1
|
Zhao T, Li N, Kong J, Li X, Huang C, Wang Y, Zhang C, Li Y. An activator-represssor complex of VvWRKYs regulate proanthocyanidins biosynthesis through co-targeting VvLAR in grape. Int J Biol Macromol 2024; 281:136653. [PMID: 39423972 DOI: 10.1016/j.ijbiomac.2024.136653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Proanthocyanidins (PAs) are vital polyphenolic compounds in plants with various biological functions. Although WRKY transcription factors are known to play important roles, their specific involvement in regulating PAs metabolism in grapes remains underexplored. In this study, we identified six candidate WRKY genes potentially involved in PAs synthesis by transiently overexpressing them in Nicotiana tabacum leaves. Among these, VvWRKY57 was found to enhance PAs synthesis. Further functional analysis, achieved by overexpressing of VvWRKY57 in grape calli, confirmed its positive role in PAs biosynthesis. Using yeast one-hybrid (Y1H), dual-luciferase reporter (DLR) assays, and electrophoretic mobility shift assay (EMSA), we demonstrated that VvWRKY57 binds to the promoter of leucocyanidin reductase (VvLAR2) and stimulates its activity. Additionally, yeast two-hybrid (Y2H), bimolecular fluorescence complementary (BiFC), and pull-down assays revealed that VvWRKY57 forms heterodimers with VvWRKY20, while VvWTKY20 also forms homodimers. Interestingly, overexpression of VvWRKY20 was found to inhibit PAs synthesis. Y1H, DLR, and EMSA further showed that VvWRKY20 binds to the promoters of VvLAR1 and VvLAR2, repressing their transcription activity. When VvWRKY57 and VvWRKY20 were co-expressed, VvLAR2 promoter activity and PAs synthesis were suppressed. Moreover, we discovered that VvPUB26, an E3 ubiquitin ligase physically interacts with both VvWRKY57 and VvWRKY20. VvPUB26 mediated the degradation of VvWRKY20 but did not influence the degradation of VvWRKY57. In conclusion, this study highlights the regulatory interplay between WRKY transcription factors in PAs biosynthesis, offering insights into their distinct roles in modulating this important metabolic pathway in grapes.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Na Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jixiang Kong
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Xiaohan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Congbo Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yuejin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Chaohong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Rehman S, Bahadur S, Xia W. Unlocking nature's secrets: The pivotal role of WRKY transcription factors in plant flowering and fruit development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112150. [PMID: 38857658 DOI: 10.1016/j.plantsci.2024.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
The WRKY transcription factor family is a key player in the regulatory mechanisms of flowering plants, significantly influencing both their biotic and abiotic response systems as well as being vital to numerous physiological and biological functions. Over the past two decades, the functionality of WRKY proteins has been the subject of extensive research in over 50 plant species, with a strong focus on their roles in responding to various stresses. Despite this extensive research, there remains a notable gap in comprehensive studies aimed at understanding how specific WRKY genes directly influence the timing of flowering and fruit development. This review offers an up-to-date look at WRKY family genes and provides insights into the key genes of WRKY to control flowering, enhance fruit ripening and secondary metabolism synthesis, and maintain fruit quality of various plants, including annuals, perennials, medicinal, and crop plants. The WRKY transcription factors serve as critical regulators within the transcriptional regulatory network, playing a crucial role in the precise enhancement of flowering processes. It is also involved in the up-regulation of fruit ripening was strongly demonstrated by combined transcriptomics and metabolomic investigation. Therefore, we speculated that the WRKY family is known to be a key regulator of flowering and fruiting in plants. This detailed insight will enable the identification of the series of molecular occurrences featuring WRKY proteins throughout the stages of flowering and fruiting.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Váczy KZ, Otto M, Gomba-Tóth A, Geiger A, Golen R, Hegyi-Kaló J, Cels T, Geml J, Zsófi Z, Hegyi ÁI. Botrytis cinerea causes different plant responses in grape ( Vitis vinifera) berries during noble and grey rot: diverse metabolism versus simple defence. FRONTIERS IN PLANT SCIENCE 2024; 15:1433161. [PMID: 39166245 PMCID: PMC11333459 DOI: 10.3389/fpls.2024.1433161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
The complexity of the interaction between the necrotrophic pathogen Botrytis cinerea and grape berries (Vitis vinifera spp.) can result in the formation of either the preferred noble rot (NR) or the loss-making grey rot (GR), depending on the prevailing climatic conditions. In this study, we focus on the functional gene set of V. vinifera by performing multidimensional scaling followed by differential expression and enrichment analyses. The aim of this study is to identify the differences in gene expression between grape berries in the phases of grey rot, noble rot, and developing rot (DR, in its early stages) phases. The grapevine transcriptome at the NR phase was found to exhibit significant differences from that at the DR and GR stages, which displayed strong similarities. Similarly, several plant defence-related pathways, including plant-pathogen interactions as hypersensitive plant responses were found to be enriched. The results of the analyses identified a potential plant stress response pathway (SGT1 activated hypersensitive response) that was found to be upregulated in the GR berry but downregulated in the NR berry. The study revealed a decrease in defence-related in V. vinifera genes during the NR stages, with a high degree of variability in functions, particularly in enriched pathways. This indicates that the plant is not actively defending itself against Botrytis cinerea, which is otherwise present on its surface with high biomass. This discrepancy underscores the notion that during the NR phase, the grapevine and the pathogenic fungi interact in a state of equilibrium. Conversely the initial stages of botrytis infection manifest as a virulent fungus-plant interaction, irrespective of whether the outcome is grey or noble rot.
Collapse
Affiliation(s)
- Kálmán Z. Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Margot Otto
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch, South Africa
| | - Adrienn Gomba-Tóth
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Adrienn Geiger
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Richárd Golen
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Júlia Hegyi-Kaló
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Thomas Cels
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Geml
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- HUN-REN-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
| | - Zsolt Zsófi
- Institute for Viticulture and Enology, Eszterházy Károly Catholic University, Eger, Hungary
| | - Ádám István Hegyi
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|
4
|
Zhao T, Huang C, Li N, Ge Y, Wang L, Tang Y, Wang Y, Li Y, Zhang C. Ubiquitin ligase VvPUB26 in grapevine promotes proanthocyanidin synthesis and resistance to powdery mildew. PLANT PHYSIOLOGY 2024; 195:2891-2910. [PMID: 38688011 DOI: 10.1093/plphys/kiae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Proanthocyanidins (PAs) are an important group of flavonoids that contribute to astringency, color, and flavor in grapes (Vitis vinifera) and wines. They also play a crucial role in enhancing plant resistance to various stresses. However, the underlying regulatory mechanism governing PAs biosynthesis, particularly in relation to conferring resistance to powdery mildew, has not been extensively explored. This study focused on identifying a key player in PAs biosynthesis, namely the plant U-box (PUB) E3 ubiquitin ligase VvPUB26. We discovered that overexpression of VvPUB26 in grapes leads to a significant increase in PAs content, whereas interfering with VvPUB26 has the opposite effect. Additionally, our findings demonstrated that overexpression of VvPUB26 in transgenic grapevines enhances defense against powdery mildew while interfering with VvPUB26 results in increased susceptibility to the pathogen. Interestingly, we observed that VvPUB26 interacts with the WRKY transcription factor VvWRKY24, thereby facilitating ubiquitination and degradation processes. Through RNA-Seq analysis, we found that VvWRKY24 primarily participates in secondary metabolites biosynthesis, metabolic pathways, and plant-pathogen interaction. Notably, VvWRKY24 directly interacts with the promoters of dihydroflavonol-4-reductase (DFR) and leucoanthocyanidin reductase (LAR) to inhibit PAs biosynthesis. Meanwhile, VvWRKY24 also influences the expression of MYB transcription factor genes related to PAs synthesis. In conclusion, our results unveil a regulatory module involving VvPUB26-VvWRKY24-VvDFR/VvLAR that plays a fundamental role in governing PAs biosynthesis in grapevines. These findings enhance our understanding of the relationship between PAs biosynthesis and defense mechanisms against powdery mildew.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yaqi Ge
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
6
|
Vodiasova E, Sinchenko A, Khvatkov P, Dolgov S. Genome-Wide Identification, Characterisation, and Evolution of the Transcription Factor WRKY in Grapevine ( Vitis vinifera): New View and Update. Int J Mol Sci 2024; 25:6241. [PMID: 38892428 PMCID: PMC11172563 DOI: 10.3390/ijms25116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
WRKYs are a multigenic family of transcription factors that are plant-specific and involved in the regulation of plant development and various stress response processes. However, the evolution of WRKY genes is not fully understood. This family has also been incompletely studied in grapevine, and WRKY genes have been named with different numbers in different studies, leading to great confusion. In this work, 62 Vitis vinifera WRKY genes were identified based on six genomes of different cultivars. All WRKY genes were numbered according to their chromosomal location, and a complete revision of the numbering was performed. Amino acid variability between different cultivars was assessed for the first time and was greater than 5% for some WRKYs. According to the gene structure, all WRKYs could be divided into two groups: more exons/long length and fewer exons/short length. For the first time, some chimeric WRKY genes were found in grapevine, which may play a specific role in the regulation of different processes: VvWRKY17 (an N-terminal signal peptide region followed by a non-cytoplasmic domain) and VvWRKY61 (Frigida-like domain). Five phylogenetic clades A-E were revealed and correlated with the WRKY groups (I, II, III). The evolution of WRKY was studied, and we proposed a WRKY evolution model where there were two dynamic phases of complexity and simplification in the evolution of WRKY.
Collapse
Affiliation(s)
- Ekaterina Vodiasova
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 299011 Sevastopol, Russia
| | - Anastasiya Sinchenko
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Pavel Khvatkov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Sergey Dolgov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 142290 Puschino, Russia
| |
Collapse
|
7
|
Zhang Z, Chen C, Jiang C, Lin H, Zhao Y, Guo Y. VvWRKY5 positively regulates wounding-induced anthocyanin accumulation in grape by interplaying with VvMYBA1 and promoting jasmonic acid biosynthesis. HORTICULTURE RESEARCH 2024; 11:uhae083. [PMID: 38766531 PMCID: PMC11101322 DOI: 10.1093/hr/uhae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/10/2024] [Indexed: 05/22/2024]
Abstract
Wounding stress induces the biosynthesis of various secondary metabolites in plants, including anthocyanin. However, the underlying molecular mechanism remains elusive. Here, we reported that a transcription factor, VvWRKY5, promotes wounding-induced anthocyanin accumulation in grape (Vitis vinifera). Biochemical and molecular analyses demonstrated that wounding stress significantly increased anthocyanin content, and VvMYBA1 plays an essential role in this process. VvWRKY5 could interact with VvMYBA1 and amplify the activation effect of VvMYBA1 on its target gene VvUFGT. The transcript level of VvWRKY5 was notably induced by wounding treatment. Moreover, our data demonstrated that VvWRKY5 could promote the synthesis of jasmonic acid (JA), a phytohormone that acts as a positive modulator in anthocyanin accumulation, by directly binding to the W-box element in the promoter of the JA biosynthesis-related gene VvLOX and enhancing its activities, and this activation was greatly enhanced by the VvWRKY5-VvMYBA1 protein complex. Collectively, our findings show that VvWRKY5 plays crucial roles in wounding-induced anthocyanin synthesis in grape and elucidates the transcriptional regulatory mechanism of wounding-induced anthocyanin accumulation.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Cui Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Changyue Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| |
Collapse
|
8
|
García-Abadillo J, Barba P, Carvalho T, Sosa-Zuñiga V, Lozano R, Carvalho HF, Garcia-Rojas M, Salazar E, y Sánchez JI. Dissecting the complex genetic basis of pre- and post-harvest traits in Vitis vinifera L. using genome-wide association studies. HORTICULTURE RESEARCH 2024; 11:uhad283. [PMID: 38487297 PMCID: PMC10939405 DOI: 10.1093/hr/uhad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/17/2023] [Indexed: 03/17/2024]
Abstract
Addressing the pressing challenges in agriculture necessitates swift advancements in breeding programs, particularly for perennial crops like grapevines. Moving beyond the traditional biparental quantitative trait loci (QTL) mapping, we conducted a genome-wide association study (GWAS) encompassing 588 Vitis vinifera L. cultivars from a Chilean breeding program, spanning three seasons and testing 13 key yield-related traits. A strong candidate gene, Vitvi11g000454, located on chromosome 11 and related to plant response to biotic and abiotic stresses through jasmonic acid signaling, was associated with berry width and holds potential for enhancing berry size in grape breeding. We also mapped novel QTL associated with post-harvest traits across chromosomes 2, 4, 9, 11, 15, 18, and 19, broadening our grasp on the genetic intricacies dictating fruit post-harvest behavior, including decay, shriveling, and weight loss. Leveraging gene ontology annotations, we drew parallels between traits and scrutinized candidate genes, laying a robust groundwork for future trait-feature identification endeavors in plant breeding. We also highlighted the importance of carefully considering the choice of the response variable in GWAS analyses, as the use of best linear unbiased estimators (BLUEs) corrections in our study may have led to the suppression of some common QTL in grapevine traits. Our results underscore the imperative of pioneering non-destructive evaluation techniques for long-term conservation traits, offering grape breeders and cultivators insights to improve post-harvest table grape quality and minimize waste.
