1
|
Comolli LR, Yrjälä K. Editorial: Insights in terrestrial microbiology: 2022. Front Microbiol 2024; 14:1347778. [PMID: 38249468 PMCID: PMC10796647 DOI: 10.3389/fmicb.2023.1347778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Affiliation(s)
| | - Kim Yrjälä
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Conrad R. Complexity of temperature dependence in methanogenic microbial environments. Front Microbiol 2023; 14:1232946. [PMID: 37485527 PMCID: PMC10359720 DOI: 10.3389/fmicb.2023.1232946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
There is virtually no environmental process that is not dependent on temperature. This includes the microbial processes that result in the production of CH4, an important greenhouse gas. Microbial CH4 production is the result of a combination of many different microorganisms and microbial processes, which together achieve the mineralization of organic matter to CO2 and CH4. Temperature dependence applies to each individual step and each individual microbe. This review will discuss the different aspects of temperature dependence including temperature affecting the kinetics and thermodynamics of the various microbial processes, affecting the pathways of organic matter degradation and CH4 production, and affecting the composition of the microbial communities involved. For example, it was found that increasing temperature results in a change of the methanogenic pathway with increasing contribution from mainly acetate to mainly H2/CO2 as immediate CH4 precursor, and with replacement of aceticlastic methanogenic archaea by thermophilic syntrophic acetate-oxidizing bacteria plus thermophilic hydrogenotrophic methanogenic archaea. This shift is consistent with reaction energetics, but it is not obligatory, since high temperature environments exist in which acetate is consumed by thermophilic aceticlastic archaea. Many studies have shown that CH4 production rates increase with temperature displaying a temperature optimum and a characteristic apparent activation energy (Ea). Interestingly, CH4 release from defined microbial cultures, from environmental samples and from wetland field sites all show similar Ea values around 100 kJ mol-1 indicating that CH4 production rates are limited by the methanogenic archaea rather than by hydrolysis of organic matter. Hence, the final rather than the initial step controls the methanogenic degradation of organic matter, which apparently is rarely in steady state.
Collapse
|
3
|
Poppeliers SWM, Hefting M, Dorrepaal E, Weedon JT. Functional microbial ecology in arctic soils: the need for a year-round perspective. FEMS Microbiol Ecol 2022; 98:6824434. [PMID: 36368693 PMCID: PMC9701097 DOI: 10.1093/femsec/fiac134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
The microbial ecology of arctic and sub-arctic soils is an important aspect of the global carbon cycle, due to the sensitivity of the large soil carbon stocks to ongoing climate warming. These regions are characterized by strong climatic seasonality, but the emphasis of most studies on the short vegetation growing season could potentially limit our ability to predict year-round ecosystem functions. We compiled a database of studies from arctic, subarctic, and boreal environments that include sampling of microbial community and functions outside the growing season. We found that for studies comparing across seasons, in most environments, microbial biomass and community composition vary intra-annually, with the spring thaw period often identified by researchers as the most dynamic time of year. This seasonality of microbial communities will have consequences for predictions of ecosystem function under climate change if it results in: seasonality in process kinetics of microbe-mediated functions; intra-annual variation in the importance of different (a)biotic drivers; and/or potential temporal asynchrony between climate change-related perturbations and their corresponding effects. Future research should focus on (i) sampling throughout the entire year; (ii) linking these multi-season measures of microbial community composition with corresponding functional or physiological measurements to elucidate the temporal dynamics of the links between them; and (iii) identifying dominant biotic and abiotic drivers of intra-annual variation in different ecological contexts.
Collapse
Affiliation(s)
- Sanne W M Poppeliers
- Corresponding author: Department of Biology, Utrecht University, 3584 CH, The Netherlands. E-mail:
| | - Mariet Hefting
- Department of Biology, Utrecht University, 3584 CH, The Netherlands
| | - Ellen Dorrepaal
- Climate Impacts Research Centre, Umea University, SE-981 07, Abisko, Sweden
| | - James T Weedon
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Etto RM, Jesus EDC, Cruz LM, Schneider BSF, Tomachewski D, Urrea-Valencia S, Gonçalves DRP, Galvão F, Ayub RA, Curcio GR, Steffens MBR, Galvão CW. Influence of environmental factors on the tropical peatlands diazotrophic communities from the Southern Brazilian Atlantic Rain Forest. Lett Appl Microbiol 2021; 74:543-554. [PMID: 34951701 DOI: 10.1111/lam.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/10/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
The tropical peatlands of southern Brazil are essential for the maintenance of the Atlantic Rain Forest, one of the 25 hotspots of biodiversity in the world. Although diazotrophic microorganisms are essential for the maintenance of this nitrogen limited ecosystem, so far studies have focused only on microorganisms involved in the carbon cycle. In this work, peat samples were collected from three tropical peatland regions during dry and rainy seasons and their chemical and microbial characteristics were evaluated. Our results showed that the structure of the diazotrophic communities in the Brazilian tropical peatlands differs in the evaluated seasons. The abundance of the genus Bradyrhizobium showed to be affected by rainfall and peat pH. Despite the shifts of the nitrogen fixing population in the tropical peatland caused by seasonality it showed to be constantly dominated by α-Proteobacteria followed by Cyanobacteria. In addition, more than 50% of nifH gene sequences have not been classified, indicating the necessity for more studies in tropical peatland, since the reduction of N supply in the peatlands stimulates the recalcitrant organic matter decomposition performed by peatland microorganisms, influencing the C stock.
Collapse
Affiliation(s)
- Rafael Mazer Etto
- Microbial Molecular Biology Laboratory, State University of Ponta Grossa, CEP, 84030-900, Ponta Grossa - PR, Brazil
| | | | - Leonardo Magalhães Cruz
- Nucleus of Nitrogen Fixation, Federal University of Paraná, CEP, 81531-980, Curitiba - PR, Brazil
| | | | - Douglas Tomachewski
- Microbial Molecular Biology Laboratory, State University of Ponta Grossa, CEP, 84030-900, Ponta Grossa - PR, Brazil
| | - Salomé Urrea-Valencia
- Microbial Molecular Biology Laboratory, State University of Ponta Grossa, CEP, 84030-900, Ponta Grossa - PR, Brazil
| | - Daniel Ruiz Potma Gonçalves
- Microbial Molecular Biology Laboratory, State University of Ponta Grossa, CEP, 84030-900, Ponta Grossa - PR, Brazil
| | - Franklin Galvão
- Forest Ecology Laboratory, Universidade Federal do Paraná, CEP, 80210-170, Curitiba - PR, Brazil
| | - Ricardo Antônio Ayub
- Applied Biotechnology Laboratory, State University of Ponta Grossa, CEP, 84030-900, Ponta Grossa - PR, Brazil
| | | | | | - Carolina Weigert Galvão
- Microbial Molecular Biology Laboratory, State University of Ponta Grossa, CEP, 84030-900, Ponta Grossa - PR, Brazil
| |
Collapse
|
5
|
Wang H, Weil M, Dumack K, Zak D, Münch D, Günther A, Jurasinski G, Blume-Werry G, Kreyling J, Urich T. Eukaryotic rather than prokaryotic microbiomes change over seasons in rewetted fen peatlands. FEMS Microbiol Ecol 2021; 97:6356952. [PMID: 34427631 DOI: 10.1093/femsec/fiab121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decades, rewetting of drained peatlands is on the rise worldwide, to restore their significant carbon sink function. Despite the increasing understanding of peat microbiomes, little is known about the seasonal dynamics and network interactions of the microbial communities in these ecosystems, especially in rewetted fens (groundwater-fed peatlands). Here, we investigated the seasonal dynamics in both prokaryotic and eukaryotic microbiomes in three common fen types in Northern Germany. The eukaryotic microbiomes, including fungi, protists and microbial metazoa, showed significant changes in their community structures across the seasons in contrast to largely unaffected prokaryotic microbiomes. Furthermore, our results proved that the dynamics in eukaryotic microbiomes in the rewetted sites differed between fen types, specifically in terms of saprotrophs, arbuscular mycorrhiza and grazers of bacteria. The co-occurrence networks also exhibited strong seasonal dynamics that differed between rewetted and drained sites, and the correlations involving protists and prokaryotes were the major contributors to these dynamics. Our study provides the insight that microbial eukaryotes mainly define the seasonal dynamics of microbiomes in rewetted fen peatlands. Accordingly, future research should unravel the importance of eukaryotes for biogeochemical processes, especially the under-characterized protists and metazoa, in these poorly understood ecosystems.
Collapse
Affiliation(s)
- Haitao Wang
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17487 Greifswald, Germany
| | - Micha Weil
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17487 Greifswald, Germany
| | - Kenneth Dumack
- Cologne Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Dominik Zak
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark.,Department of Chemical Analytics and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Diana Münch
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17487 Greifswald, Germany
| | - Anke Günther
- Faculty of Agriculture and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Gerald Jurasinski
- Faculty of Agriculture and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Gesche Blume-Werry
- Experimental Plant Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany
| | - Jürgen Kreyling
- Experimental Plant Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17487 Greifswald, Germany
| |
Collapse
|
6
|
Zhang H, Tuittila ES, Korrensalo A, Laine AM, Uljas S, Welti N, Kerttula J, Maljanen M, Elliott D, Vesala T, Lohila A. Methane production and oxidation potentials along a fen-bog gradient from southern boreal to subarctic peatlands in Finland. GLOBAL CHANGE BIOLOGY 2021; 27:4449-4464. [PMID: 34091981 DOI: 10.1111/gcb.15740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Methane (CH4 ) emissions from northern peatlands are projected to increase due to climate change, primarily because of projected increases in soil temperature. Yet, the rates and temperature responses of the two CH4 emission-related microbial processes (CH4 production by methanogens and oxidation by methanotrophs) are poorly known. Further, peatland sites within a fen-bog gradient are known to differ in the variables that regulate these two mechanisms, yet the interaction between peatland type and temperature lacks quantitative understanding. Here, we investigated potential CH4 production and oxidation rates for 14 peatlands in Finland located between c. 60 and 70°N latitude, representing bogs, poor fens, and rich fens. Potentials were measured at three different temperatures (5, 17.5, and 30℃) using the laboratory incubation method. We linked CH4 production and oxidation patterns to their methanogen and methanotroph abundance, peat properties, and plant functional types. We found that the rich fen-bog gradient-related nutrient availability and methanogen abundance increased the temperature response of CH4 production, with rich fens exhibiting the greatest production potentials. Oxidation potential showed a steeper temperature response than production, which was explained by aerenchymous plant cover, peat water holding capacity, peat nitrogen, and sulfate content. The steeper temperature response of oxidation suggests that, at higher temperatures, CH4 oxidation might balance increased CH4 production. Predicting net CH4 fluxes as an outcome of the two mechanisms is complicated due to their different controls and temperature responses. The lack of correlation between field CH4 fluxes and production/oxidation potentials, and the positive correlation with aerenchymous plants points toward the essential role of CH4 transport for emissions. The scenario of drying peatlands under climate change, which is likely to promote Sphagnum establishment over brown mosses in many places, will potentially reduce the predicted warming-related increase in CH4 emissions by shifting rich fens to Sphagnum-dominated systems.
