1
|
Hao Z, Qian J, Zheng F, Lin B, Xu M, Feng W, Zou X. Human-influenced changes in pollution status and potential risk of sediment heavy metals in Xincun Bay, a typical lagoon of Hainan, China. MARINE POLLUTION BULLETIN 2024; 199:115949. [PMID: 38134869 DOI: 10.1016/j.marpolbul.2023.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Pollution status and ecological risks associated with sediment heavy metals (Cu, Pb, Zn, Cd, and Cr) were investigated around Xincun Bay, assessing their spatial variations and relationship with sediment physiochemical factors. Higher concentrations and associated risks were observed in the central region, where mariculture activities were concentrated, compared to non-maricultured areas. Despite with overall low concentrations, Cd had a higher ecological risk. Correlation and principal component analyses revealed similar sources for all metals in Xincun Bay. Heavy metal concentrations varied with expansion of mariculture operations in terms of quantity and scale, confirming the influence of mariculture activities. Sediments around mariculture had higher contents of clay, silt, and total organic carbon (TOC), and finer particle sizes. Quantitative analyses through correlation and linear regression indicated that TOC significantly regulated heavy metal concentration and distribution (p < 0.05). Considering its significant association with TOC, the influence of mean grain size should not be overlooked.
Collapse
Affiliation(s)
- Zhe Hao
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jian Qian
- Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Fangqin Zheng
- Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Bo Lin
- Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Min Xu
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Weihua Feng
- Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Xinqing Zou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China; Key Laboratory of Coast and Island Development (Nanjing University), Ministry of Education, Nanjing 210093, China.
| |
Collapse
|
2
|
Wang A, He M, Liu H, Ouyang W, Liu X, Li Q, Lin C, Liu X. Distribution heterogeneity of sediment bacterial community in the river-lake system impacted by nonferrous metal mines: Diversity, composition and co-occurrence patterns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122715. [PMID: 37821043 DOI: 10.1016/j.envpol.2023.122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Metal(loid) pollution caused by mining activities can affect microbial communities. However, knowledge of the diversity, composition, and co-occurrence patterns of bacterial communities in aquatic systems impacted by nonferrous metal mines. Here, the metal(loid) contents and bacterial communities in sediments from the Zijiang River (tributary to mainstream) to Dongting Lake were investigated by geochemical and molecular biology methods. The results indicated that the river sediments had lower pH and higher ecological risk of metal(loid)s than the lake sediment. The diversity and composition of bacterial communities in river sediments significantly (p < 0.05) differed from those in lake sediments, showing distributional heterogeneity. The biomarkers of tributary, mainstream, and lake sediments were mainly members of Deltaproteobacteria, Firmicutes, and Nitrospirae, respectively, reflecting species sorting in different habitats. Multivariate statistical analysis demonstrated that total and bioavailable Sb, As, and Zn were positively correlated with bacterial community richness. pH, TOC, TN, and Zn were crucial factors in shaping the distribution difference of bacterial communities. Environment-bacteria network analysis indicated that pH, SO42-, and total and bioavailable As and Sb greatly influenced the bacterial composition at the genus level. Bacteria-bacteria network analysis manifested that the co-occurrence network in mainstream sediments with a higher risk of metal(loid) pollution exhibited higher modularity and connectivity, which might be the survival mechanism for bacterial communities adapted to metal(loid) pollution. This study can provide a theoretical basis for understanding the ecological status of aquatic systems.
Collapse
Affiliation(s)
- Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Huiji Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China.
| | - Xinyi Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Qin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
3
|
Zhao Y, Hou X, Wang L, Wang L, Yao B, Li Y. Fe-loaded biochar thin-layer capping for the remediation of sediment polluted with nitrate and bisphenol A: Insight into interdomain microbial interactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122478. [PMID: 37678739 DOI: 10.1016/j.envpol.2023.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
The information on the collaborative removal of nitrate and trace organic contaminants in the thin-layer capping system covered with Fe-loaded biochar (FeBC) is limited. The community changes of bacteria, archaea and fungi, and their co-occurrence patterns during the remediation processes are also unknown. In this study, the optimized biochar (BC) and FeBC were selected as the capping materials in a batch experiment for the remediation of overlying water and sediment polluted with nitrate and bisphenol A (BPA). The community structure and metabolic activities of bacteria, archaea and fungi were investigated. During the incubation (28 d), the nitrate in overlying water decreased from 29.6 to 11.0 mg L-1 in the FeBC group, 2.9 and 1.8 times higher than the removal efficiencies in Control and BC group. The nitrate in the sediment declined from 5.03 to 0.75 mg kg-1 in the FeBC group, 1.3 and 1.1 times higher than those in Control and BC group. The BPA content in the overlying water in BC group and FeBC group maintained below 0.4 mg L-1 during incubation, signally lower than in the Control group. After capping with FeBC, a series of species in bacteria, archaea and fungi could collaboratively contribute to the removal of nitrate and BPA. In the FeBC group, more metabolism pathways related to nitrogen metabolism (KO00910) and Bisphenol degradation (KO00363) were generated. The co-occurrence network analysis manifested a more intense interaction within bacteria communities than archaea and fungi. Proteobacteria, Firmicutes, Actinobacteria in bacteria, and Crenarchaeota in archaea are verified keystone species in co-occurrence network construction. The information demonstrated the improved pollutant attenuation by optimizing biochar properties, improving microbial diversity and upgrading microbial metabolic activities. Our results are of significance in providing theoretical guidance on the remediation of sediments polluted with nitrate and trace organic contaminants.
Collapse
Affiliation(s)
- Yiheng Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Bian Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| |
Collapse
|
4
|
Yu C, Zhu Z, Meng K, Zhang H, Xu M. Unveiling the impact and mechanisms of Cd-driven ecological assembly and coexistence of bacterial communities in coastal sediments of Yellow Sea. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132309. [PMID: 37639798 DOI: 10.1016/j.jhazmat.2023.132309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/30/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
The microbial community assembly processes and underlying mechanisms in response to heavy metal accumulation in coastal sediments remain underexplored. In this study, the heavy metal concentration in samples were found below the marine sediment quality standards. Through partial Mantel tests and linear regression analysis, Cd was identified as the major influencing factor, displaying strongest correlation with the bacterial community in the sediments. The class Desulfuromonadia was identified as a biomarker which showed enrichment in the sediments with high Cd content. Additionally, the results of null model and the neutral community model demonstrated the prominent role of stochastic processes in the assembly of bacterial community. However, with the increase in Cd concentration, the influence of selection processes intensified, resulting in a decline in species migration rate and subsequent reduction in ecological niche width. Furthermore, the intensified competition and an increase in keystone species among bacterial populations further enhanced the stability of the microbial co-occurrence network in response to high Cd concentration. This study offers an insight into the effects of heavy metal on microbial assembly and coexistence, which are conducive to marine ecosystem management and conservation.
Collapse
Affiliation(s)
- Chengfeng Yu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Zhiyong Zhu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Kun Meng
- Jiangsu Yunfan Testing Technology Co., Ltd., Nanjing 210033, China
| | - Huan Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China.
| | - Min Xu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China.
| |
Collapse
|
5
|
Lü W, Ren H, Ding W, Li H, Yao X, Jiang X. The effects of climate warming on microbe-mediated mechanisms of sediment carbon emission. J Environ Sci (China) 2023; 129:16-29. [PMID: 36804232 DOI: 10.1016/j.jes.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 06/18/2023]
Abstract
Due to significant differences in biotic and abiotic properties of soils compared to those of sediments, the predicted underlying microbe-mediated mechanisms of soil carbon emissions in response to warming may not be applicable for estimating similar emissions from inland water sediments. We addressed this issue by incubating different types of sediments, (including lake, small river, and pond sediments) collected from 36 sites across the Yangtze River basin, under short-term experimental warming to explore the effects of climate warming on sediment carbon emission and the underlying microbe-mediated mechanisms. Our results indicated that under climate warming CO2 emissions were affected more than CH4 emissions, and that pond sediments may yield a greater relative contribution of CO2 to total carbon emissions than lake and river sediments. Warming-induced CO2 and CH4 increases involve different microbe-mediated mechanisms; Warming-induced sediment CO2 emissions were predicted to be directly positively driven by microbial community network modularity, which was significantly negatively affected by the quality and quantity of organic carbon and warming-induced variations in dissolved oxygen, Conversely, warming-induced sediment CH4 emissions were predicted to be directly positively driven by microbial community network complexity, which was significantly negatively affected by warming-induced variations in pH. Our findings suggest that biotic and abiotic drivers for sediment CO2 and CH4 emissions in response to climate warming should be considered separately when predicting sediment organic carbon decomposition dynamics resulting from climate change.