Collapse
Affiliation(s)
- Julian García-Abadillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo - Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Paola Barba
- Genetic Resources Unit and Germplasm Bank, La Platina, Instituto de Investigaciones Agropecuarias, Av Santa Rosa 11610, La pintana, Santiago, Chile
- Sun World International, 28994 Gromer Av, Wasco, 93280, California, USA
| | | | - Viviana Sosa-Zuñiga
- Instituto de Ciencias Químicas y Aplicadas (ICQA), Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile
| | | | - Humberto Fanelli Carvalho
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo - Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Miguel Garcia-Rojas
- Genetic Resources Unit and Germplasm Bank, La Platina, Instituto de Investigaciones Agropecuarias, Av Santa Rosa 11610, La pintana, Santiago, Chile
| | - Erika Salazar
- Genetic Resources Unit and Germplasm Bank, La Platina, Instituto de Investigaciones Agropecuarias, Av Santa Rosa 11610, La pintana, Santiago, Chile
| | - Julio Isidro y Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo - Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
9
|
Mahiwal S, Pahuja S, Pandey GK. Review: Structural-functional relationship of WRKY transcription factors: Unfolding the role of WRKY in plants. Int J Biol Macromol 2024; 257:128769. [PMID: 38096937 DOI: 10.1016/j.ijbiomac.2023.128769] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/18/2023]
Abstract
WRKY as the name suggests, are the transcription factors (TFs) that contain the signature WRKY domains, hence named after it. Since their discovery in 1994, they have been well studied in plants with exploration of approximately 74 WRKY genes in the model plant, Arabidopsis alone. However, the study of these transcription factors (TFs) is not just limited to model plant now. They have been studied widely in crop plants as well, because of their tremendous contribution in stress as well as in growth and development. Here, in this review, we describe the story of WRKY TFs from their identification to their origin, the binding mechanisms, structure and their contribution in regulating plant development and stress physiology. High throughput transcriptomics-based data also opened a doorway to understand the comprehensive and detailed functioning of WRKY TFs in plants. Indeed, the detailed functional role of each and every WRKY member in regulating the gene expression is required to pave the path to develop holistic understanding of their role in stress physiology and developmental processes in plants.
Collapse
Affiliation(s)
- Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Sonam Pahuja
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
10
|
Saha B, Nayak J, Srivastava R, Samal S, Kumar D, Chanwala J, Dey N, Giri MK. Unraveling the involvement of WRKY TFs in regulating plant disease defense signaling. PLANTA 2023; 259:7. [PMID: 38012461 DOI: 10.1007/s00425-023-04269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
MAIN CONCLUSION This review article explores the intricate role, regulation, and signaling mechanisms of WRKY TFs in response to biotic stress, particularly emphasizing their pivotal role in the trophism of plant-pathogen interactions. Transcription factors (TFs) play a vital role in governing both plant defense and development by controlling the expression of various downstream target genes. Early studies have shown the differential expression of certain WRKY transcription factors by microbial infections. Several transcriptome-wide studies later demonstrated that diverse sets of WRKYs are significantly activated in the early stages of viral, bacterial, and fungal infections. Furthermore, functional investigations indicated that overexpression or silencing of certain WRKY genes in plants can drastically alter disease symptoms as well as pathogen multiplication rates. Hence the new aspects of pathogen-triggered WRKY TFs mediated regulation of plant defense can be explored. The already recognized roles of WRKYs include transcriptional regulation of defense-related genes, modulation of hormonal signaling, and participation in signal transduction pathways. Some WRKYs have been shown to directly bind to pathogen effectors, acting as decoys or resistance proteins. Notably, the signaling molecules like salicylic acid, jasmonic acid, and ethylene which are associated with plant defense significantly increase the expression of several WRKYs. Moreover, induction of WRKY genes or heightened WRKY activities is also observed during ISR triggered by the beneficial microbes which protect the plants from subsequent pathogen infection. To understand the contribution of WRKY TFs towards disease resistance and their exact metabolic functions in infected plants, further studies are required. This review article explores the intrinsic transcriptional regulation, signaling mechanisms, and hormonal crosstalk governed by WRKY TFs in plant disease defense response, particularly emphasizing their specific role against different biotrophic, hemibiotrophic, and necrotrophic pathogen infections.
Collapse
Affiliation(s)
- Baisista Saha
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Jagatjeet Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Richa Srivastava
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Swarnmala Samal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Jeky Chanwala
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Nrisingha Dey
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
11
|
Misra V, Mall AK, Pandey H, Srivastava S, Sharma A. Advancements and prospects of CRISPR/Cas9 technologies for abiotic and biotic stresses in sugar beet. Front Genet 2023; 14:1235855. [PMID: 38028586 PMCID: PMC10665535 DOI: 10.3389/fgene.2023.1235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar beet is a crop with high sucrose content, known for sugar production and recently being considered as an emerging raw material for bioethanol production. This crop is also utilized as cattle feed, mainly when animal green fodder is scarce. Bioethanol and hydrogen gas production from this crop is an essential source of clean energy. Environmental stresses (abiotic/biotic) severely affect the productivity of this crop. Over the past few decades, the molecular mechanisms of biotic and abiotic stress responses in sugar beet have been investigated using next-generation sequencing, gene editing/silencing, and over-expression approaches. This information can be efficiently utilized through CRISPR/Cas 9 technology to mitigate the effects of abiotic and biotic stresses in sugar beet cultivation. This review highlights the potential use of CRISPR/Cas 9 technology for abiotic and biotic stress management in sugar beet. Beet genes known to be involved in response to alkaline, cold, and heavy metal stresses can be precisely modified via CRISPR/Cas 9 technology for enhancing sugar beet's resilience to abiotic stresses with minimal off-target effects. Similarly, CRISPR/Cas 9 technology can help generate insect-resistant sugar beet varieties by targeting susceptibility-related genes, whereas incorporating Cry1Ab and Cry1C genes may provide defense against lepidopteron insects. Overall, CRISPR/Cas 9 technology may help enhance sugar beet's adaptability to challenging environments, ensuring sustainable, high-yield production.
Collapse
Affiliation(s)
- Varucha Misra
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - A. K. Mall
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Himanshu Pandey
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
- Khalsa College, Amritsar, India
| | | | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, India
| |
Collapse
|
12
|
Wei Y, Meng N, Wang Y, Cheng J, Duan C, Pan Q. Transcription factor VvWRKY70 inhibits both norisoprenoid and flavonol biosynthesis in grape. PLANT PHYSIOLOGY 2023; 193:2055-2070. [PMID: 37471439 DOI: 10.1093/plphys/kiad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
Norisoprenoids and flavonols are important secondary metabolites in grape berries (Vitis vinifera L.). The former is a class of ubiquitous flavor and fragrance compounds produced by the cleavage of carotenoids, and the latter, which is derived from the flavonoid metabolic pathway, has been proposed as a general quality marker for red grapes. However, the transcriptional regulatory mechanisms underlying norisoprenoid and flavonol production are still not fully understood. In this study, we characterized a transcription factor, VvWRKY70, as a repressor of both norisoprenoid and flavonol biosynthesis in grape berries, and its expression was downregulated by light and high-temperature treatment. Overexpressing VvWRKY70 in grape calli reduced norisoprenoid and flavonol production, particularly under light exposure or at high temperature, by repressing the expression of several related genes in the isoprenoid and flavonoid metabolic pathways. VvWRKY70 downregulated β-CAROTENE HYDROXYLASE 2 (VvBCH2) and CHALCONE SYNTHASE 3 (VvCHS3) expression based on yeast 1-hybrid analysis combined with electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative PCR. We discuss the role of VvWRKY70 in the coordinated regulatory network of isoprenoid and flavonoid metabolism. These findings provide a theoretical basis to improve flavor, color, and other comprehensive qualities of fruit crops and their processing products.
Collapse
Affiliation(s)
- Yi Wei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Nan Meng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yachen Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Jing Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Qiuhong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| |
Collapse
|
13
|
Avico EH, Acevedo RM, Duarte MJ, Rodrigues Salvador A, Nunes-Nesi A, Ruiz OA, Sansberro PA. Integrating Transcriptional, Metabolic, and Physiological Responses to Drought Stress in Ilex paraguariensis Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:2404. [PMID: 37446965 DOI: 10.3390/plants12132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The appearance of water stress episodes triggers leaf abscission and decreases Ilex paraguariensis yield. To explore the mechanisms that allow it to overcome dehydration, we investigated how the root gene expression varied between water-stressed and non-stressed plants and how the modulation of gene expression was linked to metabolite composition and physiological status. After water deprivation, 5160 differentially expressed transcripts were obtained through RNA-seq. The functional enrichment of induced transcripts revealed significant transcriptional remodelling of stress-related perception, signalling, transcription, and metabolism. Simultaneously, the induction of the enzyme 9-cis-expoxycarotenoid dioxygenase (NCED) transcripts reflected the central role of the hormone abscisic acid in this response. Consequently, the total content of amino acids and soluble sugars increased, and that of starch decreased. Likewise, osmotic adjustment and radical growth were significantly promoted to preserve cell membranes and water uptake. This study provides a valuable resource for future research to understand the molecular adaptation of I. paraguariensis plants under drought conditions and facilitates the exploration of drought-tolerant candidate genes.
