, UT, USA
| | - Eric L Kruger
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WIUSA
| |
Collapse
|
29
|
Segredo-Otero E, Sanjuán R. Genetic complementation fosters evolvability in complex fitness landscapes. Sci Rep 2023; 13:662. [PMID: 36635310 PMCID: PMC9837146 DOI: 10.1038/s41598-022-26588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
The ability of natural selection to optimize traits depends on the topology of the genotype-fitness map (fitness landscape). Epistatic interactions produce rugged fitness landscapes, where adaptation is constrained by the presence of low-fitness intermediates. Here, we used simulations to explore how evolvability in rugged fitness landscapes is influenced by genetic complementation, a process whereby different sequence variants mutually compensate for their deleterious mutations. We designed our model inspired by viral populations, in which genetic variants are known to interact frequently through coinfection. Our simulations indicate that genetic complementation enables a more efficient exploration of rugged fitness landscapes. Although this benefit may be undermined by genetic parasites, its overall effect on evolvability remains positive in populations that exhibit strong relatedness between interacting sequences. Similar processes could operate in contexts other than viral coinfection, such as in the evolution of ploidy.
Collapse
Affiliation(s)
- Ernesto Segredo-Otero
- grid.4711.30000 0001 2183 4846Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980, Paterna, València, Spain.
| |
Collapse
|
30
|
Gonda I, Abu-Abied M, Adler C, Milavski R, Tal O, Davidovich-Rikanati R, Faigenboim A, Kahane-Achinoam T, Shachter A, Chaimovitsh D, Dudai N. Two independent loss-of-function mutations in anthocyanidin synthase homeologous genes are responsible for the all-green phenotype of sweet basil. PHYSIOLOGIA PLANTARUM 2023; 175:e13870. [PMID: 36724166 DOI: 10.1111/ppl.13870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/02/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Sweet basil, Ocimum basilicum L., is an important culinary herb grown worldwide. Although basil is green, many landraces, breeding lines, and exotic cultivars have purple stems and flowers. This anthocyanin pigmentation is unacceptable in traditional Italian basil used for Pesto sauce production. In the current study, we aimed to resolve the genetics that underlines the different colors. We used the recently published sweet basil genome to map quantitative trait loci (QTL) for flower and stem color in a bi-parental F2 population. It was found that the pigmentation is governed by a single QTL, harboring an anthocyanidin synthase (ANS) gene (EC 1.14.20.4). Further analysis revealed that the basil genome harbors two homeologous ANS genes, each carrying a loss-of-function mutation. ObANS1 carries a single base pair insertion resulting in a frameshift, and ObANS2 carries a missense mutation within the active site. In the purple-flower parent, ANS1 is functional, and ANS2 carries a nonsense mutation. The functionality of the ObANS1 active allele was validated by complementation assay in an Arabidopsis ANS mutant. Moreover, we have restored the functionality of the missense-mutated ObANS2 using site-directed activation. We found that the non-functional alleles were expressed to similar levels as the functional allele, suggesting polyploids invest futile effort in expressing non-functional genes, offsetting their advantageous redundancy. This work demonstrated the usefulness of the genomics and genetics of basil to understand the basic mechanism of metabolic traits and raise fundamental questions in polyploid plant biology.
Collapse
Affiliation(s)
- Itay Gonda
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Mohamad Abu-Abied
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Chen Adler
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Renana Milavski
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
- The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel
| | - Ofir Tal
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Rachel Davidovich-Rikanati
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Adi Faigenboim
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Tali Kahane-Achinoam
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Alona Shachter
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - David Chaimovitsh
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Nativ Dudai
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
- The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel
| |
Collapse
|
31
|
Du H, Zheng Q, Bennett RJ, Huang G. Ploidy changes in human fungal pathogens: Going beyond sexual reproduction. PLoS Pathog 2022; 18:e1010954. [PMID: 36480532 PMCID: PMC9731408 DOI: 10.1371/journal.ppat.1010954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Han Du
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Qiushi Zheng
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Guanghua Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
- * E-mail:
| |
Collapse
|
32
|
Zheng M, Li J, Zeng C, Liu X, Chu W, Lin J, Wang F, Wang W, Guo W, Xin M, Yao Y, Peng H, Ni Z, Sun Q, Hu Z. Subgenome-biased expression and functional diversification of a Na +/H + antiporter homoeologs in salt tolerance of polyploid wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1072009. [PMID: 36570929 PMCID: PMC9768589 DOI: 10.3389/fpls.2022.1072009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Common wheat (Triticum aestivum, BBAADD) is an allohexaploid species combines the D genome from Ae. tauschii and with the AB genomes from tetraploid wheat (Triticum turgidum). Compared with tetraploid wheat, hexaploid wheat has wide-ranging adaptability to environmental adversity such as salt stress. However, little is known about the molecular basis underlying this trait. The plasma membrane Na+/H+ transporter Salt Overly Sensitive 1 (SOS1) is a key determinant of salt tolerance in plants. Here we show that the upregulation of TaSOS1 expression is positively correlated with salt tolerance variation in polyploid wheat. Furthermore, both transcriptional analysis and GUS staining on transgenic plants indicated TaSOS1-A and TaSOS1-B exhibited higher basal expression in roots and leaves in normal conditions and further up-regulated under salt stress; while TaSOS1-D showed markedly lower expression in roots and leaves under normal conditions, but significant up-regulated in roots but not leaves under salt stress. Moreover, transgenic studies in Arabidopsis demonstrate that three TaSOS1 homoeologs display different contribution to salt tolerance and TaSOS1-D plays the prominent role in salt stress. Our findings provide insights into the subgenomic homoeologs variation potential to broad adaptability of natural polyploidy wheat, which might effective for genetic improvement of salinity tolerance in wheat and other crops.
