1
|
Yigit M, Basoglu OF, Unutmaz D. Mucosal-associated invariant T cells in cancer: dual roles, complex interactions and therapeutic potential. Front Immunol 2024; 15:1369236. [PMID: 38545100 PMCID: PMC10965779 DOI: 10.3389/fimmu.2024.1369236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 04/17/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells play diverse roles in cancer, infectious diseases, and immunotherapy. This review explores their intricate involvement in cancer, from early detection to their dual functions in promoting inflammation and mediating anti-tumor responses. Within the solid tumor microenvironment (TME), MAIT cells can acquire an 'exhausted' state and secrete tumor-promoting cytokines. On the other hand, MAIT cells are highly cytotoxic, and there is evidence that they may have an anti-tumor immune response. The frequency of MAIT cells and their subsets has also been shown to have prognostic value in several cancer types. Recent innovative approaches, such as programming MAIT cells with chimeric antigen receptors (CARs), provide a novel and exciting approach to utilizing these cells in cell-based cancer immunotherapy. Because MAIT cells have a restricted T cell receptor (TCR) and recognize a common antigen, this also mitigates potential graft-versus-host disease (GVHD) and opens the possibility of using allogeneic MAIT cells as off-the-shelf cell therapies in cancer. Additionally, we outline the interactions of MAIT cells with the microbiome and their critical role in infectious diseases and how this may impact the tumor responses of these cells. Understanding these complex roles can lead to novel therapeutic strategies harnessing the targeting capabilities of MAIT cells.
Collapse
Affiliation(s)
- Mesut Yigit
- Human Immunology Laboratory, Acibadem University School of Medicine, Istanbul, Türkiye
| | - Omer Faruk Basoglu
- Human Immunology Laboratory, Acibadem University School of Medicine, Istanbul, Türkiye
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| |
Collapse
|
2
|
Corbett AJ, Ussher JE, Hinks TSC. Editorial: MAIT cells come of age. Front Immunol 2023; 14:1281881. [PMID: 37744347 PMCID: PMC10513092 DOI: 10.3389/fimmu.2023.1281881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Affiliation(s)
- Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - James E. Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
3
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate-like T lymphocytes, strikingly enriched at mucosal surfaces and characterized by a semi-invariant αβ T cell receptor (TCR) recognizing microbial derived intermediates of riboflavin synthesis presented by the MHC-Ib molecule MR1. At barrier sites MAIT cells occupy a prime position for interaction with commensal microorganisms, comprising the microbiota. The microbiota is a rich source of riboflavin derived antigens required in early life to promote intra-thymic MAIT cell development and sustain a life-long population of tissue resident cells. A symbiotic relationship is thought to be maintained in health whereby microbes promote maturation and homeostasis, and in turn MAIT cells can engage a TCR-dependent "tissue repair" program in the presence of commensal organisms conducive to sustaining barrier function and integrity of the microbial community. MAIT cell activation can be induced in a MR1-TCR dependent manner or through MR1-TCR independent mechanisms via pro-inflammatory cytokines interleukin (IL)-12/-15/-18 and type I interferon. MAIT cells provide immunity against bacterial, fungal and viral pathogens. However, MAIT cells may have deleterious effects through insufficient or exacerbated effector activity and have been implicated in autoimmune, inflammatory and allergic conditions in which microbial dysbiosis is a shared feature. In this review we summarize the current knowledge on the role of the microbiota in the development and maintenance of circulating and tissue resident MAIT cells. We also explore how microbial dysbiosis, alongside changes in intestinal permeability and imbalance between pro- and anti-inflammatory components of the immune response are together involved in the potential pathogenicity of MAIT cells. Whilst there have been significant improvements in our understanding of how the microbiota shapes MAIT cell function, human data are relatively lacking, and it remains unknown if MAIT cells can conversely influence the composition of the microbiota. We speculate whether, in a human population, differences in microbiomes might account for the heterogeneity observed in MAIT cell frequency across mucosal sites or between individuals, and response to therapies targeting T cells. Moreover, we speculate whether manipulation of the microbiota, or harnessing MAIT cell ligands within the gut or disease-specific sites could offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Maisha F. Jabeen
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
4
|
Harnessing the Power of Mucosal-Associated Invariant T (MAIT) Cells in Cancer Cell Therapy. Biomedicines 2022; 10:biomedicines10123160. [PMID: 36551916 PMCID: PMC9775134 DOI: 10.3390/biomedicines10123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells, a burgeoning type of the innate-like T cells, play a crucial role in maintaining immune homeostasis, particularly in host defense. Although many studies have implied the use of MAIT cells in tumor immunity, whether MAIT cells are pro-tumor or anti-tumor has remained elusive, as in the case for other innate-like T cells that possess dichotomous roles in tumor immunity. Although this difficulty persists where endogenous MAIT cells are the target for therapeutic intervention, the advent of induced pluripotent stem-cell-derived MAIT cells (reMAIT cells) will make it possible to harness these cells for immune cell therapy. In this review, we will discuss possible roles of MAIT cells in tumor immunity and the potential of reMAIT cells to treat tumors.
Collapse
|
5
|
Han F, Gulam MY, Zheng Y, Zulhaimi NS, Sia WR, He D, Ho A, Hadadi L, Liu Z, Qin P, Lobie PE, Kamarulzaman A, Wang LF, Sandberg JK, Lewin SR, Rajasuriar R, Leeansyah E. IL7RA single nucleotide polymorphisms are associated with the size and function of the MAIT cell population in treated HIV-1 infection. Front Immunol 2022; 13:985385. [PMID: 36341446 PMCID: PMC9632172 DOI: 10.3389/fimmu.2022.985385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
MAIT cells are persistently depleted and functionally exhausted in HIV-1-infected patients despite long-term combination antiretroviral therapy (cART). IL-7 treatment supports MAIT cell reconstitution in vivo HIV-1-infected individuals and rescues their functionality in vitro. Single-nucleotide polymorphisms (SNPs) of the IL-7RA gene modulate the levels of soluble(s)IL-7Rα (sCD127) levels and influence bioavailability of circulating IL-7. Here we evaluate the potential influence of IL-7RA polymorphisms on MAIT cell numbers and function in healthy control (HC) subjects and HIV-1-infected individuals on long-term cART. Our findings indicate that IL-7RA haplotype 2 (H2*T), defined as T-allele carriers at the tagging SNP rs6897932, affects the size of the peripheral blood MAIT cell pool, as well as their production of cytokines and cytolytic effector proteins in response to bacterial stimulation. H2*T carriers had lower sIL-7Rα levels and higher MAIT cell frequency with enhanced functionality linked to higher expression of MAIT cell-associated transcription factors. Despite an average of 7 years on suppressive cART, MAIT cell levels and function in HIV-1-infected individuals were still significantly lower than those of HC. Notably, we observed a significant correlation between MAIT cell levels and cART duration only in HIV-1-infected individuals carrying IL-7RA haplotype 2. Interestingly, treatment with sIL-7Rα in vitro suppressed IL-7-dependent MAIT cell proliferation and function following cognate stimulations. These observations suggest that sIL-7Rα levels may influence MAIT cell numbers and function in vivo by limiting IL-7 bioavailability to MAIT cells. Collectively, these observations suggest that IL-7RA polymorphisms may play a significant role in MAIT cell biology and influence MAIT cells recovery in HIV-1 infection. The potential links between IL7RA polymorphisms, MAIT cell immunobiology, and HIV-1 infection warrant further studies going forward.
Collapse
Affiliation(s)
- Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Muhammad Yaaseen Gulam
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Nurul Syuhada Zulhaimi
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Dan He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Leila Hadadi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Zhenyu Liu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Peter E. Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sharon R. Lewin
- Peter Doherty Institute for Infection and Immunity, Melbourne University, Victoria, Australia
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Peter Doherty Institute for Infection and Immunity, Melbourne University, Victoria, Australia
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Edwin Leeansyah,
| |
Collapse
|
6
|
Immunoprofiling reveals cell subsets associated with the trajectory of cytomegalovirus reactivation post stem cell transplantation. Nat Commun 2022; 13:2603. [PMID: 35546552 PMCID: PMC9095831 DOI: 10.1038/s41467-022-29943-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/15/2022] [Indexed: 11/11/2022] Open
Abstract
Human cytomegalovirus reactivation is a major opportunistic infection after allogeneic haematopoietic stem cell transplantation and has a complex relationship with post-transplant immune reconstitution. Here, we use mass cytometry to define patterns of innate and adaptive immune cell reconstitution at key phases of human cytomegalovirus reactivation in the first 100 days post haematopoietic stem cell transplantation. Human cytomegalovirus reactivation is associated with the development of activated, memory T-cell profiles, with faster effector-memory CD4+ T-cell recovery in patients with low-level versus high-level human cytomegalovirus DNAemia. Mucosal-associated invariant T cell levels at the initial detection of human cytomegalovirus DNAemia are significantly lower in patients who subsequently develop high-level versus low-level human cytomegalovirus reactivation. Our data describe distinct immune signatures that emerged with human cytomegalovirus reactivation after haematopoietic stem cell transplantation, and highlight Mucosal-associated invariant T cell levels at the first detection of reactivation as a marker that may be useful to anticipate the magnitude of human cytomegalovirus DNAemia. Human cytomegalovirus is a major cause of morbidity and mortality in transplant patients and multiple immune cells types are critical during infection and reactivation. Here the authors assess the immune cell compartments of haematopoietic stem cell recipients in the early period post transplantation and identify key features of effector memory CD4+ T cells and mucosal associated invariant T cells in this context.
Collapse
|
7
|
Li Y, Du J, Wei W. Emerging Roles of Mucosal-Associated Invariant T Cells in Rheumatology. Front Immunol 2022; 13:819992. [PMID: 35317168 PMCID: PMC8934402 DOI: 10.3389/fimmu.2022.819992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset expressing a semi-invariant TCR and recognize microbial riboflavin metabolites presented by major histocompatibility complex class 1-related molecule (MR1). MAIT cells serve as innate-like T cells bridging innate and adaptive immunity, which have attracted increasing attention in recent years. The involvement of MAIT cells has been described in various infections, autoimmune diseases and malignancies. In this review, we first briefly introduce the biology of MAIT cells, and then summarize their roles in rheumatic diseases including systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren’s syndrome, psoriatic arthritis, systemic sclerosis, vasculitis and dermatomyositis. An increased knowledge of MAIT cells will inform the development of novel biomarkers and therapeutic approaches in rheumatology.