Collapse
Affiliation(s)
- Edgardo H Avico
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, Corrientes W3402BKG, Argentina
| | - Raúl M Acevedo
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, Corrientes W3402BKG, Argentina
| | - María J Duarte
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, Corrientes W3402BKG, Argentina
| | - Acácio Rodrigues Salvador
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Oscar A Ruiz
- Unidad de Biotecnología 1, IIB-INTECH (UNSAM-CONICET), Chascomús B7130IWA, Argentina
| | - Pedro A Sansberro
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, Corrientes W3402BKG, Argentina
| |
Collapse
|
14
|
Liu Y, Zhang Y, Liu Y, Lin L, Xiong X, Zhang D, Li S, Yu X, Li Y. Genome-Wide Identification and Characterization of WRKY Transcription Factors and Their Expression Profile in Loropetalum chinense var. rubrum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2131. [PMID: 37299110 PMCID: PMC10255886 DOI: 10.3390/plants12112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The WRKY gene family plays important roles in plant growth and development, as well as in the responses to biotic and abiotic stresses. Loropetalum chinense var. rubrum has high ornamental and medicinal value. However, few WRKY genes have been reported in this plant, and their functions remain unknown. To explore the roles that the WRKY genes play in L. chinense var. rubrum, we identified and characterized 79 LcWRKYs through BLAST homology analysis and renamed them (as LcWRKY1-79) based on their distribution on the chromosomes of L. chinense var. rubrum. In this way, according to their structural characteristics and phylogenetic analysis, they were divided into three groups containing 16 (Group I), 52 (Group II), and 11 (Group III) WRKYs, respectively. LcWRKYs in the same group have similar motifs and gene structures; for instance, Motifs 1, 2, 3, 4, and 10 constitute the WRKY domain and zinc-finger structure. The LcWRKY promoter region contains light response elements (ACE, G-box), stress response elements (TC-rich repeats), hormone response elements (TATC-box, TCA-element), and MYB binding sites (MBS, MBSI). Synteny analysis of LcWRKYs allowed us to establish orthologous relationships among the WRKY gene families of Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum L., Vitis vinifera L., Oryza sativa L., and Zea mays L.; furthermore, analysis of the transcriptomes of mature leaves and flowers from different cultivars demonstrated the cultivar-specific LcWRKY gene expression. The expression levels of certain LcWRKY genes also presented responsive changes from young to mature leaves, based on an analysis of the transcriptome in leaves at different developmental stages. White light treatment led to a significant decrease in the expression of LcWRKY6, 18, 24, 34, 36, 44, 48, 61, 62, and 77 and a significant increase in the expression of LcWRKY41, blue light treatment led to a significant decrease in the expression of LcWRKY18, 34, 50, and 77 and a significant increase in the expression of LcWRKY36 and 48. These results enable a better understanding of LcWRKYs, facilitating the further exploration of their genetic functions and the molecular breeding of L. chinense var. rubrum.
Collapse
Affiliation(s)
- Yang Liu
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
| | - Yifan Zhang
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
| | - Yang Liu
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
| | - Ling Lin
- School of Economics, Hunan Agricultural University, Changsha 410128, China;
| | - Xingyao Xiong
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Kunpeng Institute of Modern Agriculture, Foshan 528225, China
| | - Donglin Zhang
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Sha Li
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou311300, China;
| | - Xiaoying Yu
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
| | - Yanlin Li
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
- Kunpeng Institute of Modern Agriculture, Foshan 528225, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
15
|
Vannozzi A, Perin C, Palumbo F, Sandri M, Zuccolotto P, Zenoni S, Farinati S, Barcaccia G, Pindo M, Sonego P, Cestaro A, Lucchin M. Dissecting the effect of soil on plant phenology and berry transcriptional plasticity in two Italian grapevine varieties ( Vitis vinifera L.). HORTICULTURE RESEARCH 2023; 10:uhad056. [PMID: 37213682 PMCID: PMC10199706 DOI: 10.1093/hr/uhad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/23/2023] [Indexed: 05/23/2023]
Abstract
Grapevine embodies a fascinating species as regards phenotypic plasticity and genotype-per-environment interactions. The terroir, namely the set of agri-environmental factors to which a variety is subjected, can influence the phenotype at the physiological, molecular, and biochemical level, representing an important phenomenon connected to the typicality of productions. We investigated the determinants of plasticity by conducting a field-experiment where all terroir variables, except soil, were kept as constant as possible. We isolated the effect of soils collected from different areas, on phenology, physiology, and transcriptional responses of skin and flesh of a red and a white variety of great economic value: Corvina and Glera. Molecular results, together with physio-phenological parameters, suggest a specific effect of soil on grapevine plastic response, highlighting a higher transcriptional plasticity of Glera in respect to Corvina and a marked response of skin compared to flesh. Using a novel statistical approach, we identified clusters of plastic genes subjected to the specific influence of soil. These findings could represent an issue of applicative value, posing the basis for targeted agricultural practices to enhance the desired characteristics for any soil/cultivar combination, to improve vineyards management for a better resource usage and to valorize vineyards uniqueness maximizing the terroir-effect.
Collapse
Affiliation(s)
| | - Corrado Perin
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova Agripolis, 35020 Legnaro, Italy
| | - Fabio Palumbo
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova Agripolis, 35020 Legnaro, Italy
| | - Marco Sandri
- Department of biotechnology, University of Verona, I-37034, Verona, Italy
| | - Paola Zuccolotto
- Big&Open Data Innovation Laboratory, University of Brescia, 25122 Brescia, Italy
| | - Sara Zenoni
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova Agripolis, 35020 Legnaro, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova Agripolis, 35020 Legnaro, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Paolo Sonego
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Margherita Lucchin
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova Agripolis, 35020 Legnaro, Italy
| |
Collapse
|
16
|
Feng X, Li G, Wu W, Lyu H, Wang J, Liu C, Zhong C, Shi S, He Z. Expansion and adaptive evolution of the WRKY transcription factor family in Avicennia mangrove trees. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:155-168. [PMID: 37275537 PMCID: PMC10232687 DOI: 10.1007/s42995-023-00177-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Mangroves are adapted to intertidal zones, which present extreme environmental conditions. WRKYs are among the most prominent transcription factors (TFs) in higher plants and act through various interconnected networks to regulate responses to multiple abiotic stressors. Here, based on omic data, we investigated the landscape and evolutionary patterns of WRKYs in the main mangrove genus Avicennia. We found that both the number and the proportion of TFs and WRKYs in Avicennia species exceeded their inland relatives, indicating a significant expansion of WRKYs in Avicennia. We identified 109 WRKY genes in the representative species Avicennia marina. Comparative genomic analysis showed that two recent whole-genome duplication (WGD) events played a critical role in the expansion of WRKYs, and 88% of Avicennia marina WRKYs (AmWRKYs) have been retained following these WGDs. Applying comparative transcriptomics on roots under experimental salt gradients, we inferred that there is high divergence in the expression of WGD-retained AmWRKYs. Moreover, we found that the expression of 16 AmWRKYs was stable between freshwater and moderately saline water but increased when the trees were exposed to high salinity. In particular, 14 duplicates were retained following the two recent WGD events, indicating potential neo- and sub-functionalization. We also found that WRKYs could interact with other upregulated genes involved in signalling pathways and natural antioxidant biosynthesis to enhance salt tolerance, contributing to the adaptation to intertidal zones. Our omic data of the WRKY family in A. marina broadens the understanding of how a TF family relates to the adaptive evolution of mangroves. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00177-y.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458 China
| | - Guohong Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Weihong Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Haomin Lyu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Jiexin Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Cong Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100 China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
17
|
Gao J, Chen Y, Gao M, Wu L, Zhao Y, Wang Y. LcWRKY17, a WRKY Transcription Factor from Litsea cubeba, Effectively Promotes Monoterpene Synthesis. Int J Mol Sci 2023; 24:ijms24087210. [PMID: 37108396 PMCID: PMC10138983 DOI: 10.3390/ijms24087210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The WRKY gene family is one of the most significant transcription factor (TF) families in higher plants and participates in many secondary metabolic processes in plants. Litsea cubeba (Lour.) Person is an important woody oil plant that is high in terpenoids. However, no studies have been conducted to investigate the WRKY TFs that regulate the synthesis of terpene in L. cubeba. This paper provides a comprehensive genomic analysis of the LcWRKYs. In the L. cubeba genome, 64 LcWRKY genes were discovered. According to a comparative phylogenetic study with Arabidopsis thaliana, these L. cubeba WRKYs were divided into three groups. Some LcWRKY genes may have arisen from gene duplication, but the majority of LcWRKY evolution has been driven by segmental duplication events. Based on transcriptome data, a consistent expression pattern of LcWRKY17 and terpene synthase LcTPS42 was found at different stages of L. cubeba fruit development. Furthermore, the function of LcWRKY17 was verified by subcellular localization and transient overexpression, and overexpression of LcWRKY17 promotes monoterpene synthesis. Meanwhile, dual-Luciferase and yeast one-hybrid (Y1H) experiments showed that the LcWRKY17 transcription factor binds to W-box motifs of LcTPS42 and enhances its transcription. In conclusion, this research provided a fundamental framework for future functional analysis of the WRKY gene families, as well as breeding improvement and the regulation of secondary metabolism in L. cubeba.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
18
|
Strazzer P, Verbree B, Bliek M, Koes R, Quattrocchio FM. The Amsterdam petunia germplasm collection: A tool in plant science. FRONTIERS IN PLANT SCIENCE 2023; 14:1129724. [PMID: 37025133 PMCID: PMC10070740 DOI: 10.3389/fpls.2023.1129724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Petunia hybrida is a plant model system used by many researchers to investigate a broad range of biological questions. One of the reasons for the success of this organism as a lab model is the existence of numerous mutants, involved in a wide range of processes, and the ever-increasing size of this collection owing to a highly active and efficient transposon system. We report here on the origin of petunia-based research and describe the collection of petunia lines housed in the University of Amsterdam, where many of the existing genotypes are maintained.
Collapse
|
19
|
Ren C, Fan P, Li S, Liang Z. Advances in understanding cold tolerance in grapevine. PLANT PHYSIOLOGY 2023:kiad092. [PMID: 36789447 DOI: 10.1093/plphys/kiad092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis ssp.) is a deciduous perennial fruit crop, and the canes and buds of grapevine should withstand low temperatures annually during winter. However, the widely cultivated Vitis vinifera is cold-sensitive and cannot survive the severe winter in regions with extremely low temperatures, such as viticulture regions in northern China. By contrast, a few wild Vitis species like V. amurensis and V. riparia exhibit excellent freezing tolerance. However, the mechanisms underlying grapevine cold tolerance remain largely unknown. In recent years, much progress has been made in elucidating the mechanisms, owing to the advances in sequencing and molecular biotechnology. Assembly of grapevine genomes together with resequencing and transcriptome data enable researchers to conduct genomic and transcriptomic analyses in various grapevine genotypes and populations to explore genetic variations involved in cold tolerance. In addition, a number of pivotal genes have been identified and functionally characterized. In this review, we summarize recent major advances in physiological and molecular analyses of cold tolerance in grapevine and put forward questions in this field. We also discuss the strategies for improving the tolerance of grapevine to cold stress. Understanding grapevine cold tolerance will facilitate the development of grapevines for adaption to global climate change.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| |
Collapse
|
20
|
Mu D, Chen W, Shao Y, Wilson IW, Zhao H, Luo Z, Lin X, He J, Zhang Y, Mo C, Qiu D, Tang Q. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors in Siraitia siamensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:288. [PMID: 36679001 PMCID: PMC9861706 DOI: 10.3390/plants12020288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
WRKY transcription factors, as the largest gene family in higher plants, play an important role in various biological processes including growth and development, regulation of secondary metabolites, and stress response. In this study, we performed genome-wide identification and analysis of WRKY transcription factors in S. siamensis. A total of 59 SsWRKY genes were identified that were distributed on all 14 chromosomes, and these were classified into three major groups based on phylogenetic relationships. Each of these groups had similar conserved motifs and gene structures. We compared all the S. siamensis SsWRKY genes with WRKY genes identified from three diverse plant species, and the results implied that segmental duplication and tandem duplication play an important roles in the evolution processes of the WRKY gene family. Promoter region analysis revealed that SsWRKY genes included many cis-acting elements related to plant growth and development, phytohormone response, and both abiotic and biotic stress. Expression profiles originating from the transcriptome database showed expression patterns of these SsWRKY genes in four different tissues and revealed that most genes are expressed in plant roots. Fifteen SsWRKY genes with low-temperature response motifs were surveyed for their gene expression under cold stress, showing that most genes displayed continuous up-regulation during cold treatment. Our study provides a foundation for further study on the function and regulatory mechanism of the SsWRKY gene family.
