1
|
Najdaghi S, Davani DN, Fouladseresht H, Ebrahimi N, Sullman MJM, Moradi M, Eskandari N. The Role of Extracellular Vesicles and Microparticles in Central Nervous System Disorders: Mechanisms, Biomarkers, and Therapeutic Potential. Cell Mol Neurobiol 2024; 44:82. [PMID: 39625540 PMCID: PMC11614997 DOI: 10.1007/s10571-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Microscopic, membranous vesicles known as extracellular vesicles (EVs) have been proposed to play a role in the mechanisms underlying central nervous system (CNS) diseases. EVs are secreted by a variety of cells, including myeloid, endothelial, microglial, oligodendroglial, and mesenchymal stem cells (MSCs). Body fluids such as plasma, urine, and cerebrospinal fluid (CSF) contain microparticles (MPs). The detection of MPs in CSF may indicate genetic or environmental susceptibility to conditions such as schizophrenia, schizoaffective disorder, and bipolar disorder. MPs of different origins can exhibit changes in specific biomarkers at various stages of the disease, aiding in the diagnosis and monitoring of neurological conditions. However, understanding the role and clinical applications of MPs is complicated by challenges such as their isolation and dual roles within the CNS. In this review, we discuss the history, characteristics, and roles of MPs in CNS diseases. We also provide practical insights for future research and highlight the challenges that obscure the therapeutic potential of MPs.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Ebrahimi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Social Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Marjan Moradi
- Departement of Genetics, School of Science, Shahrekord University, Shahrakord, Iran
| | - Nahid Eskandari
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Nayer B, Tan JL, Alshoubaki YK, Lu YZ, Legrand JMD, Lau S, Hu N, Park AJ, Wang XN, Amann-Zalcenstein D, Hickey PF, Wilson T, Kuhn GA, Müller R, Vasanthakumar A, Akira S, Martino MM. Local administration of regulatory T cells promotes tissue healing. Nat Commun 2024; 15:7863. [PMID: 39251592 PMCID: PMC11383969 DOI: 10.1038/s41467-024-51353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial immune cells for tissue repair and regeneration. However, their potential as a cell-based regenerative therapy is not yet fully understood. Here, we show that local delivery of exogenous Tregs into injured mouse bone, muscle, and skin greatly enhances tissue healing. Mechanistically, exogenous Tregs rapidly adopt an injury-specific phenotype in response to the damaged tissue microenvironment, upregulating genes involved in immunomodulation and tissue healing. We demonstrate that exogenous Tregs exert their regenerative effect by directly and indirectly modulating monocytes/macrophages (Mo/MΦ) in injured tissues, promoting their switch to an anti-inflammatory and pro-healing state via factors such as interleukin (IL)-10. Validating the key role of IL-10 in exogenous Treg-mediated repair and regeneration, the pro-healing capacity of these cells is lost when Il10 is knocked out. Additionally, exogenous Tregs reduce neutrophil and cytotoxic T cell accumulation and IFN-γ production in damaged tissues, further dampening the pro-inflammatory Mo/MΦ phenotype. Highlighting the potential of this approach, we demonstrate that allogeneic and human Tregs also promote tissue healing. Together, this study establishes exogenous Tregs as a possible universal cell-based therapy for regenerative medicine and provides key mechanistic insights that could be harnessed to develop immune cell-based therapies to enhance tissue healing.
Collapse
Affiliation(s)
- Bhavana Nayer
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Jean L Tan
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Julien M D Legrand
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Sinnee Lau
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Nan Hu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Anthony J Park
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Xiao-Nong Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniela Amann-Zalcenstein
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter F Hickey
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Trevor Wilson
- MHTP Medical Genomics Facility, Monash Health Translation Precinct, Clayton, VIC, Australia
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ajithkumar Vasanthakumar
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- La Trobe University, Bundoora, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Victorian Heart Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Kioulaphides S, García AJ. Encapsulation and immune protection for type 1 diabetes cell therapy. Adv Drug Deliv Rev 2024; 207:115205. [PMID: 38360355 PMCID: PMC10948298 DOI: 10.1016/j.addr.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Type 1 Diabetes (T1D) involves the autoimmune destruction of insulin-producing β-cells in the pancreas. Exogenous insulin injections are the current therapy but are user-dependent and cannot fully recapitulate physiological insulin secretion dynamics. Since the emergence of allogeneic cell therapy for T1D, the Edmonton Protocol has been the most promising immunosuppression protocol for cadaveric islet transplantation, but the lack of donor islets, poor cell engraftment, and required chronic immunosuppression have limited its application as a therapy for T1D. Encapsulation in biomaterials on the nano-, micro-, and macro-scale offers the potential to integrate islets with the host and protect them from immune responses. This method can be applied to different cell types, including cadaveric, porcine, and stem cell-derived islets, mitigating the issue of a lack of donor cells. This review covers progress in the efforts to integrate insulin-producing cells from multiple sources to T1D patients as a form of cell therapy.
Collapse
Affiliation(s)
- Sophia Kioulaphides
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
4
|
Ma X, Cao L, Raneri M, Wang H, Cao Q, Zhao Y, Bediaga NG, Naselli G, Harrison LC, Hawthorne WJ, Hu M, Yi S, O’Connell PJ. Human HLA-DR+CD27+ regulatory T cells show enhanced antigen-specific suppressive function. JCI Insight 2023; 8:e162978. [PMID: 37874660 PMCID: PMC10795828 DOI: 10.1172/jci.insight.162978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Regulatory T cells (Tregs) have potential for the treatment of autoimmune diseases and graft rejection. Antigen specificity and functional stability are considered critical for their therapeutic efficacy. In this study, expansion of human Tregs in the presence of porcine PBMCs (xenoantigen-expanded Tregs, Xn-Treg) allowed the selection of a distinct Treg subset, coexpressing the activation/memory surface markers HLA-DR and CD27 with enhanced proportion of FOXP3+Helios+ Tregs. Compared with their unsorted and HLA-DR+CD27+ double-positive (DP) cell-depleted Xn-Treg counterparts, HLA-DR+CD27+ DP-enriched Xn-Tregs expressed upregulated Treg function markers CD95 and ICOS with enhanced suppression of xenogeneic but not polyclonal mixed lymphocyte reaction. They also had less Treg-specific demethylation in the region of FOXP3 and were more resistant to conversion to effector cells under inflammatory conditions. Adoptive transfer of porcine islet recipient NOD/SCID IL2 receptor γ-/- mice with HLA-DR+CD27+ DP-enriched Xn-Tregs in a humanized mouse model inhibited porcine islet graft rejection mediated by 25-fold more human effector cells. The prolonged graft survival was associated with enhanced accumulation of FOXP3+ Tregs and upregulated expression of Treg functional genes, IL10 and cytotoxic T lymphocyte antigen 4, but downregulated expression of effector Th1, Th2, and Th17 cytokine genes, within surviving grafts. Collectively, human HLA-DR+CD27+ DP-enriched Xn-Tregs expressed a specific regulatory signature that enabled identification and isolation of antigen-specific and functionally stable Tregs with potential as a Treg-based therapy.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Cao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Martina Raneri
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Wang
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Qi Cao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Yuanfei Zhao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Naiara G. Bediaga
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Gaetano Naselli
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Leonard C. Harrison
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Wayne J. Hawthorne
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Min Hu
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Shounan Yi
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Philip J. O’Connell
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Mazzieri A, Basta G, Calafiore R, Luca G. GLP-1 RAs and SGLT2i: two antidiabetic agents associated with immune and inflammation modulatory properties through the common AMPK pathway. Front Immunol 2023; 14:1163288. [PMID: 38053992 PMCID: PMC10694219 DOI: 10.3389/fimmu.2023.1163288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Immune cells and other cells respond to nutrient deprivation by the classic catabolic pathway of AMPK (Adenosine monophosphate kinase). This kinase is a pivotal regulator of glucose and fatty acids metabolism, although current evidence highlights its role in immune regulation. Indeed AMPK, through activation of Foxo1 (Forkhead box O1) and Foxo3 (Forkhead box O3), can regulate FOXP3, the key gene for differentiation and homeostasis of Tregs (T regulators lymphocytes). The relevance of Tregs in the onset of T1D (Type 1 diabetes) is well-known, while their role in the pathogenesis of T2D (Type 2 diabetes) is not fully understood yet. However, several studies seem to indicate that Tregs may oppose the progression of diabetic complications by mitigating insulin resistance, atherosclerosis, and damage to target organs (as in kidney disease). Hence, AMPK and AMPK-activating agents may play a role in the regulation of the immune system. The connection between metformin and AMPK is historically known; however, this link and the possible related immune effects are less studied about SGLT2i (Sodium-glucose co-transport 2 inhibitors) and GLP1-RAs (Glucagon-like peptide-1 receptor agonists). Actual evidence shows that the negative caloric balance, induced by SGLT2i, can activate AMPK. Conversely and surprisingly, an anabolizing agent like GLP-1RAs can also upregulate this kinase through cAMP (Cyclic adenosine monophosphate) accumulation. Therefore, both these drugs can likely lead to the activation of the AMPK pathway and consequential proliferation of Tregs. These observations seem to confirm not only the metabolic but also the immunoregulatory effects of these new antidiabetic agents.