Collapse
|
8
|
Su B, Kong D, Yang X, Zhang T, Kuang YQ. Mucosal-associated invariant T cells: a cryptic coordinator in HIV-infected immune reconstitution. J Med Virol 2022; 94:3043-3053. [PMID: 35243649 DOI: 10.1002/jmv.27696] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection causes considerable morbidity and mortality worldwide. Although antiretroviral therapy (ART) has largely transformed HIV infection from a fatal disease to a chronic condition, approximately 10%~40% of HIV-infected individuals who receive effective ART and sustain long-term viral suppression still cannot achieve optimal immune reconstitution. These patients are called immunological non-responders, a state associated with poor clinical prognosis. Mucosal-associated invariant T (MAIT) cells are an evolutionarily conserved unconventional T cell subset defined by expression of semi-invariant αβ T cell receptor (TCR), which recognizes metabolites derived from the riboflavin biosynthetic pathway presented on major histocompatibility complex (MHC)-related protein-1 (MR1). MAIT cells, which are considered to act as a bridge between innate and adaptive immunity, produce a wide range of cytokines and cytotoxic molecules upon activation through TCR-dependent and TCR-independent mechanisms, which is of major importance in defense against a variety of pathogens. In addition, MAIT cells are involved in autoimmune and immune-mediated diseases. The number of MAIT cells is dramatically and irreversibly decreased in the early stage of HIV infection and is not fully restored even after long-term suppressive ART. In light of the important role of MAIT cells in mucosal immunity and because microbial translocation is inversely associated with CD4+ T cell counts, we propose that MAIT cells participate in the maintenance of intestinal barrier integrity and microbial homeostasis, thus further affecting immune reconstitution in HIV-infected individuals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Deshenyue Kong
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
9
|
Phetsouphanh C, Phalora P, Hackstein CP, Thornhill J, Munier CML, Meyerowitz J, Murray L, VanVuuren C, Goedhals D, Drexhage L, Russell RA, Sattentau QJ, Mak JYW, Fairlie DP, Fidler S, Kelleher AD, Frater J, Klenerman P. Human MAIT cells respond to and suppress HIV-1. eLife 2021; 10:e50324. [PMID: 34951583 PMCID: PMC8752121 DOI: 10.7554/elife.50324] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human MAIT cells sit at the interface between innate and adaptive immunity, are polyfunctional and are capable of killing pathogen infected cells via recognition of the Class IB molecule MR1. MAIT cells have recently been shown to possess an antiviral protective role in vivo and we therefore sought to explore this in relation to HIV-1 infection. There was marked activation of MAIT cells in vivo in HIV-1-infected individuals, which decreased following ART. Stimulation of THP1 monocytes with R5 tropic HIVBAL potently activated MAIT cells in vitro. This activation was dependent on IL-12 and IL-18 but was independent of the TCR. Upon activation, MAIT cells were able to upregulate granzyme B, IFNγ and HIV-1 restriction factors CCL3, 4, and 5. Restriction factors produced by MAIT cells inhibited HIV-1 infection of primary PBMCs and immortalized target cells in vitro. These data reveal MAIT cells to be an additional T cell population responding to HIV-1, with a potentially important role in controlling viral replication at mucosal sites.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- Peter Medawar Building for Pathogen Research, University of OxfordOxfordUnited Kingdom
- The Kirby Institute, University of New South WalesSydneyAustralia
| | - Prabhjeet Phalora
- Peter Medawar Building for Pathogen Research, University of OxfordOxfordUnited Kingdom
| | | | | | | | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, University of OxfordOxfordUnited Kingdom
| | - Lyle Murray
- Peter Medawar Building for Pathogen Research, University of OxfordOxfordUnited Kingdom
| | | | - Dominique Goedhals
- Division of Virology, University of the Free State/National Health Laboratory ServiceFree StateSouth Africa
| | - Linnea Drexhage
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Rebecca A Russell
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Quentin J Sattentau
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Jeffrey YW Mak
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - David P Fairlie
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | | | | | - John Frater
- Peter Medawar Building for Pathogen Research, University of OxfordOxfordUnited Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
10
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
11
|
Coker MO, Cairo C, Garzino-Demo A. HIV-Associated Interactions Between Oral Microbiota and Mucosal Immune Cells: Knowledge Gaps and Future Directions. Front Immunol 2021; 12:676669. [PMID: 34616391 PMCID: PMC8488204 DOI: 10.3389/fimmu.2021.676669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/06/2021] [Indexed: 02/02/2023] Open
Abstract
Even with sustained use of antiretroviral therapy (ART), HIV-infected individuals have an increased risk of systemic comorbid conditions and oral pathologies, including opportunistic infections, oral mucosal inflammation, and gingival and periodontal diseases. The immune-mediated mechanisms that drive this increased risk, in the context of sustained viral suppression, are unclear. HIV infection, even when controlled, alters microbial communities contributing to a chronic low-grade inflammatory state that underlies these non-HIV co-morbidities. The higher prevalence of dental caries, and mucosal and periodontal inflammation reported in HIV-infected individuals on ART is often associated with differentially abundant oral microbial communities, possibly leading to a heightened susceptibility to inflammation. This mini-review highlights current gaps in knowledge regarding the microbe-mediated oral mucosal immunity with HIV infection while discussing opportunities for future research investigations and implementation of novel approaches to elucidate these gaps. Interventions targeting both inflammation and microbial diversity are needed to mitigate oral inflammation-related comorbidities, particularly in HIV-infected individuals. More broadly, additional research is needed to bolster general models of microbiome-mediated chronic immune activation and aid the development of precise microbiota-targeted interventions to reverse or mitigate adverse outcomes.
Collapse
Affiliation(s)
- Modupe O Coker
- Department of Oral Biology, School of Dental Medicine at Rutgers, Newark, NJ, United States.,Department of Epidemiology, School of Public Health at Rutgers, Newark, NJ, United States
| | - Cristiana Cairo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Alfredo Garzino-Demo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Czaja AJ. Incorporating mucosal-associated invariant T cells into the pathogenesis of chronic liver disease. World J Gastroenterol 2021; 27:3705-3733. [PMID: 34321839 PMCID: PMC8291028 DOI: 10.3748/wjg.v27.i25.3705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells have been described in liver and non-liver diseases, and they have been ascribed antimicrobial, immune regulatory, protective, and pathogenic roles. The goals of this review are to describe their biological properties, indicate their involvement in chronic liver disease, and encourage investigations that clarify their actions and therapeutic implications. English abstracts were identified in PubMed by multiple search terms, and bibliographies were developed. MAIT cells are activated by restricted non-peptides of limited diversity and by multiple inflammatory cytokines. Diverse pro-inflammatory, anti-inflammatory, and immune regulatory cytokines are released; infected cells are eliminated; and memory cells emerge. Circulating MAIT cells are hyper-activated, immune exhausted, dysfunctional, and depleted in chronic liver disease. This phenotype lacks disease-specificity, and it does not predict the biological effects. MAIT cells have presumed protective actions in chronic viral hepatitis, alcoholic hepatitis, non-alcoholic fatty liver disease, primary sclerosing cholangitis, and decompensated cirrhosis. They have pathogenic and pro-fibrotic actions in autoimmune hepatitis and mixed actions in primary biliary cholangitis. Local factors in the hepatic microenvironment (cytokines, bile acids, gut-derived bacterial antigens, and metabolic by-products) may modulate their response in individual diseases. Investigational manipulations of function are warranted to establish an association with disease severity and outcome. In conclusion, MAIT cells constitute a disease-nonspecific, immune response to chronic liver inflammation and infection. Their pathological role has been deduced from their deficiencies during active liver disease, and future investigations must clarify this role, link it to outcome, and explore therapeutic interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
13
|
Moriarty RV, Ellis AL, O’Connor SL. Monkeying around with MAIT Cells: Studying the Role of MAIT Cells in SIV and Mtb Co-Infection. Viruses 2021; 13:863. [PMID: 34066765 PMCID: PMC8151491 DOI: 10.3390/v13050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
There were an estimated 10 million new cases of tuberculosis (TB) disease in 2019. While over 90% of individuals successfully control Mycobacterium tuberculosis (Mtb) infection, which causes TB disease, HIV co-infection often leads to active TB disease. Despite the co-endemic nature of HIV and TB, knowledge of the immune mechanisms contributing to the loss of control of Mtb replication during HIV infection is lacking. Mucosal-associated invariant T (MAIT) cells are innate-like T cells that target and destroy bacterially-infected cells and may contribute to the control of Mtb infection. Studies examining MAIT cells in human Mtb infection are commonly performed using peripheral blood samples. However, because Mtb infection occurs primarily in lung tissue and lung-associated lymph nodes, these studies may not be fully translatable to the tissues. Additionally, studies longitudinally examining MAIT cell dynamics during HIV/Mtb co-infection are rare, and lung and lymph node tissue samples from HIV+ patients are typically unavailable. Nonhuman primates (NHP) provide a model system to characterize MAIT cell activity during Mtb infection, both in Simian Immunodeficiency Virus (SIV)-infected and SIV-naïve animals. Using NHPs allows for a more comprehensive understanding of tissue-based MAIT cell dynamics during infection with both pathogens. NHP SIV and Mtb infection is similar to human HIV and Mtb infection, and MAIT cells are phenotypically similar in humans and NHPs. Here, we discuss current knowledge surrounding MAIT cells in SIV and Mtb infection, how SIV infection impairs MAIT cell function during Mtb co-infection, and knowledge gaps to address.
Collapse
Affiliation(s)
| | | | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (R.V.M.); (A.L.E.)
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The recognition that IL-17 is produced by many lymphoid-like cells other than CD4+ T helper (Th17) cells raises the potential for new pathogenic pathways in IBD/psoriasis/SpA. We review recent knowledge concerning the role of unconventional and conventional lymphocytes expressing IL-17 in human PsA and axSpA. RECENT FINDINGS Innate-like lymphoid cells, namely gamma delta (γδ) T-cells, invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells, together with innate lymphoid cells (ILCs) are found at sites of disease in PsA/SpA. These cells are often skewed to Type-17 profiles and may significantly contribute to IL-17 production. Non-IL-23 dependent IL-17 production pathways, utilising cytokines such as IL-7 and IL-9, also characterise these cells. Both conventional CD4 and CD8 lymphocytes show pathogenic phenotypes at sites of disease. A variety of innate-like lymphoid cells and conventional lymphocytes contribute towards IL-17-mediated pathology in PsA/SpA. The responses of these cells to non-conventional immune and non-immune stimuli may explain characteristic clinical features of these diseases and potential therapeutic mechanisms of therapies such as Jak inhibitors.