Collapse
Affiliation(s)
- Detian Mu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wenqiang Chen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yingying Shao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Iain W. Wilson
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Huan Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiaodong Lin
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jialong He
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Laboaratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Qi Tang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
21
|
Zhang X, Wang F, Yang N, Chen N, Hu Y, Peng X, Shen S. Bioinformatics analysis and function prediction of NBS-LRR gene family in Broussonetia papyrifera. Biotechnol Lett 2023; 45:13-31. [PMID: 36357714 DOI: 10.1007/s10529-022-03318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/15/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022]
Abstract
Most of the currently available disease resistance (R) genes have NBS (nucleotide-binding site) and LRR (leucine-rich-repeat) domain which belongs to the NBS-LRR gene family. The whole genome sequencing of Broussonetia papyrifera provides an important bioinformatics database for the study of the NBS-LRR gene family. In this study, 328 NBS-LRR family genes were identified and classified in B. papyrifera according to different classification schemes, where there are 92 N types, 47 CN type, 54 CNL type, 29 NL types, 55 TN type, and 51 TNL type. Subsequently, we conducted bioinformatics analysis of the NBS-LRR gene family. Classification, motif analysis of protein sequences, and phylogenetic tree studies of the NBS-LRR genes in B. papyrifera provide important basis for the functional study of NBS-LRR family genes. Additionally, we performed structural analysis of the chromosomal location, physicochemical properties, and sequences identified by genetic characterization. In addition, through the analysis of GO enrichment, it was found that NBS-LRR genes were involved in defense responses and were significantly enriched in biological stimulation, immune response, and abiotic stress. In addition, we found that Bp06g0955 was the most sensitive to low temperature and encoded the RPM1 protein by analyzing the low temperature transcriptome data of B. papyrifera. Quantitative results of gene expression after 48 h of Fusarium infection showed that Bp01g3293 increased 14 times after infection, which encodes RPM1 protein. The potential of NBS-LRR gene responsive to biotic and abiotic stresses can be exploited to improve the resistance of B. papyrifera.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengfeng Wang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Nianhui Yang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Naizhi Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Yanmin Hu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
22
|
Khoso MA, Hussain A, Ritonga FN, Ali Q, Channa MM, Alshegaihi RM, Meng Q, Ali M, Zaman W, Brohi RD, Liu F, Manghwar H. WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1039329. [PMID: 36426143 PMCID: PMC9679293 DOI: 10.3389/fpls.2022.1039329] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 06/01/2023]
Abstract
The WRKY transcription factor (TF) belongs to one of the major plant protein superfamilies. The WRKY TF gene family plays an important role in the regulation of transcriptional reprogramming associated with plant stress responses. Change in the expression patterns of WRKY genes or the modifications in their action; participate in the elaboration of numerous signaling pathways and regulatory networks. WRKY proteins contribute to plant growth, for example, gamete formation, seed germination, post-germination growth, stem elongation, root hair growth, leaf senescence, flowering time, and plant height. Moreover, they play a key role in many types of environmental signals, including drought, temperature, salinity, cold, and biotic stresses. This review summarizes the current progress made in unraveling the functions of numerous WRKY TFs under drought, salinity, temperature, and cold stresses as well as their role in plant growth and development.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- Department of Life Science, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Amjad Hussain
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | | | - Rana M. Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Qinglin Meng
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Musrat Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan, Islamabad, Pakistan
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Rahim Dad Brohi
- Department of Animal Reproduction/Theriogenology, Faculty of Veterinary Science, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| |
Collapse
|
23
|
Yue M, Jiang L, Zhang N, Zhang L, Liu Y, Wang Y, Li M, Lin Y, Zhang Y, Zhang Y, Luo Y, Wang X, Chen Q, Tang H. Importance of FaWRKY71 in Strawberry (Fragaria × ananassa) Fruit Ripening. Int J Mol Sci 2022; 23:ijms232012483. [PMID: 36293343 PMCID: PMC9604163 DOI: 10.3390/ijms232012483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022] Open
Abstract
WRKY transcription factors play a nonnegligible role in plant growth and development, but little is known about the involvement of WRKY transcription factors in the regulation of fruit ripening. In this study, FaWRKY71 was identified to be closely related to fruit maturation in octoploid strawberry. FaWRKY71 protein localized in the nucleus and responded to cold, salt, low phosphate, ABA, and light quality in strawberry seedlings. The temporal and spatial pattern expression analysis indicated that FaWRKY71 was expressed in all the detected tissues, especially in the full red fruits. In addition, FaWRKY71 gave rise to the accumulation of anthocyanin content by promoting the expression of structural genes FaF3’H, FaLAR, FaANR, and transport factors FaTT19 and FaTT12 in the flavonoid pathway, and softening the texture of strawberry via up-regulating the abundance of FaPG19 and FaPG21. Furthermore, FaWRKY71 was a positive regulator that mediated resistance against reactive oxygen species by enhancing the enzyme activities of SOD, POD, and CAT, reducing the amount of MDA. Altogether, this study provides new and comprehensive insight into the regulatory mechanisms facilitating fruit ripening in strawberry.
Collapse
Affiliation(s)
- Maolan Yue
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Nating Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianxi Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongqiang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (Q.C.); (H.T.); Tel.: +86-158-9268-5193 (Q.C.); +86-136-0826-4028 (H.T.)
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (Q.C.); (H.T.); Tel.: +86-158-9268-5193 (Q.C.); +86-136-0826-4028 (H.T.)
| |
Collapse
|
24
|
Astigueta FH, Baigorria AH, García MN, Delfosse VC, González SA, Pérez de la Torre MC, Moschen S, Lia VV, Heinz RA, Fernández P, Trupkin SA. Characterization and expression analysis of WRKY genes during leaf and corolla senescence of Petunia hybrida plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1765-1784. [PMID: 36387973 PMCID: PMC9636358 DOI: 10.1007/s12298-022-01243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Several families of transcription factors (TFs) control the progression of senescence. Many key TFs belonging to the WRKY family have been described to play crucial roles in the regulation of leaf senescence, mainly in Arabidopsis thaliana. However, little is known about senescence-associated WRKY members in floricultural species. Delay of senescence in leaves and petals of Petunia hybrida, a worldwide ornamental crop are highly appreciated traits. In this work, starting from 28 differentially expressed WRKY genes of A. thaliana during the progression of leaf senescence, we identified the orthologous in P. hybrida and explored the expression profiles of 20 PhWRKY genes during the progression of natural (age-related) leaf and corolla senescence as well as in the corollas of flowers undergoing pollination-induced senescence. Simultaneous visualization showed consistent and similar expression profiles of PhWRKYs during natural leaf and corolla senescence, although weak expression changes were observed during pollination-induced senescence. Comparable expression trends between PhWRKYs and the corresponding genes of A. thaliana were observed during leaf senescence, although more divergence was found in petals of pollinated petunia flowers. Integration of expression data with phylogenetics, conserved motif and cis-regulatory element analyses were used to establish a list of candidates that could regulate more than one senescence process. Our results suggest that several members of the WRKY family of TFs are tightly linked to the regulation of senescence in P. hybrida. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01243-y.
Collapse
Affiliation(s)
- Francisco H. Astigueta
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
| | - Amilcar H. Baigorria
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
| | - Martín N. García
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Verónica C. Delfosse
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
| | - Sergio A. González
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
| | - Mariana C. Pérez de la Torre
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Sebastián Moschen
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Famaillá, 4142 Tucumán, Argentina
| | - Verónica V. Lia
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
- Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Ruth A. Heinz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Paula Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires Argentina
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| | - Santiago A. Trupkin
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de
Buenos Aires, 1425 Buenos Aires, Argentina
- Instituto de Floricultura, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires Argentina
| |
Collapse
|
25
|
Transcriptome-Wide Analysis Revealed the Potential of the High-Affinity Potassium Transporter (HKT) Gene Family in Rice Salinity Tolerance via Ion Homeostasis. Bioengineering (Basel) 2022; 9:bioengineering9090410. [PMID: 36134956 PMCID: PMC9495969 DOI: 10.3390/bioengineering9090410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The high-affinity potassium transporter (HKT) genes are key ions transporters, regulating the plant response to salt stress via sodium (Na+) and potassium (K+) homeostasis. The main goal of this research was to find and understand the HKT genes in rice and their potential biological activities in response to brassinosteroids (BRs), jasmonic acid (JA), seawater, and NaCl stress. The in silico analyses of seven OsHKT genes involved their evolutionary tree, gene structures, conserved motifs, and chemical properties, highlighting the key aspects of OsHKT genes. The Gene Ontology (GO) analysis of HKT genes revealed their roles in growth and stress responses. Promoter analysis showed that the majority of the HKT genes participate in abiotic stress responses. Tissue-specific expression analysis showed higher transcriptional activity of OsHKT genes in roots and leaves. Under NaCl, BR, and JA application, OsHKT1 was expressed differentially in roots and shoots. Similarly, the induced expression pattern of OsHKT1 was recorded in the seawater resistant (SWR) cultivar. Additionally, the Na+ to K+ ratio under different concentrations of NaCl stress has been evaluated. Our data highlighted the important role of the OsHKT gene family in regulating the JA and BR mediated rice salinity tolerance and could be useful for rice future breeding programs.
Collapse
|
26
|
Zhang L, Zhang R, Ye X, Zheng X, Tan B, Wang W, Li Z, Li J, Cheng J, Feng J. Overexpressing VvWRKY18 from grapevine reduces the drought tolerance in Arabidopsis by increasing leaf stomatal density. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153741. [PMID: 35690029 DOI: 10.1016/j.jplph.2022.153741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The growth of grapevine [Vitis vinifera L.] is commonly limited by drought stress. The mechanisms by which grapevine copes with drought stress have not yet been extensively clarified. In this study, the drought and abscisic acid (ABA)-induced gene VvWRKY18 was demonstrated to decreased drought tolerance of Arabidopsis thaliana overexpression (VvWRKY18-OE) lines. Compared to wild-type plants, VvWRKY18-OE lines showed increased levels of malonaldehyde (MDA) and the reactive oxygen species (ROS) H2O2 and O2- decreased levels of proline, weakened activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and decreased sensitivity to ABA with respect to stomatal closure.VvWRKY18-OE lines also showed an increase in stomatal density and a higher water loss rate. Negative regulators of stomatal development including SDD1, YDA, TMM, and MPK6, were downregulated in VvWRKY18-OE lines. Transcript levels of the stress-related genes DREB1A and CBF2 were significantly reduced in VvWRKY18-OE lines under drought stress. Taken together, these findings demonstrate that VvWRKY18 reduced drought tolerance in Arabidopsis. Our results contribute to understanding of the roles that WRKY genes play in drought stress and stomatal development.