Collapse
Affiliation(s)
- Mei Zheng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jinpeng Li
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chaowu Zeng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- Institute of Crop Sciences, Xinjiang Academy of Agricultural Sciences, Urumuqi, China
| | - Xingbei Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Wei Chu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jingchen Lin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Fengzhi Wang
- Hebei Key Laboratory of Crop Salt-alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou Academy of Agriculture and Forestry Science, Cangzhou, China
| | - Weiwei Wang
- Hebei Key Laboratory of Crop Salt-alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou Academy of Agriculture and Forestry Science, Cangzhou, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
David KT. Global gradients in the distribution of animal polyploids. Proc Natl Acad Sci U S A 2022; 119:e2214070119. [PMID: 36409908 PMCID: PMC9860298 DOI: 10.1073/pnas.2214070119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Whole genome duplications (WGDs) are one of the most dramatic mutations that can be found in nature. The effects of WGD vary dramatically but can have profound impacts on an organism's expression, cytotype, and phenotype, altering their evolutionary trajectory as a result. Despite the growing appreciation for the contribution of WGDs in animal evolution, the significant factors influencing how polyploid animal lineages are established and maintained are still not well understood. Many hypotheses have been proposed which predict how climate and environment may influence polyploid incidence and evolution. To test and distinguish between these hypotheses, I assembled a global dataset of polyploid occurrences in three animal clades (Amphibia, Actinopterygii, and Insecta). The dataset encompasses chromosomal, phylogenetic, environmental, and climatic data across 57,905 species in 2,223 terrestrial, freshwater, and marine ecoregions. My analysis reveals a strong latitudinal gradient in all three clades, with the tendency for polyploid taxa to occur more frequently at higher latitudes. Many variables were significant (phylogenetic ANOVA P < 0.05 after Bonferroni correction) between polyploids and diploids across taxa, notably those pertaining to temperature dynamics and glaciation. Glaciation in particular appears to be the most significant driver of polyploidy in animals, as these models had the highest relative likelihoods consistently across clades. These results contribute to a model of evolution wherein the broader genomic toolkit of polyploids facilitates adaptation and ecological resilience, enabling polyploids to colonize new or rapidly changing environments.
Collapse
Affiliation(s)
- Kyle T. David
- Department of Biological Sciences, Auburn University, Auburn, AL36849
| |
Collapse
|
34
|
Park SH, Kim JS, Kim HT. Asplenium pseudocapillipes (Aspleniaceae), a New Fern Species from South Korea. PLANTS (BASEL, SWITZERLAND) 2022; 11:3089. [PMID: 36432818 PMCID: PMC9696321 DOI: 10.3390/plants11223089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
A new allotetraploid species of the genus Asplenium, A. pseudocapillipes, originated from the hybridization between A. capillipes and A. tenuicaule, has been newly discovered in two limestone areas of South Korea. A molecular phylogenetic analysis using one chloroplast region (rbcL) and three single- or low-copy nuclear regions (AK1, gapCp, pgiC) and a cytological analysis, including genome size measurements, were conducted to characterize this new species. From these results, the maternal origin of A. pseudocapillipes was confirmed to be A. capillipes, which has never been reported in Korea. All three nuclear data showed that this new species had genotypes of both A. capillipes and A. tenuicaule. The quantitative characteristics of the leaves showed values intermediate between the two parental species. The absence of gemma accorded with its paternal origin from A. tenuicaule, and 32 spores per sporangium accorded with its maternal origin from A. capillipes. Although A. pseudocapillipes has 32 spores per sporangium, it is considered to be a sexually reproducing, not an apomitic, fern.
