1
|
Wang ZY, Cheng J, Wang Y, Yuan HT, Bi SJ, Wang SX, Hou YM, Zhang X, Xu BH, Wang ZY, Zhang Y, Jiang WJ, Chen YG, Zhang MX. Macrophage ILF3 promotes abdominal aortic aneurysm by inducing inflammatory imbalance in male mice. Nat Commun 2024; 15:7249. [PMID: 39179537 PMCID: PMC11344041 DOI: 10.1038/s41467-024-51030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/24/2024] [Indexed: 08/26/2024] Open
Abstract
Imbalance of proinflammatory and anti-inflammatory responses plays a crucial role in the progression of abdominal aortic aneurysms. ILF3, a known modulator of the innate immune response, is involved in cardiovascular diseases. This study aims to investigate the role of ILF3 in abdominal aortic aneurysm formation. Here, we use multi-omics analyzes, transgenic male mice, and multiplex immunohistochemistry to unravel the underlying involvement of ILF3 in abdominal aortic aneurysms. The results show that macrophage ILF3 deficiency attenuates abdominal aortic aneurysm progression, while elevated macrophage ILF3 exacerbates abdominal aortic aneurysm lesions. Mechanistically, we reveal that macrophagic ILF3 increases NF-κB activity by hastening the decay of p105 mRNA, leading to amplified inflammation in macrophages. Meanwhile, ILF3 represses the anti-inflammatory action by inhibiting the Keap1-Nrf2 signaling pathway through facilitating the ILF3/eIF4A1 complex-mediated enhancement of Keap1 translational efficiency. Moreover, Bardoxolone Methyl treatment alleviates the severity of abdominal aortic aneurysm lesions in the context of elevated ILF3 expression. Together, our findings underscore the significance of macrophage ILF3 in abdominal aortic aneurysm development and suggest its potential as a promising therapeutic target for abdominal aortic aneurysms.
Collapse
Affiliation(s)
- Zhao-Yang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jie Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hai-Tao Yuan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shao-Jie Bi
- Department of Cardiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ya-Min Hou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xu Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bo-Han Xu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ze-Ying Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Wen-Jian Jiang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Yu-Guo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China.
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Bondi CD, Hartman HL, Tan RJ. NRF2 in kidney physiology and disease. Physiol Rep 2024; 12:e15961. [PMID: 38418382 PMCID: PMC10901725 DOI: 10.14814/phy2.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
The role of NRF2 in kidney biology has received considerable interest over the past decade. NRF2 transcriptionally controls genes responsible for cellular protection against oxidative and electrophilic stress and has anti-inflammatory functions. NRF2 is expressed throughout the kidney and plays a role in salt and water handling. In disease, animal studies show that NRF2 protects against tubulointerstitial damage and reduces interstitial fibrosis and tubular atrophy, and may slow progression of polycystic kidney disease. However, the role of NRF2 in proteinuric glomerular diseases is controversial. Although the NRF2 inducer, bardoxolone methyl (CDDO-Me), increases glomerular filtration rate in humans, it has not been shown to slow disease progression in diabetic kidney disease and Alport syndrome. Furthermore, bardoxolone methyl was associated with negative effects on fluid retention, proteinuria, and blood pressure. Several animal studies replicate findings of worsened proteinuria and a more rapid progression of kidney disease, although considerable controversy exists. It is clear that further study is needed to better understand the effects of NRF2 in the kidney. This review summarizes the available data to clarify the promise and risks associated with targeting NRF2 activity in the kidney.