Collapse
Affiliation(s)
- Weiwei Lü
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Water Pollution Control and Ecological Restoration Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haoyu Ren
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Water Pollution Control and Ecological Restoration Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wanchang Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Water Pollution Control and Ecological Restoration Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - He Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Water Pollution Control and Ecological Restoration Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Yao
- School of Environment and Planning, University of Liaocheng, Liaocheng 252000, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Water Pollution Control and Ecological Restoration Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Munford KE, Gilbert-Parkes S, Mykytczuk NCS, Basiliko N, Yakimovich KM, Poulain A, Watmough SA. How arsenic contamination influences downslope wetland plant and microbial community structure and function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162839. [PMID: 36921856 DOI: 10.1016/j.scitotenv.2023.162839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Mine tailings are prevalent worldwide and can adversely impact adjacent ecosystems, including wetlands. This study investigated the impact of gold (Au) mine tailings contamination on peatland soil and pore water geochemistry, vegetation and microbial communities, and microbial carbon (C) cycling. Maximum arsenic (As) concentrations in peat and pore water reached 20,137 mg kg-1 and 16,730 μg L-1, respectively, but decreased by two orders of magnitude along a 128 m gradient extending from the tailings into the wetland. Carbon and other macronutrient (N, P, K) concentrations in peat and pore water significantly increased with distance from contamination. Relative percent cover and species richness of vascular and non-vascular plants significantly increased with distance into the wetland, with higher non-vascular richness being found at intermediate distances before transitioning to a vascular plant dominated community. Bacterial and archaeal community composition exhibited a decreased proportion of members of the phylum Acidobacteria (notably of the order Acidobacteriales) and increased diversity and richness of methanogens across a larger range of orders farther from the tailings source, an indication of microbial C-cycling potential. Consistent with changes in microbial communities, in vitro microbial CH4 production potential significantly increased with distance from the contaminant source. This study demonstrates both the profound negative impact that metalliferous tailings contamination can have on above and belowground communities in peatlands, and the value of wetland preservation and restoration.
Collapse
Affiliation(s)
- Kimber E Munford
- Environmental and Life Sciences, Trent University, Peterborough, ON K9L 0G2, Canada.
| | | | - Nadia C S Mykytczuk
- School of the Environment, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Nathan Basiliko
- School of Natural Sciences and the Vale Living with Lakes Centre, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Kurt M Yakimovich
- School of Natural Sciences and the Vale Living with Lakes Centre, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Alexandre Poulain
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Shaun A Watmough
- School of the Environment, Trent University, Peterborough, ON K9L 0G2, Canada
| |
Collapse
|
7
|
Prosenkov A, Cagnon C, Gallego JLR, Pelaez AI. The microbiome of a brownfield highly polluted with mercury and arsenic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121305. [PMID: 36804142 DOI: 10.1016/j.envpol.2023.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Abandoned brownfields represent a challenge for their recovery. To apply sustainable remediation technologies, such as bioremediation or phytoremediation, indigenous microorganisms are essential agents since they are adapted to the ecology of the soil. Better understanding of microbial communities inhabiting those soils, identification of microorganisms that drive detoxification process and recognising their needs and interactions will significantly improve the outcome of the remediation. With this in mind we have carried out a detailed metagenomic analysis to explore the taxonomic and functional diversity of the prokaryotic and eukaryotic microbial communities in soils, several mineralogically distinct types of pyrometallurgic waste, and groundwater sediments of a former mercury mining and metallurgy site which harbour very high levels of arsenic and mercury pollution. Prokaryotic and eukaryotic communities were identified, which turned out to be more diverse in the surrounding contaminated soils compared to the pyrometallurgic waste. The highest diversity loss was observed in two environments most contaminated with mercury and arsenic (stupp, a solid mercury condenser residue and arsenic-rich soot from arsenic condensers). Interestingly, microbial communities in the stupp were dominated by an overwhelming majority of archaea of the phylum Crenarchaeota, while Ascomycota and Basidiomycota fungi comprised the fungal communities of both stump and soot, results that show the impressive ability of these previously unreported microorganisms to colonize these extreme brownfield environments. Functional predictions for mercury and arsenic resistance/detoxification genes show their increase in environments with higher levels of pollution. Our work establishes the bases to design sustainable remediation methods and, equally important, to study in depth the genetic and functional mechanisms that enable the subsistence of microbial populations in these extremely selective environments.
Collapse
Affiliation(s)
- Alexander Prosenkov
- Area of Microbiology, Department of Functional Biology, Environmental Biogeochemistry and Raw Materials Group and IUBA, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - José Luis R Gallego
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Asturias, Spain
| | - Ana Isabel Pelaez
- Area of Microbiology, Department of Functional Biology, Environmental Biogeochemistry and Raw Materials Group and IUBA, University of Oviedo, 33006 Oviedo, Asturias, Spain.
| |
Collapse
|
8
|
Pierangeli GMF, da Silva KMR, Coelho LHG, Benassi RF, Domingues MR, Gregoracci GB. Effects of metal contamination with physicochemical properties on the sediment microbial communities in a tropical eutrophic-hypereutrophic urban reservoir in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54961-54978. [PMID: 36881227 DOI: 10.1007/s11356-023-26114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
We investigated the effects of metals and physicochemical variables on the microbes and their metabolisms in the sediments of Guarapiranga reservoir, a tropical eutrophic-hypereutrophic freshwater reservoir located in a highly urbanized and industrialized area in Brazil. The metals cadmium, copper, and chromium showed minor contribution to changes in the structure, composition, and richness of sediment microbial communities and functions. However, the effects of metals on the microbiota are increased when taken together with physicochemical properties, including the sediment carbon and sulfur, the bottom water electrical conductivity, and the depth of the water column. Clearly, diverse anthropic activities, such as sewage discharge, copper sulfate application to control algal growth, water transfer, urbanization, and industrialization, contribute to increase these parameters and the metals spatially in the reservoir. Microbes found especially in metal-contaminated sites encompassed Bathyarchaeia, MBG-D and DHVEG-1, Halosiccatus, Candidatus Methanoperedens, Anaeromyxobacter, Sva0485, Thermodesulfovibrionia, Acidobacteria, and SJA-15, possibly showing metal resistance or acting in metal bioremediation. Knallgas bacteria, nitrate ammonification, sulfate respiration, and methanotrophy were inferred to occur in metal-contaminated sites and may also contribute to metal removal. This knowledge about the sediment microbiota and metabolisms in a freshwater reservoir impacted by anthropic activities allows new insights about their potential for metal bioremediation in these environments.
