1
|
Li J, Ren J, Zhang Q, Lei X, Feng Z, Tang L, Bai J, Gong C. Strigolactone enhances tea plant adaptation to drought and Phyllosticta theicola petch by regulating caffeine content via CsbHLH80. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109161. [PMID: 39378645 DOI: 10.1016/j.plaphy.2024.109161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/06/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Strigolactones (SLs) play crucial roles in both plant growth and stress responses. However, their impact on the secondary metabolites of woody plants remains elusive. Here, we found that exogenous strigolactone analogue GR24 positively regulates tea plant flavor secondary metabolites, concurrently inhibiting caffeine biosynthesis and promoting the accumulation of caffeine catabolic pathway products. In this process, SL directly or indirectly inhibits the expression of CsSAMSs by inducing CsbHLH80, thereby reducing caffeine biosynthesis. Furthermore, CsbHLH80 enhances caffeine degradation, leading to increased allantoin. Under normal conditions, heightened allantoin reduces abscisic acid (ABA) accumulation. This inhibition reverses under drought stress. Increased ABA significantly enhances tea plant tolerance to both drought and Phyllosticta theicola Petch. In summary, this study offers novel insights for improving tea plant adaptation and quality in arid regions, particularly emphasizing the selection of stress-tolerant varieties and the refinement of production measures with a focus on high-quality production and environmentally friendly biological control methods.
Collapse
Affiliation(s)
- Jiayang Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Jiejie Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Qiqi Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Xingyu Lei
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Zongqi Feng
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Lei Tang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Juan Bai
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Zuo H, Chen J, Lv Z, Shao C, Chen Z, Zhou Y, Shen C. Tea-Derived Polyphenols Enhance Drought Resistance of Tea Plants ( Camellia sinensis) by Alleviating Jasmonate-Isoleucine Pathway and Flavonoid Metabolism Flow. Int J Mol Sci 2024; 25:3817. [PMID: 38612625 PMCID: PMC11011871 DOI: 10.3390/ijms25073817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Extreme drought weather has occurred frequently in recent years, resulting in serious yield loss in tea plantations. The study of drought in tea plantations is becoming more and more intensive, but there are fewer studies on drought-resistant measures applied in actual production. Therefore, in this study, we investigated the effect of exogenous tea polyphenols on the drought resistance of tea plant by pouring 100 mg·L-1 of exogenous tea polyphenols into the root under drought. The exogenous tea polyphenols were able to promote the closure of stomata and reduce water loss from leaves under drought stress. Drought-induced malondialdehyde (MDA) accumulation in tea leaves and roots was also significantly reduced by exogenous tea polyphenols. Combined transcriptomic and metabolomic analyses showed that exogenous tea polyphenols regulated the abnormal responses of photosynthetic and energy metabolism in leaves under drought conditions and alleviated sphingolipid metabolism, arginine metabolism, and glutathione metabolism in the root system, which enhanced the drought resistance of tea seedlings. Exogenous tea polyphenols induced jasmonic acid-isoleucine (JA-ILE) accumulation in the root system, and the jasmonic acid-isoleucine synthetase gene (TEA028623), jasmonic acid ZIM structural domain proteins (JAMs) synthesis genes (novel.22237, TEA001821), and the transcription factor MYC2 (TEA014288, TEA005840) were significantly up-regulated. Meanwhile, the flavonoid metabolic flow was significantly altered in the root; for example, the content of EGCG, ECG, and EGC was significantly increased. Thus, exogenous tea polyphenols enhance the drought resistance of tea plants through multiple pathways.
Collapse
Affiliation(s)
- Haoming Zuo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Jiahao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Zhidong Lv
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Ziqi Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Yuebin Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Yang D, Chen Y, Wang R, He Y, Ma X, Shen J, He Z, Lai H. Effects of Exogenous Abscisic Acid on the Physiological and Biochemical Responses of Camellia oleifera Seedlings under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:225. [PMID: 38256779 PMCID: PMC11154478 DOI: 10.3390/plants13020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
This study comprehensively investigates the physiological and molecular regulatory mechanisms of Camellia oleifera seedlings under drought stress with a soil moisture content of about 30%, where exogenous abscisic acid (ABA) was applied via foliar spraying at concentrations of 50 µg/L, 100 µg/L, and 200 µg/L. The results demonstrated that appropriate concentrations of ABA treatment can regulate the physiological state of the seedlings through multiple pathways, including photosynthesis, oxidative stress response, and osmotic balance, thereby aiding in the restructuring of their drought response strategy. ABA treatment effectively activated the antioxidant system by reducing stomatal conductance and moderately inhibiting the photosynthetic rate, thus alleviating oxidative damage caused by drought stress. Additionally, ABA treatment promoted the synthesis of osmotic regulators such as proline, maintaining cellular turgor stability and enhancing the plant's drought adaptability. The real-time quantitative PCR results of related genes indicated that ABA treatment enhanced the plant's response to the ABA signaling pathway and improved disease resistance by regulating the expression of related genes, while also enhancing membrane lipid stability. A comprehensive evaluation using a membership function approach suggested that 50 µg/L ABA treatment may be the most-effective in mitigating drought effects in practical applications, followed by 100 µg/L ABA. The application of 50 µg/L ABA for 7 h induced significant changes in various biochemical parameters, compared to a foliar water spray. Notably, superoxide dismutase activity increased by 17.94%, peroxidase activity by 30.27%, glutathione content by 12.41%, and proline levels by 25.76%. The content of soluble sugars and soluble proteins rose by 14.79% and 87.95%, respectively. Additionally, there was a significant decrease of 31.15% in the malondialdehyde levels.
Collapse
Affiliation(s)
- Dayu Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.); (Y.H.); (X.M.); (J.S.)
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha 410004, China; (Y.C.); (R.W.)
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha 410004, China; (Y.C.); (R.W.)
- National Engineering Research Center for Oil-Tea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410116, China
| | - Rui Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha 410004, China; (Y.C.); (R.W.)
- National Engineering Research Center for Oil-Tea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410116, China
| | - Yimin He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.); (Y.H.); (X.M.); (J.S.)
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha 410004, China; (Y.C.); (R.W.)
| | - Xiaofan Ma
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.); (Y.H.); (X.M.); (J.S.)
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha 410004, China; (Y.C.); (R.W.)
| | - Jiancai Shen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.); (Y.H.); (X.M.); (J.S.)
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha 410004, China; (Y.C.); (R.W.)
| | - Zhilong He
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha 410004, China; (Y.C.); (R.W.)
- National Engineering Research Center for Oil-Tea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410116, China
| | - Hanggui Lai
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.); (Y.H.); (X.M.); (J.S.)
| |
Collapse
|
4
|
Yue C, Cao H, Zhang S, Shen G, Wu Z, Yuan L, Luo L, Zeng L. Multilayer omics landscape analyses reveal the regulatory responses of tea plants to drought stress. Int J Biol Macromol 2023; 253:126582. [PMID: 37652332 DOI: 10.1016/j.ijbiomac.2023.126582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/12/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Adverse environments, especially drought conditions, deeply influence plant development and growth in all aspects, and the yield and quality of tea plants are largely dependent on favorable growth conditions. Although tea plant responses to drought stress (DS) have been studied, a comprehensive multilayer epigenetic, transcriptomic, and proteomic investigation of how tea responds to DS is lacking. In this study, we generated DNA methylome, transcriptome, proteome, and phosphoproteome data to explore multiple regulatory landscapes in the tea plant response to DS. An integrated multiomics analysis revealed the response of tea plants to DS at multiple regulatory levels. Furthermore, a set of DS-responsive genes involved in photosynthesis, transmembrane transportation, phytohormone metabolism and signaling, secondary metabolite pathways, transcription factors, protein kinases, posttranslational and epigenetic modification, and other key stress-responsive genes were identified for further functional investigation. These results reveal the multilayer regulatory landscape of the tea plant response to DS and provide insight into the mechanisms of these DS responses.
Collapse
Affiliation(s)
- Chuan Yue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China.
| | - Hongli Cao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China
| | - Shaorong Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China
| | - Gaojian Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China
| | - Zhijun Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China
| | - Lianyu Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China
| | - Liyong Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China
| | - Liang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, China.
| |
Collapse
|
5
|
Muthego D, Moloi SJ, Brown AP, Goche T, Chivasa S, Ngara R. Exogenous abscisic acid treatment regulates protein secretion in sorghum cell suspension cultures. PLANT SIGNALING & BEHAVIOR 2023; 18:2291618. [PMID: 38100609 PMCID: PMC10730228 DOI: 10.1080/15592324.2023.2291618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Drought stress adversely affects plant growth, often leading to total crop failure. Upon sensing soil water deficits, plants switch on biosynthesis of abscisic acid (ABA), a stress hormone for drought adaptation. Here, we used exogenous ABA application to dark-grown sorghum cell suspension cultures as an experimental system to understand how a drought-tolerant crop responds to ABA. We evaluated intracellular and secreted proteins using isobaric tags for relative and absolute quantification. While the abundance of only ~ 7% (46 proteins) intracellular proteins changed in response to ABA, ~32% (82 proteins) of secreted proteins identified in this study were ABA responsive. This shows that the extracellular matrix is disproportionately targeted and suggests it plays a vital role in sorghum adaptation to drought. Extracellular proteins responsive to ABA were predominantly defense/detoxification and cell wall-modifying enzymes. We confirmed that sorghum plants exposed to drought stress activate genes encoding the same proteins identified in the in vitro cell culture system with ABA. Our results suggest that ABA activates defense and cell wall remodeling systems during stress response. This could underpin the success of sorghum adaptation to drought stress.
Collapse
Affiliation(s)
- Dakalo Muthego
- Department of Plant Sciences, University of the Free State, Phuthaditjhaba, South Africa
| | - Sellwane J. Moloi
- Department of Plant Sciences, University of the Free State, Phuthaditjhaba, South Africa
| | | | - Tatenda Goche
- Department of Biosciences, Durham University, Durham, UK
- Department of Crop Science, Bindura University of Science Education, Bindura, Zimbabwe
| | | | - Rudo Ngara
- Department of Plant Sciences, University of the Free State, Phuthaditjhaba, South Africa
| |
Collapse
|
6
|
An Y, Mi X, Xia X, Qiao D, Yu S, Zheng H, Jing T, Zhang F. Genome-wide identification of the PYL gene family of tea plants (Camellia sinensis) revealed its expression profiles under different stress and tissues. BMC Genomics 2023; 24:362. [PMID: 37380940 DOI: 10.1186/s12864-023-09464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND PYL (Pyrabactin resistance 1-like) protein is a receptor of abscisic acid (ABA), which plays an important role in ABA signaling and influences plant growth and development and stress response. However, studies on PYL gene family in tea plants have not been reported. RESULTS In this study, we identified 20 PYL genes from the reference genome of tea plant ('Shuchazao'). Phylogeny analysis indicated that PYLs from tea and other plant species were clustered into seven groups. The promoter region of PYL genes contains a large number of cis-elements related to hormones and stresses. A large number of PYL genes responding to stress were found by analyzing the expression levels of abiotic stress and biotic stress transcriptome data. For example, CSS0047272.1 were up-regulated by drought stress, and CSS0027597.1 could respond to both anthracnose disease and geometrid feeding treatments. In addition, 10 PYL genes related to growth and development were verified by RT-qPCR and their tissue expression characteristics were revealed. CONCLUSIONS Our results provided a comprehensive characteristic of the PYL gene family in tea plants and provided an important clue for further exploring its functions in the growth and development, and resistance to stress of tea plants.