Collapse
Affiliation(s)
- Langlang Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Rui Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Zhiqian Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| |
Collapse
|
27
|
The roles of WRKY transcription factors in Malus spp. and Pyrus spp. Funct Integr Genomics 2022; 22:713-729. [PMID: 35906324 DOI: 10.1007/s10142-022-00886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
The WRKY transcription factor gene family is known to be involved in plant defense against pathogens and in tolerance to different environmental stresses at different stages of development. The response mechanisms through which these genes act can be influenced by different phytohormones as well as by many trans- and cis-acting elements, making this network an important topic for analysis, but still something complex to fully understand. According to available reports, these genes can also perform important roles in pome species (Malus spp. and Pyrus spp.) metabolism, especially in adaptation of these plants to stressful conditions. Here, we present a quick review of what is known about WRKY genes in Malus and Pyrus genomes offering a simple way to understand what is already known about this topic. We also add information connecting the evolution of these transcription factors with others that can also be found in pomes.
Collapse
|
28
|
Flutre T, Le Cunff L, Fodor A, Launay A, Romieu C, Berger G, Bertrand Y, Terrier N, Beccavin I, Bouckenooghe V, Roques M, Pinasseau L, Verbaere A, Sommerer N, Cheynier V, Bacilieri R, Boursiquot JM, Lacombe T, Laucou V, This P, Péros JP, Doligez A. A genome-wide association and prediction study in grapevine deciphers the genetic architecture of multiple traits and identifies genes under many new QTLs. G3 (BETHESDA, MD.) 2022; 12:6575896. [PMID: 35485948 PMCID: PMC9258538 DOI: 10.1093/g3journal/jkac103] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
To cope with the challenges facing agriculture, speeding-up breeding programs is a worthy endeavor, especially for perennial species such as grapevine, but requires understanding the genetic architecture of target traits. To go beyond the mapping of quantitative trait loci in bi-parental crosses, we exploited a diversity panel of 279 Vitis vinifera L. cultivars planted in 5 blocks in the vineyard. This panel was phenotyped over several years for 127 traits including yield components, organic acids, aroma precursors, polyphenols, and a water stress indicator. The panel was genotyped for 63k single nucleotide polymorphisms by combining an 18K microarray and genotyping-by-sequencing. The experimental design allowed to reliably assess the genotypic values for most traits. Marker densification via genotyping-by-sequencing markedly increased the proportion of genetic variance explained by single nucleotide polymorphisms, and 2 multi-single nucleotide polymorphism models identified quantitative trait loci not found by a single nucleotide polymorphism-by-single nucleotide polymorphism model. Overall, 489 reliable quantitative trait loci were detected for 41% more response variables than by a single nucleotide polymorphism-by-single nucleotide polymorphism model with microarray-only single nucleotide polymorphisms, many new ones compared with the results from bi-parental crosses. A prediction accuracy higher than 0.42 was obtained for 50% of the response variables. Our overall approach as well as quantitative trait locus and prediction results provide insights into the genetic architecture of target traits. New candidate genes and the application into breeding are discussed.
Collapse
Affiliation(s)
- Timothée Flutre
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France.,Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Loïc Le Cunff
- UMT Géno-Vigne, 34398 Montpellier, France.,IFV, 30240 Le Grau-du-Roi, France
| | - Agota Fodor
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Amandine Launay
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Charles Romieu
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Gilles Berger
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Yves Bertrand
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Nancy Terrier
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France
| | | | | | - Maryline Roques
- UMT Géno-Vigne, 34398 Montpellier, France.,IFV, 30240 Le Grau-du-Roi, France
| | - Lucie Pinasseau
- SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Arnaud Verbaere
- SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Nicolas Sommerer
- SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | | | - Roberto Bacilieri
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Jean-Michel Boursiquot
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Thierry Lacombe
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Valérie Laucou
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Patrice This
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Jean-Pierre Péros
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Agnès Doligez
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| |
Collapse
|
29
|
Nerva L, Garcia JF, Favaretto F, Giudice G, Moffa L, Sandrini M, Cantu D, Zanzotto A, Gardiman M, Velasco R, Gambino G, Chitarra W. The hidden world within plants: metatranscriptomics unveils the complexity of wood microbiomes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2682-2697. [PMID: 35106548 DOI: 10.1093/jxb/erac032] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The importance of plants as complex entities influenced by genomes of the associated microorganisms is now seen as a new source of variability for a more sustainable agriculture, also in the light of ongoing climate change. For this reason, we investigated through metatranscriptomics whether the taxa profile and behaviour of microbial communities associated with the wood of 20-year-old grapevine plants are influenced by the health status of the host. We report for the first time a metatranscriptome from a complex tissue in a real environment, highlighting that this approach is able to define the microbial community better than referenced transcriptomic approaches. In parallel, the use of total RNA enabled the identification of bacterial taxa in healthy samples that, once isolated from the original wood tissue, displayed potential biocontrol activities against a wood-degrading fungal taxon. Furthermore, we revealed an unprecedented high number of new viral entities (~120 new viral species among 180 identified) associated with a single and limited environment and with potential impact on the whole holobiont. Taken together, our results suggest a complex multitrophic interaction in which the viral community also plays a crucial role in raising new ecological questions for the exploitation of microbial-assisted sustainable agriculture.
Collapse
Affiliation(s)
- Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Jadran F Garcia
- Department of Viticulture and Enology, University of California, Davis, One Shields Ave, Davis, CA 95618, USA
| | - Francesco Favaretto
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- University of Padova, Department of Agronomy, Animals, Food, Natural Resources and Environment (DAFNAE), Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Gaetano Giudice
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- University of Milano, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA), Via Celoria 2, 20133, Milano, Italy
| | - Loredana Moffa
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, 33100 Udine, Italy
| | - Marco Sandrini
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, 33100 Udine, Italy
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, One Shields Ave, Davis, CA 95618, USA
| | - Alessandro Zanzotto
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Massimo Gardiman
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Riccardo Velasco
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Walter Chitarra
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
30
|
Du Z, You S, Zhao X, Xiong L, Li J. Genome-Wide Identification of WRKY Genes and Their Responses to Chilling Stress in Kandelia obovata. Front Genet 2022; 13:875316. [PMID: 35432463 PMCID: PMC9008847 DOI: 10.3389/fgene.2022.875316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
Background:Kandelia obovata, a dominant mangrove species, is widely distributed in tropical and subtropical areas. Low temperature is the major abiotic stress that seriously limits the survival and growth of mangroves. WRKY transcription factors (TFs) play vital roles in responses to biotic and abiotic stresses. However, genome-wide analysis of WRKY genes in K. obovata and their responses to chilling stress have not been reported. Methods: Bioinformatic analysis was used to identify and characterize the K. obovata WRKY (KoWRKY) gene family, RNA-seq and qRT–PCR analyses were employed to screen KoWRKYs that respond to chilling stress. Results: Sixty-four KoWRKYs were identified and they were unevenly distributed across all 18 K. obovata chromosomes. Many orthologous WRKY gene pairs were identified between Arabidopsis thaliana and K. obovata, showing high synteny between the two genomes. Segmental duplication events were found to be the major force driving the expansion for the KoWRKY gene family. Most of the KoWRKY genes contained several kinds of hormone- and stress-responsive cis-elements in their promoter. KoWRKY proteins belonged to three groups (I, II, III) according to their conserved WRKY domains and zinc-finger structure. Expression patterns derived from the RNA-seq and qRT–PCR analyses revealed that 9 KoWRKYs were significantly upregulated during chilling acclimation in the leaves. KEGG pathway enrichment analysis showed that the target genes of KoWRKYs were significantly involved in 11 pathways, and coexpression network analysis showed that 315 coexpressed pairs (KoWRKYs and mRNAs) were positively correlated. Conclusion: Sixty-four KoWRKYs from the K. obovata genome were identified, 9 of which exhibited chilling stress-induced expression patterns. These genes represent candidates for future functional analysis of KoWRKYs involved in chilling stress related signaling pathways in K. obovata. Our results provide a basis for further analysis of KoWRKY genes to determine their functions and molecular mechanisms in K. obovata in response to chilling stress.
Collapse
Affiliation(s)
- Zhaokui Du
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Shixian You
- Yuhuan Municipal Bureau of Natural Resources and Planning, Yuhuan, China
| | - Xin Zhao
- Marine Academy of Zhejiang Province, Hangzhou, China
| | - Lihu Xiong
- Marine Academy of Zhejiang Province, Hangzhou, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- *Correspondence: Junmin Li,
| |
Collapse
|
31
|
Zhang F, Zhong H, Zhou X, Pan M, Xu J, Liu M, Wang M, Liu G, Xu T, Wang Y, Wu X, Xu Y. Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis. HORTICULTURE RESEARCH 2022; 9:uhac055. [PMID: 35664240 PMCID: PMC9154076 DOI: 10.1093/hr/uhac055] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/21/2022] [Indexed: 06/01/2023]
Abstract
In viticulture, grafting has been practiced widely and influences grape development as well as berry and wine quality. However, there is limited understanding of the effects of rootstocks on grape phenolic compounds, which are located primarily in the berry skin and contribute to certain sensory attributes of wine. In this study, scion-rootstock interactions were investigated at the green-berry stage and the veraison stage when grapevines were hetero-grafted with three commonly used rootstock genotypes (5BB, 101-14MG, and SO4). Physiological investigations showed that hetero-grafts, especially CS/5BB, contained higher concentrations of total proanthocyanidins (PAs) and various PA components in berry skins compared with the auto-grafted grapevines. Further metabolomics analysis identified 105 differentially accumulated flavonoid compounds, the majority of which, including anthocyanins, PAs, and flavonols, were significantly increased in the berry skins of hetero-grafted grapevines compared with auto-grafted controls. In addition, transcriptomic analysis of the same samples identified several thousand differentially expressed genes between hetero-grafted and auto-grafted vines. The three rootstocks not only increased the transcript levels of stilbene, anthocyanin, PA, and flavonol synthesis genes but also affected the expression of numerous transcription factor genes. Taken together, our results suggest that hetero-grafting can promote phenolic compound accumulation in grape berry skin during development. These findings provide new insights for improving the application value of grafting by enhancing the accumulation of nutritious phenolic components in grape.
Collapse
Affiliation(s)
- Fuchun Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Haixia Zhong
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Xiaoming Zhou
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Mingqi Pan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Juan Xu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Mingbo Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Min Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Tengfei Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | | | - Yan Xu
- Corresponding author: E-mail: ;
| |
Collapse
|
32
|
Pirrello C, Malacarne G, Moretto M, Lenzi L, Perazzolli M, Zeilmaker T, Van den Ackerveken G, Pilati S, Moser C, Giacomelli L. Grapevine DMR6-1 Is a Candidate Gene for Susceptibility to Downy Mildew. Biomolecules 2022; 12:182. [PMID: 35204683 PMCID: PMC8961545 DOI: 10.3390/biom12020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Grapevine (Vitis vinifera) is a valuable crop in Europe for both economical and cultural reasons, but highly susceptible to Downy mildew (DM). The generation of resistant vines is of critical importance for a sustainable viticulture and can be achieved either by introgression of resistance genes in susceptible varieties or by mutation of Susceptibility (S) genes, e.g., by gene editing. This second approach offers several advantages: it maintains the genetic identity of cultivars otherwise disrupted by crossing and generally results in a broad-spectrum and durable resistance, but it is hindered by the poor knowledge about S genes in grapevines. Candidate S genes are Downy mildew Resistance 6 (DMR6) and DMR6-Like Oxygenases (DLOs), whose mutations confer resistance to DM in Arabidopsis. In this work, we show that grapevine VviDMR6-1 complements the Arabidopsis dmr6-1 resistant mutant. We studied the expression of grapevine VviDMR6 and VviDLO genes in different organs and in response to the DM causative agent Plasmopara viticola. Through an automated evaluation of causal relationships among genes, we show that VviDMR6-1, VviDMR6-2, and VviDLO1 group into different co-regulatory networks, suggesting distinct functions, and that mostly VviDMR6-1 is connected with pathogenesis-responsive genes. Therefore, VviDMR6-1 represents a good candidate to produce resistant cultivars with a gene-editing approach.