Collapse
Affiliation(s)
- Alessio Mazzieri
- Translational Medicine and Surgery, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Basta
- Division of Internal Medicine and Endocrine and Metabolic Sciences (MISEM), Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Riccardo Calafiore
- Diabetes Research Foundation, Confindustria Umbria, Perugia, Italy
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
| |
Collapse
|
6
|
Ash S, Askenasy N. Immunotherapy for neuroblastoma by hematopoietic cell transplantation and post-transplant immunomodulation. Crit Rev Oncol Hematol 2023; 185:103956. [PMID: 36893946 DOI: 10.1016/j.critrevonc.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2022] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Neuroblastoma represents a relatively common childhood tumor that imposes therapeutic difficulties. High risk neuroblastoma patients have poor prognosis, display limited response to radiochemotherapy and may be treated by hematopoietic cell transplantation. Allogeneic and haploidentical transplants have the distinct advantage of reinstitution of immune surveillance, reinforced by antigenic barriers. The key factors favorable to ignition of potent anti-tumor reactions are transition to adaptive immunity, recovery from lymphopenia and removal of inhibitory signals that inactivate immune cells at the local and systemic levels. Post-transplant immunomodulation may further foster anti-tumor reactivity, with positive but transient impact of infusions of lymphocytes and natural killer cells both from the donor, the recipient or third party. The most promising approaches include introduction of antigen-presenting cells in early post-transplant stages and neutralization of inhibitory signals. Further studies will likely shed light on the nature and actions of suppressor factors within tumor stroma and at the systemic level.
Collapse
Affiliation(s)
- Shifra Ash
- Department of Pediatric Hematology-Oncology, Rambam Medical Center, Haifa, Israel; Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| | - Nadir Askenasy
- Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
7
|
Li M, Luo L, Wu Y, Song Z, Ni B, Hao F, Luo N. Elevated apoptosis and abnormal apoptosis signaling of regulatory T cells in patients with systemic lupus erythematosus. Lupus 2022; 31:1441-1455. [PMID: 35950636 DOI: 10.1177/09612033221119455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In systemic lupus erythematosus (SLE), immune tolerance is influenced by defects in naturally occurring T cells (Tregs). To investigate the apoptosis rate of Tregs and their suppressive activity in patients with SLE and then to recognize the genes and signaling pathways that cause Treg apoptosis. FACS was used to assess the frequency and apoptosis rates of Tregs in 48 SLE patients and 28 normal controls (NCs). Coculture of Tregs with CD4+CD25-CD127dim/- T cells was used to assess the suppressive activity of Tregs. Microarray analysis was used to generate unstimulated Tregs gene expression profiles from very high activity patients with SLE and NCs. Real-time PCR was used to confirm differential gene expression. In patients with SLE, the frequency of Tregs was substantially reduced compared to Tregs from NCs. Furthermore, Tregs from SLE patients had an elevated rate of apoptosis and a lower suppressing ability than Tregs from NCs. Tregs apoptosis was negatively associated with the total count of Tregs and positively related to disease activity. Unstimulated Tregs gene expression profiles from patients with recent-onset SLE revealed a biological response that can cause apoptosis, partially triggered by stress, DNA damage, and cytokine stimulation. The discovery of pathway-specific expression signatures is a significant step forward in understanding how Tregs defects contribute to the pathogenesis of SLE. Our findings may contribute to the development of new strategies for treating SLE based on abnormal Tregs apoptosis and restoring immune homeostasis in patients with SLE.
Collapse
Affiliation(s)
- Mingfang Li
- Department of Dermatology, 117980The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Dermatology, Southwest Hospital, PLA, 12525Third Military Medical University, Chongqing, China
| | - Li Luo
- Department of Dermatology, Southwest Hospital, PLA, 12525Third Military Medical University, Chongqing, China
| | - Yi Wu
- Digital Medicine Institute, Biomedical Engineering College, PLA, 12525Third Military Medical University, Chongqing, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, PLA, 12525Third Military Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude MilitaryMedicine, PLA, 12525Third Military Medical University, Chongqing, China
| | - Fei Hao
- Department of Dermatology, Southwest Hospital, PLA, 12525Third Military Medical University, Chongqing, China
| | - Na Luo
- Department of Dermatology, Southwest Hospital, PLA, 12525Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
García-de-la-Fuente MR, Santacana M, Verdaguer J, Vilardell F, Garí E, Casanova JM. Characterisation of the inflammatory response triggered by topical ingenol mebutate 0.05% gel in basal cell carcinoma. Australas J Dermatol 2020; 61:e200-e207. [PMID: 31944277 DOI: 10.1111/ajd.13229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/04/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND/OBJECTIVE Ingenol mebutate gel is approved for actinic keratosis field therapy, but little has been published as a treatment of basal cell carcinoma (BCC). Our objective is to characterise the histopathological changes and the infiltrating cell populations to better understand its mechanism of action. METHODS Sixteen patients with various BCC subtypes were prospectively evaluated and treated once daily for two consecutive days with ingenol mebutate gel 0.05% under occlusion. Patients were randomised to two arms: the first arm was biopsied between the third and the tenth day after treatment initiation ('early immune response'), and the second arm was biopsied at day 30 after treatment initiation ('late immune response'). The immunopathology was evaluated by immunohistochemistry: anti-CD3, anti-CD4, anti-CD8, anti-CD20, anti-CD56, anti-CD68, anti-Bcl-2, anti-CASP3, anti-FoxP3, anti-GrzB and anti-TIA-1. RESULTS Ten BCCs were in complete remission after 2 years of follow-up. The early immune response was characterised by a quick recruitment of T lymphocytes, macrophages and natural killer cells. At later time-points, T-regulatory cells and some pro-apoptotic markers were detected. Treatment-related adverse events were described. CONCLUSION Ingenol mebutate gel produces a transient immuno-inflammatory response and an important necrosis reaction in BCCs. Larger studies will be required to determine the maximum effective tolerated dose of ingenol mebutate gel for BCC.
Collapse
Affiliation(s)
- Mª Reyes García-de-la-Fuente
- Department of Dermatology, University Hospital Arnau de Vilanova, Lleida, Spain.,Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Maria Santacana
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain.,Department of Pathology, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Joan Verdaguer
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain.,Immunology Unit, Department of Experimental Medicine, University of , Lleida, Spain
| | - Felip Vilardell
- Department of Pathology, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Eloi Garí
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain.,Department of Basic Medical Sciences, University of , Lleida, Spain
| | - Josep Manel Casanova
- Department of Dermatology, University Hospital Arnau de Vilanova, Lleida, Spain.,Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain.,Department of Medicine, University of Lleida, Lleida, Spain
| |
Collapse
|
9
|
Localized immune tolerance from FasL-functionalized PLG scaffolds. Biomaterials 2018; 192:271-281. [PMID: 30458362 DOI: 10.1016/j.biomaterials.2018.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022]
Abstract
Intraportal allogeneic islet transplantation has been demonstrated as a potential therapy for type 1 diabetes (T1D). The placement of islets into the liver and chronic immunosuppression to control rejection are two major limitations of islet transplantation. We hypothesize that localized immunomodulation with a novel form of FasL chimeric with streptavidin, SA-FasL, can provide protection and long-term function of islets at an extrahepatic site in the absence of chronic immunosuppression. Allogeneic islets modified with biotin and engineered to transiently display SA-FasL on their surface showed sustained survival following transplantation on microporous scaffolds into the peritoneal fat in combination with a short course (15 days) of rapamycin treatment. The challenges with modifying islets for clinical translation motivated the modification of scaffolds with SA-FasL as an off-the-shelf product. Poly (lactide-co-glycolide) (PLG) was conjugated with biotin and fabricated into particles and subsequently formed into microporous scaffolds to allow for rapid and efficient conjugation with SA-FasL. Biotinylated particles and scaffolds efficiently bound SA-FasL and induced apoptosis in cells expressing Fas receptor (FasR). Scaffolds functionalized with SA-FasL were subsequently seeded with allogeneic islets and transplanted into the peritoneal fat under the short-course of rapamycin treatment. Scaffolds modified with SA-FasL had robust engraftment of the transplanted islets that restored normoglycemia for 200 days. Transplantation without rapamycin or without SA-FasL did not support long-term survival and function. This work demonstrates that scaffolds functionalized with SA-FasL support allogeneic islet engraftment and long-term survival and function in an extrahepatic site in the absence of chronic immunosuppression with significant potential for clinical translation.
Collapse
|
10
|
Headen DM, Woodward KB, Coronel MM, Shrestha P, Weaver JD, Zhao H, Tan M, Hunckler MD, Bowen WS, Johnson CT, Shea L, Yolcu ES, García AJ, Shirwan H. Local immunomodulation Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. NATURE MATERIALS 2018; 17:732-739. [PMID: 29867165 PMCID: PMC6060019 DOI: 10.1038/s41563-018-0099-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/18/2018] [Indexed: 05/17/2023]
Abstract
Islet transplantation is a promising therapy for type 1 diabetes. However, chronic immunosuppression to control rejection of allogeneic islets induces morbidities and impairs islet function. T effector cells are responsible for islet allograft rejection and express Fas death receptors following activation, becoming sensitive to Fas-mediated apoptosis. Here, we report that localized immunomodulation using microgels presenting an apoptotic form of the Fas ligand with streptavidin (SA-FasL) results in prolonged survival of allogeneic islet grafts in diabetic mice. A short course of rapamycin treatment boosted the immunomodulatory efficacy of SA-FasL microgels, resulting in acceptance and function of allografts over 200 days. Survivors generated normal systemic responses to donor antigens, implying immune privilege of the graft, and had increased CD4+CD25+FoxP3+ T regulatory cells in the graft and draining lymph nodes. Deletion of T regulatory cells resulted in acute rejection of established islet allografts. This localized immunomodulatory biomaterial-enabled approach may provide an alternative to chronic immunosuppression for clinical islet transplantation.