Collapse
Affiliation(s)
- Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, 564502, Guizhou, P.R. China
| | - Xiaozeng Mi
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jinxin Community, Guiyang, 550025, Guizhou, China
| | - Xiaobo Xia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dahe Qiao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jinxin Community, Guiyang, 550025, Guizhou, China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, 564502, Guizhou, P.R. China
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, 564502, Guizhou, P.R. China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, China.
| | - Feng Zhang
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, 564502, Guizhou, P.R. China.
| |
Collapse
|
7
|
Habibpourmehraban F, Wu Y, Masoomi-Aladizgeh F, Amirkhani A, Atwell BJ, Haynes PA. Pre-Treatment of Rice Plants with ABA Makes Them More Tolerant to Multiple Abiotic Stress. Int J Mol Sci 2023; 24:ijms24119628. [PMID: 37298579 DOI: 10.3390/ijms24119628] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Multiple abiotic stress is known as a type of environmental unfavourable condition maximizing the yield and growth gap of crops compared with the optimal condition in both natural and cultivated environments. Rice is the world's most important staple food, and its production is limited the most by environmental unfavourable conditions. In this study, we investigated the pre-treatment of abscisic acid (ABA) on the tolerance of the IAC1131 rice genotype to multiple abiotic stress after a 4-day exposure to combined drought, salt and extreme temperature treatments. A total of 3285 proteins were identified and quantified across the four treatment groups, consisting of control and stressed plants with and without pre-treatment with ABA, with 1633 of those proteins found to be differentially abundant between groups. Compared with the control condition, pre-treatment with the ABA hormone significantly mitigated the leaf damage against combined abiotic stress at the proteome level. Furthermore, the application of exogenous ABA did not affect the proteome profile of the control plants remarkably, while the results were different in stress-exposed plants by a greater number of proteins changed in abundance, especially those which were increased. Taken together, these results suggest that exogenous ABA has a potential priming effect for enhancing the rice seedlings' tolerance against combined abiotic stress, mainly by affecting stress-responsive mechanisms dependent on ABA signalling pathways in plants.
Collapse
Affiliation(s)
- Fatemeh Habibpourmehraban
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yunqi Wu
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW 2109, Australia
| | - Farhad Masoomi-Aladizgeh
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Ardeshir Amirkhani
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW 2109, Australia
| | - Brian J Atwell
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
8
|
Zhu Q, Liu L, Lu X, Du X, Xiang P, Cheng B, Tan M, Huang J, Wu L, Kong W, Shi Y, Wu L, Lin J. The biosynthesis of EGCG, theanine and caffeine in response to temperature is mediated by hormone signal transduction factors in tea plant ( Camellia sinensis L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1149182. [PMID: 37035086 PMCID: PMC10076774 DOI: 10.3389/fpls.2023.1149182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
As the main flavor components of tea, the contents of epigallocatechin-3-gallate (EGCG), theanine and caffeine are regulated by ambient temperature. However, whether the biosynthesis of EGCG, theanine and caffeine in response to temperature is regulated by endogenous hormones and its mechanism is still unclear. In this study, tea cuttings cultivated in the phytotron which treated at different temperatures 15℃, 20℃, 25℃ and 30℃, respectively. The UPLC and ESI-HPLC-MS/MS were used to determine the contents of EGCG, theanine, caffeine and the contents of phytohormones in one leaf and a bud. The results showed that indoleacetic acid (IAA), gibberellin 1(GA1) and gibberellin 3 (GA3) were significantly correlated with the content of EGCG; Jasmonic acid (JA), jasmonate-isoleucine (JA-Ile) and methyl jasmonate (MeJA) were strongly correlated with theanine content; IAA, GA1 and gibberellin 4 (GA4) were significantly correlated with caffeine content at different temperatures. In order to explore the internal intricate relationships between the biosynthesis of these three main taste components, endogenous hormones, and structural genes in tea plants, we used multi-omics and multidimensional correlation analysis to speculate the regulatory mechanisms: IAA, GA1 and GA3 up-regulated the expressions of chalcone synthase (CsCHS) and trans-cinnamate 4-monooxygenase (CsC4H) mediated by the signal transduction factors auxin-responsive protein IAA (CsIAA) and DELLA protein (CsDELLA), respectively, which promoted the biosynthesis of EGCG; IAA, GA3 and GA1 up-regulated the expression of CsCHS and anthocyanidin synthase (CsANS) mediated by CsIAA and CsDELLA, respectively, via the transcription factor WRKY DNA-binding protein (CsWRKY), and promoted the biosynthesis of EGCG; JA, JA-Ile and MeJA jointly up-regulated the expression of carbonic anhydrase (CsCA) and down-regulated the expression of glutamate decarboxylase (CsgadB) mediated by the signal transduction factors jasmonate ZIM domain-containing protein (CsJAZ), and promoted the biosynthesis of theanine; JA, JA-Ile and MeJA also jointly inhibited the expression of CsgadB mediated by CsJAZ via the transcription factor CsWRKY and AP2 family protein (CsAP2), which promoted the biosynthesis of theanine; IAA inhibited the expression of adenylosuccinate synthase (CspurA) mediated by CsIAA via the transcription factor CsWRKY; GA1 and gibberellin 4 (GA4) inhibited the expression of CspurA mediated by CsDELLA through the transcription factor CsWRKY, which promoted the biosynthesis of caffeine. In conclusion, we revealed the underlying mechanism of the biosynthesis of the main taste components in tea plant in response to temperature was mediated by hormone signal transduction factors, which provided novel insights into improving the quality of tea.
Collapse
Affiliation(s)
- Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijia Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofeng Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinxin Du
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Xiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde, China
| | - Bosi Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meng Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaxin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijiao Wu
- Institute of Photobiological Industry, Fujian Sanan Sino-Science Photobiotech Co., Ltd, Xiamen, China
| | - Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yutao Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food Sciences, Wuyi University, Wuyishan, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Yang B, Ren S, Zhang K, Li S, Zou Z, Zhao X, Li J, Ma Y, Zhu X, Fang W. Distribution of trace metals in a soil-tea leaves-tea infusion system: characteristics, translocation and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4631-4645. [PMID: 35247121 DOI: 10.1007/s10653-021-01190-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The effects of metal pollution on tea are of great concern to consumers. We apply Geographic information systems technology to study the distribution of heavy metal elements in tea plantation ecosystems in Jiangsu Province, explore the relationships among metals in the soil, tea leaves and tea infusions, and assess the human safety risks of metals. The concentrations of nine metals in a soil-tea leaves-tea infusion system were studied at 100 randomly selected tea plantations in Jiangsu Province, China. Concentrations of selected metals, zinc (Zn), nickel (Ni), manganese (Mn), chromium (Cr) and copper (Cu), were quantified using an inductively coupled plasma-optical emission spectrometer (ICP-OES), and cadmium (Cd), arsenic (As), plumbum (Pb) and mercury (Hg) were quantified using inductively coupled plasma-mass spectrometry (ICP-MS). Arc-Map 10.3 was used for the spatial analysis of metals in soil, tea leaves and tea infusions. We found that the contents of Mn, Ni and Zn are high level in soil, tea leaves and tea infusions. The Mn level showed a spatial distribution pattern with greater concentrations at the junction of Nanjing and Yangzhou, southwest of Changzhou and west of Suzhou. The hazard index (HI) values in north-central Nanjing, southern Suzhou, southwestern Changzhou and northern Lianyungang were relatively greater. The Zn, Ni, Mn, Cr and Cu levels in the soil-tea infusion system were 17.3, 45.5, 54.5, 1.5 and 14.3%, respectively. The order of the leaching rates of the elements was Ni > Cr > Zn > Mn > Cu. The relative contribution ratios of HI were in the order of Mn > Ni > Cu > Zn > Cr > Pb > Cd > As > Hg. In tea infusions, the Mn level has the greatest potential health risks to consumers. Moreover, using Csoil it was inferred that the safety thresholds of Zn, Ni, Mn, Cr and Cu in soil were 27,700, 50, 1230, 493,000 and 16,800 mg L-1, respectively. The content of heavy metals in soil and tea varies greatly in different regions of Jiangsu Province, 92% of the soil has heavy metal content that meets the requirements of pollution-free tea gardens, 91% of tea samples met the requirements of green food tea. The thresholds for Ni (50 mg L-1) and Mn (1230 mg L-1) can be used as maximum limits in tea plantation soils. The consumption of tea infusions did not pose metal-related risks to human health.
Collapse
Affiliation(s)
- Bin Yang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Shuang Ren
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Kexin Zhang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Song Li
- Agricultural Technology Extension Station of Nanjing Agricultural and Rural Bureau, Nanjing, 210095, China
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Xue Zhao
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jinqiu Li
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
10
|
Zhang Z, Liu Z, Li S, Xiong T, Ye F, Han Y, Sun M, Cao J, Luo T, Zhang C, Chen J, Zhang W, Lian S, Yuan H. Effect of prior drought and heat stress on Camellia sinensis transcriptome changes to Ectropis oblique (Lepidoptera: Geometridae) resistance. Genomics 2022; 114:110506. [PMID: 36265745 DOI: 10.1016/j.ygeno.2022.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 01/15/2023]
Abstract
Tea plants are continuously confronted with a wide range of biotic and abiotic stressors in the field, which can occur concurrently or sequentially. To elucidate the molecular mechanisms in responses to such individual and combined stresses, we used RNAseq to compare the temporal changes in the transcriptome of Camellia sinensis to Ectropis oblique Prout alone or in combination with exposure to drought and heat. Compared with the individual stress, tea plants exhibit significant differences in transcriptome profiles under the combined stresses. Additionally, many unique genes exhibited significant differences in expression in individual and combined stress conditions. Our research showed novel insights into the molecular mechanisms of E. oblique Prout resistance in tea plants and provided a valuable resource for developing tea varieties with broad spectrum stress tolerance.