Collapse
Affiliation(s)
- Hui Zhang
- Institute for Atmospheric and Earth System Research (INAR), Department of Physics, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
| | | | - Aino Korrensalo
- Department of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Anna M Laine
- Department of Forest Sciences, University of Eastern Finland, Joensuu, Finland
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Geological Survey of Finland, Kuopio, Finland
| | - Salli Uljas
- Department of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Nina Welti
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna Kerttula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marja Maljanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - David Elliott
- Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research (INAR), Department of Physics, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Yugra State University, Khanty-Mansiysk, Russia
| | - Annalea Lohila
- Institute for Atmospheric and Earth System Research (INAR), Department of Physics, University of Helsinki, Helsinki, Finland
- Climate System Research, Finnish Meteorological Institute, Helsinki, Finland
| |
Collapse
|
7
|
Yang S, Liebner S, Svenning MM, Tøsdal Tveit A. Decoupling of microbial community dynamics and functions in Arctic peat soil exposed to short term warming. Mol Ecol 2021; 30:5094-5104. [PMID: 34387003 DOI: 10.1111/mec.16118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022]
Abstract
Temperature is an important factor governing microbe-mediated carbon feedback from permafrost soils. The link between taxonomic and functional microbial responses to temperature change remains elusive due to the lack of studies assessing both aspects of microbial ecology. Our previous study reported microbial metabolic and trophic shifts in response to short-term temperature increases in Arctic peat soil, and linked these shifts to higher CH4 and CO2 production rates (Tveit et al., 2015). Here, we studied the taxonomic composition and functional potential of samples from the same experiment. We see that along a high-resolution temperature gradient (1 - 30 °C), microbial communities change discretely, but not continuously or stochastically, in response to rising temperatures. The taxonomic variability may thus in part reflect the varied temperature responses of individual taxa and the competition between these taxa for resources. These taxonomic responses contrast the stable functional potential (metagenomics-based) across all temperatures or the previously observed metabolic or trophic shifts at key temperatures. Furthermore, with rising temperatures we observed a progressive decrease in species diversity (Shannon Index) and increased dispersion of greenhouse gas (GHG) production rates. We conclude that the taxonomic variation is decoupled from both the functional potential of the community and the previously observed temperature-dependent changes in microbial function. However, the reduced diversity at higher temperatures might help explain the higher variability in GHG production at higher temperatures.
Collapse
Affiliation(s)
- Sizhong Yang
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473, Potsdam, Germany.,Cyrosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Susanne Liebner
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473, Potsdam, Germany.,Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Mette Marianne Svenning
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Alexander Tøsdal Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
8
|
Chang KY, Riley WJ, Knox SH, Jackson RB, McNicol G, Poulter B, Aurela M, Baldocchi D, Bansal S, Bohrer G, Campbell DI, Cescatti A, Chu H, Delwiche KB, Desai AR, Euskirchen E, Friborg T, Goeckede M, Helbig M, Hemes KS, Hirano T, Iwata H, Kang M, Keenan T, Krauss KW, Lohila A, Mammarella I, Mitra B, Miyata A, Nilsson MB, Noormets A, Oechel WC, Papale D, Peichl M, Reba ML, Rinne J, Runkle BRK, Ryu Y, Sachs T, Schäfer KVR, Schmid HP, Shurpali N, Sonnentag O, Tang ACI, Torn MS, Trotta C, Tuittila ES, Ueyama M, Vargas R, Vesala T, Windham-Myers L, Zhang Z, Zona D. Substantial hysteresis in emergent temperature sensitivity of global wetland CH 4 emissions. Nat Commun 2021; 12:2266. [PMID: 33859182 PMCID: PMC8050324 DOI: 10.1038/s41467-021-22452-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.
Collapse
Affiliation(s)
- Kuang-Yu Chang
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - William J Riley
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Sara H Knox
- Department of Geography, The University of British Columbia, Vancouver, BC, Canada
| | - Robert B Jackson
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Woods Institute for the Environment and Precourt Institute for Energy, Stanford, CA, USA
| | - Gavin McNicol
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Benjamin Poulter
- NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD, USA
| | - Mika Aurela
- Finnish Meteorological Institute, Helsinki, Finland
| | - Dennis Baldocchi
- Department of Environmental Science, Policy & Management, UC Berkeley, Berkeley, CA, USA
| | - Sheel Bansal
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND, USA
| | - Gil Bohrer
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | | | | | - Housen Chu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kyle B Delwiche
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Ankur R Desai
- Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugenie Euskirchen
- University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK, USA
| | - Thomas Friborg
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K, Denmark
| | | | - Manuel Helbig
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
- Département de Géographie & Centre d'Études Nordiques, Montréal, QC, Canada
| | - Kyle S Hemes
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Takashi Hirano
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hiroki Iwata
- Department of Environmental Science, Faculty of Science, Shinshu University, Matsumoto, Japan
| | - Minseok Kang
- National Center for AgroMeteorology, Seoul, South Korea
| | - Trevor Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy & Management, UC Berkeley, Berkeley, CA, USA
| | - Ken W Krauss
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA, USA
| | - Annalea Lohila
- Finnish Meteorological Institute, Helsinki, Finland
- Institute for Atmosphere and Earth System Research/Physics, Faculty of Science, University of Helsink, Helsinki, Finland
| | - Ivan Mammarella
- Institute for Atmosphere and Earth System Research/Physics, Faculty of Science, University of Helsink, Helsinki, Finland
| | - Bhaskar Mitra
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Akira Miyata
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Asko Noormets
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, USA
| | - Walter C Oechel
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Dario Papale
- DIBAF, Università degli Studi della Tuscia, Largo dell'Università, Viterbo, Italy
| | - Matthias Peichl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Michele L Reba
- United States Department of Agriculture, Agricultural Research Service, Delta Water Management Research Service, Jonesboro, AR, USA
| | - Janne Rinne
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Benjamin R K Runkle
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Youngryel Ryu
- Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea
| | - Torsten Sachs
- GFZ German Research Centre for Geoscience, Potsdam, Germany
| | - Karina V R Schäfer
- Department of Biological Sciences, Rutgers University Newark, Newark, NJ, USA
| | - Hans Peter Schmid
- Institute of Meteorology and Climatology - Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Narasinha Shurpali
- Production Systems, Natural Resources Institute Finland, Maaninka, Finland
| | - Oliver Sonnentag
- Département de Géographie & Centre d'Études Nordiques, Montréal, QC, Canada
| | | | - Margaret S Torn
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carlo Trotta
- DIBAF, Università degli Studi della Tuscia, Largo dell'Università, Viterbo, Italy
- Euro-Mediterranean Center on Climate Change, CMCC IAFES, Viterbo, Italy
| | | | - Masahito Ueyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Rodrigo Vargas
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
| | - Timo Vesala
- Institute for Atmosphere and Earth System Research/Physics, Faculty of Science, University of Helsink, Helsinki, Finland
- Institute for Atmosphere and Earth System Research, Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | | | - Zhen Zhang
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | - Donatella Zona
- Department of Biology, San Diego State University, San Diego, CA, USA
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Li D, Ni H, Jiao S, Lu Y, Zhou J, Sun B, Liang Y. Coexistence patterns of soil methanogens are closely tied to methane generation and community assembly in rice paddies. MICROBIOME 2021; 9:20. [PMID: 33482926 PMCID: PMC7825242 DOI: 10.1186/s40168-020-00978-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/07/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Soil methanogens participate in complex interactions, which determine the community structures and functions. Studies continue to seek the coexistence patterns of soil methanogens, influencing factors and the contribution to methane (CH4) production, which are regulated primarily by species interactions, and the functional significance of these interactions. Here, methane emissions were measured in rice paddies across the Asian continent, and the complex interactions involved in coexistence patterns of methanogenic archaeal communities were represented as pairwise links in co-occurrence networks. RESULTS The network topological properties, which were positively correlated with mean annual temperature, were the most important predictor of CH4 emissions among all the biotic and abiotic factors. The methanogenic groups involved in commonly co-occurring links among the 39 local networks contributed most to CH4 emission (53.3%), much higher than the contribution of methanogenic groups with endemic links (36.8%). The potential keystone taxa, belonging to Methanobacterium, Methanocella, Methanothrix, and Methanosarcina, possessed high linkages with the methane generation functional genes mcrA, fwdB, mtbA, and mtbC. Moreover, the commonly coexisting taxa showed a very different assembly pattern, with ~ 30% determinism and ~ 70% stochasticity. In contrast, a higher proportion of stochasticity (93~99%) characterized the assembly of endemically coexisting taxa. CONCLUSIONS These results suggest that the coexistence patterns of microbes are closely tied to their functional significance, and the potential importance of common coexistence further imply that complex networks of interactions may contribute more than species diversity to soil functions. Video abstract.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Haowei Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Lafuente A, Recio J, Ochoa-Hueso R, Gallardo A, Pérez-Corona ME, Manrique E, Durán J. Simulated nitrogen deposition influences soil greenhouse gas fluxes in a Mediterranean dryland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139610. [PMID: 32535308 DOI: 10.1016/j.scitotenv.2020.139610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Soil nitrogen (N) availability is a key driver of soil-atmosphere greenhouse gas (GHG) exchange, yet we are far from understanding how increases in N deposition due to human activities will influence the net soil-atmosphere fluxes of the three most important GHGs: nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2). We simulated four levels of N deposition (10, 20 and 50 kg N ha-1 yr-1, plus unfertilised control) to evaluate their effects on N2O, CH4 and CO2 soil fluxes in a semiarid shrubland in central Spain. After 8 years of experimental fertilisation, increasing N availability led to a consistent increase in N2O emissions, likely due to simultaneous increases in soil microbial nitrification and/or denitrification processes. However, only intermediate levels of N fertilisation reduced CH4 uptake, while increasing N fertilisation had no effects on CO2 fluxes, suggesting complex interactions between N deposition loads and GHG fluxes. Our study provides novel insight into the responses of GHGs to N deposition in drylands, forecasting increases in N2O emissions, and decreases in CH4 uptake rates, with likely consequences to the on-going climate change.