Collapse
Affiliation(s)
- Gabrielle Maria Fonseca Pierangeli
- Institute of Marine Sciences, Federal University of São Paulo, Rua Dr. Carvalho de Mendonça, 144, Vila Belmiro, Santos, SP, 11070-100, Brazil
| | - Karine Mirelle Rodrigues da Silva
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av dos Estados, 5001, Santo André, SP, 09210-580, Brazil
| | - Lucia Helena Gomes Coelho
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av dos Estados, 5001, Santo André, SP, 09210-580, Brazil.
| | - Roseli Frederigi Benassi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av dos Estados, 5001, Santo André, SP, 09210-580, Brazil
| | - Mercia Regina Domingues
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av dos Estados, 5001, Santo André, SP, 09210-580, Brazil
| | - Gustavo Bueno Gregoracci
- Institute of Marine Sciences, Federal University of São Paulo, Rua Dr. Carvalho de Mendonça, 144, Vila Belmiro, Santos, SP, 11070-100, Brazil
| |
Collapse
|
9
|
Bacterial, Archaeal, and Eukaryote Diversity in Planktonic and Sessile Communities Inside an Abandoned and Flooded Iron Mine (Quebec, Canada). Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abandoned and flooded ore mines are examples of hostile environments (cold, dark, oligotrophic, trace metal) with a potential vast diversity of microbial communities rarely characterized. This study aimed to understand the effects of depth, the source of water (surface or groundwater), and abiotic factors on the communities present in the old Forsyth iron mine in Quebec (Canada). Water and biofilm samples from the mine were sampled by a team of technical divers who followed a depth gradient (0 to 183 m deep) to study the planktonic and sessile communities’ diversity and structure. We used 16S/18S rRNA amplicon to characterize the taxonomic diversity of Bacteria, Archaea, and Eukaryotes. Our results show that depth was not a significant factor explaining the difference in community composition observed, but lifestyle (planktonic/sessile) was. We discovered a vast diversity of microbial taxa, with taxa involved in carbon- and sulfur-cycling. Sessile communities seem to be centered on C1-cycling with fungi and heterotrophs likely adapted to heavy-metal stress. Planktonic communities were dominated by ultra-small archaeal and bacterial taxa, highlighting harsh conditions in the mine waters. Microbial source tracking indicated sources of communities from surface to deeper layers and vice versa, suggesting the dispersion of organisms in the mine, although water connectivity remains unknown.
Collapse
|
10
|
Yanez-Montalvo A, Aguila B, Gómez-Acata ES, Guerrero-Jacinto M, Oseguera LA, Falcón LI, Alcocer J. Shifts in water column microbial composition associated to lakes with different trophic conditions: "Lagunas de Montebello" National Park, Chiapas, México. PeerJ 2022; 10:e13999. [PMID: 36132223 PMCID: PMC9484458 DOI: 10.7717/peerj.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/13/2022] [Indexed: 01/19/2023] Open
Abstract
Eutrophication is a global problem causing the reduction of water quality and the loss of ecosystem goods and services. The lakes of the "Lagunas de Montebello" National Park (LMNP), Chiapas, Mexico, not only represent unique and beautiful natural scenic sites in southern Mexico but are also a national protected area and RAMSAR site. Unfortunately, some of these lakes started showing eutrophication signs since 2003. Anthropogenic activities (e.g., land-use change from forested to agricultural and urban development) are leading to water quality and trophic state alterations of the lakes of the LMNP. This study shows the results of a coupled limnological characterization and high-throughput sequencing of the V4 hypervariable region of the 16S rRNA gene to analyze the microbial composition of the water column in a set of oligotrophic and eutrophic lakes. Chlorophyll a (Chl-a) was the main environmental parameter correlated with the trophic conditions of the lakes. Although the microbial diversity was similar, the microbial composition changed significantly from oligo to eutrophic lakes. Proteobacteria, Firmicutes, and Cyanobacteria were the main components of oligotrophic lakes, and Cyanobacteria, Proteobacteria, and Bacteroidetes of eutrophic lakes. While Acinetobacter (Proteobacteria) and Cyanobium (a unicellular cyanobacterium) dominated in oligotrophic lakes, the filamentous, bloom-forming, and toxin-producing cyanobacteria Planktothrix was the dominant genus in eutrophic lakes. High-throughput sequencing allowed the detection of changes in the composition of the microbial component in oligotrophic lakes, suggesting a shift towards eutrophication, highlighting the relevance of sensitive monitoring protocols of these ecosystems to implement remediation programs for eutrophicated lakes and conservation strategies for those yet pristine.
Collapse
Affiliation(s)
- Alfredo Yanez-Montalvo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mérida, YUCATÁN, Mexico,Unidad Chetumal, El Colegio de la Frontera Sur, Chetumal, QR, Yucatán, Mexico
| | - Bernardo Aguila
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mérida, YUCATÁN, Mexico,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, CdMx, Mexico
| | | | - Miriam Guerrero-Jacinto
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mérida, YUCATÁN, Mexico,Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Merida, Yucatan, Mexico
| | - Luis A. Oseguera
- Grupo de Investigación en Limnología Tropical, FES Iztacala, Universidad Nacional Autonoma de México, Iztacala, Estado de México, Mexico
| | - Luisa I. Falcón
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mérida, YUCATÁN, Mexico
| | - Javier Alcocer
- Grupo de Investigación en Limnología Tropical, FES Iztacala, Universidad Nacional Autonoma de México, Iztacala, Estado de México, Mexico
| |
Collapse
|
11
|
Geng H, Wang F, Yan C, Ma S, Zhang Y, Qin Q, Tian Z, Liu R, Chen H, Zhou B, Yuan R. Rhizosphere microbial community composition and survival strategies in oligotrophic and metal(loid) contaminated iron tailings areas. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129045. [PMID: 35525218 DOI: 10.1016/j.jhazmat.2022.129045] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
In this study, the metal(loid) fractions in two alkaline iron tailings areas with similar physico-chemical properties and the enrichment ability of dominant plants in these areas were investigated. Additionally, high-throughput sequencing and metagenome analysis were used to examine the rhizosphere microbial community structures and their strategies and potential for carbon fixation, nitrogen metabolism, and metal(loid) resistance in mining areas. Results showed that Salsola collina, Setaria viridis, and Xanthium sibiricum have strong enrichment capacity for As, and the maximum transport factor for Mn can reach 4.01. The richness and diversity of bacteria were the highest in rhizosphere tailings, and the dominant phyla were Proteobacteria, Actinobacteria, Ascomycota, and Thaumarchaeota. The key taxa present in rhizosphere tailings were generally metal(loid) resistant, especially Sphingomonas, Pseudomonas, Nocardioides, and Microbacterium. The reductive citrate cycle was the main carbon fixation pathway of microorganisms in tailings. Rhizosphere microorganisms have evolved a series of survival strategies and can adapt to oligotrophic and metal(loid) polluted mining environments. The results of this study provide a basis for the potential application of plant-microbial in situ remediation of alkaline tailings.
Collapse
Affiliation(s)
- Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; School of Environment, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Fei Wang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, China.
| | - Changchun Yan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Shuai Ma
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yiyue Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qizheng Qin
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhijun Tian
- Beijing Geo-engineering Design and Research Institute, 6 East Yuanlin Road, Miyun District, Beijing 101500, China
| | - Ruiping Liu
- Chinese Academy of Environmental Planning, Ministry of Ecology and Environment, 15 Shixing St, Shijingshan District, Beijing 100043, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
12
|
Pu Q, Zhang K, Poulain AJ, Liu J, Zhang R, Abdelhafiz MA, Meng B, Feng X. Mercury drives microbial community assembly and ecosystem multifunctionality across a Hg contamination gradient in rice paddies. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129055. [PMID: 35650726 DOI: 10.1016/j.jhazmat.2022.129055] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Soil microbial communities are critical for maintaining terrestrial ecosystems and fundamental ecological processes. Mercury (Hg) is a heavy metal that is toxic to microorganisms, but its effects on microbial community assembly and ecosystem multifunctionality in rice paddy ecosystems remain largely unknown. In the current study, we analyzed the microbial community structure and ecosystem multifunctionality of paddy soils across a Hg contamination gradient. The results demonstrated that Hg contamination significantly altered the microbial community structure. The microbial communities were predominantly driven by deterministic selection rather than stochastic processes. The random forest model and variation partition analysis demonstrated that the Hg level was the most important predictor of microbial profiles. Ecosystem multifunctionality decreased across the Hg concentration gradient, and multifunctionality was significantly correlated with soil biodiversity, suggesting that Hg-induced reductions in soil biodiversity led to reduced ecosystem services. A structural equation model showed that Hg contamination directly and indirectly affected ecosystem multifunctionality. The present work broadens our knowledge of the assembly of the microbiome in rice paddies across a Hg contamination gradient and highlights the significance of soil biodiversity in regulating ecosystem functions, especially in Hg-polluted rice paddies.
