1
|
Zapata-Sifuentes M, Quispe-Salcedo A, Watanabe T, Kawase T, Ohshima H. Effect of leukocyte and platelet-rich plasma on osseointegration after implant placement in mouse maxilla. Regen Ther 2024; 26:741-748. [PMID: 39290631 PMCID: PMC11406024 DOI: 10.1016/j.reth.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Osseointegration, the direct contact between an implant and bone, can be achieved by direct and/or indirect osteogenesis. Platelet-rich plasma accelerates tissue regeneration, wound healing, and osseointegration. This study aimed to analyze the effects of leukocyte and platelet-rich plasma (L-PRP) on direct and indirect osteogenesis after implant placement in a mouse maxilla. Methods Blood was collected from the tail vein of 4-8-week-old male ICR mice and L-PRP was obtained after double-spin cycle centrifugation. After the right upper first molars of 4-week-old ICR mice were extracted while under deep anesthesia, the alveolar sockets were prepared with a drill, and titanium implants blasted with hydroxyapatite/β-tricalcium phosphate were placed into the cavity filled with 1.5 μL of L-PRP. Samples were collected from the animals 3-28 days after implantation, and immunohistochemistry for osteopontin, Ki67 (cell proliferation marker), cathepsin-K (osteoclast marker), and osteonectin (osteoblast marker) was performed. Results Cell proliferation was significantly higher in the L-PRP group than in the control group on postoperative days 3 and 5. The activities of osteoclast-lineage cells and osteoblasts increased significantly on day 5 in the L-PRP group, indicating that L-PRP evoked an active cellular response. Indirect osteogenesis was significantly higher on days 7, 14, and 28, and the osseointegration rate was significantly higher on day 28 in the L-PRP group compared with the control group. Conclusions L-PRP enhances osseointegration by promoting mesenchymal cell proliferation, osteoclastic and osteoblastic activities, and indirect osteogenesis.
Collapse
Affiliation(s)
- Mauricio Zapata-Sifuentes
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Angela Quispe-Salcedo
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Taisuke Watanabe
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
2
|
Ivanovski S, Lee RSB, Fernandez-Medina T, Pinto N, Andrade C, Quirynen M. Impact of autologous platelet concentrates on the osseointegration of dental implants. Periodontol 2000 2024. [PMID: 38647020 DOI: 10.1111/prd.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/25/2024]
Abstract
Osseointegration is defined as the direct deposition of bone onto biomaterial devices, most commonly composed from titanium, for the purpose of anchoring dental prostheses. The use of autologous platelet concentrates (APC) has the potential to enhance this process by modifying the interface between the host and the surface of the titanium implant. The rationale is to modify the implant surface and implant-bone interface via "biomimicry," a process whereby the deposition of the host's own proteins and extracellular matrix enhances the biocompatibility of the implant and hence accelerates the osteogenic healing process. This review of the available evidence reporting on the effect of APC on osseointegration explores in vitro laboratory studies of the interaction of APC with different implant surfaces, as well as the in vivo and clinical effects of APC on osseointegration in animal and human studies. The inherent variability associated with using autologous products, namely the unique composition of each individual's blood plasma, as well as the great variety in APC protocols, combination of biomaterials, and clinical/therapeutic application, makes it is difficult to make any firm conclusions about the in vivo and clinical effects of APC on osseointegration. The available evidence suggests that the clinical benefits of adding PRP and the liquid form of L-PRF (liquid fibrinogen) to any implant surface appear to be limited. The application of L-PRF membranes in the osteotomy site, however, may produce positive clinical effects at the early stage of healing (up to 6 weeks), by promoting early implant stability and reducing marginal bone loss, although no positive longer term effects were observed. Careful interpretation and cautious conclusions should be drawn from these findings as there were various limitations in methodology. Future studies should focus on better understanding of the influence of APCs on the biomaterial surface and designing controlled preclinical and clinical studies using standardized APC preparation and application protocols.
Collapse
Affiliation(s)
- Sašo Ivanovski
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Brisbane, Australia
| | - Ryan S B Lee
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Brisbane, Australia
| | - Tulio Fernandez-Medina
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Brisbane, Australia
- College of Medicine and Dentistry, James Cook University, Cairns, Australia
| | - Nelson Pinto
- Department of Periodontology and Implantology, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| | - Catherine Andrade
- Department of Periodontology and Implantology, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| | - Marc Quirynen
- Department of Oral Health Sciences, Katholieke Universiteit Leuven (Periodontology), University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Ding Z, Jiang M, Qian J, Gu D, Bai H, Cai M, Yao D. Role of transforming growth factor-β in peripheral nerve regeneration. Neural Regen Res 2024; 19:380-386. [PMID: 37488894 PMCID: PMC10503632 DOI: 10.4103/1673-5374.377588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits. Unlike in the central nervous system, damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells. However, axon regeneration and repair do not automatically result in the restoration of function, which is the ultimate therapeutic goal but also a major clinical challenge. Transforming growth factor (TGF) is a multifunctional cytokine that regulates various biological processes including tissue repair, embryo development, and cell growth and differentiation. There is accumulating evidence that TGF-β family proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells; recruiting specific immune cells; controlling the permeability of the blood-nerve barrier, thereby stimulating axon growth; and inhibiting remyelination of regenerated axons. TGF-β has been applied to the treatment of peripheral nerve injury in animal models. In this context, we review the functions of TGF-β in peripheral nerve regeneration and potential clinical applications.