Collapse
Affiliation(s)
- Corry D. Bondi
- Renal‐Electrolyte Division, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hannah L. Hartman
- Renal‐Electrolyte Division, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Roderick J. Tan
- Renal‐Electrolyte Division, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Brinks R, Wruck CJ, Schmitz J, Schupp N. Nrf2 Activation Does Not Protect from Aldosterone-Induced Kidney Damage in Mice. Antioxidants (Basel) 2023; 12:antiox12030777. [PMID: 36979025 PMCID: PMC10044832 DOI: 10.3390/antiox12030777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/10/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is downregulated in chronic kidney disease (CKD). Activation of Nrf2 might be a therapeutic option in CKD. Here we investigate the effect of Nrf2 activation on aldosterone (Aldo)-induced renal injury. Wild-type (WT) mice, transgenic Keap1 hypomorphic (Nrf2ꜛ, genotype results in upregulation of Nrf2 expression) mice and WT mice treated with the Nrf2 activator sulforaphane (Sulf) received Aldo for 4 weeks. In Aldo-treated mice, kidneys were significantly heavier and pathologically altered, reflected by increased urinary albumin levels and tissue damage. In Nrf2ꜛ-Aldo mice the tubule damage marker NGAL was significantly decreased. Increased oxidative damage markers (8-OHdG, 15-isoprostane F2t) were measured in all Aldo-treated groups. Aldo-increased Nrf2 amounts were mainly found in the late tubule system. The amount of phosphorylated and thus putatively active Nrf2 was significantly increased by Aldo only in WT mice. However, expression of Nrf2 target genes NQO1 and HO1 was decreased in all Aldo-infused mice. GSK3β, which promotes Nrf2 degradation, was significantly increased in the kidneys of Aldo-treated WT mice. Neither genetic nor pharmacological Nrf2 activation was able to prevent oxidative injury induced by Aldo, probably due to induction of negative regulators of Nrf2.
Collapse
Affiliation(s)
- Ronja Brinks
- Institute of Toxicology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, 52074 Aachen, Germany
| | - Jutta Schmitz
- Institute of Toxicology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Nicole Schupp
- Institute of Toxicology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Wang D, Wang C, Hao X, Carter G, Carter R, Welch WJ, Wilcox CS. Activation of Nrf2 in Mice Causes Early Microvascular Cyclooxygenase-Dependent Oxidative Stress and Enhanced Contractility. Antioxidants (Basel) 2022; 11:antiox11050845. [PMID: 35624708 PMCID: PMC9137799 DOI: 10.3390/antiox11050845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Nuclear factor erythroid factor E2-related factor 2 (Nrf2) transcribes antioxidant genes that reduce the blood pressure (BP), yet its activation with tert-butylhydroquinone (tBHQ) in mice infused with angiotensin II (Ang II) increased mean arterial pressure (MAP) over the first 4 days of the infusion. Since tBHQ enhanced cyclooxygenase (COX) 2 expression in vascular smooth muscle cells (VSMCs), we tested the hypothesis that tBHQ administration during an ongoing Ang II infusion causes an early increase in microvascular COX-dependent reactive oxygen species (ROS) and contractility. Mesenteric microarteriolar contractility was assessed on a myograph, and ROS by RatioMaster™. Three days of oral tBHQ administration during the infusion of Ang II increased the mesenteric microarteriolar mRNA for p47phox, the endothelin type A receptor and thromboxane A2 synthase, and increased the excretion of 8-isoprostane F2α and the microarteriolar ROS and contractions to a thromboxane A2 (TxA2) agonist (U-46,619) and endothelin 1 (ET1). These were all prevented in Nrf2 knockout mice. Moreover, the increases in ROS and contractility were prevented in COX1 knockout mice with blockade of COX2 and by blockade of thromboxane prostanoid receptors (TPRs). In conclusion, the activation of Nrf2 over 3 days of Ang II infusion enhances microarteriolar ROS and contractility, which are dependent on COX1, COX2 and TPRs. Therefore, the blockade of these pathways may diminish the early adverse cardiovascular disease events that have been recorded during the initiation of Nrf2 therapy.