Collapse
Affiliation(s)
- Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kun Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alexandre J Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Rui Zhang
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Geology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
13
|
Beattie RE, Su B, Thill R, Hristova KR. Recycled concrete aggregates are an economic form of urban riparian erosion management with limited impacts on freshwater chemistry and microbial diversity. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128934. [PMID: 35461000 DOI: 10.1016/j.jhazmat.2022.128934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Urban streams are at high risk of riparian erosion which impacts adjacent infrastructure stability. Methods to prevent stream erosion have been proposed including using recycled concrete (RC) materials to help stabilize the streambed; however, little is known about the environmental and biological impacts of using RC in urban streams. RC, new concrete (NC), and river rock controls were evaluated for their impact on water chemistry, water quality, and microbial community composition over 6.5 months in controlled laboratory mesocosms. Concentrations of 19 metals, nutrients, and pH of mesocosms containing RC were not significantly different from the river rock mesocosm throughout the experiment; however, NC mesocosms contained significantly higher (p < 0.05) concentrations of Co, As, Al, and V in mesocosm water samples compared to both RC and the river rock control. Microbial community diversity was not significantly impacted by mesocosm treatment. Microbial sequences mapping to taxa including Rhodoferax, Acidovorax, Nitrosomonas, and Novosphingobium were significantly more abundant (p < 0.01) in RC and NC mesocosm samples; however, the overall microbial community structure was similar across treatment types. Results from this study suggest that RC does not significantly alter the stream environment including microbial community diversity and is a viable option for use in stream restoration projects.
Collapse
Affiliation(s)
- Rachelle E Beattie
- Department of Biological Sciences, Marquette University, 1428 W Clybourn Street, Milwaukee, WI 53233, USA.
| | - Bixia Su
- Department of Biological Sciences, Marquette University, 1428 W Clybourn Street, Milwaukee, WI 53233, USA.
| | - Rebecca Thill
- Department of Biological Sciences, Marquette University, 1428 W Clybourn Street, Milwaukee, WI 53233, USA.
| | - Krassimira R Hristova
- Department of Biological Sciences, Marquette University, 1428 W Clybourn Street, Milwaukee, WI 53233, USA.
| |
Collapse
|
14
|
Ren Z, Zhang C, Li X, Ma K, Cui B. Abundant and Rare Bacterial Taxa Structuring Differently in Sediment and Water in Thermokarst Lakes in the Yellow River Source Area, Qinghai-Tibet Plateau. Front Microbiol 2022; 13:774514. [PMID: 35422785 PMCID: PMC9002311 DOI: 10.3389/fmicb.2022.774514] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/02/2022] [Indexed: 01/28/2023] Open
Abstract
Thermokarst lakes are forming from permafrost thaw and are severely affected by accelerating climate change. Sediment and water in these lakes are distinct habitats but closely connected. However, our understanding of the differences and linkages between sediment and water in thermokarst lakes remains largely unknown, especially from the perspective of community assembly mechanisms. Here, we examined bacterial communities in sediment and water in thermokarst lakes in the Yellow River Source area, Qinghai-Tibet Plateau. Bacterial taxa were divided into abundant and rare according to their relative abundance, and the Sorensen dissimilarity (βsor) was partitioned into turnover (βturn) and nestedness (βnest). The whole bacterial communities and the abundant and rare subcommunities differed substantially between sediment and water in taxonomical composition, α-diversity, and β-diversity. Sediment had significantly lower α-diversity indexes but higher β-diversity than water. In general, bacterial communities are predominantly governed by strong turnover processes (βturn/βsor ratio of 0.925). Bacterial communities in sediment had a significantly higher βturn/βsor ratio than in water. Abundant subcommunities were significantly lower in the βturn/βsor ratio compared with rare subcommunities. The results suggest that the bacterial communities of thermokarst lakes, especially rare subcommunities or particularly in sediment, might be strongly structured by heterogeneity in the source material, environmental filtering, and geographical isolation, leading to compositionally distinct communities. This integral study increased our current knowledge of thermokarst lakes, enhancing our understanding of the community assembly rules and ecosystem structures and processes of these rapidly changing and vulnerable ecosystems.
Collapse
Affiliation(s)
- Ze Ren
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,School of Environment, Beijing Normal University, Beijing, China
| | - Cheng Zhang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,School of Engineering Technology, Beijing Normal University, Zhuhai, China
| | - Xia Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,School of Environment, Beijing Normal University, Beijing, China
| | - Kang Ma
- School of Environment, Beijing Normal University, Beijing, China
| | - Baoshan Cui
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
15
|
Shu W, Wang P, Xu Q, Zeng T, Ding M, Zhang H, Nie M, Huang G. Coupled effects of landscape structures and water chemistry on bacterioplankton communities at multi-spatial scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151350. [PMID: 34728200 DOI: 10.1016/j.scitotenv.2021.151350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Bacterioplankton communities in rivers are strongly influenced by the surrounding landscape, yet the relationships between land use and bacterioplankton communities at multi-spatial scales and the mechanisms that shape bacterioplankton communities remain unclear. Here, we collected surface water samples from 14 tributaries of the Yuan River, a secondary tributary of the Yangtze River, which has been heavily impacted by human activities. We characterized the bacterioplankton communities by high-throughput sequencing techniques, and managed to identify the mechanisms governing bacterioplankton community assembly. The results showed that, in general, both landscape compositions and landscape configurations had significant effects on bacterial communities, and the effects were greater at the buffer scale than at the sub-basin scale. Additionally, there was no distinct distance-decay pattern for the effects of landscape structures on bacterial communities from the near-distance (100 m) to the long-distance (1000 m) buffer zones, with the maximal effects occurring in the 1000 m circular buffer (wet season) and 500 m riparian buffer (dry season) zone, respectively. Land use influenced the bacterioplankton community both directly through exogenous inputs (mass effect) and indirectly by affecting water chemistry (species sorting). Variance partitioning analyses showed that the total explanations of bacterial community variations by water chemistry and the intersections of water chemistry and land use (56.2% in wet season and 50.4% in dry season) were higher than that of land use alone (6.1% in wet season and 25.4% in dry season). These suggest that mass effects and species sorting jointly shaped bacterial community assembly, but that the effects of species sorting outweighed those of mass effects. Nevertheless, more biotic and abiotic factors need to be considered to better understand the microbial assembly mechanisms in anthropogenically influenced riverine ecosystems.
Collapse
Affiliation(s)
- Wang Shu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Qiyu Xu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Ting Zeng
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Minjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Minghua Nie
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Gaoxiang Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
16
|
Ren Z, Ma K, Jia X, Wang Q, Zhang C, Li X. Community Assembly and Co-Occurrence Patterns of Microeukaryotes in Thermokarst Lakes of the Yellow River Source Area. Microorganisms 2022; 10:481. [PMID: 35208934 PMCID: PMC8877526 DOI: 10.3390/microorganisms10020481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Thermokarst lakes are important aquatic ecosystems in cold regions, experiencing several changes due to global warming. However, the fundamental assembly mechanisms of microeukaryotic communities in thermokarst lakes are unknown. In this study, we examined the assembly processes and co-occurrence networks of microeukaryotic communities in sediment and water of thermokarst lakes in the Yellow River Source Area. Sediment microeukaryotic communities had a significantly lower α-diversity but higher β-diversity than water microeukaryotic communities. pH, sediment organic carbon, and total phosphorus significantly affected taxonomic and phylogenetic diversity of sediment communities, while conductivity was a significant driver for water communities. Both sediment and water microeukaryotic communities were strongly governed by dispersal limitation. However, deterministic processes, especially homogenous selection, were more relevant in structuring microeukaryotic communities in water than those in sediment. Changes in total nitrogen and phosphorus in sediment could contribute to shift its microeukaryotic communities from homogeneous selection to stochastic processes. Co-occurrence networks showed that water microeukaryotic communities are more complex and interconnected but have lower modularity than sediment microeukaryotic communities. The water microeukaryotic network had more modules than the sediment microeukaryotic network. These modules were dominated by different taxonomic groups and associated to different environmental variables.
Collapse
Affiliation(s)
- Ze Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (Q.W.); (C.Z.); (X.L.)
- School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Kang Ma
- School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Xuan Jia
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China;
| | - Qing Wang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (Q.W.); (C.Z.); (X.L.)
- School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Cheng Zhang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (Q.W.); (C.Z.); (X.L.)
- School of Engineering Technology, Beijing Normal University, Zhuhai 519087, China
| | - Xia Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (Q.W.); (C.Z.); (X.L.)