Collapse
Affiliation(s)
- Devon M Headen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kyle B Woodward
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - María M Coronel
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Pradeep Shrestha
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Jessica D Weaver
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hong Zhao
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Min Tan
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Michael D Hunckler
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - William S Bowen
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Christopher T Johnson
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Lonnie Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Esma S Yolcu
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Haval Shirwan
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA.
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
11
|
Jayaratne HE, Wijeratne D, Fernando S, Kamaladasa A, Gomes L, Wijewickrama A, Ogg GS, Malavige GN. Regulatory T-cells in acute dengue viral infection. Immunology 2018; 154:89-97. [PMID: 29140541 PMCID: PMC5904698 DOI: 10.1111/imm.12863] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/04/2017] [Indexed: 12/25/2022] Open
Abstract
Although regulatory T-cells (Tregs ) have been shown to be expanded in acute dengue, their role in pathogenesis and their relationship to clinical disease severity and extent of viraemia have not been fully evaluated. The frequency of Tregs was assessed in 56 adult patients with acute dengue by determining the proportion of forkhead box protein 3 (FoxP3) expressing CD4+ CD25+ T-cells (FoxP3+ cells). Dengue virus (DENV) viral loads were measured by quantitative real-time polymerase chain reaction (PCR) and DENV-specific T-cell responses were measured by ex-vivo interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) assays to overlapping peptide pools of DENV-NS3, NS1 and NS5. CD45RA and CCR4 were used to phenotype different subsets of T-cells and their suppressive potential was assessed by their expression of cytotoxic T lymphocyte-antigen 4 (CTLA-4) and Fas. While the frequency of FoxP3+ cells in patients was significantly higher (P < 0·0001) when compared to healthy individuals, they did not show any relationship with clinical disease severity or the degree of viraemia. The frequency of FoxP3+ cells did not correlate with either ex-vivo IFN-γ DENV-NS3-, NS5- or NS1-specific T-cell responses. FoxP3+ cells of patients with acute dengue were predominantly CD45RA+ FoxP3low , followed by CD45RA-FoxP3low , with only a small proportion of FoxP3+ cells being of the highly suppressive effector Treg subtype. Expression of CCR4 was also low in the majority of T-cells, with only CCR4 only being expressed at high levels in the effector Treg population. Therefore, although FoxP3+ cells are expanded in acute dengue, they predominantly consist of naive Tregs , with poor suppressive capacity.
Collapse
Affiliation(s)
| | - Dulharie Wijeratne
- Centre for Dengue ResearchUniversity of Sri JayewardenepuraColomboSri Lanka
| | - Samitha Fernando
- Centre for Dengue ResearchUniversity of Sri JayewardenepuraColomboSri Lanka
| | - Achala Kamaladasa
- Centre for Dengue ResearchUniversity of Sri JayewardenepuraColomboSri Lanka
| | - Laksiri Gomes
- Centre for Dengue ResearchUniversity of Sri JayewardenepuraColomboSri Lanka
| | | | - Graham Stuart Ogg
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineOxfordUK
| | - Gathsaurie Neelika Malavige
- Centre for Dengue ResearchUniversity of Sri JayewardenepuraColomboSri Lanka
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineOxfordUK
| |
Collapse
|
12
|
Katz G, Voss K, Yan TF, Kim YC, Kortum RL, Scott DW, Snow AL. FOXP3 renders activated human regulatory T cells resistant to restimulation-induced cell death by suppressing SAP expression. Cell Immunol 2018; 327:54-61. [PMID: 29454648 DOI: 10.1016/j.cellimm.2018.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/15/2022]
Abstract
Restimulation-induced cell death (RICD) is an apoptotic program that regulates effector T cell expansion, triggered by repeated stimulation through the T cell receptor (TCR) in the presence of interleukin-2 (IL-2). Although CD4+ regulatory T cells (Tregs) consume IL-2 and experience frequent TCR stimulation, they are highly resistant to RICD. Resistance in Tregs is dependent on the forkhead box P3 (FOXP3) transcription factor, although the mechanism remains unclear. T cells from patients with X-linked lymphoproliferative disease (XLP-1), that lack the adaptor molecule SLAM-associated protein (SAP), are also resistant to RICD. Here we demonstrate that normal Tregs express very low levels of SAP compared to conventional T cells. FOXP3 reduces SAP expression by directly binding to and repressing the SH2D1A (SAP) promoter. Indeed, ectopic SAP expression restores RICD sensitivity in human FOXP3+ Tregs. Our findings illuminate the mechanism behind FOXP3-mediated RICD resistance in Tregs, providing new insight into their long-term persistence.
Collapse
Affiliation(s)
- Gil Katz
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kelsey Voss
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Toria F Yan
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Yong Chan Kim
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Robert L Kortum
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David W Scott
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
13
|
Yolcu ES, Shirwan H, Askenasy N. Fas/Fas-Ligand Interaction As a Mechanism of Immune Homeostasis and β-Cell Cytotoxicity: Enforcement Rather Than Neutralization for Treatment of Type 1 Diabetes. Front Immunol 2017; 8:342. [PMID: 28396667 PMCID: PMC5366321 DOI: 10.3389/fimmu.2017.00342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Esma S Yolcu
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville , Louisville, KY , USA
| | - Haval Shirwan
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville , Louisville, KY , USA
| | - Nadir Askenasy
- Frankel Laboratory of Experimental Bone Marrow Transplantation , Petach Tikva , Israel
| |
Collapse
|
14
|
Yolcu ES, Shirwan H, Askenasy N. Mechanisms of Tolerance Induction by Hematopoietic Chimerism: The Immune Perspective. Stem Cells Transl Med 2017; 6:700-712. [PMID: 28186688 PMCID: PMC5442770 DOI: 10.1002/sctm.16-0358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/02/2016] [Accepted: 10/10/2016] [Indexed: 01/05/2023] Open
Abstract
Hematopoietic chimerism is one of the effective approaches to induce tolerance to donor‐derived tissue and organ grafts without administration of life‐long immunosuppressive therapy. Although experimental efforts to develop such regimens have been ongoing for decades, substantial cumulative toxicity of combined hematopoietic and tissue transplants precludes wide clinical implementation. Tolerance is an active immunological process that includes both peripheral and central mechanisms of mutual education of coresident donor and host immune systems. The major stages include sequential suppression of early alloreactivity, establishment of hematopoietic chimerism and suppressor cells that sustain the state of tolerance, with significant mechanistic and temporal overlap along the tolerization process. Efforts to devise less toxic transplant strategies by reduction of preparatory conditioning focus on modulation rather than deletion of residual host immunity and early reinstitution of regulatory subsets at the central and peripheral levels. Stem Cells Translational Medicine2017;6:700–712
Collapse
Affiliation(s)
- Esma S Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Nadir Askenasy
- Frankel Laboratory of Experimental Bone Marrow Transplantation, Petach Tikva, Israel
| |
Collapse
|
15
|
Volpe E, Sambucci M, Battistini L, Borsellino G. Fas-Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis. Front Immunol 2016; 7:382. [PMID: 27729910 PMCID: PMC5037862 DOI: 10.3389/fimmu.2016.00382] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas–FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas–FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas–FasL in regulating Th17 and Treg cells’ functions, in the context of MS.
Collapse
|
16
|
Askenasy N. Mechanisms of autoimmunity in the non-obese diabetic mouse: effector/regulatory cell equilibrium during peak inflammation. Immunology 2016; 147:377-88. [PMID: 26749404 DOI: 10.1111/imm.12581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Immune imbalance in autoimmune disorders such as type 1 diabetes may originate from aberrant activities of effector cells or dysfunction of suppressor cells. All possible defective mechanisms have been proposed for diabetes-prone species: (i) quantitative dominance of diabetogenic cells and decreased numbers of regulatory T cells, (ii) excessive aggression of effectors and defective function of suppressors, (iii) perturbed interaction between effector and suppressor cells, and (iv) variations in sensitivity to negative regulation. The experimental evidence available to date presents conflicting information on these mechanisms, with identification of perturbed equilibrium on the one hand and negation of critical role of each mechanism in propagation of diabetic autoimmunity on the other hand. In our analysis, there is no evidence that inherent abnormalities in numbers and function of effector and suppressor T cells are responsible for the immune imbalance responsible for propagation of type 1 diabetes as a chronic inflammatory process. Possibly, the experimental tools for investigation of these features of immune activity are still underdeveloped and lack sufficient resolution, in the presence of the extensive biological viability and functional versatility of effector and suppressor elements.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, Petach Tikva, Israel
| |
Collapse
|
17
|
Nogueira JDS, Canto FBD, Nunes CFCG, Vianna PHO, Paiva LDS, Nóbrega A, Bellio M, Fucs R. Enhanced renewal of regulatory T cells in relation to CD4(+) conventional T lymphocytes in the peripheral compartment. Immunology 2015; 147:221-39. [PMID: 26572097 DOI: 10.1111/imm.12555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022] Open
Abstract
CD4(+) Foxp3(+) regulatory T (Treg) cells are necessary for the maintenance of self-tolerance and T-cell homeostasis. This population is kept at stable frequencies in secondary lymphoid organs for the majority of the lifetime, despite permanent thymic emigration or in the face of thymic involution. Continuous competition is expected to occur between recently thymus-emigrated and resident Treg cells (either natural or post-thymically induced). In the present work, we analysed the renewal dynamics of Treg cells compared with CD4(+) Foxp3- conventional T cells (Tconv), using protocols of single or successive T-cell transfers into syngeneic euthymic or lymphopenic (nu/nu or RAG2(-/-)) mice, respectively. Our results show a higher turnover for Treg cells in the peripheral compartment, compared with Tconv cells, when B cell-sufficient euthymic or nude hosts are studied. This increased renewal within the Treg pool, shown by the greater replacement of resident Treg cells by donor counterparts, correlates with augmented rates of proliferation and is not modified following temporary environmental perturbations induced by inflammatory state or microbiota alterations. Notably, the preferential substitution of Treg lymphocytes was not observed in RAG2(-/-) hosts. We showed that limited B-cell replenishment in the RAG2(-/-) hosts decisively contributed to the altered peripheral T-cell homeostasis. Accordingly, weekly transfers of B cells to RAG2(-/-) hosts rescued the preferential substitution of Treg lymphocytes. Our study discloses a new aspect of T-cell homeostasis that depends on the presence of B lymphocytes to regulate the relative incorporation of recently arrived Treg and Tconv cells in the peripheral compartment.