Collapse
|
15
|
McSharry BP, Samer C, McWilliam HEG, Ashley CL, Yee MB, Steain M, Liu L, Fairlie DP, Kinchington PR, McCluskey J, Abendroth A, Villadangos JA, Rossjohn J, Slobedman B. Virus-Mediated Suppression of the Antigen Presentation Molecule MR1. Cell Rep 2021; 30:2948-2962.e4. [PMID: 32130899 PMCID: PMC7798347 DOI: 10.1016/j.celrep.2020.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/18/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
The antigen-presenting molecule MR1 presents microbial metabolites related to vitamin B2 biosynthesis to mucosal-associated invariant T cells (MAIT cells). Although bacteria and fungi drive the MR1 biosynthesis pathway, viruses have not previously been implicated in MR1 expression or its antigen presentation. We demonstrate that several herpesviruses inhibit MR1 cell surface upregulation, including a potent inhibition by herpes simplex virus type 1 (HSV-1). This virus profoundly suppresses MR1 cell surface expression and targets the molecule for proteasomal degradation, whereas ligand-induced cell surface expression of MR1 prior to infection enables MR1 to escape HSV-1-dependent targeting. HSV-1 downregulation of MR1 is dependent on de novo viral gene expression, and we identify the Us3 viral gene product as functioning to target MR1. Furthermore, HSV-1 downregulation of MR1 disrupts MAIT T cell receptor (TCR) activation. Accordingly, virus-mediated targeting of MR1 defines an immunomodulatory strategy that functionally disrupts the MR1-MAIT TCR axis.
Collapse
Affiliation(s)
- Brian P McSharry
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia; School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Carolyn Samer
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Caroline L Ashley
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Michael B Yee
- Departments of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Megan Steain
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Ligong Liu
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - David P Fairlie
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul R Kinchington
- Departments of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Wales, UK
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Balfour A, Schutz C, Goliath R, Wilkinson KA, Sayed S, Sossen B, Kanyik JP, Ward A, Ndzhukule R, Gela A, Lewinsohn DM, Lewinsohn DA, Meintjes G, Shey M. Functional and Activation Profiles of Mucosal-Associated Invariant T Cells in Patients With Tuberculosis and HIV in a High Endemic Setting. Front Immunol 2021; 12:648216. [PMID: 33828558 PMCID: PMC8019701 DOI: 10.3389/fimmu.2021.648216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: MAIT cells are non-classically restricted T lymphocytes that recognize and rapidly respond to microbial metabolites or cytokines and have the capacity to kill bacteria-infected cells. Circulating MAIT cell numbers generally decrease in patients with active TB and HIV infection, but findings regarding functional changes differ. Methods: We conducted a cross-sectional study on the effect of HIV, TB, and HIV-associated TB (HIV-TB) on MAIT cell frequencies, activation and functional profile in a high TB endemic setting in South Africa. Blood was collected from (i) healthy controls (HC, n = 26), 24 of whom had LTBI, (ii) individuals with active TB (aTB, n = 36), (iii) individuals with HIV infection (HIV, n = 50), 37 of whom had LTBI, and (iv) individuals with HIV-associated TB (HIV-TB, n = 26). All TB participants were newly diagnosed and sampled before treatment, additional samples were also collected from 18 participants in the aTB group after 10 weeks of TB treatment. Peripheral blood mononuclear cells (PBMC) stimulated with BCG-expressing GFP (BCG-GFP) and heat-killed (HK) Mycobacterium tuberculosis (M.tb) were analyzed using flow cytometry. MAIT cells were defined as CD3+ CD161+ Vα7.2+ T cells. Results: Circulating MAIT cell frequencies were depleted in individuals with HIV infection (p = 0.009). MAIT cells showed reduced CD107a expression in aTB (p = 0.006), and reduced IFNγ expression in aTB (p < 0.001) and in HIV-TB (p < 0.001) in response to BCG-GFP stimulation. This functional impairment was coupled with a significant increase in activation (defined by HLA-DR expression) in resting MAIT cells from HIV (p < 0.001), aTB (p = 0.019), and HIV-TB (p = 0.005) patients, and higher HLA-DR expression in MAIT cells expressing IFNγ in aTB (p = 0.009) and HIV-TB (p = 0.002) after stimulation with BCG-GFP and HK-M.tb. After 10 weeks of TB treatment, there was reversion in the observed functional impairment in total MAIT cells, with increases in CD107a (p = 0.020) and IFNγ (p = 0.010) expression. Conclusions: Frequencies and functional profile of MAIT cells in response to mycobacterial stimulation are significantly decreased in HIV infected persons, active TB and HIV-associated TB, with a concomitant increase in MAIT cell activation. These alterations may reduce the capacity of MAIT cells to play a protective role in the immune response to these two pathogens.
Collapse
Affiliation(s)
- Avuyonke Balfour
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Charlotte Schutz
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Rene Goliath
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,The Francis Crick Institute, London, United Kingdom
| | - Sumaya Sayed
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Bianca Sossen
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Kanyik
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Amy Ward
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Rhandzu Ndzhukule
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Anele Gela
- South African Tuberculosis Vaccine Initiative, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - David M Lewinsohn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Deborah A Lewinsohn
- Division of Infectious Diseases, Department of Paediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Graeme Meintjes
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Muki Shey
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Maleki KT, Tauriainen J, García M, Kerkman PF, Christ W, Dias J, Wigren Byström J, Leeansyah E, Forsell MN, Ljunggren HG, Ahlm C, Björkström NK, Sandberg JK, Klingström J. MAIT cell activation is associated with disease severity markers in acute hantavirus infection. CELL REPORTS MEDICINE 2021; 2:100220. [PMID: 33763658 PMCID: PMC7974553 DOI: 10.1016/j.xcrm.2021.100220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Hantaviruses are zoonotic RNA viruses that cause severe acute disease in humans. Infected individuals have strong inflammatory responses that likely cause immunopathology. Here, we studied the response of mucosal-associated invariant T (MAIT) cells in peripheral blood of individuals with hemorrhagic fever with renal syndrome (HFRS) caused by Puumala orthohantavirus, a hantavirus endemic in Europe. We show that MAIT cell levels decrease in the blood during HFRS and that residual MAIT cells are highly activated. This activation correlates with HFRS severity markers. In vitro activation of MAIT cells by hantavirus-exposed antigen-presenting cells is dependent on type I interferons (IFNs) and independent of interleukin-18 (IL-18). These findings highlight the role of type I IFNs in virus-driven MAIT cell activation and suggest a potential role of MAIT cells in the disease pathogenesis of viral infections. MAIT cells are activated in individuals with hemorrhagic fever with renal syndrome (HFRS) MAIT cell activation correlates with HFRS severity markers during hantavirus infection MAIT cell blood levels decline during acute HFRS Hantavirus-mediated MAIT cell activation is type I IFN dependent
Collapse
Affiliation(s)
- Kimia T Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Tauriainen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marina García
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Priscilla F Kerkman
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Wigren Byström
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.,Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Mattias N Forsell
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Augmentation of the Riboflavin-Biosynthetic Pathway Enhances Mucosa-Associated Invariant T (MAIT) Cell Activation and Diminishes Mycobacterium tuberculosis Virulence. mBio 2021; 13:e0386521. [PMID: 35164552 PMCID: PMC8844931 DOI: 10.1128/mbio.03865-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells play a critical role in antimicrobial defense. Despite increased understanding of their mycobacterial ligands and the clinical association of MAIT cells with tuberculosis (TB), their function in protection against Mycobacterium tuberculosis infection remains unclear. Here, we show that overexpressing key genes of the riboflavin-biosynthetic pathway potentiates MAIT cell activation and results in attenuation of M. tuberculosis virulence in vivo. Further, we observed greater control of M. tuberculosis infection in MAIThi CAST/EiJ mice than in MAITlo C57BL/6J mice, highlighting the protective role of MAIT cells against TB. We also endogenously adjuvanted Mycobacterium bovis BCG with MR1 ligands via overexpression of the lumazine synthase gene ribH and evaluated its protective efficacy in the mouse model of M. tuberculosis infection. Altogether, our findings demonstrate that MAIT cells confer host protection against TB and that overexpression of genes in the riboflavin-biosynthetic pathway attenuates M. tuberculosis virulence. Enhancing MAIT cell-mediated immunity may also offer a novel approach toward improved vaccines against TB. IMPORTANCE Mucosa-associated invariant T (MAIT) cells are an important subset of innate lymphocytes that recognize microbial ligands derived from the riboflavin biosynthesis pathway and mediate antimicrobial immune responses. Modulated MAIT cell responses have been noted in different forms of tuberculosis. However, it has been unclear if increased MAIT cell abundance is protective against TB disease. In this study, we show that augmentation of the mycobacterial MAIT cell ligands leads to higher MAIT cell activation with reduced M. tuberculosis virulence and that elevated MAIT cell abundance confers greater control of M. tuberculosis infection. Our study also highlights the potential of endogenously adjuvanting the traditional BCG vaccine with MR1 ligands to augment MAIT cell activation. This study increases current knowledge on the roles of the riboflavin-biosynthetic pathway and MAIT cell activation in M. tuberculosis virulence and host immunity against TB.
Collapse
|
19
|
Pavlovic M, Gross C, Chili C, Secher T, Treiner E. MAIT Cells Display a Specific Response to Type 1 IFN Underlying the Adjuvant Effect of TLR7/8 Ligands. Front Immunol 2020; 11:2097. [PMID: 33013883 PMCID: PMC7509539 DOI: 10.3389/fimmu.2020.02097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells constitute a highly conserved subset of effector T cells with innate-like recognition of a wide array of bacteria and fungi in humans. Harnessing the potential of these cells could represent a major advance as a new immunotherapy approach to fight difficult-to-treat bacterial infections. However, despite recent advances in the design of potent agonistic ligands for MAIT cells, it has become increasingly evident that adjuvants are required to elicit potent antimicrobial effector functions by these cells, such as IFNγ production and cytotoxicity. Indeed, TCR triggering alone elicits mostly barrier repair functions in MAIT cells, whereas an inflammatory milieu is required to drive the antibacterial functions. Cytokines such as IL-7, IL-12 and IL-18, IL-15 or more recently type 1 IFN all display an apparently similar ability to synergize with TCR stimulation to induce IFNγ production and/or cytotoxic functions in vitro, but their mechanisms of action are not well established. Herein, we show that MAIT cells feature a build-in mechanism to respond to IFNα. We confirm that IFNα acts directly and specifically on MAIT cells and synergizes with TCR/CD3 triggering to induce maximum cytokine production and cytotoxic functions. We provide evidences suggesting that the preferential activation of the Stat4 pathway is involved in the high sensitivity of MAIT cells to IFNα stimulation. Finally, gene expression data confirm the specific responsiveness of MAIT cells to IFNα and pinpoints specific pathways that could be the target of this cytokine. Altogether, these data highlight the potential of IFNα-inducing adjuvants to maximize MAIT cells responsiveness to purified ligands in order to induce potent anti-infectious responses.