- School of Environment, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
17
|
Effects of heavy metals on bacterial community structures in two lead-zinc tailings situated in northwestern China. Arch Microbiol 2021; 204:78. [PMID: 34954813 DOI: 10.1007/s00203-021-02699-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
We evaluated the variations of bacterial communities in six heavy metal contaminated soils sampled from Yanzi Bian (YZB) and Shanping Cun (SPC) tailings located in northwestern China. Statistical analysis showed that both the heavy metals and soil chemical properties could affect the structure and diversity of the bacterial communities in the tailing soils. Cd, Cu, Zn, Cr, Pb, pH, SOM (soil organic matters), TP (total phosphorus) and TN (total nitrogen) were the main driving factors of the bacterial community variations. As a consequence, the relative abundances of certain bacterial phyla including Proteobacteria, Chloroflexi, Firmicutes, Nitrospirota and Bacteroidota were significantly increased in the tailing soils. Further, we found that the abundance increasement of these phyla were mainly contributed by certain species, such as s__unclassified_g__Thiobacillus (Proteobacteria), s__unclassified_g__Sulfobacillus (Firmicutes) and Leptospirillum ferriphilum (Nitrospirota). Thus, these species were considered to be strongly heavy metal tolerant. Together, our findings will provide a useful insight for further bioremediations of these contaminated areas.
Collapse
|
18
|
He Y, Huang D, Li S, Shi L, Sun W, Sanford RA, Fan H, Wang M, Li B, Li Y, Tang X, Dong Y. Profiling of Microbial Communities in the Sediments of Jinsha River Watershed Exposed to Different Levels of Impacts by the Vanadium Industry, Panzhihua, China. MICROBIAL ECOLOGY 2021; 82:623-637. [PMID: 33580272 DOI: 10.1007/s00248-021-01708-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/01/2021] [Indexed: 05/25/2023]
Abstract
The mining, smelting, manufacturing, and disposal of vanadium (V) and associated products have caused serious environmental problems. Although the microbial ecology in V-contaminated soils has been intensively studied, the impacted watershed ecosystems have not been systematically investigated. In this study, geochemistry and microbial structure were analyzed along ~30 km of the Jinsha River and its two tributaries across the industrial areas in Panzhihua, one of the primary V mining and production cities in China. Geochemical analyses showed different levels of contamination by metals and metalloids in the sediments, with high degrees of contamination observed in one of the tributaries close to the industrial park. Analyses of the V4 hypervariable region of 16S rRNA genes of the microbial communities in the sediments showed significant decrease in microbial diversity and microbial structure in response to the environmental gradient (e.g., heavy metals, total sulfur, and total nitrogen). Strong association of the taxa (e.g., Thauera, Algoriphagus, Denitromonas, and Fontibacter species) with the metals suggested selection for these potential metal-resistant and/or metabolizing populations. Further co-occurrence network analysis showed that many identified potential metal-mediating species were among the keystone taxa that were closely associated in the same module, suggesting their strong inter-species interactions but relative independence from other microorganisms in the hydrodynamic ecosystems. This study provided new insight into the microbe-environment interactions in watershed ecosystems differently impacted by the V industries. Some of the phylotypes identified in the highly contaminated samples exhibited potential for bioremediation of toxic metals (e.g., V and Cr).
Collapse
Affiliation(s)
- Yu He
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Dongmei Huang
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Robert A Sanford
- Department of Geology, University of Illinois Urbana-Champaign, Champaign, USA
| | - Hao Fan
- Changjiang Water Resources Protection Institute, Wuhan, China
| | - Meng Wang
- Changjiang Water Resources Protection Institute, Wuhan, China
| | - Baoqin Li
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Ye Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Xiliang Tang
- China Three Gorges Projects Development Co., Ltd, Beijing, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China.
| |
Collapse
|
19
|
Li Y, Chen H, Song L, Wu J, Sun W, Teng Y. Effects on microbiomes and resistomes and the source-specific ecological risks of heavy metals in the sediments of an urban river. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124472. [PMID: 33199139 DOI: 10.1016/j.jhazmat.2020.124472] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
This study aims to better understand the effects of heavy metal enrichment on microbiomes and resistomes and the source-specific ecological risks of metals in the sediments of an urban river. Geo-accumulation index and enrichment factor suggested the river sediments were contaminated by Cd, Cu, Pb, and Zn in varying degrees. High-throughput sequencing-based metagenomics analysis identified 430 types of antibiotic resistance genes (ARGs), dominated by the multidrug, MLS, bacitracin, quinolone, and aminoglycoside ARGs, and 52 metal resistance genes (MRGs) mainly conferring resistance to zinc, copper, cadmium, lead, mercury and multiple metals. Spearman correlation analysis and Mantel test showed the heavy metal enrichment exerted significant effects on the microbial community, ARGs and MRGs. Source apportionment using positive matrix factorization revealed that natural source (42.8%) was the largest contributor of metals in the river sediments, followed by urban activities (35.4%) and a mixed source (21.7%). However, when incorporating the apportionment results into a modified risk model to evaluate the source-specific ecological risks, results showed human activities dominated the risks of metals. Comparatively, the urban activities majorly caused moderate- and considerable- ecological risks, while the mixed source with respect to agricultural and industrial activities contributed higher percentages on high- and extremely high- ecological risks.
Collapse
Affiliation(s)
- Yuezhao Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Liuting Song
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Jin Wu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wenchao Sun
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| |
Collapse
|
20
|
Nuruzzama M, Rahaman W, Mohan R. Sources, distribution and biogeochemical cycling of dissolved trace elements in the coastal lakes of Larsemann Hills, East Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142833. [PMID: 33127122 DOI: 10.1016/j.scitotenv.2020.142833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Coastal lakes in Antarctica receive an enormous amount of ions and trace elements (TEs) during the austral summer. Some of these TEs and ions are utilised as essential nutrients in primary productivity. In the present study, selected dissolved TEs (Ba, Mn, Cu, Co, Cd, Mo and U) along with dissolved organic carbon (DOC) and Chlorophyll-a were studied in ten coastal lakes of the Larsemann Hills, East Antarctica to decipher their (TEs) sources, understand geochemical behaviour and assess their role on nutrient dynamics. Dissolved concentrations of these TEs are in sub-nanomolar range; almost an order of magnitude lower than the average seawater and global river concentrations. Sea-salt spray and chemical weathering in the catchments of these lakes are dominant sources for these TEs and ions. Though most of the Antarctic lakes have been reported for their oligotrophic character, however, a significant amount of DOC and Chlorophyll-a, and occurrence of algal mats in some of the LH lakes indicate seasonal (austral summer) productivity with the availability of sunlight and nutrients. Our investigation reveals that phosphate (PO43-) and Mo act as limiting nutrients because of their lower concentrations in the water column. Dissolved Cu plays an important role in bacterial-induced organic matter decompositions and release of organic carbon to lake water. We also found Ba excess (non-terrigenous) in the lake and catchment sediments varying from 26 to 63%. The higher Baexcess in the catchment sediments could be due to significant removal of dissolved Ba during the solute transport and later supplied to these lakes. The geochemical data sets presented in this study were found at a natural background level and therefore, would be useful for comparison with other global aquatic environments. Findings of the present study improve our understanding about the biogeochemical cycling of trace elements and their critical role in oligotrophic lakes of Antarctica.