Collapse
Affiliation(s)
- Dan Wang
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Xueqin Hao
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471023, China
| | - Gabriela Carter
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - Rafaela Carter
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - William J Welch
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
5
|
Fatty acid nitroalkene reversal of established lung fibrosis. Redox Biol 2021; 50:102226. [PMID: 35150970 PMCID: PMC8844680 DOI: 10.1016/j.redox.2021.102226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue fibrosis occurs in response to dysregulated metabolism, pro-inflammatory signaling and tissue repair reactions. For example, lungs exposed to environmental toxins, cancer therapies, chronic inflammation and other stimuli manifest a phenotypic shift to activated myofibroblasts and progressive and often irreversible lung tissue scarring. There are no therapies that stop or reverse fibrosis. The 2 FDA-approved anti-fibrotic drugs at best only slow the progression of fibrosis in humans. The present study was designed to test whether a small molecule electrophilic nitroalkene, nitro-oleic acid (NO2-OA), could reverse established pulmonary fibrosis induced by the intratracheal administration of bleomycin in C57BL/6 mice. After 14 d of bleomycin-induced fibrosis development in vivo, lungs were removed, sectioned and precision-cut lung slices (PCLS) from control and bleomycin-treated mice were cultured ex vivo for 4 d with either vehicle or NO2-OA (5 μM). Biochemical and morphological analyses showed that over a 4 d time frame, NO2-OA significantly inhibited pro-inflammatory mediator and growth factor expression and reversed key indices of fibrosis (hydroxyproline, collagen 1A1 and 3A1, fibronectin-1). Quantitative image analysis of PCLS immunohistology reinforced these observations, revealing that NO2-OA suppressed additional hallmarks of the fibrotic response, including alveolar epithelial cell loss, myofibroblast differentiation and proliferation, collagen and α-smooth muscle actin expression. NO2-OA also accelerated collagen degradation by resident macrophages. These effects occurred in the absence of the recognized NO2-OA modulation of circulating and migrating immune cell activation. Thus, small molecule nitroalkenes may be useful agents for reversing pathogenic fibrosis of lung and other organs. Small molecule electrophiles, pleiotropic anti-inflammatory and anti-fibrotic drugs. NO2-OA inhibits activated myofibroblasts, induces dedifferentiation to fibroblasts. NO2-OA activates extracellular matrix degradation by macrophages. NO2-OA promotes proliferation of alveolar type 1 and 2 epithelial cells. NO2-OA reverses established lung fibrosis in murine lung slices.
Collapse
|
6
|
Jayasuriya R, Dhamodharan U, Ali D, Ganesan K, Xu B, Ramkumar KM. Targeting Nrf2/Keap1 signaling pathway by bioactive natural agents: Possible therapeutic strategy to combat liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153755. [PMID: 34583226 DOI: 10.1016/j.phymed.2021.153755] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor (Nrf2), a stress-activated transcription factor, has been documented to induce a defense mechanism against oxidative stress damage, and growing evidence considers this signaling pathway a key pharmacological target for the treatment of liver diseases. PURPOSE The present review highlights the role of phytochemical compounds in activating Nrf2 and mitigate toxicant-induced stress on liver injury. METHODS A comprehensive search of published articles was carried out to focus on original publications related to Nrf2 activators against liver disease using various literature databases, including the scientific Databases of Science Direct, Web of Science, Pubmed, Google, EMBASE, and Scientific Information (SID). RESULTS Nrf2 activators exhibited promising effects in resisting a variety of liver diseases induced by different toxicants in preclinical experiments and in vitro studies by regulating cell proliferation and apoptosis as well as an antioxidant defense mechanism. We found that the phytochemical compounds, such as curcumin, naringenin, sulforaphane, diallyl disulfide, mangiferin, oleanolic acid, umbelliferone, daphnetin, quercetin, isorhamnetin-3-O-galactoside, hesperidin, diammonium glycyrrhizinate, corilagin, shikonin, farrerol, and chenpi, had the potential to improve the Nrf2-ARE signaling thereby combat hepatotoxicity. CONCLUSION Nrf2 activators may offer a novel potential strategy for the prevention and treatment of liver diseases. More extensive studies are essential to identify the underlying mechanisms and establish future therapeutic potentials of these signaling modulators. Further clinical trials are warranted to determine the safety and effectiveness of Nrf2 activators for hepatopathy.