Collapse
Affiliation(s)
- Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Min Cai
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
4
|
Lambrichts I, Wolfs E, Bronckaers A, Gervois P, Vangansewinkel T. The Effect of Leukocyte- and Platelet-Rich Fibrin on Central and Peripheral Nervous System Neurons-Implications for Biomaterial Applicability. Int J Mol Sci 2023; 24:14314. [PMID: 37762617 PMCID: PMC10532231 DOI: 10.3390/ijms241814314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Leukocyte- and Platelet-Rich Fibrin (L-PRF) is a second-generation platelet concentrate that is prepared directly from the patient's own blood. It is widely used in the field of regenerative medicine, and to better understand its clinical applicability we aimed to further explore the biological properties and effects of L-PRF on cells from the central and peripheral nervous system. To this end, L-PRF was prepared from healthy human donors, and confocal, transmission, and scanning electron microscopy as well as secretome analysis were performed on these clots. In addition, functional assays were completed to determine the effect of L-PRF on neural stem cells (NSCs), primary cortical neurons (pCNs), and peripheral dorsal root ganglion (DRG) neurons. We observed that L-PRF consists of a dense but porous fibrin network, containing leukocytes and aggregates of activated platelets that are distributed throughout the clot. Antibody array and ELISA confirmed that it is a reservoir for a plethora of growth factors. Key molecules that are known to have an effect on neuronal cell functions such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) were slowly released over time from the clots. Next, we found that the L-PRF secretome had no significant effect on the proliferative and metabolic activity of NSCs, but it did act as a chemoattractant and improved the migration of these CNS-derived stem cells. More importantly, L-PRF growth factors had a detrimental effect on the survival of pCNs, and consequently, also interfered with their neurite outgrowth. In contrast, we found a positive effect on peripheral DRG neurons, and L-PRF growth factors improved their survival and significantly stimulated the outgrowth and branching of their neurites. Taken together, our study demonstrates the positive effects of the L-PRF secretome on peripheral neurons and supports its use in regenerative medicine but care should be taken when using it for CNS applications.
Collapse
Affiliation(s)
- Ivo Lambrichts
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Esther Wolfs
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Annelies Bronckaers
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Pascal Gervois
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Tim Vangansewinkel
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Wang S, Liu X, Wang Y. Evaluation of Platelet-Rich Plasma Therapy for Peripheral Nerve Regeneration: A Critical Review of Literature. Front Bioeng Biotechnol 2022; 10:808248. [PMID: 35299637 PMCID: PMC8923347 DOI: 10.3389/fbioe.2022.808248] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injury (PNI) is a common disease in clinic, and the regeneration process of peripheral nerve tissue is slow, and patients with PNI often suffer from the loss of nerve function. At present, related research on the mechanism of peripheral nerve regeneration has become a hot spot, and scholars are also seeking a method that can accelerate the regeneration of peripheral nerve. Platelet-rich plasma (PRP) is a platelet concentrate extracted from autologous blood by centrifugation, which is a kind of bioactive substance. High concentration of platelets can release a variety of growth factors after activation, and can promote the proliferation and differentiation of tissue cells, which can accelerate the process of tissue regeneration. The application of PRP comes from the body, there is no immune rejection reaction, it can promote tissue regeneration with less cost, it is,therefore, widely used in various clinical fields. At present, there are relatively few studies on the application of PRP to peripheral nerve regeneration. This article summarizes the literature in recent years to illustrate the effect of PRP on peripheral nerve regeneration from mechanism to clinical application, and prospects for the application of PRP to peripheral nerve.