Collapse
Affiliation(s)
- Sang Hee Park
- Department of Forest Science, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Cheongju 28644, Chungbuk, Korea
| | - Jung Sung Kim
- Department of Forest Science, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Cheongju 28644, Chungbuk, Korea
| | - Hyoung Tae Kim
- Department of Ecological and Environmental System, Kyungpook National University, Gyeongsang-Daero, Sangju-Si 37224, Gyeongsangbuk-Do, Korea
| |
Collapse
|
35
|
Marinoni L, Zabala JM, Quiroga RE, Richard GA, Pensiero JF. Seed Weight and Trade-Offs: An Experiment in False Rhodes Grasses under Different Aridity Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2887. [PMID: 36365338 PMCID: PMC9654868 DOI: 10.3390/plants11212887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The false Rhodes grasses [Leptochloa crinita (Lag.) P.M. Peterson and N.W. Snow and Leptochloa pluriflora (E. Fourn.) P.M. Peterson and N.W. Snow] are considered valuable native forage resources for arid and semiarid rangelands in Argentina and the United States. Effectively using plant materials as forage under aridity conditions requires understanding their resource allocation under those conditions. In the present study, plant functional traits were evaluated in six populations of each false Rhodes grass species from different geographic origin in a humid and an arid region. The evaluation was focused on seed weight, due to the key role of this trait in plant survival. The implication of seed weight in germination under osmotic stress and trade-off relationships between functional traits were also analysed. A fixed ontogenetic variation was found in both species, since populations maintained a stable seed weight across environments. The tolerance to osmotic stress at germination stage was more related to seed weight than to population origin or maternal environment of seeds; heavier-seeded populations produced heavier seedlings instead of a higher number of germinated seeds or higher germination rates. Some traits varied between environments but other traits exhibited a fixed response. Variation patterns among populations were similar within environments and in some cases even for populations from the same geographic origin, revealing a fixed ontogenetic variation; this phenomenon was clearer in L. crinita than in L. pluriflora. Moreover, several different trade-off strategies were detected in both species. These results reinforce the knowledge about the key role of seed weight in survival and performance of seedlings at initial growth stages under arid conditions; however, at advanced stages, other traits would have an important function in growth and development of false Rhodes grasses.
Collapse
Affiliation(s)
- Lorena Marinoni
- Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral UNL-CONICET), Kreder 2805, Esperanza 3080, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral (FCA-UNL), Kreder 2805, Esperanza 3080, Argentina
| | - Juan M. Zabala
- Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral UNL-CONICET), Kreder 2805, Esperanza 3080, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral (FCA-UNL), Kreder 2805, Esperanza 3080, Argentina
| | - R. Emiliano Quiroga
- Instituto Nacional de Tecnología Agropecuaria, EEA Catamarca, Sumalao 4705, Argentina
- Cátedra de Manejo de Pastizales Naturales, Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca, Catamarca 4700, Argentina
| | - Geraldina A. Richard
- Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral UNL-CONICET), Kreder 2805, Esperanza 3080, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral (FCA-UNL), Kreder 2805, Esperanza 3080, Argentina
| | - José F. Pensiero
- Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral UNL-CONICET), Kreder 2805, Esperanza 3080, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral (FCA-UNL), Kreder 2805, Esperanza 3080, Argentina
| |
Collapse
|
36
|
Li Z, Li M, Wu X, Wang J. The characteristics of mRNA m 6A methylomes in allopolyploid Brassica napus and its diploid progenitors. HORTICULTURE RESEARCH 2022; 10:uhac230. [PMID: 36643749 PMCID: PMC9832873 DOI: 10.1093/hr/uhac230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Genome duplication events, comprising whole-genome duplication and single-gene duplication, produce a complex genomic context leading to multiple levels of genetic changes. However, the characteristics of m6A modification, the most widespread internal eukaryotic mRNA modification, in polyploid species are still poorly understood. This study revealed the characteristics of m6A methylomes within the early formation and following the evolution of allopolyploid Brassica napus. We found a complex relationship between m6A modification abundance and gene expression level depending on the degree of enrichment or presence/absence of m6A modification. Overall, the m6A genes had lower gene expression levels than the non-m6A genes. Allopolyploidization may change the expression divergence of duplicated gene pairs with identical m6A patterns and diverged m6A patterns. Compared with duplicated genes, singletons with a higher evolutionary rate exhibited higher m6A modification. Five kinds of duplicated genes exhibited distinct distributions of m6A modifications in transcripts and gene expression level. In particular, tandem duplication-derived genes showed unique m6A modification enrichment around the transcript start site. Active histone modifications (H3K27ac and H3K4me3) but not DNA methylation were enriched around genes of m6A peaks. These findings provide a new understanding of the features of m 6A modification and gene expression regulation in allopolyploid plants with sophisticated genomic architecture.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan 430062, China
| | | |
Collapse
|
37
|
Photosynthetic Efficiency and Glyco-Metabolism Changes in Artificial Triploid Loquats Contribute to Heterosis Manifestation. Int J Mol Sci 2022; 23:ijms231911337. [PMID: 36232635 PMCID: PMC9570370 DOI: 10.3390/ijms231911337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies indicated that extensive genetic variations could be generated due to polyploidy, which is considered to be closely associated with the manifestation of polyploid heterosis. Our previous studies confirmed that triploid loquats demonstrated significant heterosis, other than the ploidy effect, but the underlying mechanisms are largely unknown. This study aimed to overcome the narrow genetic distance of loquats, increase the genetic variation level of triploid loquats, and systematically illuminate the heterosis mechanisms of triploid loquats derived from two cross combinations. Here, inter-simple sequence repeats (ISSRs) and simple sequence repeats (SSRs) were adopted for evaluating the genetic diversity, and transcriptome sequencing (RNA-Seq) was performed to investigate gene expression as well as pathway changes in the triploids. We found that extensive genetic variations were produced during the formation of triploid loquats. The polymorphism ratios of ISSRs and SSRs were 43.75% and 19.32%, respectively, and almost all their markers had a PIC value higher than 0.5, suggesting that both ISSRs and SSRs could work well in loquat assisted breeding. Furthermore, our results revealed that by broadening the genetic distance between the parents, genetic variations in triploids could be promoted. Additionally, RNA-Seq results suggested that numerous genes differentially expressed between the triploids and parents were screened out. Moreover, KEGG analyses revealed that “photosynthetic efficiency” and “glyco-metabolism” were significantly changed in triploid loquats compared with the parents, which was consistent with the results of physiological indicator analyses, leaf micro-structure observations, and qRT-PCR validation. Collectively, our results suggested that extensive genetic variations occurred in the triploids and that the changes in the “photosynthetic efficiency” as well as “glyco-metabolism” of triploids might have further resulted in heterosis manifestation in the triploid loquats.