Collapse
Affiliation(s)
- Angela Lafuente
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/ Tulipán s/n, 28933 Móstoles, Spain.
| | - Jaime Recio
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; Research Center for the Management of Environmental and Agricultural Risks (CEIGRAM), Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Raúl Ochoa-Hueso
- Departamento de Biología-IVAGRO, Universidad de Cádiz, Av. República Árabe Saharaui, 11510 Puerto Real, Cádiz, Spain
| | - Antonio Gallardo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - M Esther Pérez-Corona
- Departamento de Biodiversidad, Ecología y Evolución (UD Ecología), Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, c/ José Antonio Novais 12, 28040 Madrid, Spain
| | - Esteban Manrique
- Real Jardín Botánico, Consejo Superior de Investigaciones Científicas, c/ Claudio Moyano, 1, 28014 Madrid, Spain
| | - Jorge Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
11
|
Huth V, Günther A, Bartel A, Hofer B, Jacobs O, Jantz N, Meister M, Rosinski E, Urich T, Weil M, Zak D, Jurasinski G. Topsoil removal reduced in-situ methane emissions in a temperate rewetted bog grassland by a hundredfold. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137763. [PMID: 32172119 DOI: 10.1016/j.scitotenv.2020.137763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Peatland restoration is seen as an effective contribution to help achieve the aims of the Paris Agreement because currently huge amounts of peatlands in Northern Central Europe are under unsustainable drainage-based land use. If net zero greenhouse gas emissions from peatlands shall be reached by 2050, restoration measures have to be done as soon as possible. However, rewetting drained peatlands that were under intensive grassland use frequently results in high methane (CH4) emissions, which is often seen as a counter-argument against rewetting. To find the source of high CH4 emissions after rewetting and to explore the best possible way of peatland restoration (i.e., low CH4 emissions after rewetting) under near-natural conditions, we installed a field trial in a drained bog in north-western Germany. The trial consists of seven plots (~8 × 24 m2) representing the status quo-intensive grassland use- and six restoration approaches with combinations of rewetting either on the original surface or after topsoil removal (TSR), biomass harvesting or spreading Sphagnum spp. to initiate vegetation succession. On all seven plots we measured CH4 fluxes using closed chambers. In addition, we investigated CH4 production potential by incubating soil samples and determining methanogen abundance by quantitative PCR. Compared to rewetting on the original surface, CH4 emissions were reduced on TSR plots by factor 30 to 400. Spreading of Sphagnum spp. had only little effect on CH4 emissions during the first year of establishment. TSR also reduced CH4 production potential and methanogen abundance. Further, the response of CH4 fluxes to methanogen abundance was lower after TSR. This suggests that both reduction in labile substrate and in methanogen abundance contribute to near-zero CH4 emissions after TSR. These are the first field-scale results that demonstrate the efficiency of removing degraded topsoil to avoid high CH4 emissions after rewetting.
Collapse
Affiliation(s)
- Vytas Huth
- University of Rostock, Landscape Ecology, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany.
| | - Anke Günther
- University of Rostock, Landscape Ecology, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Anna Bartel
- Europäisches Fachzentrum Moor und Klima Wagenfeld GmbH, Auf dem Sande 11, 49419 Wagenfeld-Ströhen, Germany
| | - Bernd Hofer
- Hofer & Pautz GbR, Buchenallee 18, 48341 Altenberge, Germany
| | - Oona Jacobs
- University of Rostock, Landscape Ecology, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Nele Jantz
- Europäisches Fachzentrum Moor und Klima Wagenfeld GmbH, Auf dem Sande 11, 49419 Wagenfeld-Ströhen, Germany
| | - Mareike Meister
- University of Greifswald, Institute of Microbiology, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Eva Rosinski
- Hofer & Pautz GbR, Buchenallee 18, 48341 Altenberge, Germany
| | - Tim Urich
- University of Greifswald, Institute of Microbiology, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Micha Weil
- University of Greifswald, Institute of Microbiology, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Dominik Zak
- Aarhus University, Department of Bioscience, Vejlsovej 25, 8600 Silkeborg, Denmark
| | - Gerald Jurasinski
- University of Rostock, Landscape Ecology, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| |
Collapse
|
12
|
Iqbal A, Shang Z, Rehman MLU, Ju M, Rehman MMU, Rafiq MK, Ayub N, Bai Y. Pattern of microbial community composition and functional gene repertoire associated with methane emission from Zoige wetlands, China-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133675. [PMID: 31756831 DOI: 10.1016/j.scitotenv.2019.133675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The Hindu-Kush Himalaya region extends over 4 million km2 across the eight countries. Knowingly, the Qinghai-Tibetan Plateau (QTP) is considered the principal altitudinal permafrost constituent on earth and is deemed as the third 'pole'. Among which, the Zoige wetlands are located in the northeastern boundary of QTP, wrapping a total area of 6180 km2 with an average altitude of 3500 m. This entire region is the hotspot for methane emission since the last decade. Given the importance of methane emission, many studies have focused on the effect of environmental fluctuations on the overall methane profile and, more recently on the methanogenic community structure. The current review summarizes recent advancements of the methanogenic community and methane profile and outlines a framework for better understanding of the microbial ecology of the Zoige wetlands, China. Moreover, as microorganisms are indispensable to biogeochemical cycles, especially for methane, they are believed to be the best indicators to identify the condition of wetlands. Hence, we suggest that, underpinning the microbial profile could help understand the status of a wetland.
Collapse
Affiliation(s)
- Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, PR China
| | - Zhanhuan Shang
- School of Life Sciences, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, PR China.
| | - Mian Laiq Ur Rehman
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Meiting Ju
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Muhammad Maqsood Ur Rehman
- School of Life Sciences, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, PR China
| | - Muhammad Khalid Rafiq
- Rangeland Research Institute, National Agricultural Research Center, Islamabad 44000, Pakistan; UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Building, Edinburgh EH93FF, United Kingdom
| | - Nasir Ayub
- School of Life Sciences, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, PR China
| | - Yanfu Bai
- School of Life Sciences, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
13
|
Yarwood SA. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiol Ecol 2019; 94:5087730. [PMID: 30169564 DOI: 10.1093/femsec/fiy175] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
New soil organic matter (SOM) models highlight the role of microorganisms in plant litter decomposition and storage of microbial-derived carbon (C) molecules. Wetlands store more C per unit area than any other ecosystem, but SOM storage mechanisms such as aggregation and metal complexes are mostly untested in wetlands. This review discusses what is currently known about the role of microorganisms in SOM formation and C sequestrations, as well as, measures of microbial communities as they relate to wetland C cycling. Studies within the last decade have yielded new insights about microbial communities. For example, microbial communities appear to be adapted to short-term fluctuations in saturation and redox and researchers have observed synergistic pairings that in some cases run counter to thermodynamic theory. Significant knowledge gaps yet to be filled include: (i) What controls microbial access to and decomposition of plant litter and SOM? (ii) How does microbial community structure shape C fate, across different wetland types? (iii) What types of plant and microbial molecules contribute to SOM accumulation? Studies examining the active microbial community directly or that utilize multi-pronged approaches are shedding new light on microbial functional potential, however, and promise to improve wetland C models in the near future.
Collapse
Affiliation(s)
- Stephanie A Yarwood
- Environmental Science and Technology Department, University of Maryland, 1204 HJ Patterson Hall, College Park, MD 20742, USA
| |
Collapse
|
14
|
Sun Y, Wen C, Liang X, He C. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32603-32616. [PMID: 30242654 DOI: 10.1007/s11356-018-3128-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Spent mushroom substrate (SMS) as an organic amendment to plant production has received increasing attention on soil phytoremediation. However, organic amendments are known to contribute to greenhouse gas (GHG) emission from soils. Castor oil plant has a high biomass production and phytoremediation potential for heavy metal-contaminated soils. In the present study, the roles of SMS on phytoremediation efficiency of castor oil plant (Ricinus communis L.) from cadmium (Cd) and nickel (Ni)-contaminated soils were investigated, and the impact of SMS application on methane emission from the contaminated soil were evaluated. Pot experiments with SMS-amended and unamended contaminated soils were conducted to investigate Cd and Ni accumulation in R. communis and CH4 emission. After growing for 3 months in soils with the addition of Cd (10 mg/kg) and Ni (at rates of 200 and 600 mg/kg), the dry biomass and the concentrations of Cd and Ni in the R. communis were measured, and the mobility factors for Cd and Ni were calculated. To assess methane emission, CH4 fluxes and potential rates of CH4 production and oxidation were measured pre- and post-incubation. SMS addition significantly improved the growth of R. communis and gave 19.15~82.46% more dry weight as compared to the single plant cultivation in the contaminated soils. SMS also increased plant Cd uptake and the total amount of Cd accumulation in R. communis increased by 28.1-152.1%, respectively, in signal Cd treatment and Cd-Ni complexation treatment, as compared to the single plant cultivation. The high values of mobility factor for Cd in single plant cultivation and co-application of SMS and R. communis pointed to the potential of R. communis to the Cd mobilization from the contaminated soils. Moreover, the addition of SMS tended to stimulate CH4 uptake that the average increases in CH4 uptake rate were 3.84-fold (in controls) and 2.91-fold (in single Cd treated soils) by the co-application of SMS and R. communis as compared to the single plant cultivation. The results suggested that the application of SMS could improve the growth of R. communis in Cd and Ni-contaminated soil, enhance heavy metal bioaccumulation, and stimulate soil CH4 uptake. Therefore, SMS might be useful for enhancing phytoremediation of heavy metals and mitigate CH4 emission from the contaminated soil. In addition, results in the study implied that implementing carefully designed management strategies (e.g., application of organic residues) during contaminated soil remediation is a promising solution for agricultural waste management and soil phytoremediation.