Collapse
Affiliation(s)
- Ravichandran Jayasuriya
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | | | - Daoud Ali
- Department of Zoology, College of Science, King Saud University P.O. Box 2455, Riyadh 11451 Saudi Arabia
| | - Kumar Ganesan
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China.
| | - Kunka Mohanram Ramkumar
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
7
|
Yoon S, Eom GH, Kang G. Nitrosative Stress and Human Disease: Therapeutic Potential of Denitrosylation. Int J Mol Sci 2021; 22:ijms22189794. [PMID: 34575960 PMCID: PMC8464666 DOI: 10.3390/ijms22189794] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Proteins dynamically contribute towards maintaining cellular homeostasis. Posttranslational modification regulates the function of target proteins through their immediate activation, sudden inhibition, or permanent degradation. Among numerous protein modifications, protein nitrosation and its functional relevance have emerged. Nitrosation generally initiates nitric oxide (NO) production in association with NO synthase. NO is conjugated to free thiol in the cysteine side chain (S-nitrosylation) and is propagated via the transnitrosylation mechanism. S-nitrosylation is a signaling pathway frequently involved in physiologic regulation. NO forms peroxynitrite in excessive oxidation conditions and induces tyrosine nitration, which is quite stable and is considered irreversible. Two main reducing systems are attributed to denitrosylation: glutathione and thioredoxin (TRX). Glutathione captures NO from S-nitrosylated protein and forms S-nitrosoglutathione (GSNO). The intracellular reducing system catalyzes GSNO into GSH again. TRX can remove NO-like glutathione and break down the disulfide bridge. Although NO is usually beneficial in the basal context, cumulative stress from chronic inflammation or oxidative insult produces a large amount of NO, which induces atypical protein nitrosation. Herein, we (1) provide a brief introduction to the nitrosation and denitrosylation processes, (2) discuss nitrosation-associated human diseases, and (3) discuss a possible denitrosylation strategy and its therapeutic applications.
Collapse
Affiliation(s)
- Somy Yoon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea;
- Correspondence: (G.-H.E.); (G.K.); Tel.: +82-61-379-2837 (G.-H.E.); +82-62-220-5262 (G.K.)
| | - Gaeun Kang
- Division of Clinical Pharmacology, Chonnam National University Hospital, Gwangju 61469, Korea
- Correspondence: (G.-H.E.); (G.K.); Tel.: +82-61-379-2837 (G.-H.E.); +82-62-220-5262 (G.K.)
| |
Collapse
|
8
|
Mousavi K, Niknahad H, Li H, Jia Z, Manthari RK, Zhao Y, Shi X, Chen Y, Ahmadi A, Azarpira N, Khalvati B, Ommati MM, Heidari R. The activation of nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling blunts cholestasis-induced liver and kidney injury. Toxicol Res (Camb) 2021; 10:911-927. [PMID: 34484683 PMCID: PMC8403611 DOI: 10.1093/toxres/tfab073] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022] Open
Abstract
Cholestasis is a severe clinical complication that severely damages the liver. Kidneys are also the most affected extrahepatic organs in cholestasis. The pivotal role of oxidative stress has been mentioned in the pathogenesis of cholestasis-induced organ injury. The activation of the nuclear factor-E2-related factor 2 (Nrf2) pathway is involved in response to oxidative stress. The current study was designed to evaluate the potential role of Nrf2 signaling activation in preventing bile acids-induced toxicity in the liver and kidney. Dimethyl fumarate was used as a robust activator of Nrf2 signaling. Rats underwent bile duct ligation surgery and were treated with dimethyl fumarate (10 and 40 mg/kg). Severe oxidative stress was evident in the liver and kidney of cholestatic animals (P < 0.05). On the other hand, the expression and activity of Nrf2 and downstream genes were time-dependently decreased (P < 0.05). Moreover, significant mitochondrial depolarization, decreased ATP levels, and mitochondrial permeabilization were detected in bile duct-ligated rats (P < 0.05). Histopathological alterations included liver necrosis, fibrosis, inflammation and kidney interstitial inflammation, and cast formation. It was found that dimethyl fumarate significantly decreased hepatic and renal injury in cholestatic animals (P < 0.05). Based on these data, the activation of the cellular antioxidant response could serve as an efficient therapeutic option for managing cholestasis-induced organ injury.