Collapse
Affiliation(s)
- Zaibao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| | - Zixiao Liu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, Henan, China
| | - Shuangru Li
- Shandong Academy of Sciences Yida Technology Consulting Co., Ltd., Shangdong, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Fan Ye
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Yanting Han
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Mengke Sun
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Jiajia Cao
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Tian Luo
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Chi Zhang
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, Henan, China
| | - Jiahui Chen
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Wei Zhang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Shuaibin Lian
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, Henan, China.
| | - Hongyu Yuan
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| |
Collapse
|
11
|
Shen J, Wang S, Sun L, Wang Y, Fan K, Li C, Wang H, Bi C, Zhang F, Ding Z. Dynamic changes in metabolic and lipidomic profiles of tea plants during drought stress and re-watering. FRONTIERS IN PLANT SCIENCE 2022; 13:978531. [PMID: 36119581 PMCID: PMC9478477 DOI: 10.3389/fpls.2022.978531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Tea (Camellia sinensis L.), as an evergreen plant, needs a humid environment. Water deficit would diminish tea yield and quality. We analyzed the dynamic changes in the metabolite and lipid profiling of tea leaves under various drought conditions and re-watering to determine the metabolic changes in tea leaves responding to drought challenges. In all, 119 metabolites showed substantial alterations in drought-stressed tea plants, including sugars and sugar alcohols, amino acids, and tricarboxylic acid cycle intermediates and lipids. We detected 29 lipids and they were classified into phosphatidylglycerol (PG), phosphatidic acid (PA), sulfoquinovosyl-diacylglycerol (SQDG), phosphatidylcholine (PC), lyso-phosphatidylcholine (LysoPC), and phosphatidylinositol (PI). The levels of sugar, sugar alcohol, and sugar precursors may change as a response to drought stress. Compared with these metabolites, the membrane lipids showed more dynamic changes in tea under drought stresses. Furthermore, metabolic recovery was only partial, with the majority of the examined metabolites exhibiting significantly different levels between samples from re-watered and well-watered tea plants. The findings also showed that comprehensive metabolomic and lipidomic approaches were efficient in elucidating the impacts of drought stress on tea plant metabolism. Our findings are valuable for understanding the mechanisms behind drought tolerance in tea plants from the metabolism perspective and utilizing the compounds to improve the drought tolerance of tea plants.
Collapse
Affiliation(s)
- Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Chen Li
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Hui Wang
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Caihong Bi
- Linyi Agricultural Technology Extension Center, Linyi, China
| | - Fen Zhang
- Agriculture and Rural Affairs Bureau of Wulian County, Rizhao, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
12
|
Malyukova LS, Koninskaya NG, Orlov YL, Samarina LS. Effects of exogenous calcium on the drought response of the tea plant ( Camellia sinensis (L.) Kuntze). PeerJ 2022; 10:e13997. [PMID: 36061747 PMCID: PMC9435517 DOI: 10.7717/peerj.13997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023] Open
Abstract
Background Drought is one of the major factors reducing the yield of many crops worldwide, including the tea crop (Camellia sinensis (L.) Kuntze). Calcium participates in most of cellular signaling processes, and its important role in stress detection and triggering a response has been shown in many crops. The aim of this study was to evaluate possible effects of calcium on the tea plant response to drought. Methods Experiments were conducted using 3-year-old potted tea plants of the best local cultivar Kolkhida. Application of ammonium nitrate (control treatment) or calcium nitrate (Ca treatment) to the soil was performed before drought induction. Next, a 7-day drought was induced in both groups of plants. The following physiological parameters were measured: relative electrical conductivity, pH of cell sap, and concentrations of cations, sugars, and amino acids. In addition, relative expression levels of 40 stress-related and crop quality-related genes were analyzed. Results Under drought stress, leaf electrolyte leakage differed significantly, indicating greater damage to cell membranes in control plants than in Ca-treated plants. Calcium application resulted in greater pH of cell sap; higher accumulation of tyrosine, methionine, and valine; and a greater Mg2+ content as compared to control plants. Drought stress downregulated most of the quality-related genes in both groups of tea plants. By contrast, significant upregulation of some genes was observed, namely CRK45, NAC26, TPS11, LOX1, LOX6, Hydrolase22, DREB26, SWEET2, GS, ADC, DHN2, GOLS1, GOLS3, and RHL41. Among them, three genes (LOX1, RHL41, and GOLS1) showed 2-3 times greater expression in Ca-treated plants than in control plants. Based on these results, it can be speculated that calcium affects galactinol biosynthesis and participates in the regulation of stomatal aperture not only through activation of abscisic-acid signaling but also through jasmonic-acid pathway activation. These findings clarify calcium-mediated mechanisms of drought defense in tree crops. Thus, calcium improves the drought response in the tea tree.
Collapse
Affiliation(s)
- Lyudmila S. Malyukova
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Natalia G. Koninskaya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Yuriy L. Orlov
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow, Russia,Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Lidiia S. Samarina
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia,Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
13
|
Zhang ZB, Wang XK, Wang S, Guan Q, Zhang W, Feng ZG. Expansion and Diversification of the 14-3-3 Gene Family in Camellia sinensis. J Mol Evol 2022; 90:296-306. [PMID: 35665822 DOI: 10.1007/s00239-022-10060-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
14-3-3 proteins are signal moderators in sensing various stresses and play essential functions in plant growth and development. Although, 14-3-3 gene families have been identified and characterized in many plant species, its evolution has not been studied systematically. In this study, the plant 14-3-3 family was comprehensively analyzed from green algae to angiosperm. Our result indicated that plant 14-3-3 originated during the early evolutionary history of green algae and expanded in terricolous plants. Twenty-six 14-3-3 genes were identified in the tea genome. RNA-seq analysis showed that tea 14-3-3 genes display different expression patterns in different organs. Moreover, the expression of most tea 14-3-3 genes displayed variable expression patterns under different abiotic and biotic stresses. In conclusion, our results elucidate the evolutionary origin of plant 14-3-3 genes, and beneficial for understanding their biological functions and improving tea agricultural traits in the future.
Collapse
Affiliation(s)
- Zai-Bao Zhang
- Key Laboratory of Tea Plant Biology in Henan Province, Xinyang, Henan, China. .,College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| | - Xue-Ke Wang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Shuo Wang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Qian Guan
- Renal Department of Renmin Hospital, Wuhan University, Wuhan, China
| | - Wei Zhang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Zhi-Guo Feng
- School of Science, Qiongtai Normal University, Hainan, China.
| |
Collapse
|
14
|
Li S, Liu F. Exogenous Abscisic Acid Priming Modulates Water Relation Responses of Two Tomato Genotypes With Contrasting Endogenous Abscisic Acid Levels to Progressive Soil Drying Under Elevated CO 2. FRONTIERS IN PLANT SCIENCE 2021; 12:733658. [PMID: 34899772 PMCID: PMC8651563 DOI: 10.3389/fpls.2021.733658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Plants have evolved multiple strategies to survive and adapt when confronting the changing climate, including elevated CO2 concentration (e[CO2]) and intensified drought stress. To explore the role of abscisic acid (ABA) in modulating the response of plant water relation characteristics to progressive drought under ambient (a[CO2], 400 ppm) and e[CO2] (800 ppm) growth environments, two tomato (Solanum lycopersicum) genotypes, Ailsa Craig (AC) and its ABA-deficient mutant (flacca), were grown in pots, treated with or without exogenous ABA, and exposed to progressive soil drying until all plant available water in the pot was depleted. The results showed that exogenous ABA application improved leaf water potential, osmotic potential, and leaf turgor and increased leaf ABA concentrations ([ABA]leaf) in AC and flacca. In both genotypes, exogenous ABA application decreased stomatal pore aperture and stomatal conductance (g s), though these effects were less pronounced in e[CO2]-grown AC and g s of ABA-treated flacca was gradually increased until a soil water threshold after which g s started to decline. In addition, ABA-treated flacca showed a partly restored stomatal drought response even when the accumulation of [ABA]leaf was vanished, implying [ABA]leaf might be not directly responsible for the decreased g s. During soil drying, [ABA]leaf remained higher in e[CO2]-grown plants compared with those under a[CO2], and a high xylem sap ABA concentration was also noticed in the ABA-treated flacca especially under e[CO2], suggesting that e[CO2] might exert an effect on ABA degradation and/or redistribution. Collectively, a fine-tune ABA homeostasis under combined e[CO2] and drought stress allowed plants to optimize leaf gas exchange and plant water relations, yet more detailed research regarding ABA metabolism is still needed to fully explore the role of ABA in mediating plant physiological response to future drier and CO2-enriched climate.
Collapse
|
15
|
An Assessment of Drought Stress in Tea Estates Using Optical and Thermal Remote Sensing. REMOTE SENSING 2021. [DOI: 10.3390/rs13142730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Drought is one of the detrimental climatic factors that affects the productivity and quality of tea by limiting the growth and development of the plants. The aim of this research was to determine drought stress in tea estates using a remote sensing technique with the standardized precipitation index (SPI). Landsat 8 OLI/TIRS images were processed to measure the land surface temperature (LST) and soil moisture index (SMI). Maps for the normalized difference moisture index (NDMI), normalized difference vegetation index (NDVI), and leaf area index (LAI), as well as yield maps, were developed from Sentinel-2 satellite images. The drought frequency was calculated from the classification of droughts utilizing the SPI. The results of this study show that the drought frequency for the Sylhet station was 38.46% for near-normal, 35.90% for normal, and 25.64% for moderately dry months. In contrast, the Sreemangal station demonstrated frequencies of 28.21%, 41.02%, and 30.77% for near-normal, normal, and moderately dry months, respectively. The correlation coefficients between the SMI and NDMI were 0.84, 0.77, and 0.79 for the drought periods of 2018–2019, 2019–2020 and 2020–2021, respectively, indicating a strong relationship between soil and plant canopy moisture. The results of yield prediction with respect to drought stress in tea estates demonstrate that 61%, 60%, and 60% of estates in the study area had lower yields than the actual yield during the drought period, which accounted for 7.72%, 11.92%, and 12.52% yield losses in 2018, 2019, and 2020, respectively. This research suggests that satellite remote sensing with the SPI could be a valuable tool for land use planners, policy makers, and scientists to measure drought stress in tea estates.