Collapse
Affiliation(s)
- Yiqi Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 2000444, China
| | - Chengfeng Wen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 2000444, China
| | - Xia Liang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 2000444, China.
| | - Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 2000444, China
| |
Collapse
|
15
|
Cheung MK, Wong CK, Chu KH, Kwan HS. Community Structure, Dynamics and Interactions of Bacteria, Archaea and Fungi in Subtropical Coastal Wetland Sediments. Sci Rep 2018; 8:14397. [PMID: 30258074 PMCID: PMC6158284 DOI: 10.1038/s41598-018-32529-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/06/2018] [Indexed: 01/04/2023] Open
Abstract
Bacteria, archaea and fungi play crucial roles in wetland biogeochemical processes. However, little is known about their community structure, dynamics and interactions in subtropical coastal wetlands. Here, we examined communities of the three kingdoms in mangrove and mudflat sediments of a subtropical coastal wetland using Ion Torrent amplicon sequencing and co-occurrence network analysis. Bacterial, archaeal and fungal communities comprised mainly of members from the phyla Proteobacteria and Bacteroidetes, Bathyarchaeota and Euryarchaeota, and Ascomycota, respectively. Species richness and Shannon diversity were highest in bacteria, followed by archaea and were lowest in fungi. Distinct spatiotemporal patterns were observed, with bacterial and fungal communities varying, to different extent, between wet and dry seasons and between mangrove and mudflat, and archaeal community remaining relatively stable between seasons and regions. Redundancy analysis revealed temperature as the major driver of the seasonal patterns of bacterial and fungal communities but also highlighted the importance of interkingdom biotic factors in shaping the community structure of all three kingdoms. Potential ecological interactions and putative keystone taxa were identified based on co-occurrence network analysis. These findings facilitate current understanding of the microbial ecology of subtropical coastal wetlands and provide a basis for better modelling of ecological processes in this important ecosystem.
Collapse
Affiliation(s)
- Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chong Kim Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
16
|
Treat CC, Bloom AA, Marushchak ME. Nongrowing season methane emissions-a significant component of annual emissions across northern ecosystems. GLOBAL CHANGE BIOLOGY 2018; 24:3331-3343. [PMID: 29569301 DOI: 10.1111/gcb.14137] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
Wetlands are the single largest natural source of atmospheric methane (CH4 ), a greenhouse gas, and occur extensively in the northern hemisphere. Large discrepancies remain between "bottom-up" and "top-down" estimates of northern CH4 emissions. To explore whether these discrepancies are due to poor representation of nongrowing season CH4 emissions, we synthesized nongrowing season and annual CH4 flux measurements from temperate, boreal, and tundra wetlands and uplands. Median nongrowing season wetland emissions ranged from 0.9 g/m2 in bogs to 5.2 g/m2 in marshes and were dependent on moisture, vegetation, and permafrost. Annual wetland emissions ranged from 0.9 g m-2 year-1 in tundra bogs to 78 g m-2 year-1 in temperate marshes. Uplands varied from CH4 sinks to CH4 sources with a median annual flux of 0.0 ± 0.2 g m-2 year-1 . The measured fraction of annual CH4 emissions during the nongrowing season (observed: 13% to 47%) was significantly larger than that was predicted by two process-based model ensembles, especially between 40° and 60°N (modeled: 4% to 17%). Constraining the model ensembles with the measured nongrowing fraction increased total nongrowing season and annual CH4 emissions. Using this constraint, the modeled nongrowing season wetland CH4 flux from >40° north was 6.1 ± 1.5 Tg/year, three times greater than the nongrowing season emissions of the unconstrained model ensemble. The annual wetland CH4 flux was 37 ± 7 Tg/year from the data-constrained model ensemble, 25% larger than the unconstrained ensemble. Considering nongrowing season processes is critical for accurately estimating CH4 emissions from high-latitude ecosystems, and necessary for constraining the role of wetland emissions in a warming climate.
Collapse
Affiliation(s)
- Claire C Treat
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - A Anthony Bloom
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Maija E Marushchak
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Zhang Y, Cui M, Duan J, Zhuang X, Zhuang G, Ma A. Abundance, rather than composition, of methane-cycling microbes mainly affects methane emissions from different vegetation soils in the Zoige alpine wetland. Microbiologyopen 2018; 8:e00699. [PMID: 30047238 PMCID: PMC6460274 DOI: 10.1002/mbo3.699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/09/2018] [Accepted: 06/25/2018] [Indexed: 11/10/2022] Open
Abstract
Methane fluxes, which are controlled by methanogens and methanotrophs, vary among wetland vegetation species. In this study, we investigated belowground methanogens and methanotrophs in two soils under two different dominant vegetation species with different methane fluxes in the Zoige wetland, which was slightly but significantly (p ≤ 0.05) higher in soils covered by Carex muliensis than that in soils covered by Eleocharis valleculosa. Real‐time quantitative PCR and Illumina MiSeq sequencing methods were used to elucidate the microbial communities based on the key genes involved in methane production and oxidation. The absolute abundances of methanogens and methanotrophs of samples from C. muliensis were 1.80 ± 0.07 × 106 and 4.03 ± 0.28 × 106 copies g‐soil−1, respectively, and which from E. valleculosa were 3.99 ± 0.19 × 105 and 2.53 ± 0.22 × 106 copies g‐soil−1 , respectively. The t‐test result showed that both the abundance of methanogens and methanotrophs from C. muliensis were significantly higher (p ≤ 0.05) than that of samples from E. valleculosa. However, the diversities and compositions of both methanogens and methanotrophs showed no significant differences (p ≥ 0.05) between vegetation species. The path analysis showed that the microbial abundance had a greater effect than the microbial diversity on methane production potentials and the regression analysis also showed that the methane emissions significantly (p ≤ 0.05) varied with the abundance of methane‐cycling microbes. These findings imply that abundance rather than diversity and composition of a methane‐cycling microbial community is the major contributor to the variations in methane emissions between vegetation types in the Zoige wetland.
Collapse
Affiliation(s)
- Yanfen Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Cui
- University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingbo Duan
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Matheus Carnevali PB, Herbold CW, Hand KP, Priscu JC, Murray AE. Distinct Microbial Assemblage Structure and Archaeal Diversity in Sediments of Arctic Thermokarst Lakes Differing in Methane Sources. Front Microbiol 2018; 9:1192. [PMID: 29930542 PMCID: PMC6000721 DOI: 10.3389/fmicb.2018.01192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/16/2018] [Indexed: 12/04/2022] Open
Abstract
Developing a microbial ecological understanding of Arctic thermokarst lake sediments in a geochemical context is an essential first step toward comprehending the contributions of these systems to greenhouse gas emissions, and understanding how they may shift as a result of long term changes in climate. In light of this, we set out to study microbial diversity and structure in sediments from four shallow thermokarst lakes in the Arctic Coastal Plain of Alaska. Sediments from one of these lakes (Sukok) emit methane (CH4) of thermogenic origin, as expected for an area with natural gas reserves. However, sediments from a lake 10 km to the North West (Siqlukaq) produce CH4 of biogenic origin. Sukok and Siqlukaq were chosen among the four lakes surveyed to test the hypothesis that active CH4-producing organisms (methanogens) would reflect the distribution of CH4 gas levels in the sediments. We first examined the structure of the little known microbial community inhabiting the thaw bulb of arctic thermokarst lakes near Barrow, AK. Molecular approaches (PCR-DGGE and iTag sequencing) targeting the SSU rRNA gene and rRNA molecule were used to profile diversity, assemblage structure, and identify potentially active members of the microbial assemblages. Overall, the potentially active (rRNA dominant) fraction included taxa that have also been detected in other permafrost environments (e.g., Bacteroidetes, Actinobacteria, Nitrospirae, Chloroflexi, and others). In addition, Siqlukaq sediments were unique compared to the other sites, in that they harbored CH4-cycling organisms (i.e., methanogenic Archaea and methanotrophic Bacteria), as well as bacteria potentially involved in N cycling (e.g., Nitrospirae) whereas Sukok sediments were dominated by taxa typically involved in photosynthesis and biogeochemical sulfur (S) transformations. This study revealed a high degree of archaeal phylogenetic diversity in addition to CH4-producing archaea, which spanned nearly the phylogenetic extent of currently recognized Archaea phyla (e.g., Euryarchaeota, Bathyarchaeota, Thaumarchaeota, Woesearchaeota, Pacearchaeota, and others). Together these results shed light on expansive bacterial and archaeal diversity in Arctic thermokarst lakes and suggest important differences in biogeochemical potential in contrasting Arctic thermokarst lake sediment ecosystems.
Collapse
Affiliation(s)
| | - Craig W Herbold
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Kevin P Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - John C Priscu
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, United States
| | - Alison E Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| |
Collapse
|
19
|
Jones ZL, Mikkelson KM, Nygren S, Sedlak DL, Sharp JO. Establishment and convergence of photosynthetic microbial biomats in shallow unit process open-water wetlands. WATER RESEARCH 2018; 133:132-141. [PMID: 29407695 DOI: 10.1016/j.watres.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/23/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
The widespread adoption of engineered wetlands designed for water treatment is hindered by uncertainties in system reliability, resilience and management associated with coupled biological and physical processes. To better understand how shallow unit process open-water wetlands self-colonize and evolve, we analyzed the composition of the microbial community in benthic biomats from system establishment through approximately 3 years of operation. Our analysis was conducted across three parallel demonstration-scale (7500 m2) cells located within the Prado Constructed Wetlands in Southern California. They received water from the Santa Ana River (5.9 ± 0.2 mg/L NO3-N), a water body where the flow is dominated by municipal wastewater effluent from May to November. Phylogenetic inquiry and microscopy confirmed that diatoms and an associated aerobic bacterial community facilitated early colonization. After approximately nine months of operation, coinciding with late summer, an anaerobic community emerged with the capability for nitrate attenuation. Varying the hydraulic residence time (HRT) from 1 to 4 days the subsequent year resulted in modest ecological changes across the three parallel cells that were most evident in the outlet regions of the cells. The community that established at this time was comparatively stable for the remaining years of operation and converged with one that had previously formed approximately 550 km (350 miles) away in a pilot-scale (400 m2) wetland in Northern California. That system received denitrified (20.7 ± 0.7 mg/L NO3-N), secondary treated municipal wastewater for 5 years of operation. Establishment of a core microbiome between the two systems revealed a strong overlap of both aerobic and anaerobic taxa with approximately 50% of the analyzed bacterial sequences shared between the two sites. Additionally the same species of diatom, Stauirsa construens var. venter, was prolific in both systems as the putative dominant primary producer. Our results indicate that despite differences in scale, geographic location and source waters, the shallow open-water wetland design can select for a rapid convergence of microbial structure and functionality associated with the self-colonizing benthic biomat. This resulting biomat matures over the first growing season with operational parameters such as HRT further exerting a modest selective bias on community succession.