Collapse
Affiliation(s)
- Marion Pavlovic
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Christelle Gross
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Chahinaize Chili
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Thomas Secher
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Emmanuel Treiner
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France.,Paul Sabatier University Toulouse III, Toulouse, France.,Laboratory of Immunology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
20
|
Barber-Axthelm IM, Kent SJ, Juno JA. Understanding the Role of Mucosal-Associated Invariant T-Cells in Non-human Primate Models of HIV Infection. Front Immunol 2020; 11:2038. [PMID: 33013862 PMCID: PMC7461791 DOI: 10.3389/fimmu.2020.02038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic HIV infection causes systemic immune activation and dysregulation, resulting in the impairment of most T-cell subsets including MAIT cells. Multiple human cohort studies demonstrate MAIT cells are selectively depleted in the peripheral blood and lymphoid tissues during HIV infection, with incomplete restoration during suppressive antiretroviral therapy. Because MAIT cells play an important role in mucosal defense against a wide array of pathogens, fully reconstituting the MAIT cell compartment in ART-treated populations could improve immunity against co-infections. Non-human primates (NHPs) are a valuable, well-described animal model for HIV infection in humans. NHPs also maintain MAIT cell frequencies more comparable to humans, compared to other common animal models, and provide a unique opportunity to study MAIT cells in the circulation and mucosal tissues in a longitudinal manner. Only recently, however, have NHP MAIT cells been thoroughly characterized using macaque-specific MR1 tetramer reagents. Here we review the similarities and differences between MAIT cells in humans and NHPs as well as the impact of SIV/SHIV infection on MAIT cells and the potential implications for future research.
Collapse
Affiliation(s)
- Isaac M Barber-Axthelm
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Melbourne Sexual Health Centre, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia.,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Terpstra ML, Remmerswaal EBM, van der Bom-Baylon ND, Sinnige MJ, Kers J, van Aalderen MC, Geerlings SE, Bemelman FJ. Tissue-resident mucosal-associated invariant T (MAIT) cells in the human kidney represent a functionally distinct subset. Eur J Immunol 2020; 50:1783-1797. [PMID: 32652598 PMCID: PMC7689767 DOI: 10.1002/eji.202048644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/24/2020] [Indexed: 12/13/2022]
Abstract
Mucosal‐associated invariant T (MAIT) cells are innate‐like T‐cells that recognize bacterial riboflavin metabolites. They are present in human blood but are abundant at barrier sites, including the liver, lungs, and kidneys, where they possess a CD69+/CD103+/− tissue‐resident phenotype. In renal tissue, MAIT cells likely defend against the ascending uropathogens responsible for urinary tract infections (UTIs), which are common, especially among renal transplant recipients (RTRs). Nevertheless, the functional role for MAIT cells in renal tissue and the influence of renal transplantation on MAIT cells remains unclear. Using multiparameter flow cytometry and the MR1‐tetramer, we characterized MAIT cell phenotype and function in healthy renal tissue (n = 6), renal transplants explanted after allograft failure (n = 14) and in blood from healthy controls (n = 20) and RTRs before and 1‐year after transplantation (n = 21). MAIT cells in renal tissue constitute a distinct CD69+CD103+/− population that displays typical phenotypic features of tissue‐resident T‐cells and is skewed toward IL‐2, GM‐CSF, and IL‐17A production upon stimulation. The circulating MAIT cell population was not decreased in number in RTRs pre‐ or post‐transplantation. Tissue‐resident MAIT cells in the kidney represent a functionally distinct population. This shows how MAIT cells in the kidney may be involved in the protection against microorganisms.
Collapse
Affiliation(s)
- Matty L Terpstra
- Division of Internal Medicine, Department of Nephrology, Renal Transplant Unit, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Internal Medicine, Infectious Diseases, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nelly D van der Bom-Baylon
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marjan J Sinnige
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Center for Analytical Sciences Amsterdam (CASA)-Biomolecular Systems Analytics, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel C van Aalderen
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne E Geerlings
- Department of Internal Medicine, Infectious Diseases, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederike J Bemelman
- Division of Internal Medicine, Department of Nephrology, Renal Transplant Unit, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Mucosal-associated invariant T (MAIT) cells provide B-cell help in vaccinated and subsequently SIV-infected Rhesus Macaques. Sci Rep 2020; 10:10060. [PMID: 32572140 PMCID: PMC7308357 DOI: 10.1038/s41598-020-66964-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells help combat opportunistic infections. Thus, MAIT cells are of interest in HIV/SIV vaccination and infection. We investigated MAIT cell dynamics and function in rhesus macaque blood and bronchoalveolar lavage (BAL) following mucosal adenovirus (Ad)-SIV recombinant priming, intramuscular SIV envelope boosting and infection following repeated low-dose intravaginal SIV exposures. Increased frequencies of blood MAIT cells over the course of vaccination were observed, which were maintained even 12-weeks post-SIV infection. BAL MAIT cells only increased after the first Ad immunization. Vaccination increased MAIT cell levels in blood and BAL expressing the antiviral cytokine IFN-γ and TNF-α and the proliferation marker Ki67. Upon T cell-specific α-CD3, α-CD28 stimulation, MAIT cells showed a greater capacity to secrete cytokines/chemokines associated with help for B cell activation, migration and regulation compared to CD3+MR1− cells. Culture of MAIT cell supernatants with B cells led to greater tissue like memory B cell frequencies. MAIT cell frequencies in blood and BAL correlated with SIV-specific antibody levels in rectal secretions and with SIV-specific tissue resident memory B cells. Overall, SIV vaccination influenced MAIT cell frequency and functionality. The potential for MAIT cells to provide help to B cells was evident during both vaccination and infection.
Collapse
|
23
|
Rizzo C, Grasso G, Destro Castaniti GM, Ciccia F, Guggino G. Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation. Vaccines (Basel) 2020; 8:vaccines8020272. [PMID: 32503132 PMCID: PMC7349953 DOI: 10.3390/vaccines8020272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Primary Sjogren Syndrome (pSS) is a complex, multifactorial rheumatic disease that mainly targets salivary and lacrimal glands, inducing epithelitis. The cause behind the autoimmunity outbreak in pSS is still elusive; however, it seems related to an aberrant reaction to exogenous triggers such as viruses, combined with individual genetic pre-disposition. For a long time, autoantibodies were considered as the hallmarks of this disease; however, more recently the complex interplay between innate and adaptive immunity as well as the consequent inflammatory process have emerged as the main mechanisms of pSS pathogenesis. The present review will focus on innate cells and on the principal mechanisms of inflammation connected. In the first part, an overview of innate cells involved in pSS pathogenesis is provided, stressing in particular the role of Innate Lymphoid Cells (ILCs). Subsequently we have highlighted the main inflammatory pathways, including intra- and extra-cellular players. A better knowledge of such processes could determine the detection of new therapeutic targets that are a major need for pSS.
Collapse
Affiliation(s)
- Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
| | - Giulia Grasso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
| | - Giulia Maria Destro Castaniti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
| | - Francesco Ciccia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy;
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
- Correspondence: ; Tel.: +39-091-6552260
| |
Collapse
|
24
|
Ravi K, Chan CYS, Akoto C, Zhang W, Vatish M, Norris SA, Klenerman P, Hemelaar J. Changes in the Vα7.2+ CD161++ MAIT cell compartment in early pregnancy are associated with preterm birth in HIV-positive women. Am J Reprod Immunol 2020; 83:e13240. [PMID: 32255246 DOI: 10.1111/aji.13240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
PROBLEM Human immunodeficiency virus (HIV) infection is associated with an increased risk of adverse pregnancy outcomes, including preterm birth (PTB), despite viral suppression with antiretroviral therapy. Mucosal-associated invariant T (MAIT) cells are an immune cell subset involved in antimicrobial immunity at mucosal surfaces. MAIT cells have been found at the maternal-foetal interface, and MAIT cells are typically depleted early in HIV infection. We aimed to investigate changes in MAIT cells in relation to maternal HIV/ART status and PTB. METHOD OF STUDY We conducted flow cytometric analysis of peripheral blood samples from 47 HIV-positive (HIV+) and 45 HIV-negative (HIV-) pregnant women enrolled in a prospective pregnancy cohort study in Soweto, South Africa. Frequencies of Vα7.2+ CD161++ MAIT cells and proportions of CD4+ , CD8+ and double-negative MAIT cells were compared between women with and without HIV infection, and between women with and without PTB or spontaneous preterm labour (Sp-PTL). RESULTS Although overall MAIT cell frequencies were the same between HIV+ and HIV- patients, HIV+ patients had a higher proportion of CD8+ MAIT cells in the first two trimesters. Women with PTB and Sp-PTL also had a higher proportion of CD8+ MAIT cells in the first trimester compared to women without these outcomes. The association between changes in MAIT cell subsets and PTB/Sp-PTL was present in both HIV+ and HIV- women, and an additive effect on MAIT cell subsets was seen in women with both HIV infection and PTB. CONCLUSIONS Interactions between HIV-related and pregnancy-related changes in MAIT cell subsets and distribution may lead to imbalances in peripheral MAIT cell subsets in early pregnancy. This may contribute to the increased risk of PTB in HIV+ patients by altering the overall functionality of the peripheral MAIT cell compartment.
Collapse
Affiliation(s)
- Krithi Ravi
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Christina Y S Chan
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Charlene Akoto
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Wei Zhang
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Shane A Norris
- South African Medical Research Council Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Joris Hemelaar
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK.,South African Medical Research Council Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW To analyze the possible role that the 'unconventional' T-cell populations mucosal-associated invariant T cell (MAIT) and iNKT cells play during HIV infection and following antiretroviral therapy (ART) treatment. RECENT FINDINGS A substantial body of evidence now demonstrates that both MAIT and iNKT cells are depleted in blood during HIV infection. The depletion and dysfunction of MAIT and iNKT cells are only partially restored by suppressive ART, potentially contributing to HIV-related comorbidities. SUMMARY The deficiency and dysfunction of MAIT and iNKT T-cell subsets likely impact on immunity to important coinfections including Mycobacterium tuberculosis. This underscores the importance of research on restoring these unconventional T cells during HIV infection. Future studies in this field should address the challenge of studying tissue-resident cells, particularly in the gut, and better defining the determinants of MAIT/iNKT cell dysfunction. Such studies could have a significant impact on improving the immune function of HIV-infected individuals.