Collapse
|
38
|
Han TS, Hu ZY, Du ZQ, Zheng QJ, Liu J, Mitchell-Olds T, Xing YW. Adaptive responses drive the success of polyploid yellowcresses ( Rorippa, Brassicaceae) in the Hengduan Mountains, a temperate biodiversity hotspot. PLANT DIVERSITY 2022; 44:455-467. [PMID: 36187546 PMCID: PMC9512641 DOI: 10.1016/j.pld.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/16/2023]
Abstract
Polyploids contribute substantially to plant evolution and biodiversity; however, the mechanisms by which they succeed are still unclear. According to the polyploid adaptation hypothesis, successful polyploids spread by repeated adaptive responses to new environments. Here, we tested this hypothesis using two tetraploid yellowcresses (Rorippa), the endemic Rorippa elata and the widespread Rorippa palustris, in the temperate biodiversity hotspot of the Hengduan Mountains. Speciation modes were resolved by phylogenetic modeling using 12 low-copy nuclear loci. Phylogeographical patterns were then examined using haplotypes phased from four plastid and ITS markers, coupled with historical niche reconstruction by ecological niche modeling. We inferred the time of hybrid origins for both species as the mid-Pleistocene, with shared glacial refugia within the southern Hengduan Mountains. Phylogeographic and ecological niche reconstruction indicated recurrent northward colonization by both species after speciation, possibly tracking denuded habitats created by glacial retreat during interglacial periods. Common garden experiment involving perennial R. elata conducted over two years revealed significant changes in fitness-related traits across source latitudes or altitudes, including latitudinal increases in survival rate and compactness of plant architecture, suggesting gradual adaptation during range expansion. These findings support the polyploid adaptation hypothesis and suggest that the spread of polyploids was aided by adaptive responses to environmental changes during the Pleistocene. Our results thus provide insight into the evolutionary success of polyploids in high-altitude environments.
Collapse
Affiliation(s)
- Ting-Shen Han
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Zheng-Yan Hu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Qiang Du
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan-Jing Zheng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | | | - Yao-Wu Xing
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
39
|
Dong Y, Hu G, Grover CE, Miller ER, Zhu S, Wendel JF. Parental legacy versus regulatory innovation in salt stress responsiveness of allopolyploid cotton (Gossypium) species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:872-887. [PMID: 35686631 PMCID: PMC9540634 DOI: 10.1111/tpj.15863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Polyploidy provides an opportunity for evolutionary innovation and species diversification, especially under stressful conditions. In allopolyploids, the conditional dynamics of homoeologous gene expression can be either inherited from ancestral states pre-existing in the parental diploids or novel upon polyploidization, the latter potentially permitting a wider range of phenotypic responses to stresses. To gain insight into regulatory mechanisms underlying the diversity of salt resistance in Gossypium species, we compared global transcriptomic responses to modest salinity stress in two allotetraploid (AD-genome) cotton species, Gossypium hirsutum and G. mustelinum, relative to their model diploid progenitors (A-genome and D-genome). Multivariate and pairwise analyses of salt-responsive changes revealed a profound alteration of gene expression for about one third of the transcriptome. Transcriptional responses and associated functional implications of salt acclimation varied across species, as did species-specific coexpression modules among species and ploidy levels. Salt responsiveness in both allopolyploids was strongly biased toward the D-genome progenitor. A much lower level of transgressive downregulation was observed in the more salt-tolerant G. mustelinum than in the less tolerant G. hirsutum. By disentangling inherited effects from evolved responses, we show that expression biases that are not conditional upon salt stress approximately equally reflect parental legacy and regulatory novelty upon allopolyploidization, whereas stress-responsive biases are predominantly novel, or evolved, in allopolyploids. Overall, our work suggests that allopolyploid cottons acquired a wide range of stress response flexibility relative to their diploid ancestors, most likely mediated by complex suites of duplicated genes and regulatory factors.