Collapse
Affiliation(s)
- Khadijeh Mousavi
- Department of Bio-informatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Hossein Niknahad
- Department of Bio-informatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Huifeng Li
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhipeng Jia
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Visakhapatnam, Gandhi Institute of Technology and Management, Andhra Pradesh 530045, India
| | - Yangfei Zhao
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiong Shi
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuanyu Chen
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Asrin Ahmadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj 75919-51176, Iran
| | - Mohammad Mehdi Ommati
- Department of Bio-informatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
9
|
Aldosterone Negatively Regulates Nrf2 Activity: An Additional Mechanism Contributing to Oxidative Stress and Vascular Dysfunction by Aldosterone. Int J Mol Sci 2021; 22:ijms22116154. [PMID: 34200377 PMCID: PMC8201089 DOI: 10.3390/ijms22116154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
High levels of aldosterone (Aldo) trigger oxidative stress and vascular dysfunction independent of effects on blood pressure. We sought to determine whether Aldo disrupts Nrf2 signaling, the main transcriptional factor involved in antioxidant responses that aggravate cell injury. Thoracic aorta from male C57Bl/6J mice and cultured human endothelial cells (EA.hy926) were stimulated with Aldo (100 nM) in the presence of tiron [reactive oxygen species (ROS) scavenger, eplerenone [mineralocorticoid receptor (MR) antagonist], and L-sulforaphane (SFN; Nrf2 activator). Thoracic aortas were also isolated from mice infused with Aldo (600 μg/kg per day) for 14 days. Aldo decreased endothelium-dependent vasorelaxation and increased ROS generation, effects prevented by tiron and MR blockade. Pharmacological activation of Nrf2 with SFN abrogated Aldo-induced vascular dysfunction and ROS generation. In EA.hy926 cells, Aldo increased ROS generation, which was prevented by eplerenone, tiron, and SFN. At short times, Aldo-induced ROS generation was linked to increased Nrf2 activation. However, after three hours, Aldo decreased the nuclear accumulation of Nrf2. Increased Keap1 protein expression, but not activation of p38 MAPK, was linked to Aldo-induced reduced Nrf2 activity. Arteries from Aldo-infused mice also exhibited decreased nuclear Nrf2 and increased Keap1 expression. Our findings suggest that Aldo reduces vascular Nrf2 transcriptional activity by Keap1-dependent mechanisms, contributing to mineralocorticoid-induced vascular dysfunction.
Collapse
|
10
|
Jayasuriya R, Ramkumar KM. Role of long non-coding RNAs on the regulation of Nrf2 in chronic diseases. Life Sci 2021; 270:119025. [PMID: 33450255 DOI: 10.1016/j.lfs.2021.119025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
Studies have identified dysregulated long non-coding RNA (lncRNA) in several diseases at transcriptional, translational, and post-translational levels. Although our mechanistic knowledge on the regulation of lncRNAs is still limited, one of the mechanisms of action attributed is binding and regulating transcription factors, thus controlling gene expression and protein function. One such transcription factor is nuclear factor erythroid 2-related factor 2 (Nrf2), which plays a critical biological role in maintaining cellular homeostasis at multiple levels in physiological and pathophysiological conditions. The levels of Nrf2 were found to be down-regulated in many chronic diseases, signifying that Nrf2 can be a key therapeutic target. Few lncRNAs like lncRNA ROR, ENSMUST00000125413, lncRNA ODRUL, Nrf2-lncRNA have been associated with the Nrf2 signaling pathway in response to various stimuli, including stress. This review discusses the regulation of Nrf2 in different responses and the potential role of specific lncRNA in modulating its transcriptional activities. This review further helps to enhance our knowledge on the regulatory role of the critical antioxidant transcription factor, Nrf2.