Collapse
Affiliation(s)
- Carlotta Pirrello
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Giulia Malacarne
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Luisa Lenzi
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Tieme Zeilmaker
- SciENZA Biotechnologies B.V., Sciencepark 904, 1098 XH Amsterdam, The Netherlands;
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Stefania Pilati
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Lisa Giacomelli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| |
Collapse
|
33
|
Wang C, Hao X, Wang Y, Maoz I, Zhou W, Zhou Z, Kai G. Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorrhiza pumila. HORTICULTURE RESEARCH 2022; 9:uhac099. [PMID: 35795387 PMCID: PMC9250654 DOI: 10.1093/hr/uhac099] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 05/13/2023]
Abstract
Camptothecin is a chemotherapeutic drug widely used to treat various cancers. Ophiorrhiza pumila is an ideal plant model for the study of camptothecin production, with various advantages for studying camptothecin biosynthesis and regulation. The DNA-binding WRKY transcription factors have a key regulatory role in secondary metabolite biosynthesis in plants. However, little is currently known about their involvement in camptothecin biosynthesis in O. pumila. We identified 46 OpWRKY genes unevenly distributed on the 11 chromosomes of O. pumila. Phylogenetic and multiple sequence alignment analyses divided the OpWRKY proteins into three subfamilies. Based on spatial expression and co-expression, we targeted the candidate gene OpWRKY6. Overexpression of OpWRKY6 significantly reduced the accumulation of camptothecin compared with the control. Conversely, camptothecin accumulation increased in OpWRKY6 knockout lines. Further biochemical assays showed that OpWRKY6 negatively regulates camptothecin biosynthesis from both the iridoid and shikimate pathways by directly downregulating the gene expression of OpGES, Op10HGO, Op7DLH, and OpTDC. Our data provide direct evidence for the involvement of WRKYs in the regulation of camptothecin biosynthesis and offer valuable information for enriching the production of camptothecin in plant systems.
Collapse
Affiliation(s)
| | - Xiaolong Hao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yao Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Itay Maoz
- Department of Postharvest Science, ARO, The Volcani Center, HaMaccabim Rd 68, POB 15159, Rishon LeZion, 7528809, Israel
| | - Wei Zhou
- Corresponding authors. E-mail: , ,
| | | | | |
Collapse
|
34
|
Negi N, Khurana P. A salicylic acid inducible mulberry WRKY transcription factor, MiWRKY53 is involved in plant defence response. PLANT CELL REPORTS 2021; 40:2151-2171. [PMID: 33997916 DOI: 10.1007/s00299-021-02710-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
MiWRKY53 is expressed in response to various stresses and hormones. Although it is localized in the nucleus, it shows no transcriptional activation. Role of SA-mediated plant defence response is demonstrated. WRKY transcription factors are one the largest gene families in plants involved in almost every process in plants including development, physiological processes, and stress response. Salicylic acid (SA) is key regulator of biotic stress against various pathogens in plants acting via its multiple mechanisms to induce defence response. Herein, we have identified and functionally validated WRKY53 from mulberry (Morus indica var. K2). MiWRKY53 expressed differentially in response to different stress and hormonal treatments. MiWRKY53 belongs to group III of WKRY gene family, localized in nucleus, and lacks transcriptional activation activity in yeast. Hormone responsive behaviour of MiWRKY53 Arabidopsis overexpression (OE) transgenics preferentially was noted in root growth assay in response to Salicylic acid (SA). Arabidopsis overexpression plants also displayed alteration in leaf phenotype having wider leaves than the wild-type plants. PR-1 transcripts were higher in MiWRKY53 Arabidopsis OE plants and they displayed resistance towards biotrophic pathogen Pseudomonas syringae PstDC3000. MiWRKY53 Mulberry OE transgenics also depicted SA-responsive behaviour. Several hormones and stress-related cis-acting elements were also identified in the 1.2-Kb upstream regulatory region (URR) of MiWRKY53. Functional characterization of full-length promoter region revealed that it is induced by SA and further analysis of deletion constructs helped in the identification of minimal promoter responsible for its inducibility by SA. Altogether, the findings from this study point towards the SA preferential behaviour of MiWRKY53 and its function as regulator of plant defence response through SA-mediated mechanisms.
Collapse
Affiliation(s)
- Nisha Negi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
35
|
Goyal N, Bhatia G, Garewal N, Upadhyay A, Singh K. Identification of defense related gene families and their response against powdery and downy mildew infections in Vitis vinifera. BMC Genomics 2021; 22:776. [PMID: 34717533 PMCID: PMC8556916 DOI: 10.1186/s12864-021-08081-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/10/2021] [Indexed: 12/04/2022] Open
Abstract
Background Grapevine (Vitis vinifera) productivity has been severely affected by various bacterial, viral and fungal diseases worldwide. When a plant is infected with the pathogen, various defense mechanisms are subsequently activated in plants at various molecular levels. Thus, for substantiating the disease control in an eco-friendly way, it is essential to understand the molecular mechanisms governing pathogen resistance in grapes. Results In our study, we performed genome-wide identification of various defensive genes expressed during powdery mildew (PM) and downy mildew (DM) infections in grapevine. Consequently, we identified 6, 21, 2, 5, 3 and 48 genes of Enhanced Disease Susceptibility 1 (EDS1), Non-Race-specific Disease Resistance (NDR1), Phytoalexin deficient 4 (PAD4), Nonexpressor of PR Gene (NPR), Required for Mla-specified resistance (RAR) and Pathogenesis Related (PR), respectively, in the grapevine genome. The phylogenetic study revealed that V. vinifera defensive genes are evolutionarily related to Arabidopsis thaliana. Differential expression analysis resulted in identification of 2, 4, 7, 2, 4, 1 and 7 differentially expressed Nucleotide-binding leucine rich repeat receptor (NLR), EDS1, NDR1, PAD4, NPR, RAR1 and PR respectively against PM infections and 28, 2, 5, 4, 1 and 19 differentially expressed NLR, EDS1, NDR1, NPR, RAR1 and PR respectively against DM infections in V. vinifera. The co-expression study showed the occurrence of closely correlated defensive genes that were expressed during PM and DM stress conditions. Conclusion The PM and DM responsive defensive genes found in this study can be characterized in future for impelling studies relaying fungal and oomycete resistance in plants, and the functionally validated genes would then be available for conducting in-planta transgenic gene expression studies for grapes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08081-4.
Collapse
Affiliation(s)
- Neetu Goyal
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, -160014, India
| | - Garima Bhatia
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, -160014, India
| | - Naina Garewal
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, -160014, India
| | - Anuradha Upadhyay
- National Research Centre for Grapes, Solapur Road, Pune, Maharashtra, 412 307, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, -160014, India.
| |
Collapse
|
36
|
Hwang HS, Han JY, Choi YE. Enhanced accumulation of pinosylvin stilbenes and related gene expression in Pinus strobus after infection of pine wood nematode. TREE PHYSIOLOGY 2021; 41:1972-1987. [PMID: 33891091 DOI: 10.1093/treephys/tpab053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/07/2021] [Indexed: 05/26/2023]
Abstract
Pine wood nematodes (PWNs; Bursaphelenchus xylophilus) infect pine trees and cause serious pine wilt disease. Eastern white pine (Pinus strobus) has resistance to PWN. However, the detailed defense mechanisms of P. strobus against PWN are not well known. When P. strobus plants were infected with PWNs, the accumulation of stilbenoids, dihydropinosylvin monomethyl ether (DPME) and pinosylvin monomethyl ether (PME) was increased remarkably. Both DPME and PME had high nematicidal activity. The nematicidal activity of the two compounds was resulted in a developmental stage-dependent manner. Pinosylvin monomethyl ether was more toxic to adult PWNs than juveniles, whereas DPME was found more toxic to juvenile PWNs than the adults. The genes involved in PME and DPME biosynthesis such as phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), pinosylvin synthase (STS) and pinosylvin O-methyltransferase (PMT) were isolated using de novo sequencing of the transcriptome in P. strobus. In addition, transcription factors (TFs; bHLH, MYB and WRKY) related to stilbene biosynthesis were isolated. qPCR analyses of the selected genes (PAL, 4CL, STS and PMT) including TFs (bHLH, MYB and WRKY) revealed that the expression level of the selected genes highly enhanced after PWN infection. Our results suggest that pinosylvin-type stilbenoid biosynthesis is highly responsive to PWN infection and plays an important role in PWN resistance of P. strobus trees.
Collapse
Affiliation(s)
- Hwan-Su Hwang
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Jung Yeon Han
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Yong Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
37
|
Li S, Geng X, Chen S, Liu K, Yu S, Wang X, Zhang C, Zhang J, Wen Y, Luo Q, Xu Y, Wang Y. The co-expression of genes involved in seed coat and endosperm development promotes seed abortion in grapevine. PLANTA 2021; 254:87. [PMID: 34585280 DOI: 10.1007/s00425-021-03728-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The seed coat gene VviAGL11 coordinates with endosperm development genes FIS2, PHERESE1 and IKU2 and functions as the key regulator in seed development and abortion processes in grapevine. Seed development is essential for the reproduction of flowering plants. Seed abortion is a specific characteristic that produces seedless berries and is often observed in cultivated grapevines. Although seedlessness is an important trait for table and dried grapevine production, the mechanism of seed abortion remains poorly understood. This research aimed to analyze the co-expression of the seed coat development gene VviAGL11 and the endosperm development genes FERTILIZATION INDEPENDENT SEED2 (FIS2), PHERESE1 and HAIKU2 (IKU2) that regulate seedless fruit development in grapevine. The transcript levels of VviAGL11, FIS2, PHERESE1 and IKU2 all decreased during seed abortion in the seedless grape 'Thompson Seedless' plants, compared to those of the seeded grape 'Pinot Noir'. The transcript levels of the salicylic acid (SA)-dependent defense response genes EDS1, NPR1, NDR1 and SID2 were higher in 'Thompson Seedless' than 'Pinot Noir' during seed development. Also, WRKY3, WRKY6 and WRKY52, which participate in the SA pathway, were higher expressed in 'Thompson Seedless' than in 'Pinot Noir', indicating that SA-dependent defense responses may regulate seed abortion. The genes related to synthesis and metabolism of gibberellic acid (GA) and abscisic acid (ABA) also showed differential expression between 'Thompson Seedless' and 'Pinot Noir'. Exogenous applications of plant growth regulators (PGRs) to inflorescences of three stenospermocarpy grapevines before flowering showed that GA3 was critical prominently in seed development. Therefore, the co-expression of seed coat and endosperm development-related genes, SA pathway genes, and genes for the synthesis and metabolism of GA3 together enhance seed abortion in seedless grapes.