Collapse
Affiliation(s)
- Yating Dong
- Department of AgronomyZhejiang UniversityHangzhouZhejiang310 053China
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Guanjing Hu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang455 000China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhen518 120China
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Shuijin Zhu
- Department of AgronomyZhejiang UniversityHangzhouZhejiang310 053China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| |
Collapse
|
40
|
Li Z, Li M, Wang J. Asymmetric subgenomic chromatin architecture impacts on gene expression in resynthesized and natural allopolyploid Brassica napus. Commun Biol 2022; 5:762. [PMID: 35906482 PMCID: PMC9338098 DOI: 10.1038/s42003-022-03729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022] Open
Abstract
Although asymmetric subgenomic epigenetic modification and gene expression have been revealed in the successful establishment of allopolyploids, the changes in chromatin accessibility and their relationship with epigenetic modifications and gene expression are poorly understood. Here, we synthetically analyzed chromatin accessibility, four epigenetic modifications and gene expression in natural allopolyploid Brassica napus, resynthesized allopolyploid B. napus, and diploid progenitors (B. rapa and B. oleracea). “Chromatin accessibility shock” occurred in both allopolyploidization and natural evolutionary processes, and genic accessible chromatin regions (ACRs) increased after allopolyploidization. ACRs associated with H3K27me3 modifications were more accessible than those with H3K27ac or H3K4me3. Although overall chromatin accessibility may be defined by H3K27me3, the enrichment of H3K4me3 and H3K27ac and depletion of DNA methylation around transcriptional start sites up-regulated gene expression. Moreover, we found that subgenome Cn exhibited higher chromatin accessibility than An, which depended on the higher chromatin accessibility of Cn-unique genes but not homologous genes. Changes in chromatin accessibility occuring during the process of allopolyploidization of Brassica napus are analysed using ATAC and ChIPseq, with differences in asymmetric chromatin accessibility between subgenomes of B. napus investigated.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
41
|
Integrated Analyses of DNA Methylation and Gene Expression of Rainbow Trout Muscle under Variable Ploidy and Muscle Atrophy Conditions. Genes (Basel) 2022; 13:genes13071151. [PMID: 35885934 PMCID: PMC9319582 DOI: 10.3390/genes13071151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Rainbow trout, Oncorhynchus mykiss, is an important cool, freshwater aquaculture species used as a model for biological research. However, its genome reference has not been annotated for epigenetic markers affecting various biological processes, including muscle growth/atrophy. Increased energetic demands during gonadogenesis/reproduction provoke muscle atrophy in rainbow trout. We described DNA methylation and its associated gene expression in atrophying muscle by comparing gravid, diploid females to sterile, triploid females. Methyl Mini-seq and RNA-Seq were simultaneously used to characterize genome-wide DNA methylation and its association with gene expression in rainbow trout muscle. Genome-wide enrichment in the number of CpGs, accompanied by depleted methylation levels, was noticed around the gene transcription start site (TSS). Hypermethylation of CpG sites within ±1 kb on both sides of TSS (promoter and gene body) was weakly/moderately associated with reduced gene expression. Conversely, hypermethylation of the CpG sites in downstream regions of the gene body +2 to +10 kb was weakly associated with increased gene expression. Unlike mammalian genomes, rainbow trout gene promotors are poor in CpG islands, at <1% compared to 60%. No signs of genome-wide, differentially methylated (DM) CpGs were observed due to the polyploidy effect; only 1206 CpGs (0.03%) were differentially methylated, and these were primarily associated with muscle atrophy. Twenty-eight genes exhibited differential gene expression consistent with methylation levels of 31 DM CpGs. These 31 DM CpGs represent potential epigenetic markers of muscle atrophy in rainbow trout. The DM CpG-harboring genes are involved in apoptosis, epigenetic regulation, autophagy, collagen metabolism, cell membrane functions, and Homeobox proteins. Our study also identified genes explaining higher water content and modulated glycolysis previously shown as characteristic biochemical signs of rainbow trout muscle atrophy associated with sexual maturation. This study characterized DNA methylation in the rainbow trout genome and its correlation with gene expression. This work also identified novel epigenetic markers associated with muscle atrophy in fish/lower vertebrates.
Collapse
|
42
|
Edgeloe JM, Severn-Ellis AA, Bayer PE, Mehravi S, Breed MF, Krauss SL, Batley J, Kendrick GA, Sinclair EA. Extensive polyploid clonality was a successful strategy for seagrass to expand into a newly submerged environment. Proc Biol Sci 2022; 289:20220538. [PMID: 35642363 PMCID: PMC9156900 DOI: 10.1098/rspb.2022.0538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Polyploidy has the potential to allow organisms to outcompete their diploid progenitor(s) and occupy new environments. Shark Bay, Western Australia, is a World Heritage Area dominated by temperate seagrass meadows including Poseidon's ribbon weed, Posidonia australis. This seagrass is at the northern extent of its natural geographic range and experiences extremes in temperature and salinity. Our genomic and cytogenetic assessments of 10 meadows identified geographically restricted, diploid clones (2n = 20) in a single location, and a single widespread, high-heterozygosity, polyploid clone (2n = 40) in all other locations. The polyploid clone spanned at least 180 km, making it the largest known example of a clone in any environment on earth. Whole-genome duplication through polyploidy, combined with clonality, may have provided the mechanism for P. australis to expand into new habitats and adapt to new environments that became increasingly stressful for its diploid progenitor(s). The new polyploid clone probably formed in shallow waters after the inundation of Shark Bay less than 8500 years ago and subsequently expanded via vegetative growth into newly submerged habitats.