Collapse
|
26
|
Abstract
Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that bridge innate and adaptive immunity. They are activated by conserved bacterial ligands derived from vitamin B biosynthesis and have important roles in defence against bacterial and viral infections. However, they can also have various deleterious and protective functions in autoimmune, inflammatory and metabolic diseases. MAIT cell involvement in a large spectrum of pathological conditions makes them attractive targets for potential therapeutic approaches.
Collapse
|
27
|
Tang X, Zhang S, Peng Q, Ling L, Shi H, Liu Y, Cheng L, Xu L, Cheng L, Chakrabarti LA, Chen Z, Wang H, Zhang Z. Sustained IFN-I stimulation impairs MAIT cell responses to bacteria by inducing IL-10 during chronic HIV-1 infection. SCIENCE ADVANCES 2020; 6:eaaz0374. [PMID: 32128419 PMCID: PMC7030930 DOI: 10.1126/sciadv.aaz0374] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/03/2019] [Indexed: 05/10/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells in HIV-1-infected individuals are functionally impaired by poorly understood mechanisms. Single-cell transcriptional and surface protein analyses revealed that peripheral MAIT cells from HIV-1-infected subjects were highly activated with the up-regulation of interferon (IFN)-stimulated genes as compared to healthy individuals. Sustained IFN-α treatment suppressed MAIT cell responses to Escherichia coli by triggering high-level interleukin-10 (IL-10) production by monocytes, which subsequently inhibited the secretion of IL-12, a crucial costimulatory cytokine for MAIT cell activation. Blocking IFN-α or IL-10 receptors prevented MAIT cell dysfunction induced by HIV-1 exposure in vitro. Moreover, blocking the IL-10 receptor significantly improved anti-Mycobacterium tuberculosis responses of MAIT cells from HIV-1-infected patients. Our findings demonstrate the central role of the IFN-I/IL-10 axis in MAIT cell dysfunction during HIV-1 infection, which has implications for the development of anti-IFN-I/IL-10 strategies against bacterial coinfections in HIV-1-infected patients.
Collapse
Affiliation(s)
- X. Tang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
- The Second Affiliated Hospital, School of Medicine, South University of Science and Technology, Shenzhen 518100, China
| | - S. Zhang
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Q. Peng
- Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - L. Ling
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - H. Shi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
| | - Y. Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
| | - L. Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
| | - L. Xu
- Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - L. Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L. A. Chakrabarti
- Institut Pasteur, Groupe Contrôle des Infections Virales Chroniques, Unité Virus et Immunité, 75724 Paris Cedex 15, France
| | - Z. Chen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - H. Wang
- Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - Z. Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
- The Second Affiliated Hospital, School of Medicine, South University of Science and Technology, Shenzhen 518100, China
- Guangdong Key Lab of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Corresponding author.
| |
Collapse
|
28
|
Murugesan A, Ibegbu C, Styles TM, Jones AT, Shanmugasundaram U, Reddy PBJ, Rahman SJ, Saha P, Vijay-Kumar M, Shankar EM, Amara RR, Velu V. Functional MAIT Cells Are Associated With Reduced Simian-Human Immunodeficiency Virus Infection. Front Immunol 2020; 10:3053. [PMID: 32010135 PMCID: PMC6978843 DOI: 10.3389/fimmu.2019.03053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are recently characterized as a novel subset of innate-like T cells that recognize microbial metabolites as presented by the MHC-1b-related protein MR1. The significance of MAIT cells in anti-bacterial defense is well-understood but not clear in viral infections such as SIV/HIV infection. Here we studied the phenotype, distribution, and function of MAIT cells and their association with plasma viral levels during chronic SHIV infection in rhesus macaques (RM). Two groups of healthy and chronic SHIV-infected macaques were characterized for MAIT cells in blood and mucosal tissues. Similar to human, we found a significant fraction of macaque T cells co-expressing MAIT cell markers CD161 and TCRVα-7.2 that correlated directly with macaque MR1 tetramer. These cells displayed memory phenotype and expressed high levels of IL-18R, CCR6, CD28, and CD95. During chronic infection, the frequency of MAIT cells are enriched in the blood but unaltered in the rectum; both blood and rectal MAIT cells displayed higher proliferative and cytotoxic phenotype post-SHIV infection. The frequency of MAIT cells in blood and rectum correlated inversely with plasma viral RNA levels and correlated directly with total CD4 T cells. MAIT cells respond to microbial products during chronic SHIV infection and correlated positively with serum immunoreactivity to flagellin levels. Tissue distribution analysis of MAIT cells during chronic infection showed significant enrichment in the non-lymphoid tissues (lung, rectum, and liver) compared to lymphoid tissues (spleen and LN), with higher levels of tissue-resident markers CD69 and CD103. Exogenous in vitro cytokine treatments during chronic SHIV infection revealed that IL-7 is important for the proliferation of MAIT cells, but IL-12 and IL-18 are important for their cytolytic function. Overall our results demonstrated that MAIT cells are enriched in blood but unaltered in the rectum during chronic SHIV infection, which displayed proliferative and functional phenotype that inversely correlated with SHIV plasma viral RNA levels. Treatment such as combined cytokine treatments could be beneficial for enhancing functional MAIT cells during chronic HIV infection in vivo.
Collapse
Affiliation(s)
- Amudhan Murugesan
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Chris Ibegbu
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Tiffany M Styles
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Andrew T Jones
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | | | - Pradeep B J Reddy
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Sadia J Rahman
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Piu Saha
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Esaki Muthu Shankar
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Rama Rao Amara
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Vijayakumar Velu
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
29
|
Ler GJM, Xu W, Mak JYW, Liu L, Bernhardt PV, Fairlie DP. Computer Modelling and Synthesis of Deoxy and Monohydroxy Analogues of a Ribitylaminouracil Bacterial Metabolite that Potently Activates Human T Cells. Chemistry 2019; 25:15594-15608. [DOI: 10.1002/chem.201903732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/13/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Geraldine J. M. Ler
- Division of Chemistry and Structural Biology ARC Centre of Excellence in Advanced Molecular Imaging and Centre for Inflammation and Disease Research Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Weijun Xu
- Division of Chemistry and Structural Biology ARC Centre of Excellence in Advanced Molecular Imaging and Centre for Inflammation and Disease Research Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Jeffrey Y. W. Mak
- Division of Chemistry and Structural Biology ARC Centre of Excellence in Advanced Molecular Imaging and Centre for Inflammation and Disease Research Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology ARC Centre of Excellence in Advanced Molecular Imaging and Centre for Inflammation and Disease Research Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane QLD 4072 Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology ARC Centre of Excellence in Advanced Molecular Imaging and Centre for Inflammation and Disease Research Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
30
|
Godfrey DI, Koay HF, McCluskey J, Gherardin NA. The biology and functional importance of MAIT cells. Nat Immunol 2019; 20:1110-1128. [PMID: 31406380 DOI: 10.1038/s41590-019-0444-8] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 01/25/2023]
Abstract
In recent years, a population of unconventional T cells called 'mucosal-associated invariant T cells' (MAIT cells) has captured the attention of immunologists and clinicians due to their abundance in humans, their involvement in a broad range of infectious and non-infectious diseases and their unusual specificity for microbial riboflavin-derivative antigens presented by the major histocompatibility complex (MHC) class I-like protein MR1. MAIT cells use a limited T cell antigen receptor (TCR) repertoire with public antigen specificities that are conserved across species. They can be activated by TCR-dependent and TCR-independent mechanisms and exhibit rapid, innate-like effector responses. Here we review evidence showing that MAIT cells are a key component of the immune system and discuss their basic biology, development, role in disease and immunotherapeutic potential.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia.
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Merlini E, Cerrone M, van Wilgenburg B, Swadling L, Cannizzo ES, d'Arminio Monforte A, Klenerman P, Marchetti G. Association Between Impaired Vα7.2+CD161++CD8+ (MAIT) and Vα7.2+CD161-CD8+ T-Cell Populations and Gut Dysbiosis in Chronically HIV- and/or HCV-Infected Patients. Front Microbiol 2019; 10:1972. [PMID: 31555223 PMCID: PMC6722213 DOI: 10.3389/fmicb.2019.01972] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/12/2019] [Indexed: 01/06/2023] Open
Abstract
Both HIV and HCV infections feature increased microbial translocation (MT) and gut dysbiosis that affect immune homeostasis and disease outcome. Given their commitment to antimicrobial mucosal immunity, we investigated mucosal-associated invariant T (MAIT) cells and Vα7.2+CD161- T-cell frequency/function and their possible associations with MT and gut dysbiosis, in chronic HIV and/or HCV infections. We enrolled 56 virally infected (VI) patients (pts): 13 HIV+ on suppressive cART (HIV-RNA < 40cp/ml), 13 HCV+ naive to DAA (direct-acting antiviral) anti-HCV agents; 30 HCV+/HIV+ on suppressive cART and naive to anti-HCV. 13 age-matched healthy controls (HC) were enrolled. For Vα7.2+CD161++ and Vα7.2+CD161-CD8+ T cells we assessed: activation (CD69), exhaustion (PD1/CD39), and cytolytic activity (granzymeB/perforin). Following PMA/ionomycin and Escherichia coli stimulation we measured intracellular IL17/TNFα/IFNγ. Markers of microbial translocation (Plasma LPS, 16S rDNA, EndoCAb and I-FABP) were quantified. In 5 patients per group we assessed stool microbiota composition by 16S targeted metagenomics sequencing (alpha/beta diversity, relative abundance). Compared to controls, virally infected pts displayed significantly lower circulating Vα7.2+CD161++CD8+ MAIT cells (p = 0.001), yet expressed higher perforin (p = 0.004) and granzyme B (p = 0.002) on CD8+ MAIT cells. Upon E. coli stimulation, the residual MAIT cells are less functional particularly those from HIV+/HCV+ patients. Conversely, in virally infected pts, Vα7.2+CD161-CD8+ cells were comparable in frequency, highly activated/exhausted (CD69+: p = 0.002; PD-1+: p = 0.030) and with cytolytic potential (perforin+: p < 0.0001), yet were poorly responsive to ex vivo stimulation. A profound gut dysbiosis characterized virally infected pts, especially HCV+/HIV+ co-infected patients, delineating a Firmicutes-poor/Bacteroidetes-rich microbiota, with significant associations with MAIT cell frequency/function. Irrespective of mono/dual infection, HIV+ and HCV+ patients display depleted, yet activated/cytolytic MAIT cells with reduced ex vivo function, suggesting an impoverished pool, possibly due to continuous bacterial challenge. The MAIT cell ability to respond to bacterial stimulation correlates with the presence of Firmicutes and Bacteroidetes, possibly suggesting an association between gut dysbiosis and MAIT cell function and posing viral-mediated dysbiosis as a potential key player in the hampered anti-bacterial MAIT ability.