Collapse
Affiliation(s)
- Mohammad Nuruzzama
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India; School of Earth, Ocean and Atmospheric Sciences, Goa University, Goa, India.
| | - Waliur Rahaman
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India
| | - Rahul Mohan
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India
| |
Collapse
|
21
|
Wang H, Zeng Y, Guo C, Zheng X, Ding C, Lu G, Dang Z. Soil rehabilitation shaped different patterns of bacterial and archaeal community in AMD-irrigated paddy soil. CHEMOSPHERE 2021; 263:128259. [PMID: 33297204 DOI: 10.1016/j.chemosphere.2020.128259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Microorganisms are essential for soil rehabilitation and long-term sustainability of established plants. However, the recovery process of microorganisms in AMD-irrigated paddy soil is poorly understood at present. To verify this, we sampled AMD-irrigated paddy soils before at different rehabilitation stages by characterizing bacteria and archaea community from a chronosequence of AMD-irrigated rehabilitation to pre-disturbance levels from references sites. Next-generation sequencing is used to describe shifts in diversity and taxonomic composition of bacterial and archaeal. Co-occurrence networks are constructed to reveal potential microbial interaction patterns. The result showed bacterial community followed an observable taxonomic transition overtimes, with community structure becoming more similar to that of unmined reference sites. But the archaeal community only showed a seasonal change, which may hint that the archaeal community needs more time in rehabilitation. Both bacterial and archaeal community composition changes were apparent at high taxonomic levels, bacterial communities become dominated by Proteobacteria phylum, and archaeal community was dominated by Crenarchaeota, we proposed the possible reason is bacterial community were mainly derived by soil pH while the archaeal community was impacted by heavy metal. The bacterial co-occurrence networks increased in complexity during succession, improving the community's resistance to environmental disturbance, while the archaeal did not change monotonically with time. This study highlights the distinct recovery pattern of the bacterial and archaeal community during AMD-irrigated paddy soil rehabilitation, which provides a deep understanding of their role in paddy soil, and subsequent harnessing of their potential to pave the way in future rehabilitation strategies for mined sites.
Collapse
Affiliation(s)
- Han Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yufei Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China.
| | - Xiongkai Zheng
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510006, PR China
| | - Cui Ding
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
22
|
Li S, Zhao B, Jin M, Hu L, Zhong H, He Z. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123255. [PMID: 32593028 DOI: 10.1016/j.jhazmat.2020.123255] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Smelter emissions have brought serious heavy metal contamination. Comprehensive surveys of spatial heavy metal and microorganism distribution in soils of smelters aera are still limited. In this study, the horizontal and vertical profiles of heavy metals as well as microorganisms of 80 samples from 5 soil layers of 16 sites in a Pb/Zn smelter were studied. Pollution index indicated the pollution level as Cd > Zn > Pb > As > Cu > Mn > Co > Cr > V, and the severe pollutants were Cd, Zn, Pb, As and Cu. The hazard quotient and hazard index indicated that the topsoil might pose high chronic risk to children mainly due to high content of Pb, As and Cd. The whole smelter was heavily polluted even to the depth of 100 cm as revealed by Nemerow pollution indices. Depth-related microbiota analysis indicated high richness of indigenous microorganisms and significant differences in vertical microbial structure. Proteobacteria was the dominant phylum in all depth layers, followed by Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria as major phyla. pH and heavy metals Zn, Cu, As, Mn and Cd significantly influenced the microbiota composition. Metagenomic functional prediction suggested antioxidant response, metal exportation and biotransformation play roles in bio-resistance to and bioremoval of heavy metals.
Collapse
Affiliation(s)
- Shuzhen Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Bi Zhao
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Ming Jin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
23
|
Hong H, Li J, Wang Q, Lu H, Liu J, Dong YW, Zhang J, Li J, Williams MA, Huang B, Yan C. The legacy of trace metal deposition from historical anthropogenic river management: A regional driver of offshore sedimentary microbial diversity. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123164. [PMID: 32563906 DOI: 10.1016/j.jhazmat.2020.123164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/30/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
River management, both modern and historical, have dramatically modified offshore environments. While numerous studies have described the modern impacts, very few have evaluated the legacies remaining from hundreds of years ago. Herein, we show trace metal enrichment in the surface sediment of the abandoned Yellow River Delta, hypothesized to be associated with ancient river management. Essentially, anthropogenic modification caused the river to shift, creating a 12.4×103 km2 area with elevated trace metals; characterized by clear metal deposition gradients. Geographical factors related to the ancient river mouth had the most significant influences on Zn (explained by distance to the river mouth, DTM) and Cd (DTM and sediment salinity), while the sediment absorptive capacity was associated with the reallocation of Cu (clay, silt, and iron), Ni (clay and iron), and Pb (silt and iron). Trace metal legacies showed stronger influences on prokaryotic diversity than on micro-eukaryotic diversity, with the former best described by changes in rare, rather than dominant families and classes, and explainable by an "overlapping micro-niche" model. The ancient river's legacies provide evidence of longer-term human disturbance over hundreds of years; as its impacts on associated benthic microbiomes have led to lessons for modern-day waterway management of benthic ecosystems.
Collapse
Affiliation(s)
- Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China; School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061, Virginia, USA.
| | - Junwei Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China; Key Laboratory of the Ministry of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, Guangxi, China.
| | - Qiang Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China.
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China.
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China.
| | - Yun-Wei Dong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China.
| | - Jie Zhang
- Key Laboratory of Urban Environment Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China.
| | - Jian Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Mark A Williams
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China; School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061, Virginia, USA.
| | - Bangqin Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China.
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
24
|
Qiu H, Gu L, Sun B, Zhang J, Zhang M, He S, An S, Leng X. Metagenomic Analysis Revealed that the Terrestrial Pollutants Override the Effects of Seasonal Variation on Microbiome in River Sediments. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:892-898. [PMID: 33152096 DOI: 10.1007/s00128-020-03033-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Researching the structure and function of sediment microbiome contribute to understanding the response of microbiome to external disturbances. However, seasonal changes in sediment microbiome with different terrestrial pollutants input have not yet been clearly understood. Metagenomic sequencing was used to evaluate the effects of seasonal variations and different land use types on sediment microbiome. Results showed that the differences in structure and functions of sediment microbiome among different land use types were obviously greater than different seasons. This indicated that the terrestrial pollutants weakened the effects of seasonal variations on shaping the sediment microbiome. The significant differences in sediment properties under the input of different terrestrial pollutants was observed, but no obvious differences between seasons, which may be the reason why terrestrial pollutants override the effects of seasonal variation on the sediment microbiome. Overall, the results extended our understanding of the impacts of seasonal variation and terrestrial pollutants on river sediment microbiome.
Collapse
Affiliation(s)
- Han Qiu
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, 210093, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, 215500, Jiangsu, China
| | - Likun Gu
- College of Resources and Environment, Henan University of Engineering, Zhengzhou, 451191, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bo Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianyun Zhang
- College of Resources and Environment, Henan University of Engineering, Zhengzhou, 451191, China
| | - Miao Zhang
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, 210093, China
| | - Shanshan He
- Sino-Japan Friendship Center for Environmental Protection, No. 1 Yu Hui Nan Road, Beijing, 100029, China
| | - Shuqing An
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, 210093, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, 215500, Jiangsu, China
| | - Xin Leng
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, 210093, China.
- Nanjing University Ecology Research Institute of Changshu, Changshu, 215500, Jiangsu, China.
| |
Collapse
|
25
|
Li X, Chen H, Yao M. Microbial emission levels and diversities from different land use types. ENVIRONMENT INTERNATIONAL 2020; 143:105988. [PMID: 32717647 DOI: 10.1016/j.envint.2020.105988] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 05/14/2023]
Abstract
Bioaerosol particles, originated from many different earth ground sources, have unique health impacts, including respiratory infections, allergic reactions, and toxic effects. Here, we applied a portable high-flow sampler HighBioTrap to collect and investigate bioaerosol emissions from 13 different land types (forest, wetland, lake, bare soil, cropland, wastewater treatment facility, street, livestock farm, smeltery and garden) that are heavily or less affected by humans. Plate cultivation, real-time quantitative PCR analysis (q-PCR) and high-throughput gene sequencing analysis were used to characterize bacterial and fungal levels as well as their community structures emitted from different land use types. Results showed that there were statistically significant differences in biological emission levels (up to 100-fold difference) and diversity among different land use types. Cropland, sewage plant street and smeltery heavily affected by human activities were found to exhibit higher bioaerosol emission levels, with Massilia genus detected as the dominant species. In contrast, some land types (lakes, forests, gardens, and wetland) less affected by humans were found to emit lower bioaerosol levels but with higher culturability, e.g., up to 16% for wetland. In addition, the microbiological structures of these land-use types usually had higher species richness and diversity, yet different dominant species. For some land types such as streets in Beijing, the microbial community appeared to be skewed with an over 80% relative abundance of a specific dominant species such as Massilia. Other detected dominant species also included Acinetobacter and Brevundimonas for street, and Sphingomonas for wetland. For fungal community, Naganishia, Alternaria, Penicillium, and Aureobasidium were detected to be most abundant. RDA analysis showed metals and ions could to some extent affect the microbial community structures. This work highlights that the human activities could substantially affect the airborne microbiota, which in turn could affect local human health and ecosystems. On the other hand, the results here provide important references for quantitatively estimating the microbial emissions from the earth into the atmosphere.