Collapse
Affiliation(s)
- Zackary L Jones
- ReNUWIt Engineering Research Center, United States; Department of Civil & Environmental Engineering, Hydrologic Science & Engineering Program, Colorado School of Mines, Golden, CO 80401, United States
| | - Kristin M Mikkelson
- ReNUWIt Engineering Research Center, United States; Department of Civil & Environmental Engineering, Hydrologic Science & Engineering Program, Colorado School of Mines, Golden, CO 80401, United States
| | - Scott Nygren
- ReNUWIt Engineering Research Center, United States; Orange County Water District, Fountain Valley, CA 92708, United States
| | - David L Sedlak
- ReNUWIt Engineering Research Center, United States; Department of Civil & Environmental Engineering, University of California at Berkeley, Berkeley, CA 94720, United States
| | - Jonathan O Sharp
- ReNUWIt Engineering Research Center, United States; Department of Civil & Environmental Engineering, Hydrologic Science & Engineering Program, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
20
|
Cui H, Su X, Wei S, Zhu Y, Lu Z, Wang Y, Li Y, Liu H, Zhang S, Pang S. Comparative Analyses of Methanogenic and Methanotrophic Communities Between Two Different Water Regimes in Controlled Wetlands on the Qinghai-Tibetan Plateau, China. Curr Microbiol 2017; 75:484-491. [PMID: 29188321 DOI: 10.1007/s00284-017-1407-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Wetlands are an important methane (CH4) emission source. CH4 is mainly produced during the biogeochemical process, in which methanogens and methanotrophs both play important roles. However, little is known how these two microbial communities change under different water regimes. In this study, the diversity and abundance of methanogens and methanotrophs in wetlands on Qinghai-Tibetan Plateau with different water contents (a high water content site DZ2-14-3 and a low water content site DZ2-14-4) were studied by using phylogenetic analysis and quantitative PCR based on mcrA gene and pmoA gene. A total of 16 methanogenic operational taxonomic units (OTUs) and 9 methanotrophic OTUs are obtained. For methanogens, Fen cluster (58.0%) and Methanosaetaceae (20.3%) are the dominant groups in high moisture samples, whereas Methanosaetaceae (32.4%), Methanosarcinaceae (29.4%), and Methanobacteriaceae (22.1%) are prevalent in low moisture samples. Methylobacter (90.0%) of type I methanotrophs are overwhelmingly dominant in high moisture samples, while Methylocystis (53.3%) and Methylomonas (42.2%) belonging to types II and I methanotrophs are the predominant groups in low moisture samples. Furthermore, qPCR analysis revealed that the abundance of methanogens and methanotrophs were higher in high moisture samples than that in low moisture samples. Overall, this comparative study between wetlands controlled by two different water regimes on the Qinghai-Tibetan Plateau provides fundamental data for further research on microbial functions within extreme ecosystems.
Collapse
Affiliation(s)
- Hongpeng Cui
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.,School of Marine Sciences, China University of Geosciences, Beijing, 100083, China
| | - Xin Su
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China. .,School of Marine Sciences, China University of Geosciences, Beijing, 100083, China.
| | - Shiping Wei
- School of Marine Sciences, China University of Geosciences, Beijing, 100083, China
| | - Youhai Zhu
- Oil and Gas Survey, China Geological Survey, Beijing, 100029, China
| | - Zhenquan Lu
- Oil and Gas Survey, China Geological Survey, Beijing, 100029, China
| | - Yanfa Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.,School of Marine Sciences, China University of Geosciences, Beijing, 100083, China
| | - Yuejiao Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.,School of Marine Sciences, China University of Geosciences, Beijing, 100083, China
| | - Hui Liu
- Oil and Gas Survey, China Geological Survey, Beijing, 100029, China
| | - Shuai Zhang
- Oil and Gas Survey, China Geological Survey, Beijing, 100029, China
| | - Shouji Pang
- Oil and Gas Survey, China Geological Survey, Beijing, 100029, China
| |
Collapse
|
21
|
Golyshina OV, Toshchakov SV, Makarova KS, Gavrilov SN, Korzhenkov AA, La Cono V, Arcadi E, Nechitaylo TY, Ferrer M, Kublanov IV, Wolf YI, Yakimov MM, Golyshin PN. 'ARMAN' archaea depend on association with euryarchaeal host in culture and in situ. Nat Commun 2017; 8:60. [PMID: 28680072 PMCID: PMC5498576 DOI: 10.1038/s41467-017-00104-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/31/2017] [Indexed: 11/09/2022] Open
Abstract
Intriguing, yet uncultured ‘ARMAN’-like archaea are metabolically dependent on other members of the microbial community. It remains uncertain though which hosts they rely upon, and, because of the lack of complete genomes, to what extent. Here, we report the co-culturing of ARMAN-2-related organism, Mia14, with Cuniculiplasma divulgatum PM4 during the isolation of this strain from acidic streamer in Parys Mountain (Isle of Anglesey, UK). Mia14 is highly enriched in the binary culture (ca. 10% genomic reads) and its ungapped 0.95 Mbp genome points at severe voids in central metabolic pathways, indicating dependence on the host, C. divulgatum PM4. Analysis of C. divulgatum isolates from different sites and shotgun sequence data of Parys Mountain samples suggests an extensive genetic exchange between Mia14 and hosts in situ. Within the subset of organisms with high-quality genomic assemblies representing the ‘DPANN’ superphylum, the Mia14 lineage has had the largest gene flux, with dozens of genes gained that are implicated in the host interaction. In the absence of complete genomes, the metabolic capabilities of uncultured ARMAN-like archaea have been uncertain. Here, Golyshina et al. apply an enrichment culture technique and find that the ungapped genome of the ARMAN-like archaeon Mia14 has lost key metabolic pathways, suggesting dependence on the host archaeon Cuniculiplasma divulgatum.
Collapse
Affiliation(s)
- Olga V Golyshina
- School of Biological Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK.
| | | | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine-National Institutes of Health, Bethesda, MD, 20894, USA
| | - Sergey N Gavrilov
- Winogradsky Institute of Microbiology, Research Center for Biotechnology Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312, Russia
| | | | - Violetta La Cono
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Erika Arcadi
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Taras Y Nechitaylo
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, 07745, Germany
| | - Manuel Ferrer
- Institute of Catalysis CSIC, Campus Cantoblanco, 28049, Madrid, Spain
| | - Ilya V Kublanov
- Immanuel Kant Baltic Federal University, Kaliningrad, 236040, Russia.,Winogradsky Institute of Microbiology, Research Center for Biotechnology Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312, Russia
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine-National Institutes of Health, Bethesda, MD, 20894, USA
| | - Michail M Yakimov
- Immanuel Kant Baltic Federal University, Kaliningrad, 236040, Russia.,Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK
| |
Collapse
|
22
|
Crevecoeur S, Vincent WF, Lovejoy C. Environmental selection of planktonic methanogens in permafrost thaw ponds. Sci Rep 2016; 6:31312. [PMID: 27501855 PMCID: PMC4977513 DOI: 10.1038/srep31312] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023] Open
Abstract
The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type.
Collapse
Affiliation(s)
- Sophie Crevecoeur
- Département de Biologie, Centre d'études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
| | - Warwick F Vincent
- Département de Biologie, Centre d'études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
| | - Connie Lovejoy
- Département de Biologie, Centre d'études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada.,Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
23
|
Morris R, Tale V, Mathai P, Zitomer D, Maki J. mcrA
Gene abundance correlates with hydrogenotrophic methane production rates in full-scale anaerobic waste treatment systems. Lett Appl Microbiol 2015; 62:111-8. [DOI: 10.1111/lam.12515] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/09/2015] [Accepted: 10/23/2015] [Indexed: 11/28/2022]
Affiliation(s)
- R.L. Morris
- Department of Biological Sciences; Marquette University; Milwaukee WI USA
| | - V.P. Tale
- Department of Civil, Construction and Environmental Engineering; Water Quality Center; Marquette University; Milwaukee WI USA
| | - P.P. Mathai
- Department of Biological Sciences; Marquette University; Milwaukee WI USA
| | - D.H. Zitomer
- Department of Civil, Construction and Environmental Engineering; Water Quality Center; Marquette University; Milwaukee WI USA
| | - J.S. Maki
- Department of Biological Sciences; Marquette University; Milwaukee WI USA
| |
Collapse
|
24
|
Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands. Appl Microbiol Biotechnol 2015; 99:10779-91. [DOI: 10.1007/s00253-015-6912-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 11/24/2022]
|
25
|
Fu L, Song T, Lu Y. Snapshot of methanogen sensitivity to temperature in Zoige wetland from Tibetan plateau. Front Microbiol 2015; 6:131. [PMID: 25745422 PMCID: PMC4333864 DOI: 10.3389/fmicb.2015.00131] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/04/2015] [Indexed: 12/02/2022] Open
Abstract
Zoige wetland in Tibetan plateau represents a cold environment at high altitude where significant methane emission has been observed. However, it remains unknown how the production and emission of CH4 from Zoige wetland will respond to a warming climate. Here we investigated the temperature sensitivity of methanogen community in a Zoige wetland soil under the laboratory incubation conditions. One soil sample was collected and the temperature sensitivity of the methanogenic activity, the structure of methanogen community and the methanogenic pathways were determined. We found that the response of methanogenesis to temperature could be separated into two phases, a high sensitivity in the low temperature range and a modest sensitivity under mesophilic conditions, respectively. The aceticlastic methanogens Methanosarcinaceae were the main methanogens at low temperatures, while hydrogenotrophic Methanobacteriales, Methanomicrobiales, and Methanocellales were more abundant at higher temperatures. The total abundance of mcrA genes increased with temperature indicating that the growth of methanogens was stimulated. The growth of hydrogenotrophic methanogens, however, was faster than aceticlastic ones resulting in the shift of methanogen community. Determination of carbon isotopic signatures indicated that methanogenic pathway was also shifted from mainly aceticlastic methanogenesis to a mixture of hydrogenotrophic and aceticlastic methanogenesis with the increase of temperature. Collectively, the shift of temperature responses of methanogenesis was in accordance with the changes in methanogen composition and methanogenic pathway in this wetland sample. It appears that the aceticlastic methanogenesis dominating at low temperatures is more sensitive than the hydrogenotrophic one at higher temperatures.