Collapse
Affiliation(s)
- Shasha Li
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiangyu Geng
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Chen
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Keke Liu
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Saisai Yu
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jianxia Zhang
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yingqiang Wen
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qiangwei Luo
- Research Institute of Xinjiang Grape, Melon and Fruit, Shanshan, 838200, Xinjiang, People's Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
38
|
Yu Y, Yang S, Bian L, Yu K, Meng X, Zhang G, Xu W, Yao W, Guo D. Identification of C3H2C3-type RING E3 ubiquitin ligase in grapevine and characterization of drought resistance function of VyRCHC114. BMC PLANT BIOLOGY 2021; 21:422. [PMID: 34535070 PMCID: PMC8447581 DOI: 10.1186/s12870-021-03162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND RING is one of the largest E3 ubiquitin ligase families and C3H2C3 type is the largest subfamily of RING, which plays an important role in plant growth and development, and growth and responses to biotic and abiotic stresses. RESULTS A total of 143 RING C3H2C3-type genes (RCHCs) were discovered from the grapevine genome and separated into groups (I-XI) according to their phylogenetic analysis, and these genes named according to their positions on chromosomes. Gene replication analysis showed that tandem duplications play a predominant role in the expansion of VvRCHCs family together. Structural analysis showed that most VvRCHCs (67.13 %) had no more than 2 introns, while genes clustered together based on phylogenetic trees had similar motifs and evolutionarily conserved structures. Cis-acting element analysis showed the diversity of VvRCHCs regulation. The expression profiles of eight DEGs in RNA-Seq after drought stress were like the results of qRT-PCR analysis. In vitro ubiquitin experiment showed that VyRCHC114 had E3 ubiquitin ligase activity, overexpression of VyRCHC114 in Arabidopsis improved drought tolerance. Moreover, the transgenic plant survival rate increased by 30 %, accompanied by electrolyte leakage, chlorophyll content and the activities of SOD, POD, APX and CAT were changed. The quantitative expression of AtCOR15a, AtRD29A, AtERD15 and AtP5CS1 showed that they participated in the response to drought stress may be regulated by the expression of VyRCHC114. CONCLUSIONS This study provides valuable new information for the evolution of grapevine RCHCs and its relevance for studying the functional characteristics of grapevine VyRCHC114 genes under drought stress.
Collapse
Affiliation(s)
- Yihe Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Shengdi Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Lu Bian
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Keke Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Xiangxuan Meng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Guohai Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Weirong Xu
- School of Wine, Ningxia University, Yinchuan, 750021 Ningxia Province China
| | - Wenkong Yao
- School of Wine, Ningxia University, Yinchuan, 750021 Ningxia Province China
| | - Dalong Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| |
Collapse
|
39
|
Bhatia G, Upadhyay SK, Upadhyay A, Singh K. Investigation of long non-coding RNAs as regulatory players of grapevine response to powdery and downy mildew infection. BMC PLANT BIOLOGY 2021; 21:265. [PMID: 34103007 PMCID: PMC8186045 DOI: 10.1186/s12870-021-03059-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/23/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are regulatory transcripts of length > 200 nt. Owing to the rapidly progressing RNA-sequencing technologies, lncRNAs are emerging as considerable nodes in the plant antifungal defense networks. Therefore, we investigated their role in Vitis vinifera (grapevine) in response to obligate biotrophic fungal phytopathogens, Erysiphe necator (powdery mildew, PM) and Plasmopara viticola (downy mildew, DM), which impose huge agro-economic burden on grape-growers worldwide. RESULTS Using computational approach based on RNA-seq data, 71 PM- and 83 DM-responsive V. vinifera lncRNAs were identified and comprehensively examined for their putative functional roles in plant defense response. V. vinifera protein coding sequences (CDS) were also profiled based on expression levels, and 1037 PM-responsive and 670 DM-responsive CDS were identified. Next, co-expression analysis-based functional annotation revealed their association with gene ontology (GO) terms for 'response to stress', 'response to biotic stimulus', 'immune system process', etc. Further investigation based on analysis of domains, enzyme classification, pathways enrichment, transcription factors (TFs), interactions with microRNAs (miRNAs), and real-time quantitative PCR of lncRNAs and co-expressing CDS pairs suggested their involvement in modulation of basal and specific defense responses such as: Ca2+-dependent signaling, cell wall reinforcement, reactive oxygen species metabolism, pathogenesis related proteins accumulation, phytohormonal signal transduction, and secondary metabolism. CONCLUSIONS Overall, the identified lncRNAs provide insights into the underlying intricacy of grapevine transcriptional reprogramming/post-transcriptional regulation to delay or seize the living cell-dependent pathogen growth. Therefore, in addition to defense-responsive genes such as TFs, the identified lncRNAs can be further examined and leveraged to candidates for biotechnological improvement/breeding to enhance fungal stress resistance in this susceptible fruit crop of economic and nutritional importance.
Collapse
Affiliation(s)
- Garima Bhatia
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, 160014, India
| | | | - Anuradha Upadhyay
- National Research Centre for Grapes, Solapur Road, Pune, Maharashtra, 412307, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
40
|
Kim JW, Yi J, Park J, Jeong JH, Kim J, Won J, Chung S, Kim TS, Pak JH. Transcriptomic profiling of three-dimensional cholangiocyte spheroids long term exposed to repetitive Clonorchis sinensis excretory-secretory products. Parasit Vectors 2021; 14:213. [PMID: 33879231 PMCID: PMC8056535 DOI: 10.1186/s13071-021-04717-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background Biliary tract infection with the carcinogenic human liver fluke, Clonorchis sinensis, provokes chronic inflammation, epithelial hyperplasia, periductal fibrosis, and even cholangiocarcinoma. Complications are proportional to the intensity and duration of the infection. In addition to mechanical irritation of the biliary epithelia from worms, their excretory-secretory products (ESPs) cause chemical irritation, which leads to inflammation, proliferation, and free radical generation. Methods A three-dimensional in vitro cholangiocyte spheroid culture model was established, followed by ESP treatment. This allowed us to examine the intrinsic pathological mechanisms of clonorchiasis via the imitation of prolonged and repetitive in vivo infection. Results Microarray and RNA-Seq analysis revealed that ESP-treated cholangiocyte H69 spheroids displayed global changes in gene expression compared to untreated spheroids. In ESP-treated H69 spheroids, 185 and 63 probes were found to be significantly upregulated and downregulated, respectively, corresponding to 209 genes (p < 0.01, fold change > 2). RNA-Seq was performed for the validation of the microarray results, and the gene expression patterns in both transcriptome platforms were well matched for 209 significant genes. Gene ontology analysis demonstrated that differentially expressed genes were mainly classified into immune system processes, the extracellular region, and the extracellular matrix. Among the upregulated genes, four genes (XAF1, TRIM22, CXCL10, and BST2) were selected for confirmation using quantitative RT-PCR, resulting in 100% similar expression patterns in microarray and RNA-Seq. Conclusions These findings broaden our understanding of the pathological pathways of liver fluke-associated hepatobiliary disorders and suggest a novel therapeutic strategy for this infectious cancer. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04717-2.
Collapse
Affiliation(s)
- Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Junyeong Yi
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jinhong Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji Hoon Jeong
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jinho Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jihee Won
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine and Parasitology, Inha University School of Medicine, Incheon, 22212, Republic of Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.
| |
Collapse
|
41
|
Secondary Metabolism and Defense Responses Are Differently Regulated in Two Grapevine Cultivars during Ripening. Int J Mol Sci 2021; 22:ijms22063045. [PMID: 33802641 PMCID: PMC8002507 DOI: 10.3390/ijms22063045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/31/2022] Open
Abstract
Vitis vinifera ‘Nebbiolo’ is one of the most important wine grape cultivars used to produce prestigious high-quality wines known throughout the world, such as Barolo and Barbaresco. ‘Nebbiolo’ is a distinctive genotype characterized by medium/high vigor, long vegetative and ripening cycles, and limited berry skin color rich in 3′-hydroxylated anthocyanins. To investigate the molecular basis of these characteristics, ‘Nebbiolo’ berries collected at three different stages of ripening (berry pea size, véraison, and harvest) were compared with V. vinifera ‘Barbera’ berries, which are rich in 3′,5′-hydroxylated anthocyanins, using transcriptomic and analytical approaches. In two consecutive seasons, the two genotypes confirmed their characteristic anthocyanin profiles associated with a different modulation of their transcriptomes during ripening. Secondary metabolism and response to stress were the functional categories that most differentially changed between ‘Nebbiolo’ and ‘Barbera’. The profile rich in 3′-hydroxylated anthocyanins of ‘Nebbiolo’ was likely linked to a transcriptional downregulation of key genes of anthocyanin biosynthesis. In addition, at berry pea size, the defense metabolism was more active in ‘Nebbiolo’ than ‘Barbera’ in absence of biotic attacks. Accordingly, several pathogenesis-related proteins, WRKY transcription factors, and stilbene synthase genes were overexpressed in ‘Nebbiolo’, suggesting an interesting specific regulation of defense pathways in this genotype that deserves to be further explored.
Collapse
|
42
|
Qu R, Cao Y, Tang X, Sun L, Wei L, Wang K. Identification and expression analysis of the WRKY gene family in Isatis indigotica. Gene 2021; 783:145561. [PMID: 33705810 DOI: 10.1016/j.gene.2021.145561] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 01/14/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
The WRKY proteins, which represent one of the largest families of transcriptional regulators in plants, play pivotal roles in regulating multiple processes of growth and development, particularly in diverse stress responses. Isatis indigotica is widely used in Traditional Chinese Medicine and is famous for its use as a dye for the color indigo. However, reports of the WRKY gene family in I. indigotica are limited. In this study, 64 IiWRKY genes encoding proteins with the complete WRKY domain were identified from genome of I. indigotica. Based on their structure and phylogenetic relationships of this gene family in I. indigotica, the IiWRKY genes were classified into three groups: Group I (n = 13), Group II (n = 35) and Group III (n = 16). Sequence alignment revealed that IiWRKY proteins harbored two variants, WRKYRQK and WRKYGKK, of the highly conserved WRKYGQK motif. The number of exons in IiWRKY genes varied from two to 14, with most of IiWRKY genes containing three exons. Investigation of gene duplication demonstrated that 10 and 14 IiWRKY genes were incorporated in tandem and segmental duplication events, respectively. Finally, the expression profiles derived from transcriptome data and quantitative real-time PCR analysis showed distinct expression patterns of these IiWRKY gene in five different organs or in response to four abiotic stresses. Taken together, our results will contribute to functional analysis of IiWRKY genes, and also provide a basis for further clarification of the molecular mechanism of stress responses in this important herb.
Collapse
Affiliation(s)
- Renjun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yiwen Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaoqing Tang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Liqiong Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lian Wei
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kangcai Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
43
|
Nan H, Ludlow RA, Lu M, An H. Genome-Wide Analysis of Dof Genes and Their Response to Abiotic Stress in Rose ( Rosa chinensis). Front Genet 2021; 12:538733. [PMID: 33747030 PMCID: PMC7969895 DOI: 10.3389/fgene.2021.538733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 01/26/2021] [Indexed: 11/20/2022] Open
Abstract
Dof (DNA binding with one finger) proteins play important roles in plant development and defense regulatory networks. In the present study, we report a genome-wide analysis of rose Dof genes (RchDof), including phylogenetic inferences, gene structures, chromosomal locations, gene duplications, and expression diversity. A total of 24 full-length RchDof genes were identified in Rosa chinensis, which were assigned to nine distinct subgroups. These RchDof genes were unevenly distributed on rose chromosomes. The genome-scale analysis of synteny indicated that segmental duplication events may have played a major role in the evolution of the RchDof gene family. Analysis of cis-acting elements revealed putative functions of Dofs in rose during development as well as under numerous biotic and abiotic stress conditions. Moreover, the expression profiles derived from qRT-PCR experiments demonstrated distinct expression patterns in various tissues, and gene expression divergence existed among the duplicated RchDof genes, suggesting a fundamentally functional divergence of the duplicated Dof paralogs in rose. The gene expression analysis of RchDofs under drought and salt stress conditions was also performed. The present study offered novel insights into the evolution of RchDofs and can aid in the further functional characterization of its candidate genes.