Collapse
Affiliation(s)
- Esther Merlini
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Maddalena Cerrone
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy.,Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| | - Bonnie van Wilgenburg
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Leo Swadling
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - E Stefania Cannizzo
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Giulia Marchetti
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Mvaya L, Mwale A, Hummel A, Phiri J, Kamng'ona R, Mzinza D, Chimbayo E, Malamba R, Kankwatira A, Mwandumba HC, Jambo KC. Airway CD8 +CD161 ++TCRvα7.2 + T Cell Depletion During Untreated HIV Infection Targets CD103 Expressing Cells. Front Immunol 2019; 10:2003. [PMID: 31497028 PMCID: PMC6713019 DOI: 10.3389/fimmu.2019.02003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
HIV-infected adults are at an increased risk to lower respiratory tract infections (LRTIs). CD8+CD161++TCRvα7.2+ T cells are an innate-like T cell subset that are thought to play an important role in early defense against pathogens in the respiratory tract. HIV infection leads to irreversible depletion of these cells in peripheral blood, however, its impact on this subset in the human airway is still unclear. Here, we show presence of CD103 expressing CD8+CD161++TCRvα7.2+ T cells in the airway that exhibited a distinct cytokine functional profile compared to their CD103- airway counterparts and those from peripheral blood. These CD103 expressing airway CD8+CD161++TCRvα7.2+ T cells were selectively depleted in untreated HIV-infected adults compared to healthy controls. Their frequency was positively correlated with frequency of airway CD4+ T cells. Furthermore, the frequency of airway CD8+CD161++TCRvα7.2+ T cells was also inversely correlated with HIV plasma viral load, while suppressive antiretroviral therapy (ART) resulted in restoration of airway CD8+CD161++TCRvα7.2+ T cells. Our findings show that CD103 expressing airway CD8+CD161++TCRvα7.2+ T cells are functionally distinct and are preferentially depleted during untreated asymptomatic HIV infection. Depletion of CD103 expressing airway CD8+CD161++TCRvα7.2+ T cells, at a major portal of pathogen entry, could partly contribute to the increased propensity for opportunistic LRTIs observed in untreated HIV-infected adults.
Collapse
Affiliation(s)
- Leonard Mvaya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Andrew Mwale
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Annemarie Hummel
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Joseph Phiri
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Raphael Kamng'ona
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - David Mzinza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elizabeth Chimbayo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Rose Malamba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Anstead Kankwatira
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Henry C Mwandumba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
33
|
Hanson ED, Danson E, Evans WS, Wood WA, Battaglini CL, Sakkal S. Exercise Increases Mucosal-associated Invariant T Cell Cytokine Expression but Not Activation or Homing Markers. Med Sci Sports Exerc 2019; 51:379-388. [PMID: 30649094 DOI: 10.1249/mss.0000000000001780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells have properties of both the innate and adaptive immune systems but are an understudied population within exercise immunology. These lymphocytes aggregate at the mucous membranes, but it is unknown if submaximal exercise alters their circulating numbers or function. PURPOSE To determine the MAIT cell response to submaximal exercise on activation and homing marker expression and stimulated cytokine production. METHODS Twenty healthy, young, recreationally active males cycled for 40 min at 86% of VT after an overnight fast. Peripheral blood mononuclear cells were isolated and labeled to identify specific MAIT cell populations using flow cytometry. Cytokine production after stimulation was also determined. RESULTS Mucosal-associated invariant T cells were 2.9% of T cells and increased to 3.9% after exercise and with recovery whereas cell numbers significantly increased by 91.5% after exercise before returning to resting levels. Chemokine and activation marker absolute cell number significantly increased while expression levels remained constant but the high levels of CCR5 may help direct MAIT cells to sites of inflammation. After stimulation, TNFα expression significantly increased after exercise before returning to baseline with a similar trend for IFNγ. CONCLUSIONS The MAIT cell numbers undergo a partial biphasic response after submaximal exercise and appear to be preferentially mobilized within T cells; however, the magnitude of the submaximal response was attenuated relative to maximal exercise. Stimulated MAIT cells increase TNFα expression, indicating greater responsiveness to pathogens after acute exercise.
Collapse
Affiliation(s)
- Erik D Hanson
- Exercise Oncology Research Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, NC
| | - Eli Danson
- Exercise Oncology Research Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, NC
| | - William S Evans
- Exercise Oncology Research Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, NC
| | - William A Wood
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC
| | - Claudio L Battaglini
- Exercise Oncology Research Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC, AUSTRALIA.,College of Health and Biomedicine, Victoria University, Melbourne, VIC, AUSTRALIA
| |
Collapse
|
34
|
Abstract
As our understanding of mucosal immunity increases, it is becoming clear that the host response to HIV-1 is more complex and nuanced than originally believed. The mucosal landscape is populated with a variety of specialized cell types whose functions include combating infectious agents while preserving commensal microbiota, maintaining barrier integrity, and ensuring immune homeostasis. Advances in multiparameter flow cytometry, gene expression analysis and bioinformatics have allowed more detailed characterization of these cell types and their roles in host defense than was previously possible. This review provides an overview of existing literature on immunity to HIV-1 and SIVmac in mucosal tissues of the female reproductive tract and the gastrointestinal tract, focusing on major effector cell populations and briefly summarizing new information on tissue resident memory T cells, Treg, Th17, Th22 and innate lymphocytes (ILC), subsets that have been studied primarily in the gastrointestinal mucosa.
Collapse
Affiliation(s)
- Barbara L Shacklett
- Department of Medical Microbiology and Immunology.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
35
|
Hildreth AD, O'Sullivan TE. Tissue-Resident Innate and Innate-Like Lymphocyte Responses to Viral Infection. Viruses 2019; 11:v11030272. [PMID: 30893756 PMCID: PMC6466361 DOI: 10.3390/v11030272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Infection is restrained by the concerted activation of tissue-resident and circulating immune cells. Recent discoveries have demonstrated that tissue-resident lymphocyte subsets, comprised of innate lymphoid cells (ILCs) and unconventional T cells, have vital roles in the initiation of primary antiviral responses. Via direct and indirect mechanisms, ILCs and unconventional T cell subsets play a critical role in the ability of the immune system to mount an effective antiviral response through potent early cytokine production. In this review, we will summarize the current knowledge of tissue-resident lymphocytes during initial viral infection and evaluate their redundant or nonredundant contributions to host protection or virus-induced pathology.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|
36
|
O’Brien EC, McLoughlin RM. Considering the ‘Alternatives’ for Next-Generation Anti-Staphylococcus aureus Vaccine Development. Trends Mol Med 2019; 25:171-184. [DOI: 10.1016/j.molmed.2018.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
|
37
|
Juno JA, Wragg KM, Amarasena T, Meehan BS, Mak JYW, Liu L, Fairlie DP, McCluskey J, Eckle SBG, Kent SJ. MAIT Cells Upregulate α4β7 in Response to Acute Simian Immunodeficiency Virus/Simian HIV Infection but Are Resistant to Peripheral Depletion in Pigtail Macaques. THE JOURNAL OF IMMUNOLOGY 2019; 202:2105-2120. [PMID: 30777923 DOI: 10.4049/jimmunol.1801405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are nonconventional T lymphocytes that recognize bacterial metabolites presented by MR1. Whereas gut bacterial translocation and the loss/dysfunction of peripheral MAIT cells in HIV infection is well described, MAIT cells in nonhuman primate models are poorly characterized. We generated a pigtail macaque (PTM)-specific MR1 tetramer and characterized MAIT cells in serial samples from naive and SIV- or simian HIV-infected PTM. Although PTM MAIT cells generally resemble the phenotype and transcriptional profile of human MAIT cells, they exhibited uniquely low expression of the gut-homing marker α4β7 and were not enriched at the gut mucosa. PTM MAIT cells responded to SIV/simian HIV infection by proliferating and upregulating α4β7, coinciding with increased MAIT cell frequency in the rectum. By 36 wk of infection, PTM MAIT cells were activated and exhibited a loss of Tbet expression but were not depleted as in HIV infection. Our data suggest the following: 1) MAIT cell activation and exhaustion is uncoupled from the hallmark depletion of MAIT cells during HIV infection; and 2) the lack of PTM MAIT cell enrichment at the gut mucosa may prevent depletion during chronic infection, providing a model to assess potential immunotherapeutic approaches to modify MAIT cell trafficking during HIV infection.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia;
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Queensland 4072, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Queensland 4072, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Victoria 3053, Australia; and.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Victoria 3000, Australia
| |
Collapse
|
38
|
Braganza CD, Shibata K, Fujiwara A, Motozono C, Sonoda KH, Yamasaki S, Stocker BL, Timmer MSM. The effect of MR1 ligand glyco-analogues on mucosal-associated invariant T (MAIT) cell activation. Org Biomol Chem 2019; 17:8992-9000. [DOI: 10.1039/c9ob01436e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glyco-analogues of MR1 ligands can bind MR1 and activate MAIT cells at levels similar to 5-OP-RU.