Collapse
Affiliation(s)
- Li Fu
- College of Resources and Environmental Sciences, China Agricultural University Beijing, China
| | - Tianze Song
- School of Life Science, Fudan University Shanghai, China ; College of Urban and Environmental Sciences, Peking University Beijing, China
| | - Yahai Lu
- College of Resources and Environmental Sciences, China Agricultural University Beijing, China ; College of Urban and Environmental Sciences, Peking University Beijing, China
| |
Collapse
|
26
|
Alvarado A, Montañez-Hernández LE, Palacio-Molina SL, Oropeza-Navarro R, Luévanos-Escareño MP, Balagurusamy N. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters. Front Microbiol 2014; 5:597. [PMID: 25429286 PMCID: PMC4228917 DOI: 10.3389/fmicb.2014.00597] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/22/2014] [Indexed: 11/13/2022] Open
Abstract
Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Laboratorio de Biorremediación, Escuela de Ciencias Biológicas, Universidad Autónoma de Coahuila, TorreónMéxico
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, MarburgGermany
| | - Lilia E. Montañez-Hernández
- Laboratorio de Biorremediación, Escuela de Ciencias Biológicas, Universidad Autónoma de Coahuila, TorreónMéxico
| | - Sandra L. Palacio-Molina
- Laboratorio de Biorremediación, Escuela de Ciencias Biológicas, Universidad Autónoma de Coahuila, TorreónMéxico
| | | | - Miriam P. Luévanos-Escareño
- Laboratorio de Biorremediación, Escuela de Ciencias Biológicas, Universidad Autónoma de Coahuila, TorreónMéxico
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Escuela de Ciencias Biológicas, Universidad Autónoma de Coahuila, TorreónMéxico
| |
Collapse
|
27
|
Etto RM, Cruz LM, da Conceição Jesus E, Galvão CW, Galvão F, de Souza EM, de Oliveira Pedrosa F, Reynaud Steffens MB. Seasonal changes in dominant bacterial taxa from acidic peatlands of the Atlantic Rain Forest. Res Microbiol 2014; 165:517-25. [PMID: 24893336 DOI: 10.1016/j.resmic.2014.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/22/2014] [Indexed: 11/25/2022]
Abstract
The acidic peatlands of southern Brazil are essential for maintenance of the Atlantic Rain Forest, one of the 25 hot-spots of biodiversity in the world. While these ecosystems are closely linked to conservation issues, their microbial community ecology and composition remain unknown. In this work, histosol samples were collected from three acidic peatland regions during dry and rainy seasons and their chemical and microbial characteristics were evaluated. Culturing and culture-independent approaches based on SSU rRNA gene pyrosequencing were used to survey the bacterial community and to identify environmental factors affecting the biodiversity and microbial metabolic potential of the Brazilian peatlands. All acidic peatlands were dominated by the Acidobacteria phylum (56-22%) followed by Proteobacteria (28-12%). The OTU richness of these phyla and the abundance of their Gp1, Gp2, Gp3, Gp13, Rhodospirillales and Caulobacteriales members varied according to the period of collection and significantly correlated with the rainy season. However, despite changes in acidobacterial and proteobacterial communities, rainfall did not affect the microbial metabolic potential of the southern Brazilian Atlantic Rain Forest peatlands, as judged by the metabolic capabilities of the microbial community.
Collapse
Affiliation(s)
- Rafael Mazer Etto
- Department of Chemistry, Universidade Estadual de Ponta Grossa, CEP 84030-900, Ponta Grossa, Paraná, Brazil.
| | - Leonardo Magalhães Cruz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Caixa Postal 19046, CEP 81531-990, Curitiba, Paraná, Brazil.
| | | | - Carolina Weigert Galvão
- Department of Structural and Molecular Biology and Genetics, Universidade Estadual de Ponta Grossa, CEP 84030-900, Ponta Grossa, Paraná, Brazil.
| | - Franklin Galvão
- Department of Forest Sciences, Universidade Federal do Paraná, CEP 80210-170, Curitiba, Paraná, Brazil.
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Caixa Postal 19046, CEP 81531-990, Curitiba, Paraná, Brazil.
| | - Fábio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Caixa Postal 19046, CEP 81531-990, Curitiba, Paraná, Brazil.
| | - Maria Berenice Reynaud Steffens
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Caixa Postal 19046, CEP 81531-990, Curitiba, Paraná, Brazil.
| |
Collapse
|
28
|
Hawkins AN, Johnson KW, Bräuer SL. Southern Appalachian peatlands support high archaeal diversity. MICROBIAL ECOLOGY 2014; 67:587-602. [PMID: 24419541 DOI: 10.1007/s00248-013-0352-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Mid-latitude peatlands with a temperate climate are sparsely studied and as such represent a gap in the current knowledge base regarding archaeal populations present and their roles in these environments. Phylogenetic analysis of the archaeal populations among three peatlands in the Southern Appalachians reveal not only methanogenic species but also significant populations of thaumarchaeal and crenarchaeal-related organisms of the uncultured miscellaneous crenarchaeotal group (MCG) and the terrestrial group 1.1c, as well as deep-branching Euryarchaeota primarily within the Lake Dagow sediment and rice cluster V lineages. The Thaum/Crenarchaea and deep-branching Euryarchaea represented approximately 24-83% and 2-18%, respectively, of the total SSU rRNA clones retrieved in each library, and methanogens represented approximately 14-72% of the clones retrieved. Several taxa that are either rare or novel to acidic peatlands were detected including the euryarchaeal SM1K20 cluster and thaumarchaeal/crenarchaeal-related clusters 1.1a, C3, SAGMCG-1, pSL12, and AK59. All three major groups (methanogens, Thaumarchaea/Crenarchaea, and deep-branching Euryarchaea) were detected in the RNA library, suggesting at least a minimum level of maintenance activity. Compared to their northern counterparts, Southern Appalachian peatlands appear to harbor a relatively high diversity of Archaea and exhibit a high level of intra-site heterogeneity.
Collapse
Affiliation(s)
- A N Hawkins
- Department of Biology, Appalachian State University, 572 Rivers Street, Boone, NC, 28608, USA
| | | | | |
Collapse
|
29
|
Bao QL, Xiao KQ, Chen Z, Yao HY, Zhu YG. Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw. FEMS Microbiol Ecol 2014; 88:372-85. [DOI: 10.1111/1574-6941.12305] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 11/25/2022] Open
Affiliation(s)
- Qiong-Li Bao
- State Key Laboratory of Urban and Regional Ecology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| | - Ke-Qing Xiao
- State Key Laboratory of Urban and Regional Ecology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Zheng Chen
- State Key Laboratory of Urban and Regional Ecology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| | - Huai-Ying Yao
- Key Lab of Urban Environment and Health; Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
- Key Lab of Urban Environment and Health; Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| |
Collapse
|
30
|
Substrate and/or substrate-driven changes in the abundance of methanogenic archaea cause seasonal variation of methane production potential in species-specific freshwater wetlands. Appl Microbiol Biotechnol 2014; 98:4711-21. [PMID: 24535255 DOI: 10.1007/s00253-014-5571-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
There are large temporal and spatial variations of methane (CH4) emissions from natural wetlands. To understand temporal changes of CH4 production potential (MPP), soil samples were collected from a permanently inundated Carex lasiocarpa marsh and a summer inundated Calamagrostis angustifolia marsh over the period from June to October of 2011. MPP, dissolved organic carbon (DOC) concentration, abundance and community structure of methanogenic archaea were assessed. In the C. lasiocarpa marsh, DOC concentration, MPP and the methanogen population showed similar seasonal variations and maximal values in September. MPP and DOC in the C. angustifolia marsh exhibited seasonal variations and values peaked during August, while the methanogen population decreased with plant growth. Methanogen abundance correlated significantly (P = 0.02) with DOC only for the C. lasiocarpa marsh. During the sampling period, the dominant methanogens were the Methanosaetaceae and Zoige cluster I (ZC-Ι) in the C. angustifolia marsh, and Methanomicrobiales and ZC-Ι in the C. lasiocarpa marsh. MPP correlated significantly (P = 0.04) with DOC and methanogen population in the C. lasiocarpa marsh but only with DOC in the C. angustifolia marsh. Addition of C. lasiocarpa litter enhanced MPP more effectively than addition of C. angustifolia litter, indicating that temporal variation of substrates is controlled by litter deposition in the C. lasiocarpa marsh while living plant matter is more important in the C. angustifolia marsh. This study indicated that there was no apparent shift in the dominant types of methanogen during the growth season in the species-specific freshwater wetlands. Temporal variation of MPP is controlled by substrates and substrate-driven changes in the abundance of methanogenic archaea in the C. lasiocarpa marsh, while MPP depends only on substrate availability derived from root exudates or soil organic matter in the C. angustifolia marsh.
Collapse
|
31
|
Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage. ISME JOURNAL 2014; 8:1259-74. [PMID: 24430486 PMCID: PMC4030236 DOI: 10.1038/ismej.2013.242] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/27/2013] [Accepted: 12/04/2013] [Indexed: 01/07/2023]
Abstract
Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including ‘ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called ‘ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths.