Collapse
Affiliation(s)
- Ravichandran Jayasuriya
- SRM Research Institute and Department of Biotechnology, School of bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute and Department of Biotechnology, School of bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
11
|
Wang J, Bai Y, Yin S, Cui J, Zhang Y, Wang X, Zhang F, Li H, Tang Y, Wang J. Circadian clock gene BMAL1 reduces urinary calcium oxalate stones formation by regulating NRF2/HO-1 pathway. Life Sci 2020; 265:118853. [PMID: 33278384 DOI: 10.1016/j.lfs.2020.118853] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023]
Abstract
Calcium oxalate stones are closely related to oxalate metabolism and oxidative stress injury. Normal metabolism homeostasis and tissue repair are often affected by the biological rhythm, which plays an indispensable role in maintaining the homeostasis of the organism. Nuclear factor erythroid 2-related factor/heme oxygenase-1 (NRF2/HO-1) is one pathway related to oxidative stress injury in human body. Normal operation of this pathway is conducive to the resistance against oxidative stress-related injury. This study was mainly aimed to explore whether the rhythm gene "brain and muscle ARNT-like 1" (BMAL1) was involved in regulating oxidative stress-related NRF2/HO-1 pathway to reduce the formation of urinary calcium oxalate stones. In vitro experiment found that the activation of NRF2/HO-1 can significantly reduce the oxalate-induced oxidative damage and urinary calcium oxalate stone formation, and the relative expression of BMAL1 was increased. Then overexpression of circadian gene BMAL1 can activate the NRF2/HO-1 pathway and reduce the oxalate-induced oxidative damage. In the hyperoxaluria animal model, the BMAL1 expression level decreased obviously, and the production of calcium oxalate stones was significantly reduced after activating NRF2/HO-1. Finally, we further verified the BMAL1 expression in blood samples from the patients, and analysis of several single nucleotide polymorphisms showed BMAL1 was related to calcium oxalate stones. Therefore, maintaining normal biorhythms and appropriately intervening related rhythm genes and their downstream antioxidant pathways may play an important role in the prevention and postoperative recurrence of urinary calcium oxalate calculi, which may open up new directions for the treatment of urinary calculi.
Collapse
Affiliation(s)
- Jiahao Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunjin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Yin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianwei Cui
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Liu M, Deng M, Luo Q, Dou X, Jia Z. High-Salt Loading Downregulates Nrf2 Expression in a Sodium-Dependent Manner in Renal Collecting Duct Cells. Front Physiol 2020; 10:1565. [PMID: 32038274 PMCID: PMC6985211 DOI: 10.3389/fphys.2019.01565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
Background High salt intake is associated with both oxidative stress and chronic kidney disease (CKD) progression. Nuclear factor E2-related factor 2 (Nrf2) is a transcriptional factor regulating the antioxidant and detoxifying genes to potently antagonize oxidative stress. This study examined the effect of high salt loading on the expression of Nrf2 in kidney. Methods Mice were treated with acute salt loading, and Nrf2 expression in the kidney was detected by Western blotting and immunostaining. Reactive oxygen species (ROS) levels in the kidney were measured using dihydroethidium (DHE) staining. In vitro, mpkCCD cells were cultured in high osmolality medium by adding sodium chloride (NaCl), sodium gluconate (Na-Glu), choline chloride (Choline-Cl), or mannitol. Then, Nrf2 and its target genes were measured. Results Nrf2 protein in renal cortex and medulla tissue lysates was significantly downregulated after acute salt loading. Immunofluorescence data showed that Nrf2 was mainly located in collecting duct principal cells evidenced by co-staining of Nrf2 with AQP2. Contrasting to the reduced Nrf2 expression, ROS levels in the kidney were significantly increased after salt loading. In vitro, the Nrf2 protein level was downregulated in mpkCCD cells after NaCl treatment for 24 h. Interestingly, sodium gluconate had a similar effect on downregulating Nrf2 expression as NaCl, whereas neither Choline-Cl nor mannitol changed Nrf2 expression. Meanwhile, the mRNA levels of Nrf2 target genes were downregulated by NaCl and/or sodium gluconate, while some of them were also regulated by Choline-Cl, indicating a more complex regulation of these genes under a high salt condition. Finally, we found that the downregulation of Nrf2 caused by NaCl was not affected by N-acetylcysteine (NAC), spironolactone, or NS-398, suggesting other mechanisms mediating Nrf2 downregulation caused by high salt challenge. Conclusion High salt downregulated Nrf2 mainly via a sodium-dependent manner in kidney collecting duct cells, which might contribute to the excessive renal oxidative stress and CKD progression.