Collapse
Affiliation(s)
- Jeane de Souza Nogueira
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Barrozo do Canto
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Fraga Cabral Gomes Nunes
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Henrique Oliveira Vianna
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana de Souza Paiva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Alberto Nóbrega
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita Fucs
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Kakleas K, Soldatou A, Karachaliou F, Karavanaki K. Associated autoimmune diseases in children and adolescents with type 1 diabetes mellitus (T1DM). Autoimmun Rev 2015; 14:781-97. [PMID: 26001590 DOI: 10.1016/j.autrev.2015.05.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 12/16/2022]
|
19
|
Zhang Y, Liang S, Li X, Wang L, Zhang J, Xu J, Huo S, Cao X, Zhong Z, Zhong F. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation. Vaccine 2015; 33:3480-7. [PMID: 26055295 DOI: 10.1016/j.vaccine.2015.05.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/28/2015] [Accepted: 05/26/2015] [Indexed: 01/22/2023]
Abstract
Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation.
Collapse
Affiliation(s)
- Yonghong Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China
| | - Shuang Liang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Xiujin Li
- Department of Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Liyue Wang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China
| | - Jianlou Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China
| | - Jian Xu
- Department of Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shanshan Huo
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China
| | - Xuebin Cao
- Department of Cardiology, 252 Hospital of Chinese PLA, Baoding 071000, Hebei, China
| | - Zhenyu Zhong
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, San Diego, CA 92093, USA.
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China.
| |
Collapse
|
20
|
Askenasy N. Less Is More: The Detrimental Consequences of Immunosuppressive Therapy in the Treatment of Type-1 Diabetes. Int Rev Immunol 2015; 34:523-37. [DOI: 10.3109/08830185.2015.1010723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Lymphopenia is detrimental to therapeutic approaches to type 1 diabetes using regulatory T cells. Immunol Res 2014; 58:101-5. [PMID: 24371009 DOI: 10.1007/s12026-013-8476-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the therapeutic approaches to type 1 diabetes (T1D) focuses on enhancement of regulatory T cell (Treg) activity, either by adoptive transfer or supplementation of supporting cytokines such as interleukin-2 (IL-2). In principle, this therapeutic design would greatly benefit of concomitant reduction in pathogenic cell burden. Experimental evidence indicates that physiological recovery from lymphopenia is dominated by evolution of effector and cytotoxic cells, which abolishes the therapeutic efficacy of Treg cells. Targeted and selective depletion of effector T cells has been achieved with killer Treg using Fas ligand protein and a fusion protein composed of IL-2 and caspase-3, which showed remarkable efficacy in modulating the course of inflammatory insulitis in NOD mice. We emphasize a critical consideration in design of therapeutic approaches to T1D, immunomodulation without lymphoreduction to avoid the detrimental consequences of rebound recovery from lymphopenia.
Collapse
|
22
|
Kaminitz A, Mizrahi K, Ash S, Ben-Nun A, Askenasy N. Stable activity of diabetogenic cells with age in NOD mice: dynamics of reconstitution and adoptive diabetes transfer in immunocompromised mice. Immunology 2014; 142:465-73. [PMID: 24601987 DOI: 10.1111/imm.12277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/22/2014] [Accepted: 02/28/2014] [Indexed: 12/23/2022] Open
Abstract
The non-obese diabetic (NOD) mouse is a prevalent disease model of type 1 diabetes. Immune aberrations that cause and propagate autoimmune insulitis in these mice are being continually debated, with evidence supporting both dominance of effector cells and insufficiency of suppressor mechanisms. In this study we assessed the behaviour of NOD lymphocytes under extreme expansion conditions using adoptive transfer into immunocompromised NOD.SCID (severe combined immunodeficiency) mice. CD4(+) CD25(+) T cells do not cause islet inflammation, whereas splenocytes and CD4(+) CD25(-) T cells induce pancreatic inflammation and hyperglycaemia in 80-100% of the NOD.SCID recipients. Adoptively transferred effector T cells migrate to the lymphoid organs and pancreas, proliferate, are activated in the target organ in situ and initiate inflammatory insulitis. Reconstitution of all components of the CD4(+) subset emphasizes the plastic capacity of different cell types to adopt effector and suppressor phenotypes. Furthermore, similar immune profiles of diabetic and euglycaemic NOD.SCID recipients demonstrate dissociation between fractional expression of CD25 and FoxP3 and the severity of insulitis. There were no evident and consistent differences in diabetogenic activity and immune reconstituting activity of T cells from pre-diabetic (11 weeks) and new onset diabetic NOD females. Similarities in immune phenotypes and variable distribution of effector and suppressor subsets in various stages of inflammation commend caution in interpretation of quantitative and qualitative aberrations as markers of disease severity in adoptive transfer experiments.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- Frankel Laboratory, Centre for Stem Cell Research, Schneider Children's Medical Centre of Israel, Petach Tikva, Israel; Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
23
|
Wnętrzak A, Lipiec E, Łątka K, Kwiatek W, Dynarowicz-Łątka P. Affinity of alkylphosphocholines to biological membrane of prostate cancer: studies in natural and model systems. J Membr Biol 2014; 247:581-9. [PMID: 24848301 PMCID: PMC4052013 DOI: 10.1007/s00232-014-9674-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/06/2014] [Indexed: 11/28/2022]
Abstract
The effectiveness of two alkylphosphocholines (APCs), hexadecylphosphocholine (miltefosine) and erucylphosphocholine to combat prostate cancer has been studied in vitro with artificial cancerous membrane, modelled with the Langmuir monolayer technique, and on cell line (Du-145). Studies performed with the Langmuir method indicate that both the investigated drugs have the affinity to the monolayer mimicking prostate cancer membrane (composed of cholesterol:POPC = 0.428) and the drug-membrane interactions are stronger for erucylphosphocholine as compared to hexadecylphosphocholine. Moreover, both studied drugs were found to fluidize the model membrane, which may lead to apoptosis. Indeed, biological studies confirmed that in Du-145 cell line both investigated alkylphosphocholines cause cell death primarily by apoptosis while necrotic cells constitute only a small percentage of APC-treated cells.
Collapse
Affiliation(s)
- Anita Wnętrzak
- M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059, Kraków, Poland
| | | | | | | | | |
Collapse
|
24
|
Metenou S, Coulibaly YI, Sturdevant D, Dolo H, Diallo AA, Soumaoro L, Coulibaly ME, Kanakabandi K, Porcella SF, Klion AD, Nutman TB. Highly heterogeneous, activated, and short-lived regulatory T cells during chronic filarial infection. Eur J Immunol 2014; 44:2036-47. [PMID: 24737144 DOI: 10.1002/eji.201444452] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/21/2014] [Accepted: 04/10/2014] [Indexed: 12/14/2022]
Abstract
The mechanisms underlying the increase in the numbers of regulatory T (Treg) cells in chronic infection settings remain unclear. Here we have delineated the phenotype and transcriptional profiles of Treg cells from 18 filarial-infected (Fil(+) ) and 19 filarial-uninfected (Fil(-) ) subjects. We found that the frequencies of Foxp3(+) Treg cells expressing CTLA-4, GITR, LAG-3, and IL-10 were significantly higher in Fil(+) subjects compared with that in Fil(-) subjects. Foxp3-expressing Treg-cell populations in Fil(+) subjects were also more heterogeneous and had higher expression of IL-10, CCL-4, IL-29, CTLA-4, and TGF-β than Fil(-) subjects, each of these cytokines having been implicated in immune suppression. Moreover, Foxp3-expressing Treg cells from Fil(+) subjects had markedly upregulated expression of activation-induced apoptotic genes with concomitant downregulation of those involved in cell survival. To determine whether the expression of apoptotic genes was due to Treg-cell activation, we found that the expression of CTLA-4, CDk8, RAD50, TNFRSF1A, FOXO3, and RHOA were significantly upregulated in stimulated cells compared with unstimulated cells. Taken together, our results suggest that in patent filarial infection, the expanded Treg-cell populations are heterogeneous, short-lived, activated, and express higher levels of molecules known to modulate immune responsiveness, suggesting that filarial infection is associated with high Treg-cell turnover.