Collapse
Affiliation(s)
| | | | - Yueshu Wang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Treatment with platelet-rich plasma attenuates proprioceptor abnormalities in a rat model of postpartum stress urinary incontinence. Int Urogynecol J 2022; 33:2159-2167. [PMID: 35195739 DOI: 10.1007/s00192-022-05112-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Stress urinary incontinence (SUI) is the most prevalent form of urinary incontinence, and vaginal delivery is a major risk factor for developing SUI. We evaluated the hypothesis that applying the autologous platelet rich plasma (PRP) to the pelvic floor muscles via injection affects expression of proprioceptors and improves postpartum stress urinary incontinence (PSUI) in rats. METHODS Virgin female Sprague-Dawley rats were divided into control (n = 10) and experimental group(n = 20). Vaginal dilation was used to establish PSUI, and the rats in the experimental group were further divided into the PSUI group (n = 10) and PSUI+PRP group (n = 10). Pelvic floor muscles from rats in the PSUI+PRP group were positioned under ultrasound guidance for PRP injection. The morphology and number of pelvic floor muscle spindles were assessed using H&E staining, proprioceptors evaluated by gold chloride staining, and changes in the expression of neurotrophin-3 (NT-3) and skeletal myosin MY-32 determined by immunohistochemistry. RESULTS After 28 days,bladder leak point pressure (BLPP) and abdominal leaking-urine point pressure (ALPP) in rats with PSUI were significantly lower than in control animals (P<0.01). Both BLPP and ALPP increased significantly in the PSUI+PRP group (P<0.01). Compared with the control group, muscle spindle morphology and structure in the PSUI and PSUI+PRP groups had different pathological changes,with higher variations in the PSUI group. The positive signals for NT-3/MY-32 expression in control rats were higher than those from PSUI or PSUI+PRP groups, however, the expression for NT-3/MY-32 in PSUI+PRP animals was higher than that seen in the PSUI group (P < 0.01). CONCLUSIONS PSUI rats have an abnormal expression of pelvic proprioceptors, which affect proprioceptive function, and further the contractibility of pelvic floor muscles. A PRP injection may restore the sensory function of pelvic proprioceptors, thus improving urine leakage in PSUI rats.
Collapse
|
7
|
Chuang MH, Ho LH, Kuo TF, Sheu SY, Liu YH, Lin PC, Tsai YC, Yang CH, Chu CM, Lin SZ. Regenerative Potential of Platelet-Rich Fibrin Releasate Combined with Adipose Tissue-Derived Stem Cells in a Rat Sciatic Nerve Injury Model. Cell Transplant 2021; 29:963689720919438. [PMID: 32538130 PMCID: PMC7586258 DOI: 10.1177/0963689720919438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sciatic nerve injuries, not uncommon in trauma with a limited degree of functional recovery, are considered a persistent clinical, social, and economic problem worldwide. Accumulating evidence suggests that stem cells can promote the tissue regeneration through various mechanisms. The aim of the present study was to investigate the role of adipose tissue–derived stem cells (ADSCs) and combine with platelet-rich fibrin releasate (PRFr) in the regeneration of sciatic nerve injury in rats. Twenty-four Sprague-Dawley rats were randomly assigned to four groups, a blade was used to transect the left hindlimb sciatic nerve, and silicon tubes containing one of the following (by injection) were used to bridge the nerve proximal and distal ends (10-mm gap): group 1: untreated controls; group 2: PRFr alone; group 3: ADSCs alone; group 4: PRFr + ADSCs-treated. Walking function was assessed in horizontal rung ladder apparatus to compare the demands of the tasks and test sensitivity at 1-mo interval for a total of 3 mo. The gross inspection and histological examination was performed at 3 mo post transplantation. Overall, PRFr + ADSCs-treated performed better compared with PRFr or ADSCs injections alone. Significant group differences of neurological function were observed in ladder rung walking tests in all treated groups compared to that of untreated controls (P < 0.05). This injection approach may provide a successfully employed technique to target sciatic nerve defects in vivo, and the combined strategy of ADSCs with PRFr appears to have a superior effect on nerve repair.