Collapse
|
16
|
Ni T, Xu S, Wei Y, Li T, Jin G, Deng WW, Ning J. Understanding the promotion of withering treatment on quality of postharvest tea leaves using UHPLC-orbitrap-MS metabolomics integrated with TMT-Based proteomics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
The Protective Effect of Aspirin Eugenol Ester on Oxidative Stress to PC12 Cells Stimulated with H 2O 2 through Regulating PI3K/Akt Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5527475. [PMID: 34257805 PMCID: PMC8249132 DOI: 10.1155/2021/5527475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. This study is aimed at identifying the protective effect of AEE against H2O2-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. The results of cell viability assay showed that AEE could increase the viability of PC12 cells stimulated by H2O2, while AEE alone had no significant effect on the viability of PC12 cells. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly decreased, and the content of malondialdehyde (MDA) was significantly increased in the H2O2 group. By AEE pretreatment, the level of MDA was reduced and the levels of SOD, CAT, and GSH-Px were increased in H2O2-stimulated PC12 cells. In addition, AEE could reduce the apoptosis of PC12 cells induced by H2O2 via reducing superoxide anion, intracellular ROS, and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). Furthermore, the results of western blotting showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of Caspase-3 and Bax was significantly increased in the H2O2 group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of Caspase-3 and Bax in PC12 cells stimulated with H2O2. The silencing of PI3K with shRNA and its inhibitor-LY294002 could abrogate the protective effect of AEE in PC12 cells. Therefore, AEE has a protective effect on H2O2-induced PC12 cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.
Collapse
|
18
|
Exploration of Epigenetics for Improvement of Drought and Other Stress Resistance in Crops: A Review. PLANTS 2021; 10:plants10061226. [PMID: 34208642 PMCID: PMC8235456 DOI: 10.3390/plants10061226] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/01/2023]
Abstract
Crop plants often have challenges of biotic and abiotic stresses, and they adapt sophisticated ways to acclimate and cope with these through the expression of specific genes. Changes in chromatin, histone, and DNA mostly serve the purpose of combating challenges and ensuring the survival of plants in stressful environments. Epigenetic changes, due to environmental stress, enable plants to remember a past stress event in order to deal with such challenges in the future. This heritable memory, called "plant stress memory", enables plants to respond against stresses in a better and efficient way, not only for the current plant in prevailing situations but also for future generations. Development of stress resistance in plants for increasing the yield potential and stability has always been a traditional objective of breeders for crop improvement through integrated breeding approaches. The application of epigenetics for improvements in complex traits in tetraploid and some other field crops has been unclear. An improved understanding of epigenetics and stress memory applications will contribute to the development of strategies to incorporate them into breeding for complex agronomic traits. The insight in the application of novel plant breeding techniques (NPBTs) has opened a new plethora of options among plant scientists to develop germplasms for stress tolerance. This review summarizes and discusses plant stress memory at the intergenerational and transgenerational levels, mechanisms involved in stress memory, exploitation of induced and natural epigenetic changes, and genome editing technologies with their future possible applications, in the breeding of crops for abiotic stress tolerance to increase the yield for zero hunger goals achievement on a sustainable basis in the changing climatic era.
Collapse
|
19
|
Roshan NM, Ashouri M, Sadeghi SM. Identification, evolution, expression analysis of phospholipase D (PLD) gene family in tea ( Camellia sinensis). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1219-1232. [PMID: 34177145 PMCID: PMC8212259 DOI: 10.1007/s12298-021-01007-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 05/16/2023]
Abstract
UNLABELLED Phospholipase D (PLD) (EC 3.1.4.4) plays important roles in plants growth, development, and response to environmental stresses. Tea plant (Camellia sinensis) is the most important non-alcoholic beverage in the world with health benefits, but tea production decreases in response to environmental stresses such as cold and drought. Therefore, a genome-wide analysis of the C. sinensis PLD gene family (CsPLDs) was carried out. In the current study, identification, evolutionary relationship, duplication, selection pressure, gene structure, promoter analysis, transcript-targeted miRNA, and simple sequence repeat markers prediction, RNA-seq data analysis, and three-dimensional structure of the CsPLDs have been investigated using bioinformatics tools. 15 PLDs were identified from the tea genome which belongs to five groups, including CsPLDα, CsPLDβ, CsPLDδ, CsPLDε, and CsPLDζ. Both segmental and tandem duplications have occurred in the CsPLD gene family. Ka/Ks ratio for the most duplicated pair genes was less than 1 which implies negative selection to conserve their function during the tea evolution. 68 cis-elements have been found in CsPLDs indicating the contribution of these genes in response to environmental stresses. Likewise, 72 SSR loci and 96 miRNA molecules in 14 and 15 CsPLDs have been detected. According to RNA-seq data, the highest expression in all tissues under various abiotic stresses was related to CsPLDα1. Besides, a three-dimensional structure of the CsPLDα1 was evaluated to better understand its biological activity. This research provides comprehensive information that could be useful in future studies to develop stress-tolerant tea. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01007-0.
Collapse
Affiliation(s)
| | - Majid Ashouri
- Department of Agronomy and Plant Breeding, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Seyyed Mostafa Sadeghi
- Department of Agronomy and Plant Breeding, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| |
Collapse
|
20
|
Ramachandran M, Arulbalachandran D, Dilipan E, Ramya S. Comparative analysis of abscisic acid recovery on two varieties of rice (Oryza sativa L.) under drought condition. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
A Leaf Disc Assay for Evaluating the Response of Tea ( Camellia sinensis) to PEG-Induced Osmotic Stress and Protective Effects of Azoxystrobin against Drought. PLANTS 2021; 10:plants10030546. [PMID: 33805801 PMCID: PMC8001994 DOI: 10.3390/plants10030546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/03/2022]
Abstract
Tea (Camellia sinensis), a globally cultivated beverage crop, is sensitive to drought, which can have an adverse effect on the yield and quality of tea. Azoxystrobin (AZ) is one kind of fungicide considered as an agent to relieve damage caused by stress. Initially, the response of tea plant to osmotic-gradient stress was evaluated using leaf disc assays with PEG-induced osmotic stress. The decline of the maximum quantum yield of PSII (Fv/Fm), actual photosynthetic efficiency of PS II (Y(II)), total chlorophylls, carotenoids, DPPH radical scavenging capacity, reducing power, total phenols, and the increase in MDA was observed in leaf discs treated with a gradient of PEG solutions (22.8, 33.2, 41.1% PEG, and blank). These results revealed that efficiency of photosystem II (PSII), photosynthetic pigments, and antioxidant ability in leaf discs were inhibited with an aggravated lipid peroxidation under PEG-induced osmotic stress, and indicated leaf disc assay with moderate PEG iso-osmotic condition would reflect a portion of tea plant response to drought stress. Therefore, the protective effect of AZ (0.125 and 1.25 g a.i. L−1) on tea plants suffering from drought was evaluated using leaf disc assays with 22.8% PEG iso-osmotic condition. Pretreatment of AZ (0.125 a.i. g L−1) reversed Fv/Fm, Y(II), DPPH radical scavenging capacity, and reducing power with reduced MDA in PEG-treated leaf discs, but photosynthetic pigments, total phenols, and ascorbate peroxidase activity were irresponsive to AZ. An Alleviated physiological damage in tea leaf with AZ applying was preliminarily revealed in this study. A Rapid screening of agents for tea plants against drought was developed to assist in the selection of protective agents.
Collapse
|
22
|
Chen Z, Li H, Yang T, Chen T, Dong C, Gu Q, Cheng X. Transcriptome analysis provides insights into the molecular bases in response to different nitrogen forms-induced oxidative stress in tea plant roots (Camellia sinensis). FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1073-1082. [PMID: 32605706 DOI: 10.1071/fp20093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have suggested that the maintenance of redox homeostasis is essential for plant growth. Here we investigated how redox homeostasis and signalling is modulated in response to different nitrogen (N) forms in tea plant roots. Our results showed that both N deficiency and nitrate (NO3-) can trigger the production of hydrogen peroxide and lipid peroxidation in roots. In contrast, these responses were not altered by NH4+. Further, N deficiency and NO3--triggered redox imbalance was re-established by increased of proanthocyanidins (PAs) and glutathione (GSH), as well as upregulation of representative antioxidant enzyme activities and genes. To further explore the molecular bases of these responses, comparative transcriptome analysis was performed, and redox homeostasis-associated differentially expressed genes (DEGs) were selected for bioinformatics analysis. Most of these genes were involved in the flavonoid biosynthesis, GSH metabolism and the antioxidant system, which was specifically altered by N deficiency or NO3-. Moreover, the interplay between H2O2 (generated by RBOH and Ndufab1) and hormones (including abscisic acid, auxin, cytokinin and ethylene) in response to different N forms was suggested. Collectively, the above findings contribute to an understanding of the underlying molecular mechanisms of redox homeostasis and signalling in alleviating oxidative stress in tea plant roots.
Collapse
Affiliation(s)
- Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei 230036, China; and Corresponding author.
| | - Huiping Li
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei 230036, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei 230036, China
| | - Tingting Chen
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei 230036, China
| | - Chunxia Dong
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei 230036, China
| | - Quan Gu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xunmin Cheng
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
23
|
Zhang C, Wang M, Chen J, Gao X, Shao C, Lv Z, Jiao H, Xu H, Shen C. Survival strategies based on the hydraulic vulnerability segmentation hypothesis, for the tea plant [Camellia sinensis(L.) O. Kuntze] in long-term drought stress condition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:484-493. [PMID: 33038691 DOI: 10.1016/j.plaphy.2020.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/23/2020] [Indexed: 05/23/2023]
Abstract
Tea plants are important economic perennial crops that can be negatively impacted by drought stress (DS). However, their survival strategies in long-term DS conditions and the accumulation and influence of metabolites and mineral elements (MEs) in their organs, when facing hydraulic vulnerability segmentation, require further investigation. The MEs and metabolites in the leaf, stem, and root after long-term DS (20 d) were examined here, using inductively coupled plasma optical emission spectrometry (ICP-OES) and liquid chromatograph-mass spectrometry (LC-MS). The accumulation patterns of 116 differentially accumulated metabolites (DAMs) and nine MEs were considerably affected in all organs. The concentration of all MEs varied significantly in at least one organ, while the K and Ca levels were markedly altered in all three. Most DAM levels increased in the stem but decreased in the root and leaf, implying that vulnerability segmentation may occur with long-term DS. The typical nitrogen- and carbon-compound levels similarly increased in the stem and decreased in the leaf and root, as the plant might respond to long-term DS by stabilizing respiration, promoting nitrogen recycling, and free radical scavenging. Correlation analysis showed several possible DAM-ME interactions and an association between Mn and flavonoids. Thus, survival strategies under long-term DS included sacrificing distal/vulnerable organs and accumulating function-specialized metabolites and MEs to mitigate drought-induced oxidative damage. This is the first study that reports substance fluctuations after long-term DS in different organs of plants, and highlights the need to use whole plants to fully comprehend stress response strategies.