Collapse
Affiliation(s)
- Chriselle D. Braganza
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
| | - Kensuke Shibata
- Department of Ocular Pathology and Imaging Science
- Graduate School of Medical Sciences
- Kyushu University
- Fukuoka
- Japan
| | - Aisa Fujiwara
- Department of Ocular Pathology and Imaging Science
- Graduate School of Medical Sciences
- Kyushu University
- Fukuoka
- Japan
| | - Chihiro Motozono
- Department of Ocular Pathology and Imaging Science
- Graduate School of Medical Sciences
- Kyushu University
- Fukuoka
- Japan
| | - Koh-Hei Sonoda
- Department of Ocular Pathology and Imaging Science
- Graduate School of Medical Sciences
- Kyushu University
- Fukuoka
- Japan
| | - Sho Yamasaki
- Department of Molecular Immunology
- Research Institute for Microbial Diseases
- Osaka University
- Osaka
- Japan
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
| |
Collapse
|
39
|
Tuning of human MAIT cell activation by commensal bacteria species and MR1-dependent T-cell presentation. Mucosal Immunol 2018; 11:1591-1605. [PMID: 30115998 PMCID: PMC6279574 DOI: 10.1038/s41385-018-0072-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 02/04/2023]
Abstract
Human mucosal-associated invariant T (MAIT) cell receptors (TCRs) recognize bacterial riboflavin pathway metabolites through the MHC class 1-related molecule MR1. However, it is unclear whether MAIT cells discriminate between many species of the human microbiota. To address this, we developed an in vitro functional assay through human T cells engineered for MAIT-TCRs (eMAIT-TCRs) stimulated by MR1-expressing antigen-presenting cells (APCs). We then screened 47 microbiota-associated bacterial species from different phyla for their eMAIT-TCR stimulatory capacities. Only bacterial species that encoded the riboflavin pathway were stimulatory for MAIT-TCRs. Most species that were high stimulators belonged to Bacteroidetes and Proteobacteria phyla, whereas low/non-stimulator species were primarily Actinobacteria or Firmicutes. Activation of MAIT cells by high- vs low-stimulating bacteria also correlated with the level of riboflavin they secreted or after bacterial infection of macrophages. Remarkably, we found that human T-cell subsets can also present riboflavin metabolites to MAIT cells in a MR1-restricted fashion. This T-T cell-mediated signaling also induced IFNγ, TNF and granzyme B from MAIT cells, albeit at lower level than professional APC. These findings suggest that MAIT cells can discriminate and categorize complex human microbiota through computation of TCR signals depending on antigen load and presenting cells, and fine-tune their functional responses.
Collapse
|
40
|
D’Souza C, Chen Z, Corbett AJ. Revealing the protective and pathogenic potential of MAIT cells. Mol Immunol 2018; 103:46-54. [DOI: 10.1016/j.molimm.2018.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022]
|
41
|
Perdomo-Celis F, Feria MG, Taborda NA, Rugeles MT. A Low Frequency of IL-17-Producing CD8 + T-Cells Is Associated With Persistent Immune Activation in People Living With HIV Despite HAART-Induced Viral Suppression. Front Immunol 2018; 9:2502. [PMID: 30420859 PMCID: PMC6215827 DOI: 10.3389/fimmu.2018.02502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Immune activation is the hallmark of HIV infection, even in patients with highly active anti-retroviral therapy (HAART)-induced viral suppression. A major cause of immune activation during HIV infection is the intestinal microbial translocation as a consequence, among other factors, of the decrease and/or dysfunction of interleukin (IL)-17-producing T-cells, due to their role promoting the integrity of the intestinal barrier. A population of IL-17-producing CD8+ T-cells (Tc17 cells), characterized by the expression of CD161, has been described, but its relation with the persistent immune activation in non-viremic people living with HIV (PLWH) on HAART is unclear. By flow cytometry, we characterized the activation phenotype (evaluated by the expression of HLA-DR and CD38) of circulating CD161-expressing CD8+ T-cells; in addition, we explored the functionality of polyclonally-stimulated Tc17 cells in PLWH under HAART-induced viral suppression, and in healthy individuals. Finally, we determined the association of Tc17 cells with the expression of cellular and soluble activation markers. Circulating CD161-expressing CD8+ T-cells were decreased in PLWH compared with healthy individuals, despite their similar basal activation state. After polyclonal stimulation, IL-17 production was higher in CD8+ T-cells co-expressing HLA-DR and CD38 in healthy individuals. In contrast, although PLWH had a higher frequency of HLA-DR+ CD38+ CD8+ T-cells after stimulation, they had a lower production of IL-17. Interferon (IFN)-γ-producing CD8+ T-cells (Tc1 cells) were increased in PLWH. The low Tc17 cells response was associated with a high expression of CD38 and programmed death 1 protein, high levels of soluble CD14 and the treatment duration. Finally, to explore potential immunomodulatory strategies, the in vitro effect of the anti-inflammatory agent sulfasalazine was assessed on Tc17 cells. Interestingly, a decreased inflammatory environment, death of activated CD8+ T-cells, and an increased frequency of Tc17 cells were observed with sulfasalazine treatment. Thus, our findings suggest that activated CD8+ T-cells have a marked capacity to produce IL-17 in healthy individuals, but not in PLWH, despite HAART. This dysfunction of Tc17 cells is associated with the persistent immune activation observed in these patients, and can be partially restored by anti-inflammatory agents.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Manuel G Feria
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
42
|
Trottein F, Paget C. Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Lung Infections. Front Immunol 2018; 9:1750. [PMID: 30116242 PMCID: PMC6082944 DOI: 10.3389/fimmu.2018.01750] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The immune system has been traditionally divided into two arms called innate and adaptive immunity. Typically, innate immunity refers to rapid defense mechanisms that set in motion within minutes to hours following an insult. Conversely, the adaptive immune response emerges after several days and relies on the innate immune response for its initiation and subsequent outcome. However, the recent discovery of immune cells displaying merged properties indicates that this distinction is not mutually exclusive. These populations that span the innate-adaptive border of immunity comprise, among others, CD1d-restricted natural killer T cells and MR1-restricted mucosal-associated invariant T cells. These cells have the unique ability to swiftly activate in response to non-peptidic antigens through their T cell receptor and/or to activating cytokines in order to modulate many aspects of the immune response. Despite they recirculate all through the body via the bloodstream, these cells mainly establish residency at barrier sites including lungs. Here, we discuss the current knowledge into the biology of these cells during lung (viral and bacterial) infections including activation mechanisms and functions. We also discuss future strategies targeting these cell types to optimize immune responses against respiratory pathogens.
Collapse
Affiliation(s)
- François Trottein
- Univ. Lille, U1019 – UMR 8204 – CIIL – Centre d’Infection et d’Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christophe Paget
- Institut National de la Santé et de la Recherche Médicale U1100, Centre d’Etude des Pathologies Respiratoires (CEPR), Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
43
|
Lepore M, Mori L, De Libero G. The Conventional Nature of Non-MHC-Restricted T Cells. Front Immunol 2018; 9:1365. [PMID: 29963057 PMCID: PMC6010553 DOI: 10.3389/fimmu.2018.01365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
The definition “unconventional T cells” identifies T lymphocytes that recognize non-peptide antigens presented by monomorphic antigen-presenting molecules. Two cell populations recognize lipid antigens and small metabolites presented by CD1 and MR1 molecules, respectively. A third cell population expressing the TCR Vγ9Vδ2 is stimulated by small phosphorylated metabolites. In the recent past, we have learnt a lot about the selection, tissue distribution, gene transcription programs, mode of expansion after antigen recognition, and persistence of these cells. These studies depict their functions in immune homeostasis and diseases. Current investigations are revealing that unconventional T cells include distinct sub-populations, which display unexpected similarities to classical MHC-restricted T cells in terms of TCR repertoire diversity, antigen specificity variety, functional heterogeneity, and naïve-to-memory differentiation dynamic. This review discusses the latest findings with a particular emphasis on these T cells, which appear to be more conventional than previously appreciated, and with the perspective of using CD1 and MR1-restricted T cells in vaccination and immunotherapy.
Collapse
Affiliation(s)
- Marco Lepore
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
44
|
Koay HF, Godfrey DI, Pellicci DG. Development of mucosal-associated invariant T cells. Immunol Cell Biol 2018; 96:598-606. [PMID: 29569752 PMCID: PMC6446805 DOI: 10.1111/imcb.12039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 01/17/2023]
Abstract
Mucosal‐associated invariant T (MAIT) cells develop in the thymus and migrate into the periphery to become the largest antigen‐specific αβ T‐cell population in the human immune system. However, the frequency of MAIT cells varies widely between human individuals, and the basis for this is unclear. While MAIT cells are highly conserved through evolution and are phenotypically similar between humans and mice, they represent a much smaller proportion of total T cells in mice. In this review, we discuss how MAIT cells transition through a three‐stage development pathway in both mouse and human thymus, and continue to mature and expand after they leave the thymus. Moreover, we will explore and speculate on how specific factors regulate different stages of this process.
Collapse
Affiliation(s)
- Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| |
Collapse
|
45
|
Shey MS, Balfour A, Wilkinson KA, Meintjes G. Contribution of APCs to mucosal-associated invariant T cell activation in infectious disease and cancer. Innate Immun 2018; 24:192-202. [PMID: 29631470 PMCID: PMC6139754 DOI: 10.1177/1753425918768695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
APCs such as monocytes and dendritic cells are among the first cells to recognize
invading pathogens and initiate an immune response. The innate response can
either eliminate the pathogen directly, or through presentation of Ags to T
cells, which can help to clear the infection. Mucosal-associated invariant T
(MAIT) cells are among the unconventional T cells whose activation does not
involve the classical co-stimulation during Ag presentation. MAIT cells can be
activated either via presentation of unconventional Ags (such as riboflavin
metabolites) through the evolutionarily conserved major histocompatibility class
I-like molecule, MR1, or directly by cytokines such as IL-12 and IL-18. Given
that APCs produce cytokines and can express MR1, these cells can play an
important role in both pathways of MAIT cell activation. In this review, we
summarize evidence on the role of APCs in MAIT cell activation in infectious
disease and cancer. A better understanding of the interactions between APCs and
MAIT cells is important in further elucidating the role of MAIT cells in
infectious diseases, which may facilitate the design of novel interventions such
as vaccines.
Collapse
Affiliation(s)
- Muki Shehu Shey
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa
| | - Avuyonke Balfour
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa
| | - Katalin Andrea Wilkinson
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa.,3 The Francis Crick Institute, Midland Road, London, NW1 2AT
| | - Graeme Meintjes
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
46
|
Gherardin NA, Souter MN, Koay HF, Mangas KM, Seemann T, Stinear TP, Eckle SB, Berzins SP, d'Udekem Y, Konstantinov IE, Fairlie DP, Ritchie DS, Neeson PJ, Pellicci DG, Uldrich AP, McCluskey J, Godfrey DI. Human blood MAIT cell subsets defined using MR1 tetramers. Immunol Cell Biol 2018; 96:507-525. [PMID: 29437263 PMCID: PMC6446826 DOI: 10.1111/imcb.12021] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 12/10/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Mucosal‐associated invariant T (MAIT) cells represent up to 10% of circulating human T cells. They are usually defined using combinations of non‐lineage‐specific (surrogate) markers such as anti‐TRAV1‐2, CD161, IL‐18Rα and CD26. The development of MR1‐Ag tetramers now permits the specific identification of MAIT cells based on T‐cell receptor specificity. Here, we compare these approaches for identifying MAIT cells and show that surrogate markers are not always accurate in identifying these cells, particularly the CD4+ fraction. Moreover, while all MAIT cell subsets produced comparable levels of IFNγ, TNF and IL‐17A, the CD4+ population produced more IL‐2 than the other subsets. In a human ontogeny study, we show that the frequencies of most MR1 tetramer+ MAIT cells, with the exception of CD4+ MAIT cells, increased from birth to about 25 years of age and declined thereafter. We also demonstrate a positive association between the frequency of MAIT cells and other unconventional T cells including Natural Killer T (NKT) cells and Vδ2+ γδ T cells. Accordingly, this study demonstrates that MAIT cells are phenotypically and functionally diverse, that surrogate markers may not reliably identify all of these cells, and that their numbers are regulated in an age‐dependent manner and correlate with NKT and Vδ2+ γδ T cells.