Collapse
Affiliation(s)
- Jane M. Edgeloe
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia,Oceans Institute, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Anita A. Severn-Ellis
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Philipp E. Bayer
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Shaghayegh Mehravi
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Martin F. Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Siegfried L. Krauss
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia,Kings Park Science, Department of Biodiversity Conservation and Attractions, 1 Kattidj Close, West Perth, Western Australia 6005, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Gary A. Kendrick
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia,Oceans Institute, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Elizabeth A. Sinclair
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia,Oceans Institute, University of Western Australia, Crawley, Western Australia, 6009, Australia,Kings Park Science, Department of Biodiversity Conservation and Attractions, 1 Kattidj Close, West Perth, Western Australia 6005, Australia
| |
Collapse
|
43
|
Li M, Wang F, Ma J, Liu H, Ye H, Zhao P, Wang J. Comprehensive Evolutionary Analysis of CPP Genes in Brassica napus L. and Its Two Diploid Progenitors Revealing the Potential Molecular Basis of Allopolyploid Adaptive Advantage Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:873071. [PMID: 35548281 PMCID: PMC9085292 DOI: 10.3389/fpls.2022.873071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Allopolyploids exist widely in nature and have strong environmental adaptability. The typical allopolyploid Brassica napus L. is a widely cultivated crop, but whether it is superior to its diploid progenitors in abiotic stress resistance and the key genes that may be involved are not fully understood. Cystein-rich polycomb-like protein (CPP) genes encode critical transcription factors involved in the response of abiotic stress, including salt stress. To explore the potential molecular basis of allopolyploid adaptation to salt stress, we comprehensively analyzed the characteristics and salt stress response of the CPP genes in B. napus and its two diploid progenitors in this study. We found some molecular basis that might be associated with the adaptability of B. napus, including the expansion of the CPP gene family, the acquisition of introns by some BnCPPs, and abundant cis-acting elements upstream of BnCPPs. We found two duplication modes (whole genome duplication and transposed duplication) might be the main reasons for the expansion of CPP gene family in B. napus during allopolyploidization. CPP gene expression levels and several physiological indexes were changed in B. napus and its diploid progenitors after salt stress, suggesting that CPP genes might play important roles in the response of salt stress. We found that some BnCPPs might undergo new functionalization or subfunctionalization, and some BnCPPs also show biased expression, which might contribute to the adaptation of B. napus under saline environment. Compared with diploid progenitors, B. napus showed stronger physiological responses, and BnCPP gene expression also showed higher changes after salt stress, indicating that the allopolyploid B. napus had an adaptive advantage under salt stress. This study could provide evidence for the adaptability of polyploid and provide important clues for the study of the molecular mechanism of salt stress resistance in B. napus.
Collapse
Affiliation(s)
- Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
44
|
A generalist-specialist trade-off between switchgrass cytotypes impacts climate adaptation and geographic range. Proc Natl Acad Sci U S A 2022; 119:e2118879119. [PMID: 35377798 PMCID: PMC9169841 DOI: 10.1073/pnas.2118879119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polyploidy, which occurs in roughly half of all flowering plants and an even higher percentage of grasses, is thought to be a major driver of adaptation. Higher numbers of copies of each gene in polyploid genomes can increase genetic diversity, which could drive shifts in habitat preference, adaptability, and fitness. To test the effects of increased ploidy, we compared genomic diversity, environmental niche, and fitness responses across climatic gradients between tetraploid and octoploid switchgrass. We found that the octoploids contained novel combinations of the ancestral tetraploid genetic diversity, which was linked to the expansion of switchgrass into unsuitable habitats for tetraploid populations. Our experiments revealed evidence of niche divergence, differential fitness, and a generalist–specialist trade-off between cytotypes. Polyploidy results from whole-genome duplication and is a unique form of heritable variation with pronounced evolutionary implications. Different ploidy levels, or cytotypes, can exist within a single species, and such systems provide an opportunity to assess how ploidy variation alters phenotypic novelty, adaptability, and fitness, which can, in turn, drive the development of unique ecological niches that promote the coexistence of multiple cytotypes. Switchgrass, Panicum virgatum, is a widespread, perennial C4 grass in North America with multiple naturally occurring cytotypes, primarily tetraploids (4×) and octoploids (8×). Using a combination of genomic, quantitative genetic, landscape, and niche modeling approaches, we detect divergent levels of genetic admixture, evidence of niche differentiation, and differential environmental sensitivity between switchgrass cytotypes. Taken together, these findings support a generalist (8×)–specialist (4×) trade-off. Our results indicate that the 8× represent a unique combination of genetic variation that has allowed the expansion of switchgrass’ ecological niche and thus putatively represents a valuable breeding resource.