Collapse
Affiliation(s)
- Chenyu Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Minhan Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jianjiao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xizhi Gao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhidong Lv
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Haizhen Jiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Huaqin Xu
- College of Resources & Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
24
|
Gai Z, Wang Y, Ding Y, Qian W, Qiu C, Xie H, Sun L, Jiang Z, Ma Q, Wang L, Ding Z. Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress. Sci Rep 2020; 10:12275. [PMID: 32704005 PMCID: PMC7378251 DOI: 10.1038/s41598-020-69080-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/02/2020] [Indexed: 01/12/2023] Open
Abstract
Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance, but the regulation mechanism of exogenous ABA on tea plants under drought stress was rarely reported. Here, we analyzed the effects of exogenous ABA on genes and metabolites of tea leaves under drought stress using transcriptomic and metabolomic analysis. The results showed that the exogenous ABA significantly induced the metabolic pathways of tea leaves under drought stress, including energy metabolism, amino acid metabolism, lipid metabolism and flavonoids biosynthesis. In which, the exogenous ABA could clearly affect the expression of genes involved in lipid metabolism and flavonoid biosynthesis. Meanwhile, it also increased the contents of flavone, anthocyanins, flavonol, isoflavone of tea leaves under drought stress, including, kaempferitrin, sakuranetin, kaempferol, and decreased the contents of glycerophospholipids, glycerolipids and fatty acids of tea leaves under drought stress. The results suggested that the exogenous ABA could alleviate the damages of tea leaves under drought stress through inducing the expression of the genes and altering the contents of metabolites in response to drought stress. This study will be helpful to understand the mechanism of resilience to abiotic stress in tea plant and provide novel insights into enhancing drought tolerance in the future.
Collapse
Affiliation(s)
- Zhongshuai Gai
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
- College of Life Science, Yantai University, Yantai, 264005, Shandong, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiqian Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenjun Qian
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chen Qiu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hui Xie
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Litao Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongwu Jiang
- College of Life Science, Yantai University, Yantai, 264005, Shandong, China
| | - Qingping Ma
- College of Agriculture, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Linjun Wang
- Fruit Tea Station of Weihai Agricultural and Rural Affairs Service Center, Weihai, 264200, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
25
|
Hu S, Chen Q, Guo F, Wang M, Zhao H, Wang Y, Ni D, Wang P. (Z)-3-Hexen-1-ol accumulation enhances hyperosmotic stress tolerance in Camellia sinensis. PLANT MOLECULAR BIOLOGY 2020; 103:287-302. [PMID: 32240472 DOI: 10.1007/s11103-020-00992-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Volatile components in fresh leaves are involved in the regulation of many stress responses, such as insect damage, fungal infection and high temperature. However, the potential function of volatile components in hyperosmotic response is largely unknown. Here, we found that 7-day hyperosmotic treatment specifically led to the accumulation of (Z)-3-hexen-1-ol, (E)-2-hexenal and methyl salicylate. Transcriptome and qRT-PCR analyses suggested the activation of linolenic acid degradation and methyl salicylate processes. Importantly, exogenous (Z)-3-hexen-1-ol pretreatment dramatically enhanced the hyperosmotic stress tolerance of tea plants and decreased stomatal conductance, whereas (E)-2-hexenal and methyl salicylate pretreatments did not exhibit such a function. qRT-PCR analysis revealed that exogenous ABA induced the expressions of related enzyme genes, and (Z)-3-hexen-1-ol could up-regulate the expressions of many DREB and RD genes. Moreover, exogenous (Z)-3-hexen-1-ol tremendously induced the expressions of specific LOX and ADH genes within 24 h. Taken together, hyperosmotic stress induced (Z)-3-hexen-1-ol accumulation in tea plant via the activation of most LOX, HPL and ADH genes, while (Z)-3-hexen-1-ol could dramatically enhance the hyperosmotic stress tolerance via the decrease of stomatal conductance and MDA, accumulation of ABA and proline, activation of DREB and RD gene expressions, and probably positive feedback regulation of LOXs and ADHs. KEY MESSAGE: Hyperosmotic stress induced (Z)-3-hexen-1-ol accumulation in Camellia sinensis via the up-regulation of most LOX, HPL and ADH genes, while (Z)-3-hexen-1-ol could dramatically enhance the hyperosmotic stress tolerance via the decrease of stomatal conductance, accumulation of proline, activation of DREB and RD gene expressions, and probably positive feedback regulation of LOXs and ADHs.
Collapse
Affiliation(s)
- Shuangling Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Fei Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Mingle Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hua Zhao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yu Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Pu Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
26
|
Zhang X, Xu W, Ni D, Wang M, Guo G. Genome-wide characterization of tea plant (Camellia sinensis) Hsf transcription factor family and role of CsHsfA2 in heat tolerance. BMC PLANT BIOLOGY 2020; 20:244. [PMID: 32471355 PMCID: PMC7260767 DOI: 10.1186/s12870-020-02462-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/24/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Heat stress factors (Hsfs) play vital roles in signal transduction pathways operating in responses to environmental stresses. However, Hsf gene family has not been thoroughly explored in tea plant (Camellia sinensis L.). RESULTS In this study, we identified 25 CsHsf genes in C. sinensis that were separated by phylogenetic analysis into three sub-families (i.e., A, B, and C). Gene structures, conserved domains and motifs analyses indicated that the CsHsf members in each class were relatively conserved. Various cis-acting elements involved in plant growth regulation, hormone responses, stress responses, and light responses were located in the promoter regions of CsHsfs. Furthermore, degradome sequencing analysis revealed that 7 CsHsfs could be targeted by 9 miRNAs. The expression pattern of each CsHsf gene was significantly different in eight tissues. Many CsHsfs were differentially regulated by drought, salt, and heat stresses, as well as exogenous abscisic acid (ABA) and Ca2+. In addition, CsHsfA2 was located in the nucleus. Heterologous expression of CsHsfA2 improved thermotolerance in transgenic yeast, suggesting its potential role in the regulation of heat stress response. CONCLUSIONS A comprehensive genome-wide analysis of Hsf in C. sinensis present the global identification and functional prediction of CsHsfs. Most of them were implicated in a complex gene regulatory network controlling various abiotic stress responses and signal transduction pathways in tea plants. Additionally, heterologous expression of CsHsfA2 increased thermotolerance of transgenic yeast. These findings provide new insights into the functional divergence of CsHsfs and a basis for further research on CsHsfs functions.
Collapse
Affiliation(s)
- Xuyang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan No. 1, Wuhan, 430070 Hubei Province P. R. China
| | - Wenluan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan No. 1, Wuhan, 430070 Hubei Province P. R. China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan No. 1, Wuhan, 430070 Hubei Province P. R. China
| | - Mingle Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan No. 1, Wuhan, 430070 Hubei Province P. R. China
| | - Guiyi Guo
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, 464000 China
| |
Collapse
|
27
|
Sahay S, De La Cruz Torres E, Robledo-Arratia L, Gupta M. Photosynthetic activity and RAPD profile of polyethylene glycol treated B. juncea L. under nitric oxide and abscisic acid application. J Biotechnol 2020; 313:29-38. [PMID: 32151644 DOI: 10.1016/j.jbiotec.2020.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/03/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
The involvement of two extremely important signalling molecules, nitric oxide (NO) and abscisic acid (ABA) has been employed by plants to facilitate the adaptive/tolerate response during stressful conditions. However, the interactive role of exogenously applied NO and ABA is very less studied at physiological, biochemical and molecular levels. The present study therefore, evaluated the effects of individual and simultaneous addition of exogenous NO donor SNP (100μM) and ABA (10μM) on photosynthesis, Calvin-Benson cycle enzymes, S-assimilation enzymes, oxidative stress components, and genotoxicity in Brassica juncea cv. Varuna, exposed to polyethylene glycol (PEG)-induced drought stress. Results showed that a loss induced by PEG was significantly surpassed by the application of NO or/and ABA with PEG for chlorophyll content, net photosynthestic rate (Pn), internal CO2 concentration (Ci), stomatal conductance (gs), transpiration rate (Tr), maximum photosystem II (PSII) efficiency (Fv/Fm), actual PSII efficiency (ΦPSII), intrinsic PSII efficiency (Fv´/ Fm´), photochemical quenching (qP), non-photochemical quenching (NPQ), electron transport chain (ETC), ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo), glyceraldehyde-3-phosphate dehydrogenase (GapDH), phosphoribulokinase (PRK), ATP-sulfurylase (ATP-S), and serine acetyltransferase (SAT) activities. The genomic template stability (GTS) (measured as changes in RAPD profiles) was significantly affected and showed varying degrees of DNA polymorphism, highest in PEG and lowest in PEG + NO and PEG + NO + ABA. Furthermore, the changes in RAPD profiles showed consistent results when compared with various photosynthetic and oxidative parameters. Altogether, this study concluded that supplementation of individual NO and together with ABA was more effective than individual ABA in alleviating PEG-induced drought stress in B. juncea L. seedlings.
Collapse
Affiliation(s)
- Seema Sahay
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India; Departamento de Biologia, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, C.P. 52750, Mexico
| | - Eulogio De La Cruz Torres
- Departamento de Biologia, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, C.P. 52750, Mexico
| | - Luis Robledo-Arratia
- Departamento de Biologia, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, C.P. 52750, Mexico
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
28
|
Rao S, Tian Y, Xia X, Li Y, Chen J. Chromosome doubling mediates superior drought tolerance in Lycium ruthenicum via abscisic acid signaling. HORTICULTURE RESEARCH 2020; 7:40. [PMID: 32257226 PMCID: PMC7109118 DOI: 10.1038/s41438-020-0260-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/19/2020] [Accepted: 01/26/2020] [Indexed: 05/05/2023]
Abstract
Plants are continuously affected by unfavorable external stimuli, which influences their productivity and growth. Differences in gene composition and expression patterns lead homologous polyploid plants to exhibit different physiological phenomena, among which enhanced environmental adaptability is a powerful phenotype conferred by polyploidization. The mechanisms underlying the differences in stress tolerance between diploids and autotetraploids at the molecular level remain unclear. In this research, a full-length transcription profile obtained via the single-molecule real-time (SMRT) sequencing of high-quality single RNA molecules for use as background was combined with next-generation transcriptome and proteome technologies to probe the variation in the molecular mechanisms of autotetraploids. Tetraploids exhibited an increase in ABA content of 78.4% under natural conditions and a superior stress-resistance phenotype under severe drought stress compared with diploids. The substantial differences in the transcriptome profiles observed between diploids and autotetraploids under normal growth conditions were mainly related to ABA biosynthesis and signal transduction pathways, and 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2, which encode key synthetic enzymes, were significantly upregulated. The increased expression of the ABRE-binding factor 5-like (ABF5-like) gene was a pivotal factor in promoting the activation of the ABA signaling pathway and downstream target genes. In addition, ABA strongly induced the expression of osmotic proteins to increase the stress tolerance of the plants at the translational level. We consider the intrinsic mechanisms by which ABA affects drought resistance in tetraploids and diploids to understand the physiological and molecular mechanisms that enhance abiotic stress tolerance in polyploid plants.