Collapse
Affiliation(s)
- Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
26
|
Di Cesare A, Pjevac P, Eckert E, Curkov N, Miko Šparica M, Corno G, Orlić S. The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114823. [PMID: 32512474 DOI: 10.1016/j.envpol.2020.114823] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms in coastal sediments are fundamental for ecosystem functioning, and regulate processes relevant in global biogeochemical cycles. Still, our understanding of the effects anthropogenic perturbation and pollution can have on microbial communities in marine sediments is limited. We surveyed the microbial diversity, and the occurrence and abundance of metal and antibiotic resistance genes is sediments collected from the Pula Bay (Croatia), one of the most significantly polluted sites along the Croatian coast. With a collection of 14 samples from the bay area, we were able to generate a detailed status quo picture of a site that only recently started a cleaning and remediation process (closing of sewage pipes and reduction of industrial activity). The concentrations of heavy metals in Pula Bay sediments are significantly higher than in pristine sediments from the Adriatic Sea, and in some cases, manifold exceed international sediment quality guidelines. While the sedimentary concentrations of heavy metals did significantly influence the abundance of the tested metal resistance genes, no strong effect of heavy metal pollution on the overall microbial community composition was observed. Like in many other marine sediments, Gammaproteobacteria, Bacteroidota and Desulfobacterota dominated the microbial community composition in most samples, and community assembly was primarily driven by water column depth and nutrient (carbon and nitrogen) availability, regardless of the degree of heavy metal pollution.
Collapse
Affiliation(s)
- Andrea Di Cesare
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Petra Pjevac
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090, Vienna, Austria
| | - Ester Eckert
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Neven Curkov
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | | | - Gianluca Corno
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Sandi Orlić
- Ruđer Bošković Institute, Division of Material Chemistry, Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean Region, Microbial Ecology, Zagreb, Croatia.
| |
Collapse
|
27
|
Zhao X, Sun Y, Huang J, Wang H, Tang D. Effects of soil heavy metal pollution on microbial activities and community diversity in different land use types in mining areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20215-20226. [PMID: 32239406 DOI: 10.1007/s11356-020-08538-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Microbial activities and community structures play crucial roles in the soil environment and can be served as effective indicators to assess the ecological influence of heavy metal pollution in soil. This article selected soil samples from five land use types (mining area, mineral processing area, heap mining area, tailing area, and vegetable area) in the Shizishan mining area in Tongling, Anhui Province, China. The physicochemical properties, pollution characteristics, enzyme activities (catalase, urease, alkaline phosphatase, neutral phosphatase, cellulase, and sucrase), microbial biomass carbon (MBC), basal respiration (SBR), and metabolic entropy (qCO2) in soil were determined and compared, and the relationship between environmental factors and the microbial activities and community diversity was analyzed. The results showed that, according to the Nemerow's Pollution Index (PN), the values were the heap mining area (24.47) > mineral processing area (12.55) > mining area (9.81) > tailings area (6.02) > vegetable area (4.51). With the increase of heavy metal contamination in the sampling area, the six enzyme activities, MBC and SBR decreased, but the qCO2 increased. Principal coordinate analysis (PCoA) and canonical correlation analysis (CCA) showed that the land use types, soil moisture content (MC), heavy metal content, pH, MBC, SBR, and qCO2 were significantly affected by the microbial community. The most dominant phyla were Proteobacteria (34.73%), Bacteroidetes (9.25%), Acidobacteria (8.99%), and Chloroflexi (8.68%) at the phylum (0.01) level by a total of 18 phyla. It was also found that Firmicutes and Phormidium were more tolerant to heavy metals. These results contributed to an insight into key environmental variables shaping the microbial activities, community structure, and diversity under various land use types in mining area.
Collapse
Affiliation(s)
- Xingqing Zhao
- School of Environmental and Safety Engineering, Changzhou University, Gehu Middle Road 21, Changzhou, 213164, Jiangsu, People's Republic of China.
| | - Yu Sun
- School of Environmental and Safety Engineering, Changzhou University, Gehu Middle Road 21, Changzhou, 213164, Jiangsu, People's Republic of China
| | - Jian Huang
- School of Environmental and Safety Engineering, Changzhou University, Gehu Middle Road 21, Changzhou, 213164, Jiangsu, People's Republic of China
| | - Hui Wang
- School of Environmental and Safety Engineering, Changzhou University, Gehu Middle Road 21, Changzhou, 213164, Jiangsu, People's Republic of China
| | - Ding Tang
- School of Environmental and Safety Engineering, Changzhou University, Gehu Middle Road 21, Changzhou, 213164, Jiangsu, People's Republic of China
| |
Collapse
|
28
|
Song W, Qi R, Zhao L, Xue N, Wang L, Yang Y. Bacterial community rather than metals shaping metal resistance genes in water, sediment and biofilm in lakes from arid northwestern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113041. [PMID: 31421577 DOI: 10.1016/j.envpol.2019.113041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 05/25/2023]
Abstract
Lakes in arid northwestern China are valuable freshwater resources that drive socioeconomic development. Environmental pollution can significantly influence the composition of microbial communities and the distribution of functional genes in lakes. This study investigated heavy metal pollution to identify possible correlations with metal resistance genes (MRGs) and bacterial community composition in water, sediment and biofilm samples from Bosten Lake and Ebi Lake in northwestern China. High levels of zinc were detected in all samples. However, the metals detected in the sediment samples of both lakes were determined to be at low risk levels according to an ecological index. The mercury resistance gene subtype merP had the greatest average abundance (4.61 × 10-3 copies per 16S rRNA) among all the samples, followed by merA and merC. The high abundance of merA in the pelagic zone rather than in benthic sediment suggests that the pelagic microbial community was important in mercury reduction. Proteobacteria were the main phylum found in the microbial communities in all samples. However, microbial communities in most of the water, sediment and biofilm samples had different compositions, indicating that the habitat niche plays an important role in shaping the bacterial communities in lakes. The microbial community, rather than the heavy metals, was the main driver of MRG distribution. The abundances of some bacterial genera involved in the decomposition of organic matter and the terrestrial nitrogen cycle were negatively correlated with heavy metals. This result suggests that metal pollution can adversely affect the biogeochemical processes that occur in lakes.
Collapse
Affiliation(s)
- Wenjuan Song
- State Key Laboratory of Desert & Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China.
| | - Ran Qi
- Chinese People's Armed Police Golden Headquarters, Beijing, 100055, China
| | - Li Zhao
- State Key Laboratory of Desert & Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Nana Xue
- State Key Laboratory of Desert & Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Liyi Wang
- State Key Laboratory of Desert & Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Yuyi Yang
- University of Chinese Academy of Science, Beijing, 100049, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
29
|
Zhang M, Wu Z, Sun Q, Ding Y, Ding Z, Sun L. The spatial and seasonal variations of bacterial community structure and influencing factors in river sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109293. [PMID: 31386990 DOI: 10.1016/j.jenvman.2019.109293] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/27/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Studying the composition and structure of bacterial communities in sediments helps to understand the contribution of bacteria to environmental changes and the role of feedback in response to disturbances. However, seasonal changes in bacterial communities of river sediments with different pollution levels and sources have not been clear yet. In this study, we collected sediment samples during the dry season, wet season and level season from 40 sites with various pollution sources in three inflow rivers (Fengle-Hangbu River, Nanfei River and Zhegao River) of Chaohu Lake. Bacterial community compositions were determined based on high-throughput sequencing. The 'Bioenv' in the R package 'Vegan' and redundancy analysis was used to explore the influence of environmental factors on the bacterial community in the river sediments. Results showed that a significant deviation in bacterial communities was found among seasons and rivers. In addition, seasonal dynamics had a greater impact on shaping bacterial communities than rivers with different pollution sources. A higher diversity was found in the wet season as compared to the other seasons. The bacterial diversity was negatively correlated with nutrients (OM, TN, NH4+, IP, OP and TP) and metals (Cu and Zn). Bacterial communities were more sensitive to heavy metals pressure than nutrients. We also concluded that heavy metals (Cu and Cd) were the key contributing factors in explaining variations in bacterial communities. This study provided a valuable reference for assessing ecological stress.