Collapse
|
45
|
Sharbrough J, Conover JL, Fernandes Gyorfy M, Grover CE, Miller ER, Wendel JF, Sloan DB. Global Patterns of Subgenome Evolution in Organelle-Targeted Genes of Six Allotetraploid Angiosperms. Mol Biol Evol 2022; 39:msac074. [PMID: 35383845 PMCID: PMC9040051 DOI: 10.1093/molbev/msac074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Whole-genome duplications (WGDs) are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes on cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend on successful interaction between the 3,000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between the nuclear and cytoplasmic genes that were inherited from different species. Because the cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary "mismatches" between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to the accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We report evidence from six independently formed allotetraploids that the subgenomes exhibit unequal rates of protein-sequence evolution, but we found no evidence that cytonuclear incompatibilities result in altered evolutionary trajectories of the paternal homoeologs of organelle-targeted genes. The analyses of gene content revealed mixed evidence for whether the organelle-targeted genes are lost more rapidly than the non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that the allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Justin L. Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
46
|
Sun D, Yu H, Li Q. Genome-Wide Differential DNA Methylomes Provide Insights into the Infertility of Triploid Oysters. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:18-31. [PMID: 35041105 DOI: 10.1007/s10126-021-10083-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Chromosomal incompatibility and gene expression changes would affect the development of polyploid gonad and gamete formation. The role of epigenetics like DNA methylation in reproductive development is fully demonstrated in diploid animals. The lack of polyploid species and the infertility of polyploid animals, especially the odd ploidy, limit the study of epigenetic regulation mechanism of polyploid reproduction. Fertile and infertile individuals exist in triploid Pacific oyster Crassostrea gigas, which provide an interesting model for studies on the effect of epigenetic regulation on gonadal development. The whole genome single base resolution DNA methylomes in gonads of triploid females α (F-3nα), triploid females β (F-3nβ), triploid males α (M-3nα), triploid hermaphrodite predominantly males (HPM-3n), diploid females (F-2n), and diploid males (M-2n) were generated by using bisulfite-sequencing. The overall DNA methylation profiles in gene regions and transposable regions of fertile and infertile triploid oysters were consistent with those of diploid oysters. The DNA methylation level of CG context decreased in infertile triploid oysters, with more hypomethylated than hypermethylated regions, and the opposite is true in fertile triploid oysters. Genes harbored with differentially methylated regions (DMRs) in infertile triploids were mainly related to the metabolism pathways and the signal pathways. Correlation analysis indicated that the expression of gene transcriptions was generally positively associated with DNA methylation in gene body regions, and DMRs in infertile triploid oysters played significant roles in gonadal development as a possible critical epigenetic regulator of gonadal development gene transcriptional activity. These findings indicate a potential relationship between DNA methylation variability and gene expression plasticity in newly formed polyploidy. As far as we know, this is the first study revealing the epigenetic regulation of gonadal development in invertebrates based on fertile and infertile models, meanwhile providing a new mentality to explore the regulatory mechanisms of infertility in triploids.
Collapse
Affiliation(s)
- Dongfang Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
47
|
Wang S, Liang H, Wang H, Li L, Xu Y, Liu Y, Liu M, Wei J, Ma T, Le C, Yang J, He C, Liu J, Zhao J, Zhao Y, Lisby M, Sahu SK, Liu H. The chromosome-scale genomes of Dipterocarpus turbinatus and Hopea hainanensis (Dipterocarpaceae) provide insights into fragrant oleoresin biosynthesis and hardwood formation. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:538-553. [PMID: 34687252 PMCID: PMC8882806 DOI: 10.1111/pbi.13735] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 05/30/2023]
Abstract
Dipterocarpaceae are typical tropical plants (dipterocarp forests) that are famous for their high economic value because of their production of fragrant oleoresins, top-quality timber and usage in traditional Chinese medicine. Currently, the lack of Dipterocarpaceae genomes has been a limiting factor to decipher the fragrant oleoresin biosynthesis and gain evolutionary insights into high-quality wood formation in Dipterocarpaceae. We generated chromosome-level genome assemblies for two representative Dipterocarpaceae species viz. Dipterocarpus turbinatus Gaertn. f. and Hopea hainanensis Merr. et Chun. Our whole-genome duplication (WGD) analysis revealed that Dipterocarpaceae underwent a shared WGD event, which showed significant impacts on increased copy numbers of genes related to the biosynthesis of terpene, BAHD acyltransferases, fatty acid and benzenoid/phenylpropanoid, which probably confer to the formation of their characteristic fragrant oleoresin. Additionally, compared with common soft wood plants, the expansion of gene families was also found to be associated with wood formation, such as in CESA (cellulose synthase), CSLE (cellulose synthase-like protein E), laccase and peroxidase in Dipterocarpaceae genomes, which might also contribute to the formation of harder, stronger and high-density timbers. Finally, an integrative analysis on a combination of genomic, transcriptomic and metabolic data from different tissues provided further insights into the molecular basis of fragrant oleoresins biosynthesis and high-quality wood formation of Dipterocarpaceae. Our study contributes the first two representative genomes for Dipterocarpaceae, which are valuable genetic resources for further researches on the fragrant oleoresins and superior-quality timber, genome-assisted breeding and improvement, and conservation biology of this family.