Collapse
Affiliation(s)
- Shupei Rao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Yuru Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Jinhuan Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| |
Collapse
|
29
|
Brito C, Dinis LT, Ferreira H, Moutinho-Pereira J, Correia CM. Foliar Pre-Treatment with Abscisic Acid Enhances Olive Tree Drought Adaptability. PLANTS (BASEL, SWITZERLAND) 2020; 9:E341. [PMID: 32182702 PMCID: PMC7154903 DOI: 10.3390/plants9030341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/02/2022]
Abstract
Water is the most widely limiting factor for plants distribution, survival and agricultural productivity, their responses to drought and recovery being critical for their success and productivity. Olea europaea L. is a well-adapted species to cyclic drought events, still at considerable expense of carbon reserves and CO2 supply. To study the role of abscisic acid (ABA) as a promoter of drought adaptability, young potted olive trees subjected to three drought-recovery cycles were pre-treated with ABA. The results demonstrated that ABA pre-treatment allowed the delay of the drought effects on stomatal conductance (gs) and net photosynthesis (An), and under severe drought, permitted the reduction of the non-stomatal limitations to An and the relative water content decline, the accumulation of compatible solutes and avoid the decline of photosynthetic pigments, soluble proteins and total thiols concentrations and the accumulation of ROS. Upon rewatering, ABA-sprayed plants showed an early recovery of An. The plant ionome was also changed by the addition of ABA, with special influence on root K, N and B concentrations. The improved physiological and biochemical functions of the ABA-treated plants attenuated the drought-induced decline in biomass accumulation and potentiated root growth and whole-plant water use efficiency after successive drought-rewatering cycles. These changes are likely to be of real adaptive significance, with important implications for olive tree growth and productivity.
Collapse
Affiliation(s)
| | | | | | | | - Carlos M. Correia
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (C.B.); (L.-T.D.); (H.F.); (J.M.-P.)
| |
Collapse
|
30
|
Li Z, Huang T, Tang M, Cheng B, Peng Y, Zhang X. iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:216-226. [PMID: 31707249 DOI: 10.1016/j.plaphy.2019.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 05/22/2023]
Abstract
γ-Aminobutyric acid (GABA), a non-proteinaceous amino acid, modulates plant growth and stress tolerance. However, the potential role of GABA in regulating key metabolic pathways and stress-defensive proteins against drought in plants has never been explored. Creeping bentgrass (Agrostis stolonifera) plants were pretreated with or without GABA and then subjected to water stress for 8 days in controlled growth chambers (23/19 °C, day/night). Physiological analysis showed that elevated endogenous GABA level via exogenous GABA application significantly mitigated water stress damage to creeping bentgrass, as manifested by increased leaf relative water content, water use efficiency, osmotic adjustment (OA), photochemical efficiency (Fv/Fm), net photosynthetic rate, and reduced oxidative damage. iTRAQ-based proteomics found that enhanced chaperones accumulation, carbohydrates, amino acids, and energy metabolism played important roles in protein protection, OA, energy maintenance, and metabolic balance, which is important adaptive response to drought stress in creeping bentgrass. The GABA further promoted energy production and conversion, antioxidant defense, and DHN3 accumulation that were essential for energy requirement, ROS-scavenging, and the prevention of cell dehydration in leaf during drought stress. In addition, GABA-treated plants maintained significantly higher abundance of dicarboxylate transporter 2.1, ATP-dependent zinc metalloprotease, receptor-like protein kinase HERK1, o-acyltransferase WSD1, omega-6 fatty acid desaturase, and two-component response regulator ORR21 than untreated plants under drought stress. The result provides new evidences that GABA-induced drought tolerance is possibly involved in the improvement of nitrogen recycling, protection of photosystem II, mitigation of drought-depressed cell elongation, wax biosynthesis, fatty acid desaturase, and delaying leaf senescence in creeping bentgrass.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingyan Tang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Binzhen Cheng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
31
|
Li H, Teng RM, Liu JX, Yang RY, Yang YZ, Lin SJ, Han MH, Liu JY, Zhuang J. Identification and Analysis of Genes Involved in Auxin, Abscisic Acid, Gibberellin, and Brassinosteroid Metabolisms Under Drought Stress in Tender Shoots of Tea Plants. DNA Cell Biol 2019; 38:1292-1302. [DOI: 10.1089/dna.2019.4896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Rui-Min Teng
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ruo-Yan Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ya-Zhuo Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shi-Jia Lin
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Miao-Hua Han
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing-Yu Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
32
|
Shameer K, Naika MB, Shafi KM, Sowdhamini R. Decoding systems biology of plant stress for sustainable agriculture development and optimized food production. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 145:19-39. [DOI: 10.1016/j.pbiomolbio.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/23/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
|
33
|
Liu H, Wang YX, Li H, Teng RM, Wang Y, Zhuang J. Genome-Wide Identification and Expression Analysis of Calcineurin B-Like Protein and Calcineurin B-Like Protein-Interacting Protein Kinase Family Genes in Tea Plant. DNA Cell Biol 2019; 38:824-839. [DOI: 10.1089/dna.2019.4697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Hao Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Rui-Min Teng
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yu Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
34
|
Sahay S, Khan E, Gupta M. Nitric oxide and abscisic acid protects against PEG-induced drought stress differentially in Brassica genotypes by combining the role of stress modulators, markers and antioxidants. Nitric Oxide 2019; 89:81-92. [PMID: 31096008 DOI: 10.1016/j.niox.2019.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 11/17/2022]
Abstract
The present study was designed to see the effect of exogenous nitric oxide (NO) and abscisic acid (ABA) and their interaction on physiological and biochemical activities in leaves and roots of two Indian mustard (Brassica juncea) cultivars [cv. Pusa Jagannath (PJN) and Varuna (VAR)] exposed to polyethylene glycol (PEG)-induced drought stress. Seven days old hydroponically grown seedlings were treated with PEG (10%), sodium nitroprusside, a NO donor [NO (100 μM)] and abscisic acid [ABA (10 μM)], using different combinations as: Control, ABA, NO, PEG, PEG + ABA, PEG + NO, and PEG + NO + ABA. Results revealed that in response to PEG-induced drought stress leaf relative water content, chlorophyll, carotenoid and protein content decreased with increased production of O2-●, MDA, H2O2, cysteine content and non-enzymatic antioxidants (including proline, flavonoid, phenolic, anthocyanin, and ascorbic acid), whereas, the enzymatic antioxidants (including SOD, CAT, APX, GR) showed the response range from no effect to increase or decrease in certain enzymes in both Brassica cultivars. The application of NO or/and ABA in PEG-stressed cultivars showed that both enzymatic and non-enzymatic antioxidants responded differently to attenuate oxidative stress in leaves and roots of both cultivars. Overall, PJN had the antioxidant protection mainly through the accumulation of non-enzymatic antioxidants, whereas VAR showed tolerance by the enhancement of both enzymatic and non-enzymatic antioxidant activities. Altogether, the study concluded that the independent NO and its interaction with ABA (PEG + NO and PEG + NO + ABA) were much effective than independent ABA (PEG + ABA) in lowering PEG-drought stress in Brassica cultivars.
Collapse
Affiliation(s)
- Seema Sahay
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ehasanullah Khan
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
35
|
Exogenous Melatonin Enhances Cold, Salt and Drought Stress Tolerance by Improving Antioxidant Defense in Tea Plant ( Camellia sinensis (L.) O. Kuntze). Molecules 2019; 24:molecules24091826. [PMID: 31083611 PMCID: PMC6539935 DOI: 10.3390/molecules24091826] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Melatonin is a biological hormone that plays crucial roles in stress tolerance. In this study, we investigated the effect of exogenous melatonin on abiotic stress in the tea plant. Under cold, salt and drought stress, increasing malondialdehyde levels and decreasing maximum photochemical efficiency of PSII were observed in tea leaves. Meanwhile, the levels of reactive oxygen species (ROS) increased significantly under abiotic stress. Interestingly, pretreatment with melatonin on leaves alleviated ROS burst, decreased malondialdehyde levels and maintain high photosynthetic efficiency. Moreover, 100 μM melatonin-pretreated tea plants showed high levels of glutathione and ascorbic acid and increased the activities of superoxide dismutase, peroxidase, catalase and ascorbate peroxidase under abiotic stress. Notably, melatonin treatments can positively up-regulate the genes (CsSOD, CsPOD, CsCAT and CsAPX) expression of antioxidant enzyme biosynthesis. Taken together, our results confirmed that melatonin protects tea plants against abiotic stress-induced damages through detoxifying ROS and regulating antioxidant systems.
Collapse
|
36
|
Zhang X, Wu H, Chen L, Wang N, Wei C, Wan X. Mesophyll cells' ability to maintain potassium is correlated with drought tolerance in tea (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:196-203. [PMID: 30685699 DOI: 10.1016/j.plaphy.2019.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Tea plant is an important economic crop and is vulnerable to drought. A good understanding of tea drought tolerance mechanisms is required for breeding robust drought tolerant tea varieties. Previous studies showed mesophyll cells' ability to maintain K+ is associated with its stress tolerance. Here, in this study, 12 tea varieties were used to investigate the role of mesophyll K+ retention ability towards tea drought stress tolerance. A strong and negative correlation (R2 = 0.8239, P < 0.001) was found between PEG (mimic drought stress)-induced K+ efflux from tea mesophyll cells and overall drought tolerance in 12 tea varieties. In agreement with this, a significantly higher retained leaf K+ content was found in drought tolerant than the sensitive tea varieties. Furthermore, exogenous applied K+ (5 mM) significantly alleviated drought-induced symptom in tea plants, further supporting our finding that mesophyll K+ retention is an important component for drought tolerance mechanisms in tea plants. Moreover, pharmacological experiments showed that the contribution of K+ outward rectifying channels and non-selective cation channels in controlling PEG-induced K+ efflux from mesophylls cells are varied between drought tolerant and sensitive tea varieties.