Collapse
Affiliation(s)
- Simon Metenou
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Weiss JM, Subleski JJ, Back T, Chen X, Watkins SK, Yagita H, Sayers TJ, Murphy WJ, Wiltrout RH. Regulatory T cells and myeloid-derived suppressor cells in the tumor microenvironment undergo Fas-dependent cell death during IL-2/αCD40 therapy. THE JOURNAL OF IMMUNOLOGY 2014; 192:5821-9. [PMID: 24808361 DOI: 10.4049/jimmunol.1400404] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fas ligand expression in certain tumors has been proposed to contribute to immunosuppression and poor prognosis. However, immunotherapeutic approaches may elicit the Fas-mediated elimination of immunosuppressive regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) within tumors that represent major obstacles for cancer immunotherapy. Previously, we showed that IL-2 and agonistic CD40 Ab (αCD40) elicited synergistic antitumor responses coincident with the efficient removal of Tregs and MDSCs. We demonstrate in this study in two murine tumor models that Treg and MDSC loss within the tumor microenvironment after IL-2/αCD40 occurs through a Fas-dependent cell death pathway. Among tumor-infiltrating leukocytes, CD8(+) T cells, neutrophils, and immature myeloid cells expressed Fas ligand after treatment. Fas was expressed by tumor-associated Tregs and immature myeloid cells, including MDSCs. Tregs and MDSCs in the tumor microenvironment expressed active caspases after IL-2/αCD40 therapy and, in contrast with effector T cells, Tregs significantly downregulated Bcl-2 expression. In contrast, Tregs and MDSCs proliferated and expanded in the spleen after treatment. Adoptive transfer of Fas-deficient Tregs or MDSCs into wild-type, Treg-, or MDSC-depleted hosts resulted in the persistence of Tregs or MDSCs and the loss of antitumor efficacy in response to IL-2/αCD40. These results demonstrate the importance of Fas-mediated Treg/MDSC removal for successful antitumor immunotherapy. Our results suggest that immunotherapeutic strategies that include exploiting Treg and MDSC susceptibility to Fas-mediated apoptosis hold promise for treatment of cancer.
Collapse
Affiliation(s)
- Jonathan M Weiss
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Jeff J Subleski
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Tim Back
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Xin Chen
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | | | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; and
| | - Thomas J Sayers
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - William J Murphy
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816
| | - Robert H Wiltrout
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702;
| |
Collapse
|
26
|
Li JL, Cai WS, Shen F, Feng Z, Zhu GH, Cao J, Xu B. Protease-activated receptor-2 modulates hepatic stellate cell collagen release and apoptotic status. Arch Biochem Biophys 2014; 545:162-6. [PMID: 24495782 DOI: 10.1016/j.abb.2014.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 01/01/2023]
Abstract
The pathogenesis of hepatic fibrosis is to be further investigated. Protease-activated receptor-2 (PAR2) plays a role in hepatic fibrosis. This study aims to elucidate the role of activation of PAR2 in the regulation of hepatic stellate cell activities. In this study, the expression of PAR2, Fas and caveolin-1 in human hepatic stellate cell line, HHStec cell (HHStecs) was assessed by real time RT-PCR and Western blot. The levels of collagen were determined by enzyme-linked immunosorbent assay. The PAR2 gene was silenced in HHStecs using RNA interference. Apoptosis of HHStecs was assessed by flow cytometry. The results showed that HHStecs expressed PAR2, which was up regulated by activation with phorbol myristate acetate (PMA). Activation of PAR2 increased the release of collagen from HHStecs. Exposure to PMA induced HHStec apoptosis, which was significantly inhibited by activation of PAR2. The PAR2 activation also suppressed the expression of caveolin-1 and Fas in HHStecs. Over expression of caveolin-1 in HHStecs blocked PAR2-reduced apoptosis. We conclude that HHStecs express PAR2. Activation of PAR2 increases HHStecs to release collagen and reduces the activation-induced HHStec apoptosis, which can be inhibited by the over expression of caveolin-1.
Collapse
Affiliation(s)
- Jiang-Lin Li
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wen-song Cai
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fei Shen
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhe Feng
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guang-Hui Zhu
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Cao
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bo Xu
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Kaminitz A, Mizrahi K, Askenasy N. Surge in regulatory T cells does not prevent onset of hyperglycemia in NOD mice: immune profiles do not correlate with disease severity. Autoimmunity 2013; 47:105-12. [PMID: 24328490 DOI: 10.3109/08916934.2013.866103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immune profiling of non-obese diabetic (NOD) is a widely employed tool to assess the mechanisms of inflammatory insulitis. Our analysis of the female NOD colony revealed similar distribution of lymphoid lineages to wild type mice, and at various ages of prediabetic and diabetic mice. The profiles of mesenteric and pancreatic lymph nodes differ and often change reciprocally due to directed migration of T cells towards the site of inflammation. Significant events in our colony include early decline in CD4(+)CD25(+)CD62L(+) Treg, accompanied by gradual increase in CD4(+)CD25(+)FoxP3(+) Treg in peripheral lymphoid organs and pancreatic infiltrates. Impressively, aged euglycemic mice display significant transient rise in CD4(+)CD25(-)FoxP3(+) Treg in the thymus, pancreas and draining lymph nodes. A significant difference was superior viability of effector and suppressor cells from new onset diabetics in the presence of high interleukin-2 (IL-2) concentrations in vitro as compared to cells of prediabetic mice. Overall, we found no correlation between FoxP3(+) Treg in the pancreatic lymph nodes and the inflammatory scores of individual NOD mice. CD25(-)FoxP3(+) Treg are markedly increased in the pancreatic infiltrates in late stages of inflammation, possibly an effort to counteract destructive insulitis. Considering extensive evidence that Treg in aged NOD mice are functionally sufficient, quantitative profiling evolves as an unreliable tool to assess mechanism and causes of inflammation under baseline conditions. Immune profiles are modulated by thymic output, cell migration, shedding of markers, proliferation, survival and in-situ evolution of regulatory cells.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- Frankel Laboratory, Center for Stem Cell Research, Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel , Petach Tikva , Israel
| | | | | |
Collapse
|
28
|
Lee MK, Xu S, Fitzpatrick EH, Sharma A, Graves HL, Czerniecki BJ. Inhibition of CD4+CD25+ regulatory T cell function and conversion into Th1-like effectors by a Toll-like receptor-activated dendritic cell vaccine. PLoS One 2013; 8:e74698. [PMID: 24244265 PMCID: PMC3823870 DOI: 10.1371/journal.pone.0074698] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/02/2013] [Indexed: 11/19/2022] Open
Abstract
Despite the success of vaccines against some microbial pathogens, their utility in the prevention and treatment of cancer has thus far been limited. We have previously demonstrated that vaccination with dendritic cells activated with the TLR-4 ligand LPS and IFN-γ promotes an antigen-specific anti-tumor response that prevents tumor recurrence. To evaluate this mechanistically, we here studied the effects of this TLR-activated DC on regulatory T cell activity. Dendritic cells activated with LPS and IFN- γ negated the effects of regulatory T cells on responder cell proliferation. Restoration of responder cell proliferation was noted when TLR-activated dendritic cells were separated from both regulators and responders by a semi-permeable membrane. The effect is therefore mediated by a soluble factor but was independent of both IL-6 and IL-12. Furthermore, the soluble mediator appeared to act at least in part on the regulators themselves rather than responder cells exclusively. Because recent studies have demonstrated conversion of T regulatory cells into IL-17-producing effectors, we further questioned whether the TLR-activated dendritic cell would induce cytokine production and effector function in our system. We found that regulators produced a substantial amount of IFN- γ in the presence of TLR-activated dendritic cells but not immature dendritic cells. IFN-γ production was associated with upregulation of the Th1 transcriptional regulator T-bet, and a significant fraction of IFN-γ-producing regulators coexpressed T-bet and FoxP3. While the effects of the LPS-activated dendritic cell on responder cell proliferation were IL-12 independent, upregulation of T-bet was inhibited by a neutralizing anti-IL-12 antibody. Collectively, these and prior data suggest that varying innate immune signals may direct the phenotype of the immune response in part by inhibiting suppressor T cells and promoting differentiation of these regulators into particular subsets of effectors.
Collapse
Affiliation(s)
- Major K. Lee
- Harrison Department of Surgical Research, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shuwen Xu
- Harrison Department of Surgical Research, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth H. Fitzpatrick
- Harrison Department of Surgical Research, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anupama Sharma
- Harrison Department of Surgical Research, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Holly L. Graves
- Harrison Department of Surgical Research, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian J. Czerniecki
- Harrison Department of Surgical Research, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Regulatory and effector T-cells are differentially modulated by Dexamethasone. Clin Immunol 2013; 149:400-10. [PMID: 24211714 DOI: 10.1016/j.clim.2013.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/13/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022]
Abstract
It is assumed that the ratio between effector T cells (Teff) and regulatory T cells (Tregs) controls the immune reactivity within the T-cell compartment. The purpose of this study was to investigate if Dexamethasone (Dex) affects Teff and Tregs subsets. Dex induced on Tregs a dose and time-dependent apoptosis which resulted in a relative increase of Teff. After TCR activation, Dex induced a strong proliferative inhibition of Teff, but a weaker proliferative inhibition on Tregs. These effects were modulated by IL-2, which not only restored the proliferative response, but also prevented Dex-induced apoptosis. The highest dose of IL-2 prevented apoptosis on all FOXP3+CD4+ T cells. Meanwhile, the lowest dose only rescued activated Tregs (aTregs), probably related to their CD25 higher expression. Because Dex did not affect the suppressor capacity of aTregs either, our results support the notion that under Dex treatment, the regulatory T-cell compartment maintains its homeostasis.