Collapse
|
32
|
Morris R, Schauer-Gimenez A, Bhattad U, Kearney C, Struble CA, Zitomer D, Maki JS. Methyl coenzyme M reductase (mcrA) gene abundance correlates with activity measurements of methanogenic H₂ /CO₂ -enriched anaerobic biomass. Microb Biotechnol 2013; 7:77-84. [PMID: 24320083 PMCID: PMC3896932 DOI: 10.1111/1751-7915.12094] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/22/2013] [Indexed: 12/02/2022] Open
Abstract
Biologically produced methane (CH4) from anaerobic digesters is a renewable alternative to fossil fuels, but digester failure can be a serious problem. Monitoring the microbial community within the digester could provide valuable information about process stability because this technology is dependent upon the metabolic processes of microorganisms. A healthy methanogenic community is critical for digester function and CH4 production. Methanogens can be surveyed and monitored using genes and transcripts of mcrA, which encodes the α subunit of methyl coenzyme M reductase – the enzyme that catalyses the final step in methanogenesis. Using clone libraries and quantitative polymerase chain reaction, we compared the diversity and abundance of mcrA genes and transcripts in four different methanogenic hydrogen/CO2 enrichment cultures to function, as measured by specific methanogenic activity (SMA) assays using H2/CO2. The mcrA gene copy number significantly correlated with CH4 production rates using H2/CO2, while correlations between mcrA transcript number and SMA were not significant. The DNA and cDNA clone libraries from all enrichments were distinctive but community diversity also did not correlate with SMA. Although hydrogenotrophic methanogens dominated these enrichments, the results indicate that this methodology should be applicable to monitoring other methanogenic communities in anaerobic digesters. Ultimately, this could lead to the engineering of digester microbial communities to produce more CH4 for use as renewable fuel.
Collapse
Affiliation(s)
- Rachel Morris
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Aronson EL, Allison SD, Helliker BR. Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front Microbiol 2013; 4:225. [PMID: 23966984 PMCID: PMC3743065 DOI: 10.3389/fmicb.2013.00225] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022] Open
Abstract
Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5–15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of methane consumption and calls for novel approaches in order to predict future atmospheric methane trends. This review synthesizes the environmental and climatic factors influencing the consumption of methane from the atmosphere by non-wetland, terrestrial soil microorganisms. In particular, we focus on published efforts to connect community composition and diversity of methane-cycling microbial communities to observed rates of methane flux. We find abundant evidence for direct connections between shifts in the methane-cycling microbial community, due to climate and environmental changes, and observed methane flux levels. These responses vary by ecosystem and associated vegetation type. This information will be useful in process-based models of ecosystem methane flux responses to shifts in environmental and climatic parameters.
Collapse
Affiliation(s)
- Emma L Aronson
- Department of Plant Pathology and Microbiology, University of California Riverside, CA, USA ; Department of Ecology and Evolutionary Biology, University of California Irvine, CA, USA
| | | | | |
Collapse
|
34
|
Basiliko N, Henry K, Gupta V, Moore TR, Driscoll BT, Dunfield PF. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands. Front Microbiol 2013; 4:215. [PMID: 23914185 PMCID: PMC3728569 DOI: 10.3389/fmicb.2013.00215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/10/2013] [Indexed: 11/15/2022] Open
Abstract
Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide (CO2) and methane (CH4) production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between natural, mined, and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and CH4 or CO2 production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought about by these land uses.
Collapse
Affiliation(s)
- Nathan Basiliko
- Department of Geography, University of Toronto Mississauga Mississauga, ON, Canada ; Max-Planck-Institute for Terrestrial Microbiology Marburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. GLOBAL CHANGE BIOLOGY 2013; 19:1325-1346. [PMID: 23505021 DOI: 10.1111/gcb.12131] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/07/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
Understanding the dynamics of methane (CH4 ) emissions is of paramount importance because CH4 has 25 times the global warming potential of carbon dioxide (CO2 ) and is currently the second most important anthropogenic greenhouse gas. Wetlands are the single largest natural CH4 source with median emissions from published studies of 164 Tg yr(-1) , which is about a third of total global emissions. We provide a perspective on important new frontiers in obtaining a better understanding of CH4 dynamics in natural systems, with a focus on wetlands. One of the most exciting recent developments in this field is the attempt to integrate the different methodologies and spatial scales of biogeochemistry, molecular microbiology, and modeling, and thus this is a major focus of this review. Our specific objectives are to provide an up-to-date synthesis of estimates of global CH4 emissions from wetlands and other freshwater aquatic ecosystems, briefly summarize major biogeophysical controls over CH4 emissions from wetlands, suggest new frontiers in CH4 biogeochemistry, examine relationships between methanogen community structure and CH4 dynamics in situ, and to review the current generation of CH4 models. We highlight throughout some of the most pressing issues concerning global change and feedbacks on CH4 emissions from natural ecosystems. Major uncertainties in estimating current and future CH4 emissions from natural ecosystems include the following: (i) A number of important controls over CH4 production, consumption, and transport have not been, or are inadequately, incorporated into existing CH4 biogeochemistry models. (ii) Significant errors in regional and global emission estimates are derived from large spatial-scale extrapolations from highly heterogeneous and often poorly mapped wetland complexes. (iii) The limited number of observations of CH4 fluxes and their associated environmental variables loosely constrains the parameterization of process-based biogeochemistry models.
Collapse
|
36
|
Görres CM, Conrad R, Petersen SO. Effect of soil properties and hydrology on archaeal community composition in three temperate grasslands on peat. FEMS Microbiol Ecol 2013; 85:227-40. [PMID: 23521431 DOI: 10.1111/1574-6941.12115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 11/28/2022] Open
Abstract
Grasslands established on drained peat soils are regarded as negligible methane (CH4 ) sources; however, they can still exhibit considerable soil CH4 dynamics. We investigated archaeal community composition in two different fen peat soils and one bog peat soil under permanent grassland in Denmark. We used terminal restriction fragment length polymorphism (T-RFLP) fingerprinting and clone libraries to characterize the soils' archaeal community composition to gain a better understanding of relationships between peat properties and land use, respectively, and CH4 dynamics. Samples were taken at three different depths and at four different seasons. Archaeal community composition varied considerably between the three peatlands and, to a certain degree, also with peat depth, but seemed to be quite stable at individual sampling depths throughout the year. Archaeal community composition was mainly linked to soil pH. No methanogens were detected at one fen site with soil pH ranging from 3.2 to 4.4. The methanogenic community of the bog (soil pH 3.9-4.6) was dominated by hydrogenotrophs, whereas the second fen site (soil pH 5.0-5.3) comprised both aceticlastic and hydrogenotrophic methanogens. Overall, there seemed to be a significant coupling between peat type and archaeal community composition, with local hydrology modifying the strength of this coupling.
Collapse
|
37
|
Artz RRE. Microbial Community Structure and Carbon Substrate use in Northern Peatlands. CARBON CYCLING IN NORTHERN PEATLANDS 2013. [DOI: 10.1029/2008gm000806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
38
|
Belova SE, Fedotova AV, Dedysh SN. Prokaryotic ultramicroforms in a Sphagnum peat bog of upper Volga catchment. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712050050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Below-ground ectomycorrhizal communities: the effect of small scale spatial and short term temporal variation. Symbiosis 2012. [DOI: 10.1007/s13199-012-0179-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Etto RM, Cruz LM, Jesus EC, Galvão CW, Galvão F, Souza EM, Pedrosa FO, Steffens MBR. Prokaryotic communities of acidic peatlands from the southern Brazilian Atlantic Forest. Braz J Microbiol 2012; 43:661-74. [PMID: 24031878 PMCID: PMC3768831 DOI: 10.1590/s1517-83822012000200031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 06/07/2012] [Indexed: 11/22/2022] Open
Abstract
The acidic peatlands of southern Brazil are ecosystems essential for the maintenance of the Atlantic Forest, one of the 25 hot-spots of biodiversity in the world. In this work, we investigated the composition of prokaryotic communities in four histosols of three acidic peatland regions by constructing small-subunit (SSU) rRNA gene libraries and sequencing. SSU rRNA gene sequence analysis showed the prevalence of Acidobacteria (38.8%) and Proteobacteria (27.4%) of the Bacteria domain and Miscellaneous (58%) and Terrestrial (24%) groups of Crenarchaeota of the Archaea domain. As observed in other ecosystems, archaeal communities showed lower richness than bacterial communities. We also found a limited number of Euryarchaeota and of known methanotrophic bacteria in the clone libraries.
Collapse
Affiliation(s)
- R M Etto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná , Curitiba, PR , Brasil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Unal B, Perry VR, Sheth M, Gomez-Alvarez V, Chin KJ, Nüsslein K. Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water. Front Microbiol 2012; 3:175. [PMID: 22590465 PMCID: PMC3349271 DOI: 10.3389/fmicb.2012.00175] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/20/2012] [Indexed: 12/01/2022] Open
Abstract
Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community.
Collapse
Affiliation(s)
- Burcu Unal
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sun CL, Brauer SL, Cadillo-Quiroz H, Zinder SH, Yavitt JB. Seasonal changes in methanogenesis and methanogenic community in three peatlands, new york state. Front Microbiol 2012; 3:81. [PMID: 22408638 PMCID: PMC3294236 DOI: 10.3389/fmicb.2012.00081] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/17/2012] [Indexed: 11/24/2022] Open
Abstract
Fluctuating environmental conditions can promote diversity and control dominance in community composition. In addition to seasonal temperature and moisture changes, seasonal supply of metabolic substrates selects populations temporally. Here we demonstrate cascading effects in the supply of metabolic substrates on methanogenesis and community composition of anaerobic methanogenic archaea in three contrasting peatlands in upstate New York. Fresh samples of peat soils, collected about every 3 months for 20 months and incubated at 22 ± 2°C regardless of the in situ temperature, exhibited potential rates of methane (CH4) production of 0.02–0.2 mmol L−1 day−1 [380–3800 nmol g−1 (dry) day−1). The addition of acetate stimulated rates of CH4 production in a fen peatland soil, whereas addition of hydrogen (H2), and simultaneous inhibition of H2-consuming acetogenic bacteria with rifampicin, stimulated CH4 production in two acidic bog soils, especially, in autumn and winter. The methanogenic community structure was characterized using T-RFLP analyses of SSU rRNA genes. The E2 group of methanogens (Methanoregulaceae) dominated in the two acidic bog peatlands with relatively greater abundance in winter. In the fen peatland, the E1 group (Methanoregulaceae) and members of the Methanosaetaceae were co-dominant, with E1 having a high relative abundance in spring. Change in relative abundance profiles among methanogenic groups in response to added metabolic substrates was as predicted. The acetate-amendment increased abundance of Methanosarcinaceae, and H2-amendment enhanced abundance of E2 group in all peat soils studied, respectively. Additionally, addition of acetate increased abundance of Methanosaetaceae only in the bog soils. Variation in the supply of metabolic substrates helps explain the moderate diversity of methanogens in peatlands.