Collapse
Affiliation(s)
- Sibo Wang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Hongping Liang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Hongli Wang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Linzhou Li
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Yan Xu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yang Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Min Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Jinpu Wei
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Tao Ma
- Key Laboratory of Bio‐resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Cheng Le
- BGI‐Yunnan, BGI‐ShenzhenYunnanChina
| | - Jinlong Yang
- BGI‐Yunnan, BGI‐ShenzhenYunnanChina
- College of Forensic ScienceXi'an Jiaotong UniversityXi'anChina
| | | | - Jie Liu
- Forestry Bureau of RuiliYunnan Dehong, RuiliChina
| | | | | | - Michael Lisby
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Huan Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
48
|
Chan JCS, Ooi MKJ, Guja LK. Polyploidy but Not Range Size Is Associated With Seed and Seedling Traits That Affect Performance of Pomaderris Species. FRONTIERS IN PLANT SCIENCE 2022; 12:779651. [PMID: 35095956 PMCID: PMC8793627 DOI: 10.3389/fpls.2021.779651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Ploidy and species range size or threat status have been linked to variation in phenotypic and phenological seed and seedling traits, including seed size, germination rate (speed) and seedling stature. There is surprisingly little known about the ecological outcomes of relationships between ploidy, key plant traits and the drivers of range size. Here we determined whether ploidy and range size in Pomaderris, a genus of shrubs that includes many threatened species, are associated with variation in seed and seedling traits that might limit the regeneration performance of obligate seeders in fire-prone systems. We experimentally quantified seed dormancy and germination processes using fire-related heat treatments and evaluated seedling performance under drought stress. We also examined the association of seed size with other seed and seedling traits. Polyploids had bigger seeds, a faster germination rate and larger and taller seedlings than diploids. There was a lack of any clear relationship between range size and seed or seedling traits. The ploidy effects observed for many traits are likely to be indirect and associated with the underlying seed size differences. These findings indicate that there is a higher potential competitive advantage in polyploid than diploid Pomaderris during regeneration, a critical stage in the post-fire environment. This insight to the regeneration phase may need to be considered when planning and prioritising management of threatened species.
Collapse
Affiliation(s)
- Jason C. S. Chan
- Centre for Ecosystem Science, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mark K. J. Ooi
- Centre for Ecosystem Science, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- Centre for Australian National Biodiversity Research, a joint venture between Parks Australia and CSIRO, Canberra, ACT, Australia
| | - Lydia K. Guja
- Centre for Australian National Biodiversity Research, a joint venture between Parks Australia and CSIRO, Canberra, ACT, Australia
- National Seed Bank, Australian National Botanic Gardens, Parks Australia, Canberra, ACT, Australia
| |
Collapse
|
49
|
Tossi VE, Martínez Tosar LJ, Laino LE, Iannicelli J, Regalado JJ, Escandón AS, Baroli I, Causin HF, Pitta-Álvarez SI. Impact of polyploidy on plant tolerance to abiotic and biotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:869423. [PMID: 36072313 PMCID: PMC9441891 DOI: 10.3389/fpls.2022.869423] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism's cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.
Collapse
Affiliation(s)
- Vanesa E. Tossi
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Leandro J. Martínez Tosar
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biotecnología, Alimentos, Agro y Ambiental (DEBAL), Facultad de Ingeniería y Ciencias Exactas, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Leandro E. Laino
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Jesica Iannicelli
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - José Javier Regalado
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Alejandro Salvio Escandón
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
| | - Irene Baroli
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Irene Baroli,
| | - Humberto Fabio Causin
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Humberto Fabio Causin,
| | - Sandra Irene Pitta-Álvarez
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- *Correspondence: Sandra Irene Pitta-Álvarez, ;
| |
Collapse
|
50
|
Janko K, Bartoš O, Kočí J, Roslein J, Drdová EJ, Kotusz J, Eisner J, Mokrejš M, Štefková-Kašparová E. Genome Fractionation and Loss of Heterozygosity in Hybrids and Polyploids: Mechanisms, Consequences for Selection, and Link to Gene Function. Mol Biol Evol 2021; 38:5255-5274. [PMID: 34410426 PMCID: PMC8662595 DOI: 10.1093/molbev/msab249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hybridization and genome duplication have played crucial roles in the evolution of many animal and plant taxa. The subgenomes of parental species undergo considerable changes in hybrids and polyploids, which often selectively eliminate segments of one subgenome. However, the mechanisms underlying these changes are not well understood, particularly when the hybridization is linked with asexual reproduction that opens up unexpected evolutionary pathways. To elucidate this problem, we compared published cytogenetic and RNAseq data with exome sequences of asexual diploid and polyploid hybrids between three fish species; Cobitis elongatoides, C. taenia, and C. tanaitica. Clonal genomes remained generally static at chromosome-scale levels but their heterozygosity gradually deteriorated at the level of individual genes owing to allelic deletions and conversions. Interestingly, the impact of both processes varies among animals and genomic regions depending on ploidy level and the properties of affected genes. Namely, polyploids were more tolerant to deletions than diploid asexuals where conversions prevailed, and genomic restructuring events accumulated preferentially in genes characterized by high transcription levels and GC-content, strong purifying selection and specific functions like interacting with intracellular membranes. Although hybrids were phenotypically more similar to C. taenia, we found that they preferentially retained C. elongatoides alleles. This demonstrates that favored subgenome is not necessarily the transcriptionally dominant one. This study demonstrated that subgenomes in asexual hybrids and polyploids evolve under a complex interplay of selection and several molecular mechanisms whose efficiency depends on the organism's ploidy level, as well as functional properties and parental ancestry of the genomic region.
Collapse
Affiliation(s)
- Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Oldřich Bartoš
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Kočí
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Roslein
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Edita Janková Drdová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kotusz
- Museum of Natural History, University of Wroclaw, Wroclaw, Poland
| | - Jan Eisner
- Department of Mathematics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Martin Mokrejš
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- IT4Innovations, VŠB—Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Eva Štefková-Kašparová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Genetics and Breeding, FAFNR, Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|