Collapse
|
30
|
Yolcu ES, Kaminitz A, Mizrahi K, Ash S, Yaniv I, Stein J, Shirwan H, Askenasy N. Immunomodulation with donor regulatory T cells armed with Fas-ligand alleviates graft-versus-host disease. Exp Hematol 2013; 41:903-11. [DOI: 10.1016/j.exphem.2013.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 03/22/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
|
31
|
Kato T, Tada-Oikawa S, Wang L, Murata M, Kuribayashi K. Endocrine disruptors found in food contaminants enhance allergic sensitization through an oxidative stress that promotes the development of allergic airway inflammation. Toxicol Appl Pharmacol 2013; 273:10-8. [PMID: 24035973 DOI: 10.1016/j.taap.2013.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/23/2013] [Accepted: 08/30/2013] [Indexed: 12/24/2022]
Abstract
In the past few decades, there has been a significant increase in incidence of allergic diseases. The hygiene hypothesis may provide some clues to explain this rising trend, but it may also be attributable to other environmental factors that exert a proallergic adjuvant effects. However, there is limited information on the risks of developing allergic asthma and related diseases through the ingestion of environmental chemicals found in food contaminants. In the present study, we have shown that oral administration of tributyltin, used as a model environmental chemical, induced oxidative-stress status in the bronchial lymph node, mesenteric lymph node and spleen, but not in the lung, where the initial step of allergic asthma pathogenesis takes place. Mice exposed to tributyltin exhibited heightened Th2 immunity to the allergen with more severe airway inflammation. Tributyltin also induced Treg cells apoptosis preferentially over non-Treg cells. All these effects of tributyltin exposure were canceled by the administration of glutathione monoethyl ester. Meanwhile, tributyltin did not affect airway inflammation of mice transferred with allergen-specific Th2 cells. Collectively, these results suggest that tributyltin exerts its pathological effect during the sensitization phase through oxidative stress that enhances the development of allergic diseases. The current study dissects the pathogenic role of oxidative stress induced by oral exposure to an environmental chemical during the sensitization phase of allergic airway inflammation and would be important for developing therapeutics for prevention of allergic diseases.
Collapse
Affiliation(s)
- Takuma Kato
- Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
32
|
Selective depletion of FOXP3(high) cells by Fas-Fas-L-induced apoptosis occurs in CD4(+)CD25(+)-enriched populations during repeated expansion. Cytotherapy 2013; 15:1286-96. [PMID: 23993302 DOI: 10.1016/j.jcyt.2013.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/20/2013] [Accepted: 05/28/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND AIMS Expansion of anti-CD25 bead-isolated human Tregs culture has paradoxically resulted in reduced suppressive activity, but the mechanism(s) responsible for these observations are poorly defined. METHODS Magnetic-bead isolated human CD25(+) cells were expanded with anti-CD3/CD28 beads and high doses of rhIL-2. Detection of Fas and Fas ligand (Fas-L) expression, activation of Caspase 8, cell proliferation and cytokine production was evaluated by multi-color fluorescence-activated cell sorting analysis. The role of Fas-Fas-L-mediated cell death was dissected through the use of agonist or antagonist monoclonal antibodies directed at Fas and Fas-L. RESULTS Repeated expansion of bead-enriched CD4(+)CD25(+) cells generated a cellular product with markedly reduced suppressive activity and with significantly increased CD8(+) T cells and CD4(+) T cells producing interferon-γ and/or interleukin-2. We showed that Fas-Fas-L-mediated apoptosis of CD4(+)FOXP3(high) cells and rapid cell-cycling of CD8(+) T cells were collectively responsible for the reduced proportion of CD4(+)FOXP3(high) cells in expanded cultures. The depletion of CD4(+)FOXP3(high) cells and activation of Caspase 8 in CD4(+)FOXP3(high) cells was attenuated by Fas antagonist antibody, ZB4, in short-term culture. However, the loss of CD4(+)FOXP3(high) cells during expansion was not prevented by either Fas or Fas-L antagonist antibodies. CONCLUSIONS Taken together, the data show that Fas-Fas-L-mediated apoptosis may limit the expansion of anti-CD25 bead-isolated cells in vitro.
Collapse
|
33
|
Kaminitz A, Askenasy N, Yolcu ES. Immunomodulation with regulatory T cells and Fas-ligand ameliorate established inflammatory colitis. Gut 2013; 62:1228-30. [PMID: 23436337 DOI: 10.1136/gutjnl-2012-304432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
miRNA signature of mouse helper T cell hyper-proliferation. PLoS One 2013; 8:e66709. [PMID: 23825558 PMCID: PMC3692518 DOI: 10.1371/journal.pone.0066709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/09/2013] [Indexed: 11/29/2022] Open
Abstract
Helper T cells from a mutant mouse model, LAT Y136F, hyper-proliferate and cause a severe lymphoproliferative disease that kills the mice by six months of age. LAT Y136F mice carry a tyrosine to phenylalanine mutation in the Linker for Activation of T cells (LAT) gene. This mutation leads to a number of changes in T cells that result in altered cytokine production including increased IL-4 production, increased proliferation, and decreased apoptosis. Hyper-proliferation of the mutant T cells contributes to lymphadenopathy, splenomegaly, and multi-organ T cell infiltration. miRNAs are short non-coding RNAs that regulate expression of cohorts of genes. This study investigates which miRNAs are expressed in LAT Y136F T cells and compares these to miRNAs expressed in wild type T cells that are undergoing proliferation in two other settings. The first setting is homeostatic proliferation, which was modeled by adoptive transfer of wild type T cells into T cell-deficient mice. The second setting is proliferation in response to infection, which was modeled by infection of wild type mice with the nematode H. polygyrus. By comparing miRNA expression in these three proliferative states (LAT Y136F hyper-proliferation, homeostatic proliferation and proliferation in response to H. polygyrus infection) to expression in wild type naïve CD4+ T cells, we found miRNAs that were highly regulated in all three proliferative states (miR-21 and miR-146a) and some that were more specific to individual settings of proliferation such as those more specific for LAT Y136F lymphoproliferative disease (miR-669f, miR-155 and miR-466a/b). Future experiments that modulate levels of the miRNAs identified in this study may reveal the roles of these miRNAs in T cell proliferation and/or lymphoproliferative disease.
Collapse
|
35
|
Enhanced killing activity of regulatory T cells ameliorates inflammation and autoimmunity. Autoimmun Rev 2013; 12:972-5. [PMID: 23684702 DOI: 10.1016/j.autrev.2013.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/03/2013] [Indexed: 12/25/2022]
Abstract
Regulatory T cells (Treg) are pivotal suppressor elements in immune homeostasis with potential therapeutic applications in inflammatory and autoimmune disorders. Using Treg as vehicles for targeted immunomodulation, a short-lived Fas-ligand (FasL) chimeric protein (killer Treg) was found efficient in preventing the progression of autoimmune insulitis in NOD mice, and amelioration of chronic colitis and graft versus host disease. The main mechanisms of disease suppression by killer Treg are: a) in the acute phase induction of apoptosis in effector cells at the site of inflammation decreases the pathogenic burden, and b) persistent increase in FoxP3⁺ Treg with variable CD25 co-expression induced by FasL sustains disease suppression over extended periods of time. Reduced sensitivity of Treg to receptor-mediated apoptosis under inflammatory conditions makes them optimal vehicles for targeted immunotherapy using apoptotic agents.
Collapse
|
36
|
Kaminitz A, Yolcu ES, Mizrahi K, Shirwan H, Askenasy N. Killer Treg cells ameliorate inflammatory insulitis in non-obese diabetic mice through local and systemic immunomodulation. Int Immunol 2013; 25:485-94. [DOI: 10.1093/intimm/dxt016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
37
|
Daniel V, Sadeghi M, Wang H, Opelz G. CD4+ CD25+ Foxp3+ IFNγ+ CD178+ human induced Treg (iTreg) contribute to suppression of alloresponses by apoptosis of responder cells. Hum Immunol 2013; 74:151-62. [PMID: 23017670 DOI: 10.1016/j.humimm.2012.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 08/17/2012] [Accepted: 09/10/2012] [Indexed: 12/18/2022]
Abstract
Induced Treg with the phenotype CD4(+)CD25(+)Foxp3(+)IFNγ(+) were shown to be associated with good long-term graft outcome in renal transplant recipients and inhibition of allogeneic T-cell responses in vitro. In the present study, we investigated whether apoptosis and Fas/FasL-dependent pathways contribute to the inhibition of T-cell activation. Early apoptosis and necrosis rates as well as co-expression of immunostimulatory and immunosuppressive proteins in/on CD4(+)CD25(+)Foxp3(+), CD4(+)IFNγ(+)Foxp3(+) and CD4(+)CD25(+)IFNγ(+) PBL were analyzed using cells from healthy controls and four-color flow cytometry, PMA/Ionomycin-stimulated PBL, and MLC. Sixteen hours PMA/Ionomycin stimulation induced iTreg subsets with the phenotype CD4(+)CD25(+)Foxp3(+), CD4(+)IFNγ(+)Foxp3(+) and CD4(+)CD25(+)IFNγ(+) co-expressing CD95, CD152, CD178, CD279, Granzyme A, Granzyme B, Perforin, IL-10, and TGFβ(1). CD178(+) iTreg increased within 3h after PMA/Ionomycin stimulation in parallel to early apoptotic Annexin(+)/PI(-) PBL, suggesting CD178-mediated apoptosis of responder cells by CD4(+)CD25(+)Foxp3(+)IFNγ(+)CD178(+) iTreg. CD4(+)CD25(+)IFNγ(+) and CD4(+)CD25(+)CD178(+) PBL separated from primary cell cultures and added to autologous PMA/Ionomycin stimulated secondary cell cultures induced apoptosis immediately. Early apoptosis was not antigen-specific as shown in secondary MLC with separated CD4(+)CD25(+)IFNγ(+) and CD4(+)CD25(+)CD178(+) PBL and third-party cells as stimulator. CD4(+)CD25(+)Foxp3(+)IFNγ(+)CD178(+) iTreg differentiate after cell stimulation and induce antigen-unspecific apoptosis of activated CD95(+) responder/effector cells in vitro that might contribute to iTreg-mediated inhibition of T-cell activation.