Collapse
Affiliation(s)
- Ming-Hsi Chuang
- Ph.D. Program of Technology Management, Chung Hwa University, Hsinchu, Taiwan
| | - Li-Hsing Ho
- Department of Technology Management, Chung Hwa University, Hsinchu, Taiwan
| | - Tzong-Fu Kuo
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung, Taiwan
- Tzong-Fu Kuo, Department of Post-Baccalaureate Veterinary Medicine, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan. Li-Hsing Ho, Department of Technology Management, Chung Hwa University, 707, Sec.2, WuFu Rd., Hsinchu 30012, Taiwan. Emails: ;
| | - Shi-Yuan Sheu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Integrated Chinese and Western Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hao Liu
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Dental Anatomy Division, Department of Oral Science, Kanagawa Dental University, Yokosuka, Japan
| | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology Co., Ltd, Hsinchu, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Tsai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chang-Huan Yang
- Gwo Xi Stem Cell Applied Technology Co., Ltd, Hsinchu, Taiwan
| | - Chi-Ming Chu
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
- Big Data Research Center, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
8
|
Ye J, Huang B, Gong P. Nerve growth factor-chondroitin sulfate/hydroxyapatite-coating composite implant induces early osseointegration and nerve regeneration of peri-implant tissues in Beagle dogs. J Orthop Surg Res 2021; 16:51. [PMID: 33436038 PMCID: PMC7805124 DOI: 10.1186/s13018-020-02177-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background Osseointegration is the premise of the chewing function of dental implant. Nerve growth factor (NGF), as a neurotrophic factor, can induce bone healing. However, the influence of NGF-chondroitin sulfate (CS)/hydroxyapatite (HA)-coating composite implant on the osseointegration and innervations is still not entirely clear. Materials and methods NGF-CS/HA-coating composite implants were prepared using the modified biomimetic method. The characteristics of NGF-CS/HA-coating implants were determined using a scanning electron microscope. After NGF-CS/HA-coating implants were placed in the mandible of Beagle dogs, the early osseointegration and innervation in peri-implant tissues were assessed through X-ray, Micro-CT, maximal pull-out force, double fluorescence staining, toluidine blue staining, DiI neural tracer, immunohistochemistry, and RT-qPCR assays. Results NGF-CS/HA-coating composite implants were made successfully, which presented porous mesh structures with the main components (Ti and HA). Besides, we revealed that implantation of NGF-CS/HA-coating implants significantly changed the morphology of bone tissues and elevated maximum output, MAR, BIC, and nerve fiber in the mandible of Beagle dogs. Moreover, we proved that the implantation of NGF-CS/HA-coating implants also markedly upregulated the levels of NGF, osteogenesis differentiation, and neurogenic differentiation-related genes in the mandible of Beagle dogs. Conclusion Implantation of NGF-CS/HA-coating composite implants has significant induction effects on the early osseointegration and nerve regeneration of peri-implant tissues in the mandible of Beagle dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-020-02177-5.
Collapse
Affiliation(s)
- Jun Ye
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, People's Republic of China
| | - Bo Huang
- State Key Laboratory of Oral Diseases, General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, Department of Oral Implant, West China School of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
9
|
Fang J, Wang X, Jiang W, Zhu Y, Hu Y, Zhao Y, Song X, Zhao J, Zhang W, Peng J, Wang Y. Platelet-Rich Plasma Therapy in the Treatment of Diseases Associated with Orthopedic Injuries. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:571-585. [PMID: 32380937 DOI: 10.1089/ten.teb.2019.0292] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelet-rich plasma (PRP) is an autologous platelet concentrate prepared from the whole blood that is activated to release growth factors (GFs) and cytokines and has been shown to have the potential capacity to reduce inflammation and improve tissue anabolism for regeneration. The use of PRP provides a potential for repair due to its abundant GFs and cytokines, which are key in initiating and modulating regenerative microenvironments for soft and hard tissues. Among outpatients, orthopedic injuries are common and include bone defects, ligament injury, enthesopathy, musculoskeletal injury, peripheral nerve injury, chronic nonhealing wounds, articular cartilage lesions, and osteoarthritis, which are caused by trauma, sport-related or other types of trauma, or tumor resection. Surgical intervention is often required to treat these injuries. However, for numerous reasons regarding limited regeneration capacity and insufficient blood supply of the defect region, these treatments commonly result in unsatisfactory outcomes, and follow-up treatment is challenging. The aim of the present review is to explore future research in the field of PRP therapy in the treatment of diseases associated with orthopedic injuries. Impact statement In recent years, platelet-rich plasma (PRP) has become widely used in the treatment of diseases associated with orthopedic injuries, and the results of numerous studies are encouraging. Due to diseases associated with orthopedic injuries being common in clinics, as a conservative treatment, more and more doctors and patients are more likely to accept PRP. Importantly, PRP is a biological product of autologous blood that is obtained by a centrifugation procedure to enrich platelets from whole blood, resulting in few complications, such as negligible immunogenicity from an autologous source, and it is also simple to produce through an efficient and cost-effective method in a sterile environment. However, the applicability, advantages, and disadvantages of PRP therapy have not yet been fully elucidated. The aim of the present review is to explore future research in the field of PRP therapy in the treatment of diseases associated with orthopedic injuries, as well as to provide references for clinics.
Collapse
Affiliation(s)
- Jie Fang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Graduate School of The North China University of Science and Technology, Hebei, P.R. China.,Department of Hand and Foot Surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Xin Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Wen Jiang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yaqiong Zhu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yongqiang Hu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yanxu Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Xueli Song
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Jinjuan Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Wenlong Zhang
- Department of Hand and Foot Surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Co-innovation Center of Neuroregeneration Nantong University, Nantong, Jiangsu Province, P.R. China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Co-innovation Center of Neuroregeneration Nantong University, Nantong, Jiangsu Province, P.R. China
| |
Collapse
|
10
|
Xu J, Gou L, Zhang P, Li H, Qiu S. Platelet-rich plasma and regenerative dentistry. Aust Dent J 2020; 65:131-142. [PMID: 32145082 PMCID: PMC7384010 DOI: 10.1111/adj.12754] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 11/30/2022]
Abstract
Regenerative dentistry is an emerging field of medicine involving stem cell technology, tissue engineering and dental science. It exploits biological mechanisms to regenerate damaged oral tissues and restore their functions. Platelet‐rich plasma (PRP) is a biological product that is defined as the portion of plasma fraction of autologous blood with a platelet concentration above that of the original whole blood. A super‐mixture of key cytokines and growth factors is present in platelet granules. Thus, the application of PRP has gained unprecedented attention in regenerative medicine. The rationale underlies the utilization of PRP is that it acts as a biomaterial to deliver critical growth factors and cytokines from platelet granules to the targeted area, thus promoting regeneration in a variety of tissues. Based on enhanced understanding of cell signalling and growth factor biology, researchers have begun to use PRP treatment as a novel method to regenerate damaged tissues, including liver, bone, cartilage, tendon and dental pulp. To enable better understanding of the regenerative effects of PRP in dentistry, this review describes different methods of preparation and application of this biological product, and provides detailed explanations of the controversies and future prospects related to the use of PRP in dental regenerative medicine.