Collapse
Affiliation(s)
- Mi Liu
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mokan Deng
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Qimei Luo
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xianrui Dou
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Tanabe J, Ogura Y, Nakabayashi M, Nagai Y, Watanabe S, Sugaya T, Ohata K, Ichikawa D, Inoue K, Hoshino S, Kimura K, Shibagaki Y, Ono Y, Kamijo-Ikemori A. The Possibility of Urinary Liver-Type Fatty Acid-Binding Protein as a Biomarker of Renal Hypoxia in Spontaneously Diabetic Torii Fatty Rats. Kidney Blood Press Res 2019; 44:1476-1492. [PMID: 31734667 DOI: 10.1159/000503926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/04/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Renal hypoxia is an aggravating factor for tubulointerstitial damage, which is strongly associated with renal prognosis in diabetic kidney disease (DKD). Therefore, urinary markers that can detect renal hypoxia are useful for monitoring DKD. OBJECTIVE To determine the correlation between urinary liver-type fatty acid-binding protein (L-FABP) and renal hypoxia using a novel animal model of type 2 diabetes. METHODS Male spontaneously diabetic Torii (SDT) fatty rats (n = 6) were used as an animal model of type 2 diabetes. Age- and sex-matched Sprague-Dawley (SD) rats (n = 8) were used as controls. Body weight, systolic blood pressure, and blood glucose levels were measured at 8, 12, 16, and 24 weeks of age. Urine samples and serum and kidney tissues were collected at 24 weeks of age. Microvascular blood flow index (BFI) was measured using diffuse correlation spectroscopy before sampling both the serum and kidneys for the evaluation of renal microcirculation at the corticomedullary junction. RESULTS Obesity, hyperglycemia, and hypertension were observed in the SDT fatty rats. Focal glomerular sclerosis, moderate interstitial inflammation, and fibrosis were significantly more frequent in SDT fatty rats than in SD rats. While the frequency of peritubular endothelial cells and phosphoendothelial nitric oxide synthase levels were similar in both types of rats, the degree of renal hypoxia-inducible factor-1α (HIF-1α) expression was significantly higher (and with no change in renal vascular endothelial growth factor expression levels) in the SDT fatty rats. Urinary L-FABP levels were significantly higher and renal microvascular BFI was significantly lower in the SDT fatty rats than in the SD rats. Urinary L-FABP levels exhibited a significant positive correlation with renal HIF-1α expression and a significant negative correlation with renal microvascular BFI. CONCLUSIONS Urinary L-FABP levels reflect the degree of renal hypoxia in DKD in a type 2 diabetic animal model. Urinary L-FABP may thus prove useful as a renal hypoxia marker for monitoring DKD in patients with type 2 diabetes in clinical practice.
Collapse
Affiliation(s)
- Jun Tanabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yuji Ogura
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Mikie Nakabayashi
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Yoshio Nagai
- Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Shiika Watanabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Takeshi Sugaya
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Keiichi Ohata
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Daisuke Ichikawa
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazuho Inoue
- Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Seiko Hoshino
- Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | | | - Yugo Shibagaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Atsuko Kamijo-Ikemori
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan, .,Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan,
| |
Collapse
|
14
|
Kadıoğlu E, Tekşen Y, Koçak C, Koçak FE. Beneficial effects of bardoxolone methyl, an Nrf2 activator, on crush-related acute kidney injury in rats. Eur J Trauma Emerg Surg 2019; 47:241-250. [PMID: 31471671 DOI: 10.1007/s00068-019-01216-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to investigate the effects of bardoxolone methyl (BM), a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, on acute kidney injury in a rat model of crush syndrome model. METHODS Sixty-four rats were separated equally into eight groups, sham (sterile saline ip), crush, crush + vehicle (DMSO ip), and crush + BM (10 mg/kg ip) (n = 8). All groups were also divided as 3 and 24 h after decompression. Crush injury was induced by 6 h of direct compression to both hind limbs of the rats with blocks weighing 3.6 kg on each side, followed by 3 and 24 h of decompression. Kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), tumor necrotizing factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) concentrations, tissue total oxidant status (TOS) and total antioxidant status (TAS) were measured in the kidneys. Serum creatine kinase (CK), blood urea nitrogen (BUN) and creatinine concentrations were also measured. Glomerular and tubular structures were examined histopathologically. Bcl-2 was measured using immunohistochemistry. Apoptosis was assessed using the TUNEL method. RESULTS BM treatment reduced KIM-1, NGAL, TNF-α, TGF-β1, TOS concentrations, and increased TAS concentrations in the kidneys 3 and 24 h after decompression. Serum CK, BUN and creatinine concentrations were also reduced with BM. BM treatment decreased apoptosis in crush-related AKI. The Nrf2 activator BM reversed the crush-induced changes in the experimental rats. CONCLUSION BM treatment prevented the progression of crush-related AKI in rats possibly through its cytoprotective effects of being an antioxidant, anti-inflammatory and anti-apoptotic agent.