Collapse
Affiliation(s)
- Volker Daniel
- Department of Transplantation-Immunology, Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
38
|
Zhang Y, Eliav Y, Shin SU, Schreiber TH, Podack ER, Tadmor T, Rosenblatt JD. B lymphocyte inhibition of anti-tumor response depends on expansion of Treg but is independent of B-cell IL-10 secretion. Cancer Immunol Immunother 2013; 62:87-99. [PMID: 22772949 PMCID: PMC11029618 DOI: 10.1007/s00262-012-1313-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/20/2012] [Indexed: 01/09/2023]
Abstract
The mechanisms by which B lymphocytes inhibit anti-tumor immunity remain poorly understood. Murine EMT-6 mammary tumors grow readily in immune competent mice (BALB/c), but poorly in B-cell-deficient μ(-/-) BALB/c mice (BCDM). T regulatory cell (Treg) expansion and function were impaired in BCDM compared with BALB/c. In this study, we compared tumor growth, Treg cell proliferation, tumor lymphocyte infiltration and cytolytic T cell activity in BALB/c, BCDM and BCDM partially reconstituted with B cells by adoptive transfer (BCDM+B). Partial reconstitution of BCDM with adoptively transferred B cells restored EMT-6 tumor growth, which was independent of IL-10 secretion by B cells. Instead, high frequencies of intratumoral B cells were associated with increased recruitment and proliferation of Treg cells within the tumor microenvironment. The B-cell-dependent accumulation of Treg within the tumor microenvironment was associated with reduced tumor infiltration by CD49+ NK and CD8+ T cells and reduced cytotoxic T cell activity against EMT-6 targets. Our studies indicate that tumor-dependent immunosuppression of T-cell-mediated anti-tumor immunity is coordinated within the tumor microenvironment by B-cell-dependent cross talk with Treg cells, which does not require production of IL-10 by B cells.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hematology/Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Is autoimmune diabetes caused by aberrant immune activity or defective suppression of physiological self-reactivity? Autoimmun Rev 2012; 12:633-7. [PMID: 23277162 DOI: 10.1016/j.autrev.2012.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/04/2012] [Indexed: 01/15/2023]
Abstract
Two competing hypotheses are proposed to cause autoimmunity: evasion of a sporadic self-reactive clone from immune surveillance and ineffective suppression of autoreactive clones that arise physiologically. We question the relevance of these hypotheses to the study of type 1 diabetes, where autoreactivity may accompany the cycles of physiological adjustment of β-cell mass to body weight and nutrition. Experimental evidence presents variable and conflicting data concerning the activities of both effector and regulatory T cells, arguing in favor and against: quantitative dominance and deficit, aberrant reactivity and expansion, sensitivity to negative regulation and apoptosis. The presence of autoantibodies in umbilical cord blood of healthy subjects and low incidence of the disease following early induction suggest that suppression of self-reactivity is the major determinant factor.
Collapse
|
40
|
Treg cell resistance to apoptosis in DNA vaccination for experimental autoimmune encephalomyelitis treatment. PLoS One 2012; 7:e49994. [PMID: 23166807 PMCID: PMC3498204 DOI: 10.1371/journal.pone.0049994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/15/2012] [Indexed: 12/29/2022] Open
Abstract
Background Regulatory T (Treg) cells can be induced with DNA vaccinations and protect mice from the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Tacrolimus (FK506) has been shown to have functions on inducing immunosuppression and augmenting apoptosis of pathologic T cells in autoimmune disease. Here we examined the therapeutic effect of DNA vaccine in conjunction with FK506 on EAE. Methodology/Principal Findings After EAE induction, C57BL/6 mice were treated with DNA vaccine in conjunction with FK506. Functional Treg cells were induced in treated EAE mice and suppressed Th1 and Th17 cell responses. Infiltrated CD4 T cells were reduced while Treg cells were induced in spinal cords of treated EAE mice. Remarkably, the activated CD4 T cells augmented apoptosis, but the induced Treg cells resisted apoptosis in treated EAE mice, resulting in alleviation of clinical EAE severity. Conclusions/Significance DNA vaccine in conjunction with FK506 treatment ameliorates EAE by enhancing apoptosis of CD4 T cells and resisting apoptosis of induced Treg cells. Our findings implicate the potential of tolerogenic DNA vaccines for treating MS.
Collapse
|
41
|
DR(high+)CD45RA(-)-Tregs potentially affect the suppressive activity of the total Treg pool in renal transplant patients. PLoS One 2012; 7:e34208. [PMID: 22470536 PMCID: PMC3314602 DOI: 10.1371/journal.pone.0034208] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 02/28/2012] [Indexed: 02/04/2023] Open
Abstract
Recent studies show that regulatory T cells (Tregs) play an essential role in tolerance induction after organ transplantation. In order to examine whether there are differences in the composition of the total CD4+CD127low+/−FoxP3+- Treg cell pool between stable transplant patients and patients with biopsy proven rejection (BPR), we compared the percentages and the functional activity of the different Treg cell subsets (DRhigh+CD45RA−-Tregs, DRlow+CD45RA−-Tregs, DR−CD45RA−-Tregs, DR−CD45RA+-Tregs). All parameters were determined during the three different periods of time after transplantation (0–30 days, 31–1,000 days, >1,000 days). Among 156 transplant patients, 37 patients suffered from BPR. The most prominent differences between rejecting and non-rejecting patients were observed regarding the DRhigh+CD45RA−-Treg cell subset. Our data demonstrate that the suppressive activity of the total Treg pool strongly depends on the presence of these Treg cells. Their percentage within the total Treg pool strongly decreased after transplantation and remained relatively low during the first year after transplantation in all patients. Subsequently, the proportion of this Treg subset increased again in patients who accepted the transplant and reached a value of healthy non-transplanted subjects. By contrast, in patients with acute kidney rejection, the DRhigh+CD45RA−-Treg subset disappeared excessively, causing a reduction in the suppressive activity of the total Treg pool. Therefore, both the monitoring of its percentage within the total Treg pool and the monitoring of the HLA-DR MFI of the DR+CD45RA−-Treg subset may be useful tools for the prediction of graft rejection.
Collapse
|
42
|
Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID. Blood 2011; 119:1428-39. [PMID: 22184407 DOI: 10.1182/blood-2011-07-366781] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.
Collapse
|
43
|
Yolcu ES, Zhao H, Bandura-Morgan L, Lacelle C, Woodward KB, Askenasy N, Shirwan H. Pancreatic islets engineered with SA-FasL protein establish robust localized tolerance by inducing regulatory T cells in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:5901-9. [PMID: 22068235 PMCID: PMC3232043 DOI: 10.4049/jimmunol.1003266] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allogeneic islet transplantation is an important therapeutic approach for the treatment of type 1 diabetes. Clinical application of this approach, however, is severely curtailed by allograft rejection primarily initiated by pathogenic effector T cells regardless of chronic use of immunosuppression. Given the role of Fas-mediated signaling in regulating effector T cell responses, we tested if pancreatic islets can be engineered ex vivo to display on their surface an apoptotic form of Fas ligand protein chimeric with streptavidin (SA-FasL) and whether such engineered islets induce tolerance in allogeneic hosts. Islets were modified with biotin following efficient engineering with SA-FasL protein that persisted on the surface of islets for >1 wk in vitro. SA-FasL-engineered islet grafts established euglycemia in chemically diabetic syngeneic mice indefinitely, demonstrating functionality and lack of acute toxicity. Most importantly, the transplantation of SA-FasL-engineered BALB/c islet grafts in conjunction with a short course of rapamycin treatment resulted in robust localized tolerance in 100% of C57BL/6 recipients. Tolerance was initiated and maintained by CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells, as their depletion early during tolerance induction or late after established tolerance resulted in prompt graft rejection. Furthermore, Treg cells sorted from graft-draining lymph nodes, but not spleen, of long-term graft recipients prevented the rejection of unmodified allogeneic islets in an adoptive transfer model, further confirming the Treg role in established tolerance. Engineering islets ex vivo in a rapid and efficient manner to display on their surface immunomodulatory proteins represents a novel, safe, and clinically applicable approach with important implications for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Esma S Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Hong Zhao
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Laura Bandura-Morgan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Chantale Lacelle
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Kyle B Woodward
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Nadir Askenasy
- Frankel Laboratory of Experimental Bone Marrow Transplantation, Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Israel
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| |
Collapse
|
44
|
Legorreta-Herrera M, Rivas-Contreras S, Ventura-Gallegos J, Zentella-Dehesa A. Nitric oxide is involved in the upregulation of IFN-γ and IL-10 mRNA expression by CD8⁺ T cells during the blood stages of P. chabaudi AS infection in CBA/Ca mice. Int J Biol Sci 2011; 7:1401-11. [PMID: 22110391 PMCID: PMC3221947 DOI: 10.7150/ijbs.7.1401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 01/17/2023] Open
Abstract
Nitric oxide (NO) is involved in the clearance of several types of bacteria, viruses and parasites. Although the roles of NO and CD8+ T cells in the immune response to malaria have been extensively studied, their actual contributions during the blood stages of malaria infection remain unclear. In this work, we corroborate that serum NO levels are not associated with the in vivo elimination of the blood stages of Plasmodium chabaudi AS. In addition, we show that CD8+ T cells exhibit increased apoptosis and up regulate the expression of TNF-α mRNA on day 4 post-infection and IFN-γ and IL-10 mRNA on day 11 post-infection. Interestingly, only the levels of IFN-γ and IL-10 expression are affected when iNOS is inhibited with aminoguanidine (AG), suggesting that NO could be involved in the activation of CD8+ T cells during the blood stages of plasmodium infection.