Collapse
Affiliation(s)
- J Xu
- Shenzhen Longgang Institute of Stomatology, Shenzhen, Guangdong, China.,Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T, Shenzhen, Guangdong, China
| | - L Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu, China
| | - P Zhang
- Shenzhen Longgang Institute of Stomatology, Shenzhen, Guangdong, China.,Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T, Shenzhen, Guangdong, China
| | - H Li
- Shenzhen Longgang Institute of Stomatology, Shenzhen, Guangdong, China.,Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T, Shenzhen, Guangdong, China
| | - S Qiu
- Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Systematic Comparison of the Effect of Four Clinical-Grade Platelet Rich Hemoderivatives on Osteoblast Behaviour. Int J Mol Sci 2019; 20:ijms20246243. [PMID: 31835696 PMCID: PMC6941155 DOI: 10.3390/ijms20246243] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Hemoderivatives have utilized in an empirical manner, driven by clinical considerations, leading to the development of a plethora of manufacturing protocols. The purpose of this study was to investigate the composition and bioactivity of four common clinical-grade hemoderivates prepared using standardised methods. Four different hemoderivatives were obtained from sheep blood and divided into two groups: A-PRF/i-PRF (fresh) and P-PRP/L-PRP (anticoagulated). Thrombus (CLOT) was used as a control. Thrombocyte quantification, growth factor composition (IGF-I, VEGF, PDGF-BB, BMP-2), cell viability, migration and mineralization assay were evaluated. Platelet recovery was superior for L-PRP followed by P-PRP. A significant cumulative release of IGF-I and PDGF-BB was noted for A-PRF and L-PRP groups at early time points. Similar release profiles of BMP-2 and VEGF were noted in all protocols. Cell viability and migration assay have demonstrated a detrimental effect when the concentration was ≥60%. Moreover, at Day 21, i-PRF have demonstrated superior mineralisation properties when compared to all groups. A negative impact of A-PRF was demonstrated at high concentrations. Despite its low content in growth factors, i-PRF was the best performing blood product for inducing osteoblast mineralisation, and therefore could be the candidate of choice for utilisation in bone tissue engineering applications.
Collapse
|
12
|
Huang Y, Li Z, Van Dessel J, Salmon B, Huang B, Lambrichts I, Politis C, Jacobs R. Effect of platelet-rich plasma on peri-implant trabecular bone volume and architecture: A preclinical micro-CT study in beagle dogs. Clin Oral Implants Res 2019; 30:1190-1199. [PMID: 31506979 DOI: 10.1111/clr.13532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 05/26/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To evaluate the peri-implant trabecular bone volume and architecture changes with 6-month follow-up after local application of platelet-rich plasma (PRP) and platelet-poor plasma (PPP) using high-resolution micro-CT. MATERIAL AND METHODS Seventy-two dental implants were placed into healed mandibular sites of 9 beagle dogs. Implants were randomly divided into 4 groups following a split-mouth design: control I; control II; PPP; and PRP. Primary and secondary stabilities were assessed using resonance frequency analyses. At 1, 3, and 6 months after implant loading, trabecular structural parameters were evaluated at 0.5, 1, and 1.5 mm away from implants using micro-CT (voxel = 20 μm). RESULTS Primary and secondary stabilities were equivalent in all conditions. PPP and PRP groups showed higher bone volume fraction (BV/TV) and trabecular thickness (Tb.Th) but lower trabecular separation (Tb.Sp) and total porosity percentage (Po (tot)) at all 3 time points. A significant decrease in BV/TV and Tb.Th was found for the control groups after 3 months of healing, while this was not observed in both the PPP and PRP groups. However, no distinct difference was found between the PRP and PPP groups over time. Moreover, as the investigated distance from the implant surface increased, BV/TV and Po (tot) within the same group and time point stayed the same, yet Tb.Th and Tb.Sp continued to increase. CONCLUSIONS Platelet-rich plasma and PPP with conventional implant placement lead to similar primary and secondary implant stability, but improved peri-implant bone volume and structural integration. The present research does not seem to suggest a different bone remodeling pattern when using PRP or PPP.