Collapse
Affiliation(s)
- Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael Nt Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kirstie M Mangas
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Torsten Seemann
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, VIC, 3053, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Sidonia Bg Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Stuart P Berzins
- Federation University Australia, Ballarat, VIC, 3350, Australia.,Fiona Elsey Cancer Research Institute, Ballarat, VIC, 3350, Australia
| | - Yves d'Udekem
- Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | | | - David P Fairlie
- Division of Chemistry & Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, QLD, 4072, Australia
| | - David S Ritchie
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia.,Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
47
|
Beudeker BJB, van Oord GW, Arends JE, Schulze zur Wiesch J, van der Heide MS, de Knegt RJ, Verbon A, Boonstra A, Claassen MAA. Mucosal-associated invariant T-cell frequency and function in blood and liver of HCV mono- and HCV/HIV co-infected patients with advanced fibrosis. Liver Int 2018; 38:458-468. [PMID: 28792648 PMCID: PMC5836956 DOI: 10.1111/liv.13544] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Mucosal-associated invariant T (MAIT) cells are important innate T cells with antimicrobial and immunoregulatory activity, recently found to be depleted in blood of patients with HIV and HCV mono-infections. In this study, we assessed the impact of HIV, HCV and HCV/HIV co-infection on circulating and intrahepatic MAIT-cells and correlations with liver fibrosis. METHODS In this cross-sectional study, nine healthy subjects, nine HIV, 20 HCV and 22 HCV/HIV co-infected patients were included. Blood and liver fine needle aspirate biopsies were studied using flowcytometry for CD3+ CD161+ Vα7.2+ MAIT-cell frequency, phenotype and function in HCV mono-infected and HCV/HIV co-infected patients without or with mild fibrosis (Metavir-score F0-F1) or severe fibrosis to cirrhosis (Metavir-score F3-F4). RESULTS Circulating MAIT-cells were decreased in blood of HCV, HIV and HCV/HIV patients with F0-F1. In HCV/HIV co-infected individuals with severe fibrosis to cirrhosis, the frequency of circulating MAIT-cells was even further depleted, whereas their function was comparable to HCV/HIV co-infected patients with low or absent fibrosis. In contrast, in HCV mono-infected patients, MAIT-cell frequencies were not related to fibrosis severity; however, MAIT-cell function was impaired in mono-infected patients with more fibrosis. More advanced liver fibrosis in HCV or HCV/HIV-infected patients was not reflected by increased accumulation of MAIT-cells in the affected liver. CONCLUSIONS Severe liver fibrosis is associated with dysfunctional MAIT-cells in blood of HCV mono-infected patients, and lower MAIT frequencies in blood of HCV/HIV co-infected patients, without evidence for accumulation in the liver.
Collapse
Affiliation(s)
- Boris J. B. Beudeker
- Department of Gastroenterology and HepatologyInfectious Diseases SectionErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Internal MedicineInfectious Diseases SectionErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Gertine W. van Oord
- Department of Gastroenterology and HepatologyInfectious Diseases SectionErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Joop E. Arends
- Department of Internal Medicine and Infectious DiseasesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Marieke S. van der Heide
- Department of Gastroenterology and HepatologyInfectious Diseases SectionErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Robert J. de Knegt
- Department of Gastroenterology and HepatologyInfectious Diseases SectionErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Annelies Verbon
- Department of Internal MedicineInfectious Diseases SectionErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and HepatologyInfectious Diseases SectionErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Mark A. A. Claassen
- Department of Gastroenterology and HepatologyInfectious Diseases SectionErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Internal MedicineInfectious Diseases SectionErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
48
|
Ussher JE, Willberg CB, Klenerman P. MAIT cells and viruses. Immunol Cell Biol 2018; 96:630-641. [PMID: 29350807 PMCID: PMC6055725 DOI: 10.1111/imcb.12008] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
Mucosal associated invariant T cells (MAIT cells) bear a T cell receptor (TCR) that specifically targets microbially derived metabolites. Functionally, they respond to bacteria and yeasts, which possess the riboflavin pathway, essential for production of such metabolites and which are presented on MR1. Viruses cannot generate these ligands, so a priori, they should not be recognized by MAIT cells and indeed this is true when considering recognition through the TCR. However, MAIT cells are distinctive in another respect, since they respond quite sensitively to non‐TCR signals, especially in the form of inflammatory cytokines. Thus, a number of groups have shown that virus infection can be “sensed” by MAIT cells and a functional response invoked. Since MAIT cells are abundant in humans, especially in tissues such as the liver, the question has arisen as to whether this TCR‐independent MAIT cell triggering by viruses plays any role in vivo. In this review, we will discuss the evidence for this phenomenon and some common features which emerge across different recent studies in this area.
Collapse
Affiliation(s)
- James E Ussher
- Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK.,Translational Gastroenterology Unit, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
49
|
Howson LJ, Napolitani G, Shepherd D, Ghadbane H, Kurupati P, Preciado-Llanes L, Rei M, Dobinson HC, Gibani MM, Teng KWW, Newell EW, Veerapen N, Besra GS, Pollard AJ, Cerundolo V. MAIT cell clonal expansion and TCR repertoire shaping in human volunteers challenged with Salmonella Paratyphi A. Nat Commun 2018; 9:253. [PMID: 29343684 PMCID: PMC5772558 DOI: 10.1038/s41467-017-02540-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/07/2017] [Indexed: 01/08/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can detect bacteria-derived metabolites presented on MR1. Here we show, using a controlled infection of humans with live Salmonella enterica serovar Paratyphi A, that MAIT cells are activated during infection, an effect maintained even after antibiotic treatment. At the peak of infection MAIT cell T-cell receptor (TCR)β clonotypes that are over-represented prior to infection transiently contract. Select MAIT cell TCRβ clonotypes that expand after infection have stronger TCR-dependent activation than do contracted clonotypes. Our results demonstrate that host exposure to antigen may drive clonal expansion of MAIT cells with increased functional avidity, suggesting a role for specific vaccination strategies to increase the frequency and potency of MAIT cells to optimize effector function.
Collapse
MESH Headings
- Adolescent
- Adult
- Cell Line, Tumor
- Cell Proliferation
- Clone Cells/immunology
- Clone Cells/metabolism
- Clone Cells/microbiology
- Healthy Volunteers
- Host-Pathogen Interactions/immunology
- Humans
- Jurkat Cells
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/microbiology
- Middle Aged
- Mucosal-Associated Invariant T Cells/immunology
- Mucosal-Associated Invariant T Cells/metabolism
- Mucosal-Associated Invariant T Cells/microbiology
- Paratyphoid Fever/immunology
- Paratyphoid Fever/metabolism
- Paratyphoid Fever/microbiology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Salmonella paratyphi A/immunology
- Salmonella paratyphi A/physiology
- Young Adult
Collapse
Affiliation(s)
- Lauren J Howson
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Giorgio Napolitani
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Dawn Shepherd
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT, UK
| | - Hemza Ghadbane
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Immunocore Ltd, 101 Park Drive, Milton Park, Abingdon, OX14 4RY, UK
| | - Prathiba Kurupati
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Lorena Preciado-Llanes
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Margarida Rei
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Hazel C Dobinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Malick M Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Karen Wei Weng Teng
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore, 138648, Singapore
| | - Evan W Newell
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore, 138648, Singapore
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Vincenzo Cerundolo
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
50
|
Wakao H, Sugimoto C, Kimura S, Wakao R. Mucosal-Associated Invariant T Cells in Regenerative Medicine. Front Immunol 2017; 8:1711. [PMID: 29250077 PMCID: PMC5717033 DOI: 10.3389/fimmu.2017.01711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Although antibiotics to inhibit bacterial growth and small compounds to interfere with the productive life cycle of human immunodeficiency virus (HIV) have successfully been used to control HIV infection, the recent emergence of the drug-resistant bacteria and viruses poses a serious concern for worldwide public health. Despite intensive scrutiny in developing novel antibiotics and drugs to overcome these problems, there is a dilemma such that once novel antibiotics are launched in markets, sooner or later antibiotic-resistant strains emerge. Thus, it is imperative to develop novel methods to avoid this vicious circle. Here, we discuss the possibility of using induced pluripotent stem cell (iPSC)-derived, innate-like T cells to control infection and potential application of these cells for cancer treatment. Mucosal-associated invariant T (MAIT) cells belong to an emerging family of innate-like T cells that link innate immunity to adaptive immunity. MAIT cells exert effector functions without priming and clonal expansion like innate immune cells and relay the immune response to adaptive immune cells through production of relevant cytokines. With these characteristics, MAIT cells are implicated in a wide range of human diseases such as autoimmune, infectious, and metabolic diseases, and cancer. Circulating MAIT cells are often depleted by these diseases and often remain depleted even after appropriate remedy because MAIT cells are susceptible to activation-induced cell death and poor at proliferation in vivo, which threatens the integrity of the immune system. Because MAIT cells have a pivotal role in human immunity, supplementation of MAIT cells into immunocompromised patients suffering from severe depletion of these cells may help recapitulate or recover immunocompetence. The generation of MAIT cells from human iPSCs has made it possible to procure MAIT cells lost from disease. Such technology creates new avenues for cell therapy and regenerative medicine for difficult-to-cure infectious diseases and cancer and contributes to improvement of our welfare.
Collapse
Affiliation(s)
- Hiroshi Wakao
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Chie Sugimoto
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Shinzo Kimura
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Rika Wakao
- Office of Regulatory Science, Pharmaceutical and Medical Device Agency (PMDA), Tokyo, Japan
| |
Collapse
|