Collapse
Affiliation(s)
- Hong Nan
- College of Agriculture, Guizhou University, Guiyang, China
| | - Richard A Ludlow
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Min Lu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Huaming An
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
44
|
Yao T, Zhang J, Xie M, Yuan G, Tschaplinski TJ, Muchero W, Chen JG. Transcriptional Regulation of Drought Response in Arabidopsis and Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:572137. [PMID: 33488639 PMCID: PMC7820124 DOI: 10.3389/fpls.2020.572137] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/25/2020] [Indexed: 05/24/2023]
Abstract
Within the context of global warming, long-living plants such as perennial woody species endure adverse conditions. Among all of the abiotic stresses, drought stress is one of the most detrimental stresses that inhibit plant growth and productivity. Plants have evolved multiple mechanisms to respond to drought stress, among which transcriptional regulation is one of the key mechanisms. In this review, we summarize recent progress on the regulation of drought response by transcription factor (TF) families, which include abscisic acid (ABA)-dependent ABA-responsive element/ABRE-binding factors (ABRE/ABF), WRKY, and Nuclear Factor Y families, as well as ABA-independent AP2/ERF and NAC families, in the model plant Arabidopsis. We also review what is known in woody species, particularly Populus, due to its importance and relevance in economic and ecological processes. We discuss opportunities for a deeper understanding of drought response in woody plants with the development of high-throughput omics analyses and advanced genome editing techniques.
Collapse
Affiliation(s)
- Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Meng Xie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
45
|
Liu Z, Shi L, Yang S, Qiu S, Ma X, Cai J, Guan D, Wang Z, He S. A conserved double-W box in the promoter of CaWRKY40 mediates autoregulation during response to pathogen attack and heat stress in pepper. MOLECULAR PLANT PATHOLOGY 2021; 22:3-18. [PMID: 33151622 PMCID: PMC7749755 DOI: 10.1111/mpp.13004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 05/11/2023]
Abstract
CaWRKY40 was previously found to be transcriptionally up-regulated by Ralstonia solanacearum inoculation (RSI) or heat stress (HS), but the underlying mechanism remains unknown. Herein, we report that a double-W box-element (DWE) in the promoter of CaWRKY40 is critical for these responses. The upstream W box unit WI of this composite element is crucial for preferential binding by CaWRKY40 and responsiveness to RSI or HS. DWE-driven CaWRKY40 can be transcriptionally and nonspecifically regulated by itself and by CaWRKY58 and CaWRKY27. The DWE was also found in the promoters of CaWRKY40 orthologs, including AtWRKY40, VvWRKY40, GmWRKY40, CplWRKY40, SaWRKY40, SpWRKY40, NtWRKY40, and NaWRKY40. DWEAtWRKY40 was analogous to DWECaWRKY40 by responding to RSI or HS and AtWRKY40 expression. These data suggest that a conserved response of plants to pathogen infection or HS is probably mediated by binding of the DWE by WRKY40.
Collapse
Affiliation(s)
- Zhi‐Qin Liu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lan‐Ping Shi
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Sheng Yang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shan‐Shan Qiu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiao‐Ling Ma
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jin‐Sen Cai
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - De‐Yi Guan
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zong‐Hua Wang
- Fujian University Key Laboratory for Plant‐Microbe InteractionCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of OceanographyMinjiang UniversityFuzhouChina
| | - Shui‐Lin He
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
46
|
Bi M, Li X, Yan X, Liu D, Gao G, Zhu P, Mao H. Chrysanthemum WRKY15-1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway. HORTICULTURE RESEARCH 2021; 8:6. [PMID: 33384451 PMCID: PMC7775453 DOI: 10.1038/s41438-020-00436-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 05/12/2023]
Abstract
Chrysanthemum white rust disease, which is caused by the fungus Puccinia horiana Henn., severely reduces the ornamental quality and yield chrysanthemum. WRKY transcription factors function in the disease-resistance response in a variety of plants; however, it is unclear whether members of this family improve resistance to white rust disease in chrysanthemum. In this study, using PCR, we isolated a WRKY15 homologous gene, CmWRKY15-1, from the resistant chrysanthemum cultivar C029. Real-time quantitative PCR (RT-qPCR) revealed that CmWRKY15-1 exhibited differential expression patterns between the immune cultivar C029 and the susceptible cultivar Jinba upon P. horiana infection. In addition, salicylic acid (SA) treatment strongly induced CmWRKY15-1 expression. Overexpression of CmWRKY15-1 in the chrysanthemum-susceptible cultivar Jinba increased tolerance to P. horiana infection. Conversely, silencing CmWRKY15-1 via RNA interference (RNAi) in C029 increased sensitivity to P. horiana infection. We also determined that P. horiana infection increased both the endogenous SA content and the expression of salicylic acid biosynthesis genes in CmWRKY15-1-overexpressing plants, whereas CmWRKY15-1 RNAi plants exhibited the opposite effects under the same conditions. Finally, the transcript levels of pathogenesis-related (PR) genes involved in the SA pathway were positively associated with CmWRKY15-1 expression levels. Our results demonstrated that CmWRKY15-1 plays an important role in the resistance of chrysanthemum to P. horiana by influencing SA signaling.
Collapse
Affiliation(s)
- Mengmeng Bi
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xueying Li
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xin Yan
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Di Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ge Gao
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Pengfang Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Hongyu Mao
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China.
| |
Collapse
|
47
|
Tiika RJ, Wei J, Ma R, Yang H, Cui G, Duan H, Ma Y. Identification and expression analysis of the WRKY gene family during different developmental stages in Lycium ruthenicum Murr. fruit. PeerJ 2020; 8:e10207. [PMID: 33194409 PMCID: PMC7602686 DOI: 10.7717/peerj.10207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
Background The WRKY gene family, one of the major transcription factor families in plants, plays crucial regulatory roles in physiological and biological developmental processes, and the adaptation of plants to the environment. However, the systematic study of WRKY structure, expression profiling, and regulatory functions has not been extensively reported in Lycium ruthenicum, although these aspects have been comprehensively studied in most plant species. Methods In this study, the WRKY genes were identified from a L. ruthenicum transcriptome database by using bioinformatics. The identification, phylogenetic analysis, zinc-finger structures, and conserved motif prediction were extensively explored. Moreover, the expression levels of 23 selected genes with fragments per kilobase of exons per million mapped reads (FPKM) >5 were assayed during different fruit developmental stages with real-time quantitative polymerase chain reaction (RT-qPCR). Results A total of 73 putative WRKY proteins in the L. ruthenicum transcriptome database were identified and examined. Forty-four proteins with the WRKY domain were identified and divided into three major groups with several subgroups, in accordance with those in other plant species. All 44 LrWRKY proteins contained one or two conserved WRKY domains and a zinc-finger structure. Conserved motif prediction revealed conservation of the WRKY DNA-binding domain in L. ruthenicum proteins. The selected LrWRKY genes exhibited discrete expression patterns during different fruit developmental stages. Interestingly, five LrWRKYs (-20, -21, -28, -30, and -31) were expressed remarkably throughout the fruit developmental stages. Discussion Our results reveal the characteristics of the LrWRKY gene family, thus laying a foundation for further functional analysis of the WRKY family in L. ruthenicum.
Collapse
Affiliation(s)
- Richard John Tiika
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China.,Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Jia Wei
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China.,Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Rui Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yanjun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| |
Collapse
|
48
|
RNA-Seq Time Series of Vitis vinifera Bud Development Reveals Correlation of Expression Patterns with the Local Temperature Profile. PLANTS 2020; 9:plants9111548. [PMID: 33198137 PMCID: PMC7698159 DOI: 10.3390/plants9111548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Plants display sophisticated mechanisms to tolerate challenging environmental conditions and need to manage their ontogenesis in parallel. Here, we set out to generate an RNA-Seq time series dataset throughout grapevine (Vitis vinifera) early bud development. The expression of the developmental regulator VviAP1 served as an indicator of the progression of development. We investigated the impact of changing temperatures on gene expression levels during the time series and detected a correlation between increased temperatures and a high expression level of genes encoding heat-shock proteins. The dataset also allowed the exemplary investigation of expression patterns of genes from three transcription factor (TF) gene families, namely MADS-box, WRKY, and R2R3-MYB genes. Inspection of the expression profiles from all three TF gene families indicated that a switch in the developmental program takes place in July which coincides with increased expression of the bud dormancy marker gene VviDRM1.
Collapse
|
49
|
Function and Mechanism of WRKY Transcription Factors in Abiotic Stress Responses of Plants. PLANTS 2020; 9:plants9111515. [PMID: 33171689 PMCID: PMC7695288 DOI: 10.3390/plants9111515] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
The WRKY gene family is a plant-specific transcription factor (TF) group, playing important roles in many different response pathways of diverse abiotic stresses (drought, saline, alkali, temperature, and ultraviolet radiation, and so forth). In recent years, many studies have explored the role and mechanism of WRKY family members from model plants to agricultural crops and other species. Abiotic stress adversely affects the growth and development of plants. Thus, a review of WRKY with stress responses is important to increase our understanding of abiotic stress responses in plants. Here, we summarize the structural characteristics and regulatory mechanism of WRKY transcription factors and their responses to abiotic stress. We also discuss current issues and future perspectives of WRKY transcription factor research.
Collapse
|
50
|
Zhao L, Zhang W, Song Q, Xuan Y, Li K, Cheng L, Qiao H, Wang G, Zhou C. A WRKY transcription factor, TaWRKY40-D, promotes leaf senescence associated with jasmonic acid and abscisic acid pathways in wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1072-1085. [PMID: 32609938 DOI: 10.1111/plb.13155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Leaf senescence is a complex and precise regulatory process that is correlated with numerous internal and environmental factors. Leaf senescence is tightly related to the redistribution of nutrients, which significantly affects productivity and quality, especially in crops. Evidence shows that the mediation of transcriptional regulation by WRKY transcription factors is vital for the fine-tuning of leaf senescence. However, the underlying mechanisms of the involvement of WRKY in leaf senescence are still unclear in wheat. Using RNA sequencing data, we isolated a novel WRKY transcription factor, TaWRKY40-D, which localizes in the nucleus and is basically induced by the progression of leaf senescence. TaWRKY40-D is a promoter of natural and dark-induced leaf senescence in transgenic Arabidopsis thaliana and wheat. We also demonstrated a positive response of TaWRKY40-D in wheat upon jasmonic acid (JA) and abscisic acid (ABA) treatment. Consistent with this, the detached leaves of TaWRKY40-D VIGS (virus-induced gene silencing) wheat plants showed a stay-green phenotype, while TaWRKY40-D overexpressing Arabidopsis plants showed premature leaf senescence after JA and ABA treatment. Moreover, our results revealed that TaWRKY40-D positively regulates leaf senescence, possibly by altering the biosynthesis and signalling of JA and ABA pathway genes. Together, our results suggest a new regulator of JA- and ABA-related leaf senescence, as well as a new candidate gene that can be used for molecular breeding in wheat.
Collapse
Affiliation(s)
- L Zhao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - W Zhang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Q Song
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Y Xuan
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - K Li
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - L Cheng
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - H Qiao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - G Wang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - C Zhou
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|