Collapse
Affiliation(s)
- Yan Huang
- West China College of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Imaging & Pathology, Faculty of Medicine, OMFS IMPATH Research Group, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Zhaokai Li
- Department of Geriatric Medicine & National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jeroen Van Dessel
- Department of Imaging & Pathology, Faculty of Medicine, OMFS IMPATH Research Group, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Benjamin Salmon
- Paris Descartes University - Sorbonne Paris Cité, EA 2496 - Orofacial Pathologies, Imaging and Biotherapies Lab and Dental Medicine Department, Bretonneau Hospital, HUPNVS, AP-HP, Paris, France
| | - Bo Huang
- Implant Center, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Ivo Lambrichts
- Group of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Constantinus Politis
- Department of Imaging & Pathology, Faculty of Medicine, OMFS IMPATH Research Group, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- Department of Imaging & Pathology, Faculty of Medicine, OMFS IMPATH Research Group, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Ackermann M, Tolba E, Neufurth M, Wang S, Schröder HC, Wang X, Müller WEG. Biomimetic transformation of polyphosphate microparticles during restoration of damaged teeth. Dent Mater 2018; 35:244-256. [PMID: 30522697 DOI: 10.1016/j.dental.2018.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In the present study, we investigated the fusion process between amorphous microparticles of the calcium salt of the physiological polymer comprising orthophosphate units, of inorganic polyphosphate (polyP), and enamel. METHODS This polymer was incorporated as an ingredient into toothpaste and the fusion process was studied by electron microscopy and by synchrotron-based X-ray tomography microscopy (SRXTM) techniques. RESULTS The data showed that toothpaste, supplemented with the amorphous Ca-polyP microparticles (aCa-polyP-MP), not only reseals tooth defects on enamel, like carious lesions, and dentin, including exposed dentinal tubules, but also has the potential to induce re-mineralization in the enamel and dentin regions. The formation of a regeneration mineralic zone on the tooth surface induced by aCa-polyP-MP was enhanced upon exposure to artificial saliva, as demonstrated by SRXTM. Energy dispersive X-ray analysis revealed an increase in the calcium/phosphorus atomic ratio of the enamel deposits to values characteristic for the particles during the treatment with polyP applied in the toothpaste, indicating a fusion of the particles with the tooth mineral. SIGNIFICANCE Our results suggest that toothpaste enriched with aCa-polyP-MP is a promising biomimetic material for accelerating enamel and dentin restoration.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Johann Joachim Becher Weg 13, D-55099 Mainz, Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany; Polymers and Pigments Department, National Research Center, 33 El Buhouth St, Dokki, 12311 Cairo, Egypt
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
14
|
Theys T, Van Hoylandt A, Broeckx CE, Van Gerven L, Jonkergouw J, Quirynen M, van Loon J. Plasma-rich fibrin in neurosurgery: a feasibility study. Acta Neurochir (Wien) 2018; 160:1497-1503. [PMID: 29872915 DOI: 10.1007/s00701-018-3579-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) leakage represents an important and sometimes challenging complication in both cranial and spinal surgery. Current available options for dural closure pose inherent problems regarding safety, efficacy, immunogenicity, cost, and invasiveness. In this article, the use of leukocyte- and platelet-rich fibrin (L-PRF) derived from the patient's own blood is proposed to facilitate dural closure. We aim to describe the safety, feasibility, and applicability of L-PRF membranes and plugs in cranial and spinal neurosurgery. METHODS A retrospective study reviewing clinical and surgical characteristics was conducted in 47 patients in whom the use of L-PRF was attempted to reinforce dural closure at a single institution during 1 year. Procedures included skull base, posterior fossa, and spinal revision surgeries. RESULTS L-PRF membranes and/or plugs were used in 44 surgeries. The preparation of L-PRF failed in three cases. L-PRF membranes were used as onlay grafts to augment sealing or sutured into a defect. No short-term complications related to the use of L-PRF were recorded. Postoperative CSF leakage was present in two endoscopic transsphenoidal pituitary surgeries and in one spinal CSF leak repair. CONCLUSION L-PRF is safe, inexpensive, and completely autologous and can be rapidly and non-invasively harvested to aid in dural closure. Theoretical advantages include a regenerative bioactive potential, which could lead to improved wound healing and reduced infection rates. These findings warrant larger prospective studies to determine the potential role of L-PRF in neurosurgery.