Collapse
Affiliation(s)
- Emine Kadıoğlu
- Department of Emergency Medicine, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kutahya, Turkey
| | - Yasemin Tekşen
- Department of Pharmacology, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kutahya, Turkey.
| | - Cengiz Koçak
- Department of Pathology, Faculty of Medicine, Uşak University, Bir Eylül Kampüsü, 64000, Uşak, Turkey
| | - Fatma Emel Koçak
- Department of Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kutahya, Turkey
| |
Collapse
|
15
|
Kosaki K, Sugaya T, Ohata K, Tanabe J, Hoshino S, Inoue K, Kimura K, Maeda S, Shibagaki Y, Kamijo-Ikemori A. Renoprotective effects of voluntary running exercise training on aldosterone-induced renal injury in human L-FABP chromosomal transgenic mice. Hypertens Res 2019; 42:1518-1527. [DOI: 10.1038/s41440-019-0273-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
|
16
|
Wang J, Guo HM. Astragaloside IV ameliorates high glucose-induced HK-2 cell apoptosis and oxidative stress by regulating the Nrf2/ARE signaling pathway. Exp Ther Med 2019; 17:4409-4416. [PMID: 31086575 PMCID: PMC6489012 DOI: 10.3892/etm.2019.7495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/18/2019] [Indexed: 01/01/2023] Open
Abstract
Diabetic nephropathy (DN) has become the major cause of end-stage renal disease increasing the mortality risk of diabetes. Research has demonstrated that the oxidative damage and apoptosis of renal tubular cells is present during DN. Astragaloside IV (AS-IV) has been widely used for the treatment of many diseases, however, the role and mechanism by which AS-IV may ameliorate high glucose-induced apoptosis and oxidative stress of the human proximal tubular cell line HK-2 remains largely unknown. The present study investigated the effect of AS-IV on high glucose-induced apoptosis and oxidative stress in HK-2 cells. Cell viability, apoptosis and protein expression were detected by Trypan blue staining, Cell Counting Kit-8 assay, terminal deoxynucleotidyl transferase 2′-deoxyuridine-5′-triphosphate nick-end labelling, flow cytometry and western blot analyses. In addition, enzymatic activities, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) and lipid peroxide (LPO), were measured with the corresponding detection kits. DCFH-DA assay and flow cytometry were performed to detect the production of reactive oxygen species (ROS). Western blot analysis and reverse transcription-quantitative polymerase chain reaction were conducted to evaluate protein and mRNA expressions of the nuclear factor erythroid 2 like 2 (Nrf2)/antioxidant response element (ARE) signaling pathway. The results demonstrated that AS-IV significantly enhanced HK-2 cell viability induced by high glucose in a dose-dependent manner. In addition, AS-IV notably inhibited HK-2 cell apoptosis stimulated by high glucose, which may be associated with inhibition of BCL2 associated X protein, Cleaved-caspase-3 and Cleaved-caspase-9, expression and the promotion of Bcl-2. AS-IV significantly increased the activities of antioxidant enzymes SOD, GSH-Px and CAT, and decreased the high-glucose-induced ROS production in HK-2 cells, in a dose-dependent manner. Finally, it was determined that AS-IV regulated the Nrf2/ARE signaling pathway and inhibited the expression of liver-type fatty acid binding protein. In conclusion, these findings may provide evidence that AS-IV has a potential role for the treatment of DN.
Collapse
Affiliation(s)
- Jing Wang
- Department of First Clinical Medical Institute, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China.,Department of Nephrology, Taicang Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215400, P.R. China
| | - Hong-Min Guo
- Department of Geriatric Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
17
|
The exaggerated salt-sensitive response in hypertensive transgenic rats (TGR mRen-2) fostered by a normotensive female. Hypertens Res 2018; 42:459-468. [DOI: 10.1038/s41440-018-0157-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/04/2018] [Accepted: 10/01/2018] [Indexed: 11/08/2022]
|