Collapse
Affiliation(s)
- M Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo Esq. Fuerte de Loreto, Iztapalapa 09230, México, D.F. México.
| | | | | | | |
Collapse
|
45
|
Kaminitz A, Yolcu ES, Stein J, Yaniv I, Shirwan H, Askenasy N. Killer Treg restore immune homeostasis and suppress autoimmune diabetes in prediabetic NOD mice. J Autoimmun 2011; 37:39-47. [DOI: 10.1016/j.jaut.2011.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 01/13/2023]
|
46
|
Kaminitz A, Yolcu ES, Askenasy EM, Stein J, Yaniv I, Shirwan H, Askenasy N. Effector and naturally occurring regulatory T cells display no abnormalities in activation induced cell death in NOD mice. PLoS One 2011; 6:e21630. [PMID: 21738739 PMCID: PMC3124542 DOI: 10.1371/journal.pone.0021630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/03/2011] [Indexed: 12/23/2022] Open
Abstract
Background Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff) and regulatory T cells (Treg) to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. Principal Findings Both effector (CD25−, FoxP3−) and suppressor (CD25+, FoxP3+) CD4+ T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP tranegenes. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL) in both strains. The effector and suppressor CD4+ subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4+CD25− T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice. Conclusion These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | | | | | |
Collapse
|
47
|
Fathi M, Amirghofran Z, Shahriari M. Soluble Fas and Fas ligand and prognosis in children with acute lymphoblastic leukemia. Med Oncol 2011; 29:2046-52. [PMID: 21528407 DOI: 10.1007/s12032-011-9965-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 04/18/2011] [Indexed: 01/17/2023]
Abstract
The soluble forms of Fas and its ligand (sFas and sFasL) correlate with disease progression in various malignancies. We compared serum levels of sFas and sFasL in children with acute lymphoblastic leukemia and healthy children to determine the prognostic significance of these molecules. Serum levels of sFas and sFasL were measured with an enzyme-linked immunosorbent assay in 48 patients with newly diagnosed childhood acute lymphoblastic leukemia and 38 healthy children. Cut-off values of sFas and sFasL levels were based on their levels in controls. Clinical and laboratory characteristics were recorded on admission. The mean serum concentration of sFas was 243 ± 40 pg/mL in patients and 238 ± 29 pg/mL in controls. Serum levels of sFasL were 4.33 ± 0.25 ng/mL in patients and 4.27 ± 0.11 ng/mL in controls. Neither difference was significant. Based on the cut-off value, 12.5% of the patients were positive for sFas, and 16.6% were positive for sFasL. Survival was significantly longer in sFasL-positive patients (394 ± 69.6 vs. 254 ± 24.3 days) and the duration of complete remission was also longer (380 ± 65.0 vs. 246 ± 26.0 days) than in sFasL-negative patients (P < 0.02), indicating the important role of this molecule in the response to therapy. Higher sFas levels were associated with hepatosplenomegaly (P < 0.047). In conclusion, sFasL positivity was associated with a favorable outcome in ALL patients.
Collapse
Affiliation(s)
- Mina Fathi
- Department of Immunology, Shiraz Medical School, Medicinal and Natural Products Chemistry Research Center and Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, 71345-1798 Shiraz, Iran.
| | | | | |
Collapse
|
48
|
Abstract
Every liver transplant (LT) center has had patients who either self-discontinue immunosuppressive (IS) therapy or are deliberately withdrawn due to a research protocol or clinical concern (ie, lymphoproliferative disorder [LPD], overwhelming infection). This is understandable because maintenance IS therapy, particularly calcineurin inhibitors (CNI), is associated with significant cost, side effects, and considerable long-term morbidity and mortality. Detrimental effects of IS therapy include increased risk of cardiovascular disease, metabolic syndrome, bone loss, opportunistic and community-acquired infections, and malignancy. In fact, LT recipients have among the highest rates of chronic kidney disease and associated mortality among all nonkidney solid organ recipients. This mortality is only ameliorated by undergoing a curative kidney transplant, usurping costs and valuable organ resources. The search for improved treatment algorithms includes trial and error CNI dose minimization, the use of alternative IS agents (antimetabolites, mammalian target of rapamycin [mTOR] inhibitors), or even complete CNI withdrawal. Yet those who are successful in achieving such operational tolerance (no immunosuppression and normal allograft function) are considered lucky. The vast majority of recipients will fail this approach, develop acute rejection or immune-mediated hepatitis, and require resumption of IS therapy. As such, withdrawal of IS following LT is not standard-of-care, leaving clinicians to currently maintain transplant patients on IS therapy for life. Nonetheless, the long-term complications of all IS therapies highlight the need for strategies to promote immunologic or operational tolerance. Clinically applicable biomarker assays signifying the potential for tolerance as well as tolerogenic IS conditioning are invariably needed if systematic, controlled rather than "hit or miss" approaches to withdrawal are considered. This review will provide an overview of the basic mechanisms of tolerance, particularly in relation to LT, data from previous IS withdrawal protocols and biomarker studies in tolerant recipients, and a discussion on the prospect of increasing the clinical feasibility and success of withdrawal.
Collapse
Affiliation(s)
- Josh Levitsky
- Division of Hepatology and Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
49
|
Kaminitz A, Askenasy EM, Yaniv I, Stein J, Askenasy N. Apoptosis of purified CD4+ T cell subsets is dominated by cytokine deprivation and absence of other cells in new onset diabetic NOD mice. PLoS One 2010; 5:e15684. [PMID: 21209873 PMCID: PMC3013115 DOI: 10.1371/journal.pone.0015684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/22/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Regulatory T cells (Treg) play a significant role in immune homeostasis and self-tolerance. Excessive sensitivity of isolated Treg to apoptosis has been demonstrated in NOD mice and humans suffering of type 1 diabetes, suggesting a possible role in the immune dysfunction that underlies autoimmune insulitis. In this study the sensitivity to apoptosis was measured in T cells from new onset diabetic NOD females, comparing purified subsets to mixed cultures. PRINCIPAL FINDINGS Apoptotic cells are short lived in vivo and death occurs primarily during isolation, manipulation and culture. Excessive susceptibility of CD25(+) T cells to spontaneous apoptosis is characteristic of isolated subsets, however disappears when death is measured in mixed splenocyte cultures. In variance, CD25(-) T cells display balanced sensitivity to apoptosis under both conditions. The isolation procedure removes soluble factors, IL-2 playing a significant role in sustaining Treg viability. In addition, pro- and anti-apoptotic signals are transduced by cell-to-cell interactions: CD3 and CD28 protect CD25(+) T cells from apoptosis, and in parallel sensitize naïve effector cells to apoptosis. Treg viability is modulated both by other T cells and other subsets within mixed splenocyte cultures. Variations in sensitivity to apoptosis are often hindered by fast proliferation of viable cells, therefore cycling rates are mandatory to adequate interpretation of cell death assays. CONCLUSIONS The sensitivity of purified Treg to apoptosis is dominated by cytokine deprivation and absence of cell-to-cell interactions, and deviate significantly from measurements in mixed populations. Balanced sensitivity of naïve/effector and regulatory T cells to apoptosis in NOD mice argues against the concept that differential susceptibility affects disease evolution and progression.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Enosh M. Askenasy
- Soroka Medical School, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Isaac Yaniv
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Jerry Stein
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Bone Marrow Transplant Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Nadir Askenasy
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- * E-mail:
| |
Collapse
|
50
|
Kisielewicz A, Schaier M, Schmitt E, Hug F, Haensch GM, Meuer S, Zeier M, Sohn C, Steinborn A. A distinct subset of HLA-DR+-regulatory T cells is involved in the induction of preterm labor during pregnancy and in the induction of organ rejection after transplantation. Clin Immunol 2010; 137:209-20. [DOI: 10.1016/j.clim.2010.07.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/28/2010] [Accepted: 07/24/2010] [Indexed: 11/25/2022]
|