Collapse
|
15
|
Sakata M, Tonomura H, Itsuji T, Ishibashi H, Takatori R, Mikami Y, Nagae M, Matsuda KI, Tabata Y, Tanaka M, Kubo T. Bone Regeneration of Osteoporotic Vertebral Body Defects Using Platelet-Rich Plasma and Gelatin β-Tricalcium Phosphate Sponges. Tissue Eng Part A 2018; 24:1001-1010. [PMID: 29272991 DOI: 10.1089/ten.tea.2017.0358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The objective of the present study was to investigate the effect of platelet-rich plasma (PRP) combined with gelatin β-tricalcium phosphate (β-TCP) sponge on bone generation in a lumbar vertebral body defect of ovariectomized rat. After creating critical-size defects in the center of the anterior vertebral body, the defects were filled with the following materials: (1) no material (control group), (2) gelatin β-TCP sponge with PRP (PRP sponge group), and (3) gelatin β-TCP sponge with phosphate-buffered saline (PBS sponge group). Microcomputed tomography and histological evaluation were performed immediately after surgery and at 4, 8, and 12 weeks to assess bone regeneration. Biomechanical test was also performed at postoperative week 12. In the PRP sponge group, both imaging and histological examination showed that visible osteogenesis was first induced and additional growth of bone tissue was observed in the transplanted sponge, compared with the PBS sponge group. There was no negative effect of either PRP sponge or PBS sponge transplantation on bone tissue generation around the periphery of the defect. Biomechanical test showed increased stiffness of the affected vertebral bodies in the PRP sponge group. These results indicate that PRP-impregnated gelatin β-TCP sponge is effective for facilitating bone regeneration in lumbar vertebral bone defect under osteoporotic condition. PRP combined with gelatin β-TCP sponges could be potentially useful for developing a new approach to vertebroplasty for osteoporotic vertebral fracture.
Collapse
Affiliation(s)
- Munehiro Sakata
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Hitoshi Tonomura
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Tomonori Itsuji
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Hidenobu Ishibashi
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Ryota Takatori
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Yasuo Mikami
- 2 Department of Rehabilitation Medicine, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Masateru Nagae
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Ken Ichi Matsuda
- 3 Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Yasuhiko Tabata
- 4 Laboratory of Biomaterials, Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University , Kyoto, Japan
| | - Masaki Tanaka
- 3 Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Toshikazu Kubo
- 1 Department of Orthopaedics, Kyoto Prefectural University of Medicine , Kyoto, Japan
| |
Collapse
|
16
|
Yu P, Zhai Z, Jin X, Yang X, Qi Z. Clinical Application of Platelet-Rich Fibrin in Plastic and Reconstructive Surgery: A Systematic Review. Aesthetic Plast Surg 2018; 42:511-519. [PMID: 29396591 DOI: 10.1007/s00266-018-1087-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/14/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Platelet-rich fibrin (PRF) has been applied in the clinical field for more than a decade, but largely in oral surgery and implant dentistry. Its utilization in plastic and reconstructive surgery is limited and lacking a comprehensive review. Hence, this article focuses on the various clinical applications of PRF pertaining to the plastic and reconstructive field through a systematic review. METHODS In this review, articles describing the clinical application of PRF in plastic and reconstructive surgery were screened using predetermined inclusion and exclusion criteria. The articles were summarized and divided into groups based on the utilization of PRF. The effects and complications of PRF were analyzed and concluded. RESULTS Among the 634 articles searched, 7 articles describing 151 cases are eligible. PRF was applied on 116 (76.8%) wounds to facilitate tissue healing, and the complete wound closure rate was 91.4% (106/116). Otherwise, PRF was applied in 10 (6.6%) cases of zygomaticomaxillary fracture to reconstruct orbital floor defects and in 25 (16.6%) cases of facial autologous fat grafts to increase the fat retention rate successfully. There is no report of PRF-related complications. CONCLUSIONS PRF could facilitate wound healing, including the healing of soft tissues and bony tissues, and facilitate fat survival rate. Further studies are needed to test the mechanism of PRF and expand its scope of application in plastic and reconstructive surgery. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
17
|
Kitamura Y, Watanabe T, Nakamura M, Isobe K, Kawabata H, Uematsu K, Okuda K, Nakata K, Tanaka T, Kawase T. Platelet Counts in Insoluble Platelet-Rich Fibrin Clots: A Direct Method for Accurate Determination. Front Bioeng Biotechnol 2018; 6:4. [PMID: 29450197 PMCID: PMC5799223 DOI: 10.3389/fbioe.2018.00004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
Platelet-rich fibrin (PRF) clots have been used in regenerative dentistry most often, with the assumption that growth factor levels are concentrated in proportion to the platelet concentration. Platelet counts in PRF are generally determined indirectly by platelet counting in other liquid fractions. This study shows a method for direct estimation of platelet counts in PRF. To validate this method by determination of the recovery rate, whole-blood samples were obtained with an anticoagulant from healthy donors, and platelet-rich plasma (PRP) fractions were clotted with CaCl2 by centrifugation and digested with tissue-plasminogen activator. Platelet counts were estimated before clotting and after digestion using an automatic hemocytometer. The method was then tested on PRF clots. The quality of platelets was examined by scanning electron microscopy and flow cytometry. In PRP-derived fibrin matrices, the recovery rate of platelets and white blood cells was 91.6 and 74.6%, respectively, after 24 h of digestion. In PRF clots associated with small and large red thrombi, platelet counts were 92.6 and 67.2% of the respective total platelet counts. These findings suggest that our direct method is sufficient for estimating the number of platelets trapped in an insoluble fibrin matrix and for determining that platelets are distributed in PRF clots and red thrombi roughly in proportion to their individual volumes. Therefore, we propose this direct digestion method for more accurate estimation of platelet counts in most types of platelet-enriched fibrin matrix.