Collapse
Affiliation(s)
- Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Honghong Wu
- Department of Botany and Plant Sciences, University of California, Riverside, 92521, USA; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linmu Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ningning Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
37
|
Koech RK, Malebe PM, Nyarukowa C, Mose R, Kamunya SM, Joubert F, Apostolides Z. Functional annotation of putative QTL associated with black tea quality and drought tolerance traits. Sci Rep 2019; 9:1465. [PMID: 30728388 PMCID: PMC6365519 DOI: 10.1038/s41598-018-37688-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
The understanding of black tea quality and percent relative water content (%RWC) traits in tea (Camellia sinensis) by a quantitative trait loci (QTL) approach can be useful in elucidation and identification of candidate genes underlying the QTL which has remained to be difficult. The objective of the study was to identify putative QTL controlling black tea quality and percent relative water traits in two tea populations and their F1 progeny. A total of 1,421 DArTseq markers derived from the linkage map identified 53 DArTseq markers to be linked to black tea quality and %RWC. All 53 DArTseq markers with unique best hits were identified in the tea genome. A total of 5,592 unigenes were assigned gene ontology (GO) terms, 56% comprised biological processes, cellular component (29%) and molecular functions (15%), respectively. A total of 84 unigenes in 15 LGs were assigned to 25 different Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways based on categories of secondary metabolite biosynthesis. The three major enzymes identified were transferases (38.9%), hydrolases (29%) and oxidoreductases (18.3%). The putative candidate proteins identified were involved in flavonoid biosynthesis, alkaloid biosynthesis, ATPase family proteins related to abiotic/biotic stress response. The functional annotation of putative QTL identified in this current study will shed more light on the proteins associated with caffeine and catechins biosynthesis and % RWC. This study may help breeders in selection of parents with desirable DArTseq markers for development of new tea cultivars with desirable traits.
Collapse
Affiliation(s)
- Robert K Koech
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.,Kenya Agriculture and Livestock Research Organization, Tea Research Institute, P.O. Box 820, Kericho, 20200, Kenya
| | - Pelly M Malebe
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Christopher Nyarukowa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Richard Mose
- James Finlay (Kenya) Limited, P.O. Box 223, Kericho, 20200, Kenya
| | - Samson M Kamunya
- Kenya Agriculture and Livestock Research Organization, Tea Research Institute, P.O. Box 820, Kericho, 20200, Kenya
| | - Fourie Joubert
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Zeno Apostolides
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
38
|
Zhu X, Liao J, Xia X, Xiong F, Li Y, Shen J, Wen B, Ma Y, Wang Y, Fang W. Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature. BMC PLANT BIOLOGY 2019; 19:43. [PMID: 30700249 PMCID: PMC6354415 DOI: 10.1186/s12870-019-1646-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/11/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Internal γ-Aminobutyric Acid (GABA) interacting with stress response substances may be involved in the regulation of differentially abundant proteins (DAPs) associated with optimum temperature and cold stress in tea plants (Camellia sinensis (L.) O. Kuntze). RESULTS Tea plants supplied with or without 5.0 mM GABA were subjected to optimum or cold temperatures in this study. The increased GABA level induced by exogenous GABA altered levels of stress response substances - such as glutamate, polyamines and anthocyanins - in association with improved cold tolerance. Isobaric tags for relative and absolute quantification (iTRAQ) - based DAPs were found for protein metabolism and nucleotide metabolism, energy, amino acid transport and metabolism other biological processes, inorganic ion transport and metabolism, lipid metabolism, carbohydrate transport and metabolism, biosynthesis of secondary metabolites, antioxidant and stress defense. CONCLUSIONS The iTRAQ analysis could explain the GABA-induced physiological effects associated with cold tolerance in tea plants. Analysis of functional protein-protein networks further showed that alteration of endogenous GABA and stress response substances induced interactions among photosynthesis, amino acid biosynthesis, and carbon and nitrogen metabolism, and the corresponding differences could contribute to improved cold tolerance of tea plants.
Collapse
Affiliation(s)
- Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Jieren Liao
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Xingli Xia
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Fei Xiong
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Yue Li
- Wuxi NextCODE Genomics, 288 Fute Zhong Road, Shanghai, 200131 People’s Republic of China
| | - Jiazhi Shen
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Bo Wen
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| |
Collapse
|
39
|
Maintenance of mesophyll potassium and regulation of plasma membrane H+-ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Rezaee F, Lahouti M, Maleki M, Ganjeali A. Comparative proteomics analysis of whitetop (Lepidium draba L.) seedlings in response to exogenous glucose. Int J Biol Macromol 2018; 120:2458-2465. [PMID: 30193920 DOI: 10.1016/j.ijbiomac.2018.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
Abstract
In this research, a comparative proteomics approach was conducted to understand the physiological processes behind the sulforaphane formation in whitetop seedlings in response to exogenous glucose. Initially, 5-day-old whitetop seedlings were elicited by different concentrations (0, 166, 250, 277, 360 mM) of glucose for 72 h. According to the results, sulforaphane formation was influenced in a dose-dependent manner by glucose, and was maximized with the concentrations of 166 and 250 mM. Consequently, 2-dimensional gel electrophoresis was performed on the 166 mM glucose-elicited seedlings and it was shown that 25 protein spots were differentially expressed between glucose-elicited seedlings and control. Two hypothetical (were down-regulated) and 9 unique proteins (44% and 56% up- and down-regulated, respectively) were identified based on the Mass spectrometry analysis. According to the functional classification of the unique proteins, photosynthetic, chaperone, energy metabolism, signaling and sorting related proteins are marked in response to the glucose elicitation. This is the first report to successfully identify the Abscisic acid receptor PYR1-like and sorting nexin 1 isoform X1 by proteomics technique. In addition, the role of the sorting nexin 1 isoform X1 in the glucose-elicited whitetop seedling is reported for the first time.
Collapse
Affiliation(s)
- Fatemeh Rezaee
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Lahouti
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Ganjeali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
41
|
Wang WL, Cui X, Wang YX, Liu ZW, Zhuang J. Members of R2R3-type MYB transcription factors from subgroups 20 and 22 are involved in abiotic stress response in tea plants. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1512898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Wen-Li Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin Cui
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
42
|
Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. Sci Rep 2018; 8:12839. [PMID: 30150658 PMCID: PMC6110863 DOI: 10.1038/s41598-018-31297-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
The exact relationship between polyamine, abscisic acid and proline metabolisms is still poorly understood. In the present study, the effects of putrescine and abscisic acid treatments alone or in combination with polyethylene glycol-induced osmotic stress were investigated in young wheat plants. It was observed that abscisic acid plays a role in the coordinated regulation of the proline and polyamine biosynthetic pathways, which compounds are related to each other through a common precursor. Abscisic acid pre-treatment induced similar alteration of polyamine contents as the osmotic stress, namely increased the putrescine, but decreased the spermidine contents in the leaves. These changes were mainly related to the polyamine cycle, as both the synthesis and peroxisomal oxidation of polyamines have been induced at gene expression level. Although abscisic acid and osmotic stress influenced the proline metabolism differently, the highest proline accumulation was observed in the case of abscisic acid treatments. The proline metabolism was partly regulated independently and not in an antagonistic manner from polyamine synthesis. Results suggest that the connection, which exists between polyamine metabolism and abscisic acid signalling leads to the controlled regulation and maintenance of polyamine and proline levels under osmotic stress conditions in wheat seedlings.
Collapse
|
43
|
Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics 2018; 111:1142-1151. [PMID: 30031053 DOI: 10.1016/j.ygeno.2018.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022]
Abstract
Tea plant (Camellia sinensis (L.) O. Kuntze) is a perennial evergreen woody plant, and its leaves contain various beneficial ingredients and have healthy efficacy. HD-Zip (homeodomain-leucine zipper) transcription factors (TFs) are widely distributed in plants and play an important role in plant growth and environmental response. To date, knowledge on HD-Zip gene family in tea plant is still limited. In this study, 33 HD-Zip TFs were selected based on the genomic and transcriptomic databases of tea plant. The conserved domains and common motifs of these TFs were predicted and analyzed. These 33 Cshdz TFs were divided into four groups (HD-Zip I, HD-Zip II, HD-Zip III, and HD-Zip IV). The interaction network of the HD-Zip proteins of tea plant was established based on the data of Arabidopsis. In addition, the expression levels of these Cshdz genes in tea plant cv. 'Longjing43' were detected and analyzed under five abiotic stress treatments. Results showed that the different expression profiles of Cshdz genes were associated with different abiotic stress treatments. Our findings suggested a potential relationship between the resistance of tea plant and its Cshdz genes.
Collapse
|
44
|
Transcriptome-wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis. Funct Integr Genomics 2018; 18:489-503. [PMID: 29651641 DOI: 10.1007/s10142-018-0608-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/28/2017] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
The tea plant is an important commercial horticulture crop cultivated worldwide. Yield and quality of this plant are influenced by abiotic stress. The bHLH family transcription factors play a pivotal role in the growth and development, including abiotic stress response, of plants. A growing number of bHLH proteins have been functionally characterized in plants. However, few studies have focused on the bHLH proteins in tea plants. In this study, 120 CsbHLH TFs were identified from tea plants using computational prediction method. Structural analysis detected 23 conservative residues, with over 50% identities in the bHLH domain. Moreover, 103 CsbHLH proteins were assumed to bind DNA and encompassed 98 E-Box binders and 85 G-Box binders. The CsbHLH proteins were grouped into 20 subfamilies based on phylogenetic analysis and a previous classification system. A survey of transcriptome profiling screened 22 and 39 CsbHLH genes that were upregulated under heat and drought stress. Nine CsbHLH genes were validated using qRT-PCR. Results were approximately in accordance with transcriptome data. These genes could be induced by one or more abiotic stresses.
Collapse
|
45
|
Conde A, Neves A, Breia R, Pimentel D, Dinis LT, Bernardo S, Correia CM, Cunha A, Gerós H, Moutinho-Pereira J. Kaolin particle film application stimulates photoassimilate synthesis and modifies the primary metabolome of grape leaves. JOURNAL OF PLANT PHYSIOLOGY 2018; 223:47-56. [PMID: 29486461 DOI: 10.1016/j.jplph.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 05/20/2023]
Abstract
Water scarcity is associated with extreme temperatures and high irradiance, and significantly and increasingly affects grapevine yield and quality. In this context, the foliar application of kaolin, a chemically inert mineral that greatly reflects ultraviolet and infrared radiations, as well as, in part, photosynthetically active radiation, has recently been shown to decrease photoinhibition in mature leaves. Here, the influence of this particle film on grapevine leaf metabolome and carbohydrate metabolism was evaluated. Molecular mechanisms underlying photoassimilate synthesis, metabolism and transport capacity were assessed by targeted transcriptional analyses and enzymatic activity assays. Kaolin application increased sucrose concentration in leaves and sucrose transport/phloem loading capacity, as suggested by the stimulation of the transcription of sucrose transporters VvSUC12 and VvSUC27 in these source organs. While the biosynthesis of sucrose increased, as evidenced by higher sucrose content and sucrose phosphate synthase (SPS) activity in leaves, the concentration of transitory starch before the dark period remained unaltered, despite a higher total amylolytic activity in the leaves of kaolin-treated plants. Metabolomic analysis by GC-TOF-MS showed that the application of kaolin enhanced the amounts of simple sugars, including fructose, maltose, xylulose, xylose, sophorose, ribose and erythrose; sugars-phosphate, like mannose-6-Pi, hexose-6-Pi, glucose-6-Pi, glucose-1-Pi, glycerol-α-Pi and fructose-6-Pi; polyols, like xylitol, maltitol, lactitol, glycerol, galactinol and erythritol; organic acids and amino acids.