Collapse
Affiliation(s)
- Christine L Sun
- Department of Microbiology, Cornell University Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
43
|
Liu D, Ding W, Jia Z, Cai Z. The impact of dissolved organic carbon on the spatial variability of methanogenic archaea communities in natural wetland ecosystems across China. Appl Microbiol Biotechnol 2012; 96:253-63. [DOI: 10.1007/s00253-011-3842-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
|
44
|
Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil. Appl Environ Microbiol 2011; 78:445-54. [PMID: 22101043 DOI: 10.1128/aem.06934-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intermittent drainage can substantially reduce methane emission from rice fields, but the microbial mechanisms remain poorly understood. In the present study, we determined the rates of methane production and emission, the dynamics of ferric iron and sulfate, and the abundance of methanogen mcrA genes (encoding the alpha subunit of methyl coenzyme M reductase) and their transcripts in response to alternate dry/wet cycles in paddy field soil. We found that intermittent drainage did not affect the growth of rice plants but significantly reduced the rates of both methane production and emission. The dry/wet cycles also resulted in shifts of soil redox conditions, increasing the concentrations of ferric iron and sulfate in the soil. Quantitative PCR analysis revealed that both mcrA gene copies and mcrA transcripts significantly decreased after dry/wet alternation compared to continuous flooding. Correlation and regression analyses showed that the abundance of mcrA genes and transcripts positively correlated with methane production potential and soil water content and negatively correlated with the concentrations of ferric iron and sulfate in the soil. However, the transcription of mcrA genes was reduced to a greater extent than the abundance of mcrA genes, resulting in very low mcrA transcript/gene ratios after intermittent drainage. Furthermore, terminal restriction fragment length polymorphism analysis revealed that the composition of methanogenic community remained stable under dry/wet cycles, whereas that of metabolically active methanogens strongly changed. Collectively, our study demonstrated a stronger effect of intermittent drainage on the abundance of mcrA transcripts than of mcrA genes in rice field soil.
Collapse
|
45
|
Yuan Y, Conrad R, Lu Y. Transcriptional response of methanogen mcrA genes to oxygen exposure of rice field soil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:320-328. [PMID: 23761278 DOI: 10.1111/j.1758-2229.2010.00228.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Methane production in paddy soil is substantially suppressed after even a brief exposure of soil to oxygen. We hypothesized that the strong response of methanogen activity is reflected in the transcription of functional genes rather than in the composition of the community of methanogens. Therefore, we determined the community composition and the transcriptional response of methanogens in a rice field soil by targeting the mcrA gene (encoding the α subunit of methyl-coenzyme M reductase). Transcription of mcrA genes measured by quantitative PCR decreased by an order of magnitude after brief exposure to O2 . Terminal restriction fragment length polymorphism of mcrA genes and gene transcripts showed that although the community structure of methanogens did not change, the composition of transcripts dramatically responded to O2 exposure. In the beginning, transcripts of Methanocellales were the relatively most abundant, indicating resistance of these hydrogenotrophic methanogens against O2 stress. Later on, mcrA transcripts of acetoclastic methanogens became relatively more abundant coinciding with the turnover of acetate. The transcription of Methanosarcinaceae was relatively greater when acetate accumulated while Methanosaetaceae became more active when acetate concentrations decreased. In the presence of methyl fluoride, a specific inhibitor of acetoclastic methanogenesis, mcrA transcription by Methanosaetaceae was greatly suppressed while that of Methanosarcinaceae was less affected. Our study showed that in contrast to constant community structure as revealed by DNA-based fingerprinting the transcription of functional mcrA genes strongly responded to O2 stress and the presence of inhibitor CH3 F. The response patterns reflected the genomic and physiological traits of individual methanogens.
Collapse
Affiliation(s)
- Yanli Yuan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. Max-Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str, 35043 Marburg, Germany
| | | | | |
Collapse
|
46
|
Akuzawa M, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y. Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. MICROBIAL ECOLOGY 2011; 61:595-605. [PMID: 21240482 DOI: 10.1007/s00248-010-9788-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
Acidification is one of the most common and serious problems inducing process failure in anaerobic digesters. The production of volatile fatty acids (VFAs) mainly triggers acidic shock. However, little is known about the bacteria involved in the processes of acidogenic metabolism, such as fermentation and reductive acetogenesis. Here, the metabolic responses of a methanogenic community to the acidification and resulting process deterioration were investigated using transcriptional profiling of both the 16S rRNA and formyltetrahydrofolate synthetase (FTHFS) genes. The 16S rRNA-based analyses demonstrated that the dynamic shift of bacterial populations was closely correlated with reactor performance, especially with VFA accumulation levels. The pH drop accompanied by an increase in VFAs stimulated the metabolic activation of an uncultured Chloroflexi subphylum I bacterium. The subphylum has been characterized as a fermentative carbohydrate degrader using culture- and molecular-based ecophysiological assays. At the beginning of VFA accumulation, FTHFS genes were expressed; the transcripts were derived from phylogenetically predicted homoacetogens, suggesting that reductive acetogenesis was operated by hitherto unidentified bacteria. When acetate concentrations were high, the FTHFS expression ceased and Thermoanaerobacterium aciditolerans proliferated selectively. This thermoacidophilic bacterium would play a decisive role in acetate production via fermentative metabolism. The results of this study reveal for the first time that an uncultured Chloroflexi, T. aciditolerans, and novel homoacetogens were metabolically associated with acidic shock and subsequent VFA accumulation in an anaerobic digester.
Collapse
Affiliation(s)
- Masateru Akuzawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Leppälä M, Oksanen J, Tuittila ES. Methane flux dynamics during mire succession. Oecologia 2010; 165:489-99. [PMID: 20803033 DOI: 10.1007/s00442-010-1754-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 08/09/2010] [Indexed: 11/28/2022]
Abstract
Vegetation, temperature and hydrology are major factors controlling wetland methane (CH(4)) dynamics. In order to test their importance, we measured CH(4) emissions and environmental characteristics over 2 years from five mires representing a successional sequence, ranging in age from 178 to 2,520 years. We hypothesized CH(4) emissions to be higher from the sedge-dominated fens than from the older bog stage. The more constant hydrological conditions at later successional stages as a consequence of the thicker peat layer appeared to result in lower temporal variation in CH(4) emissions. Accordingly, the other controls, temperature and vegetation, had an effect on CH(4) emissions only when the water table was sufficiently high. The seasonal variation in CH(4) emissions was controlled by temperature only at the oldest study site, which had the lowest variation in water table. Within-season variation in emissions related to plant phenology was highest at the fen stage, which was dominated by aerenchymatous plants with a strong seasonal pattern, namely sedges and forbs. In contrast to our hypothesis, CH(4) emissions increased with mire age towards the bog stage. However, the trend did not emerge during a rainy growing season, due to a rise in CH(4) emissions at the younger stages. The results may imply two different mechanisms during mire succession: while old mires are able to avoid the perturbation associated with variation in the water table and maintain their function as CH(4) emitters, young mires are exposed to perturbation but are able to recover their function.
Collapse
Affiliation(s)
- Mirva Leppälä
- Muhos Research Unit, Finnish Forest Research Institute, Muhos, Finland
| | | | | |
Collapse
|
48
|
Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD, Land ML, VerBerkmoes NC, Hettich RL, Banfield JF. Enigmatic, ultrasmall, uncultivated Archaea. Proc Natl Acad Sci U S A 2010; 107:8806-11. [PMID: 20421484 PMCID: PMC2889320 DOI: 10.1073/pnas.0914470107] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metagenomics has provided access to genomes of as yet uncultivated microorganisms in natural environments, yet there are gaps in our knowledge-particularly for Archaea-that occur at relatively low abundance and in extreme environments. Ultrasmall cells (<500 nm in diameter) from lineages without cultivated representatives that branch near the crenarchaeal/euryarchaeal divide have been detected in a variety of acidic ecosystems. We reconstructed composite, near-complete approximately 1-Mb genomes for three lineages, referred to as ARMAN (archaeal Richmond Mine acidophilic nanoorganisms), from environmental samples and a biofilm filtrate. Genes of two lineages are among the smallest yet described, enabling a 10% higher coding density than found genomes of the same size, and there are noncontiguous genes. No biological function could be inferred for up to 45% of genes and no more than 63% of the predicted proteins could be assigned to a revised set of archaeal clusters of orthologous groups. Some core metabolic genes are more common in Crenarchaeota than Euryarchaeota, up to 21% of genes have the highest sequence identity to bacterial genes, and 12 belong to clusters of orthologous groups that were previously exclusive to bacteria. A small subset of 3D cryo-electron tomographic reconstructions clearly show penetration of the ARMAN cell wall and cytoplasmic membranes by protuberances extended from cells of the archaeal order Thermoplasmatales. Interspecies interactions, the presence of a unique internal tubular organelle [Comolli, et al. (2009) ISME J 3:159-167], and many genes previously only affiliated with Crenarchaea or Bacteria indicate extensive unique physiology in organisms that branched close to the time that Cren- and Euryarchaeotal lineages diverged.
Collapse
Affiliation(s)
| | - Luis R. Comolli
- Lawrence Berkeley National Laboratories, Berkeley, CA 94720; and
| | | | | | | | - Brian D. Dill
- Chemical Sciences Divisions, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | | | | | - Robert L. Hettich
- Chemical Sciences Divisions, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Jillian F. Banfield
- Department of Earth and Planetary Science and
- Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| |
Collapse
|
49
|
Yrjälä K, Keskinen AK, Akerman ML, Fortelius C, Sipilä TP. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1680-1688. [PMID: 20022155 DOI: 10.1016/j.envpol.2009.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/24/2009] [Accepted: 11/29/2009] [Indexed: 05/28/2023]
Abstract
To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation.
Collapse
Affiliation(s)
- Kim Yrjälä
- Department of Biological and Environmental Sciences, General Microbiology, University of Helsinki, P.O. Box 56, (Biocenter 1C), 00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
50
|
Putkinen A, Juottonen H, Juutinen S, Tuittila ES, Fritze H, Yrjälä K. Archaeal rRNA diversity and methane production in deep boreal peat. FEMS Microbiol Ecol 2009; 70:87-98. [DOI: 10.1111/j.1574-6941.2009.00738.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|