Collapse
Affiliation(s)
- Yutaka Kitamura
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Shiojiri, Japan
| | | | | | | | - Hideo Kawabata
- Implant Dentistry, Nihon University School of Dentistry, Dental Hospital, Tokyo, Japan
| | - Kohya Uematsu
- Division of Dental Implantology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Kazuhiro Okuda
- Division of Periodontology, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Niigata University, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
| |
Collapse
|
18
|
Roque JS, Pomini KT, Buchaim RL, Buchaim DV, Andreo JC, Roque DD, Rodrigues ADC, Rosa GM, Moraes LHR, Viterbo F. Inside-out and standard vein grafts associated with platelet-rich plasma (PRP) in sciatic nerve repair. A histomorphometric study. Acta Cir Bras 2017; 32:617-625. [PMID: 28902937 DOI: 10.1590/s0102-865020170080000003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/18/2017] [Indexed: 01/19/2023] Open
Abstract
Purpose: To evaluated the tubulization technique with standard and inside-out vein, filled or not with platelet-rich plasma (PRP), in sciatic nerve repair. Methods: Seventy male Wistar rats were randomly divided into five groups: IOVNF (Inside-Out Vein with No Filling); IOVPRP (Inside-Out Vein filled with PRP); SVNF (Standard Vein with No Filling); SVPRP (Standard Vein filled with PRP); Sham (Control). The left external jugular vein was used as graft in a 10 mm nervous gap. Results: In the morphological analysis of all groups, myelinated nerve fibers with evident myelin sheath, neoformation of the epineurium and perineurium, organization of intraneural fascicles and blood vessels were observed. In the morphometry of the distal stump fibers, SVPRP group had the highest means regarding fiber diameter (3.63±0.42 μm), axon diameter (2.37±0.31 μm) and myelin sheath area (11.70±0.84 μm2). IOVPRP group had the highest means regarding axon area (4.39±1.16 μm2) and myelin sheath thickness (0.80±0.19 μm). As for values of the fiber area, IOVNF group shows highest means (15.54±0.67 μm2), but are still lower than the values of the Sham group. Conclusion: The graft filled with platelet-rich plasma, with use standard (SVPRP) or inside-out vein (IOVPRP), promoted the improvement in axonal regeneration on sciatic nerve injury.
Collapse
Affiliation(s)
- José Sidney Roque
- PhD, Department of Anatomy, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho-PR, Brazil. Acquisition, analysis and interpretation of data; technical procedures
| | - Karina Torres Pomini
- MSc, Department of Biological Sciences, Faculdade de Odontologia de Bauru, Universidade de São Paulo (FOB-USP), Bauru-SP, Brazil. Manuscript preparation and writing
| | - Rogério Leone Buchaim
- PhD, Department of Biological Sciences, FOB-USP, Bauru-SP, Brazil. Conception and design of the study, critical revision, final approval
| | - Daniela Vieira Buchaim
- PhD, Division of Human Morphophysiology, Medical School, Universidade de Marilia (UNIMAR), Brazil. Conception and design of the study, critical revision, final approval
| | - Jesus Carlos Andreo
- PhD, Department of Biological Sciences, FOB-USP, Bauru-SP, Brazil. Scientific and intellectual content of the study
| | - Domingos Donizeti Roque
- PhD, Division of Human Morphophysiology, Medical School, UNIMAR, Marilia-SP, Brazil. Acquisition, analysis and interpretation of data
| | - Antonio de Castro Rodrigues
- PhD, Department of Biological Sciences, FOB-USP, Bauru-SP, Brazil. Scientific and intellectual content of the study
| | - Geraldo Marco Rosa
- PhD, Health Sciences Center, Universidade do Sagrado Coração (USC), Bauru-SP, Brazil. Technical procedures, histopathological examinations, statistical analysis
| | - Luis Henrique Rapucci Moraes
- PhD, Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Brazil. Technical procedures, histopathological examinations, statistical analysis
| | - Fausto Viterbo
- PhD, Division of Plastic Surgery, Department of Surgery and Orthopedics, Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu-SP, Brazil. Scientific and intellectual content of the study
| |
Collapse
|