Collapse
Affiliation(s)
- Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal.
| | - Andreia Neves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Richard Breia
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Diana Pimentel
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Lia-Tânia Dinis
- Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Sara Bernardo
- Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carlos Manuel Correia
- Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - José Moutinho-Pereira
- Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
46
|
Shen J, Zou Z, Zhang X, Zhou L, Wang Y, Fang W, Zhu X. Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant ( Camellia sinensis L.) cultivars. HORTICULTURE RESEARCH 2018; 5:7. [PMID: 29423237 PMCID: PMC5802758 DOI: 10.1038/s41438-017-0010-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/18/2017] [Accepted: 11/24/2017] [Indexed: 05/05/2023]
Abstract
Purple-leaf tea plants, as anthocyanin-rich cultivars, are valuable materials for manufacturing teas with unique colors or flavors. In this study, a new purple-leaf cultivar "Zixin" ("ZX") was examined, and its biochemical variation and mechanism of leaf color change were elucidated. The metabolomes of leaves of "ZX" at completely purple, intermediately purple, and completely green stages were analyzed using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS). Metabolites in the flavonoid biosynthetic pathway remained at high levels in purple leaves, whereas intermediates of porphyrin and chlorophyll metabolism and carotenoid biosynthesis exhibited high levels in green leaves. In addition, fatty acid metabolism was more active in purple leaves, and steroids maintained higher levels in green leaves. Saponin, alcohol, organic acid, and terpenoid-related metabolites also changed significantly during the leaf color change process. Furthermore, the substance changes between "ZX" and "Zijuan" (a thoroughly studied purple-leaf cultivar) were also compared. The leaf color change in "Zijuan" was mainly caused by a decrease in flavonoids/anthocyanins. However, a decrease in flavonoids/anthocyanins, an enhancement of porphyrin, chlorophyll metabolism, carotenoid biosynthesis, and steroids, and a decrease in fatty acids synergistically caused the leaf color change in "ZX". These findings will facilitate comprehensive research on the regulatory mechanisms of leaf color change in purple-leaf tea cultivars.
Collapse
Affiliation(s)
- Jiazhi Shen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Xuzhou Zhang
- Bureau of Rural Economic Development of Huangdao District, Qingdao, Shangdong 266400 China
| | - Lin Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
47
|
Guo F, Guo Y, Wang P, Wang Y, Ni D. Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development. PLANTA 2017; 246:1139-1152. [PMID: 28825226 DOI: 10.1007/s00425-017-2760-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 05/18/2023]
Abstract
A total of 299,113 unigenes were generated and 15,817 DEGs were identified. We identified candidate genes associated with the regulation of catechins biosynthesis during leaf development in tea plant. The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most economically significant crops worldwide because of its positive effects on human health. The health benefits of tea are mainly attributed to catechins, which are the predominant polyphenols that accumulate in tea. Catechins are products of the phenylpropanoid and flavonoid biosynthetic pathways. Although catechins were identified in tea leaves long ago, the molecular mechanisms regulating catechins biosynthesis remain unclear. To identify candidate genes involved in catechins biosynthesis, we analyzed the transcriptomes of tea leaves during five different leaf stages of development using RNA-seq. Approximately 809 million high-quality reads were obtained, trimmed, and assembled into 299,113 unigenes with an average length of 565 bp. A total of 15,817 unigenes were differentially expressed during the different stages of leaf development. These differentially expressed genes were enriched in a variety of processes such as the regulation of the cell cycle, starch and sucrose metabolism, photosynthesis, phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis. Based on their annotations, 51 of these differentially expressed unigenes are involved in phenylpropanoid and flavonoid biosynthesis. Furthermore, transcription factors such as MYB, bHLH and MADS, which may involve in the regulation of catechins biosynthesis, were identified through co-expression analysis of transcription factors and structural genes. Real-time PCR analysis of candidate genes indicated a good correlation with the transcriptome data. These findings increase our understanding of the molecular mechanisms regulating catechins biosynthesis in the tea plant.
Collapse
Affiliation(s)
- Fei Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yafei Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
48
|
Rippin M, Becker B, Holzinger A. Enhanced Desiccation Tolerance in Mature Cultures of the Streptophytic Green Alga Zygnema circumcarinatum Revealed by Transcriptomics. PLANT & CELL PHYSIOLOGY 2017; 58:2067-2084. [PMID: 29036673 PMCID: PMC5722205 DOI: 10.1093/pcp/pcx136] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
Desiccation tolerance is commonly regarded as one of the key features for the colonization of terrestrial habitats by green algae and the evolution of land plants. Extensive studies, focused mostly on physiology, have been carried out assessing the desiccation tolerance and resilience of the streptophytic genera Klebsormidium and Zygnema. Here we present transcriptomic analyses of Zygnema circumcarinatum exposed to desiccation stress. Cultures of Z. circumcarinatum grown in liquid medium or on agar plates were desiccated at ∼86% relative air humidity until the effective quantum yield of PSII [Y(II)] ceased. In general, the response to dehydration was much more pronounced in Z. circumcarinatum cultured in liquid medium for 1 month compared with filaments grown on agar plates for 7 and 12 months. Culture on solid medium enables the alga to acclimate to dehydration much better and an increase in desiccation tolerance was clearly correlated to increased culture age. Moreover, gene expression analysis revealed that photosynthesis was strongly repressed upon desiccation treatment in the liquid culture while only minor effects were detected in filaments cultured on agar plates for 7 months. Otherwise, both samples showed induction of stress protection mechanisms such as reactive oxygen species scavenging (early light-induced proteins, glutathione metabolism) and DNA repair as well as the expression of chaperones and aquaporins. Additionally, Z. circumcarinatum cultured in liquid medium upregulated sucrose-synthesizing enzymes and strongly induced membrane modifications in response to desiccation stress. These results corroborate the previously described hardening and associated desiccation tolerance in Zygnema in response to seasonal fluctuations in water availability.
Collapse
Affiliation(s)
- Martin Rippin
- University of Cologne, Cologne Biocentre, Botanical Institute, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Burkhard Becker
- University of Cologne, Cologne Biocentre, Botanical Institute, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Functional Plant Biology, Sternwartestrasse 15, 6020 Innsbruck, Austria
| |
Collapse
|
49
|
Egamberdieva D, Wirth SJ, Alqarawi AA, Abd_Allah EF, Hashem A. Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness. Front Microbiol 2017; 8:2104. [PMID: 29163398 PMCID: PMC5671593 DOI: 10.3389/fmicb.2017.02104] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Plants are subjected to various abiotic stresses, such as drought, extreme temperature, salinity, and heavy metals. Abiotic stresses have negative impact on the physiology and morphology of plants through defects in the genetic regulation of cellular pathways. Plants employ several tolerance mechanisms and pathways to avert the effects of stresses that are triggered whenever alterations in metabolism are encountered. Phytohormones are among the most important growth regulators; they are known for having a prominent impact on plant metabolism, and additionally, they play a vital role in the stimulation of plant defense response mechanisms against stresses. Exogenous phytohormone supplementation has been adopted to improve growth and metabolism under stress conditions. Recent investigations have shown that phytohormones produced by root-associated microbes may prove to be important metabolic engineering targets for inducing host tolerance to abiotic stresses. Phytohormone biosynthetic pathways have been identified using several genetic and biochemical methods, and numerous reviews are currently available on this topic. Here, we review current knowledge on the function of phytohormones involved in the improvement of abiotic stress tolerance and defense response in plants exposed to different stressors. We focus on recent successes in identifying the roles of microbial phytohormones that induce stress tolerance, especially in crop plants. In doing so, this review highlights important plant morpho-physiological traits that can be exploited to identify the positive effects of phytohormones on stress tolerance. This review will therefore be helpful to plant physiologists and agricultural microbiologists in designing strategies and tools for the development of broad spectrum microbial inoculants supporting sustainable crop production under hostile environments.
Collapse
Affiliation(s)
- Dilfuza Egamberdieva
- Leibniz Centre for Agricultural Landscape Research, Institute of Landscape Biogeochemistry, Müncheberg, Germany
| | - Stephan J. Wirth
- Leibniz Centre for Agricultural Landscape Research, Institute of Landscape Biogeochemistry, Müncheberg, Germany
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Giza, Egypt
| |
Collapse
|
50
|
Metal transport protein 8 in Camellia sinensis confers superior manganese tolerance when expressed in yeast and Arabidopsis thaliana. Sci Rep 2017; 7:39915. [PMID: 28051151 PMCID: PMC5209735 DOI: 10.1038/srep39915] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022] Open
Abstract
Manganese (Mn) is an important micronutrient element required for plant growth and development, playing catalytic roles in enzymes, membranes and DNA replication. The tea plant (Camellia sinensis) is able to accumulate high concentration of Mn without showing signs of toxicity, but the molecular mechanisms underlying this remain largely unknown. In this study, the C. sinensis cultivar ‘LJCY’ had higher Mn tolerance than cultivar ‘YS’, because chlorophyll content reduction was lower under the high Mn treatment. Proteomic analysis of the leaves revealed that C. sinensis Metal Tolerance Protein 8 (CsMTP8) accumulated in response to Mn toxicity in cultivar ‘LJCY’. The gene encoding CsMTP8, designated as CsMTP8 was also isolated, and its expression enhanced Mn tolerance in Saccharomyces cerevisiae. Similarly, the overexpression of CsMTP8 in Arabidopsis thaliana increased plant tolerance and reduced Mn accumulation in plant tissues under excess Mn conditions. Subcellular localization analysis of green florescence fused protein indicated that CsMTP8 was localized to the plasma membranes. Taken together, the results suggest that CsMTP8 is a Mn-specific transporter, which is localized in the plasma membrane, and transports excess Mn out of plant cells. The results also suggest that it is needed for Mn tolerance in shoots.
Collapse
|