Collapse
Affiliation(s)
- Mingzhu Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China; Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Zhaojun Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China; Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China; Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China.
| | - Yunxiao Ding
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China; Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Ziwei Ding
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China; Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Lele Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China; Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| |
Collapse
|
30
|
Jordaan K, Comeau AM, Khasa DP, Bezuidenhout CC. An integrated insight into the response of bacterial communities to anthropogenic contaminants in a river: A case study of the Wonderfonteinspruit catchment area, South Africa. PLoS One 2019; 14:e0216758. [PMID: 31112559 PMCID: PMC6528982 DOI: 10.1371/journal.pone.0216758] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2023] Open
Abstract
Bacterial communities in human-impacted rivers and streams are exposed to multiple anthropogenic contaminants, which can eventually lead to biodiversity loss and function. The Wonderfonteinspruit catchment area is impacted by operational and abandoned gold mines, farms, and formal and informal settlements. In this study, we used 16S rRNA gene high-throughput sequencing to characterize bacterial communities in the lower Wonderfonteinspruit and their response to various contaminant sources. The results showed that composition and structure of bacterial communities differed significantly (P<0.05) between less (downstream) and more (upstream) polluted sites. The taxonomic and functional gene dissimilarities significantly correlated with each other, while downstream sites had more distinct functional genes. The relative abundance of Proteobacteria, Bacteroidetes and Actinobacteria was higher at upstream sites, while Acidobacteria, Cyanobacteria, Firmicutes and Verrucomicrobia were prominent at downstream sites. In addition, upstream sites were rich in genera pathogenic and/or potentially pathogenic to humans. Multivariate and correlation analyses suggest that bacterial diversity was significantly (P<0.05) impacted by pH and heavy metals (cobalt, arsenic, chromium, nickel and uranium). A significant fraction (~14%) of the compositional variation was explained by a combination of anthropogenic inputs, of which mining (~6%) was the main contributor to bacterial community variation. Network analysis indicated that bacterial communities had non-random inter- and intra-phyla associations and that the main taxa showed both positive and negative linkages to environmental parameters. Our results suggest that species sorting, due to environmental parameters, was the main process that structured bacterial communities. Furthermore, upstream sites had higher relative abundances of genes involved in xenobiotic degradation, suggesting stronger removal of polycyclic aromatic hydrocarbons and other organic compounds. This study provides insights into the influences of anthropogenic land use on bacterial community structure and functions in the lower Wonderfonteinspruit.
Collapse
Affiliation(s)
- K. Jordaan
- Unit for Environmental Sciences and Management, Microbiology, North-West University, South Africa, Potchefstroom, South Africa
- * E-mail:
| | - A. M. Comeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - D. P. Khasa
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - C. C. Bezuidenhout
- Unit for Environmental Sciences and Management, Microbiology, North-West University, South Africa, Potchefstroom, South Africa
| |
Collapse
|
31
|
Nutrients Drive the Structures of Bacterial Communities in Sediments and Surface Waters in the River-Lake System of Poyang Lake. WATER 2019. [DOI: 10.3390/w11050930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lake and its inflow rivers compose a highly linked river-lake system, within which sediment and water are also closely connected. However, our understanding of this linked and interactive system remains unclear. In this study, we examined bacterial communities in the sediments and surface waters in Poyang Lake and its five tributaries. Bacterial communities were determined while using high-throughput 16S rRNA gene sequencing. The results showed significant differences of bacterial communities between sediments and surface waters, as well as between Poyang lake and its tributaries, suggesting that the river-lake system of Poyang Lake provides diverse and distinct habitats for bacterial communities, including lake water, lake sediment, river water, and river sediment. These biomes harbor distinct bacterial assemblages. Sediments harbor more diverse bacterial taxa than surface waters, but the bacterial communities in surface waters were more different across this river-lake system than those in sediments. In this eutrophic river-lake ecosystem, nitrogen and phosphorus were important drivers in sediment bacterial communities. Nitrogen, phosphorus, and dissolved organic carbon, as well as their stoichiometric ratios affected bacterial communities in surface waters. Moreover, network analysis revealed that the bacterial communities in surface waters were more vulnerable to various disturbances than in sediments, due to lower alpha diversity, high complexity of network, and a small number of key taxa (module hubs and connectors). Nutrient variables had strong influences on individual operational taxonomic units (OTUs) in the network, especially in bacterial network in surface waters. Different groups of taxa responded differently to nutrients, with some modules being more susceptible to nutrient variations. This study increased our current knowledge of linked river-lake ecosystems and provided valuable understanding for effective management and protection of these ecosystems by revealing bacterial communities in sediments and surface waters in Poyang Lake and its tributaries, as well as their responses to nutrients variation.
Collapse
|
32
|
Li N, Chen Y, Zhang Z, Chang S, Huang D, Chen S, Guo Q, Xie S, Bing Y. Response of ammonia-oxidizing archaea to heavy metal contamination in freshwater sediment. J Environ Sci (China) 2019; 77:392-399. [PMID: 30573104 DOI: 10.1016/j.jes.2018.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
It has been well-documented that the distribution of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in soils can be affected by heavy metal contamination, whereas information about the impact of heavy metal on these ammonia-oxidizing microorganisms in freshwater sediment is still lacking. The present study explored the change of sediment ammonia-oxidizing microorganisms in a freshwater reservoir after being accidentally contaminated by industrial discharge containing high levels of metals. Bacterial amoA gene was found to be below the quantitative PCR detection and was not successfully amplified by conventional PCR. The number of archaeal amoA gene in reservoir sediments were 9.62 × 102-1.35 × 107 copies per gram dry sediment. AOA abundance continuously decreased, and AOA richness, diversity and community structure also considerably varied with time. Therefore, heavy metal pollution could have a profound impact on freshwater sediment AOA community. This work could expand our knowledge of the effect of heavy metal contamination on nitrification in natural ecosystems.
Collapse
Affiliation(s)
- Ningning Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China..
| | - Yao Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Zhengke Zhang
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Sha Chang
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Dawei Huang
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Qingwei Guo
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China..
| | - Yongxin Bing
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou 510655, China.
| |
Collapse
|
33
|
Coclet C, Garnier C, Durrieu G, Omanović D, D’Onofrio S, Le Poupon C, Mullot JU, Briand JF, Misson B. Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized Marine Coastal Area. Front Microbiol 2019; 10:257. [PMID: 30853948 PMCID: PMC6395402 DOI: 10.3389/fmicb.2019.00257] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/31/2019] [Indexed: 01/21/2023] Open
Abstract
Unraveling the relative importance of both environmental conditions and ecological processes regulating bacterioplankton communities is a central goal in microbial ecology. Marine coastal environments are among the most urbanized areas and as a consequence experience environmental pressures. The highly anthropized Toulon Bay (France) was considered as a model system to investigate shifts in bacterioplankton communities along natural and anthropogenic physicochemical gradients during a 1-month survey. In depth geochemical characterization mainly revealed strong and progressive Cd, Zn, Cu, and Pb contamination gradients between the entrance of the Bay and the north-western anthropized area. On the other hand, low-amplitude natural gradients were observed for other environmental variables. Using 16S rRNA gene sequencing, we observed strong spatial patterns in bacterioplankton taxonomic and predicted function structure along the chemical contamination gradient. Variation partitioning analysis demonstrated that multiple metallic contamination explained the largest part of the spatial biological variations observed, but DOC and salinity were also significant contributors. Network analysis revealed that biotic interactions were far more numerous than direct interactions between microbial groups and environmental variables. This suggests indirect effects of the environment, and especially trace metals, on the community through a few taxonomic groups. These spatial patterns were also partially found for predicted bacterioplankton functions, thus indicating a limited functional redundancy. All these results highlight both potential direct influences of trace metals contamination on coastal bacterioplankton and indirect forcing through biotic interactions and cascading.
Collapse
Affiliation(s)
- Clément Coclet
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
- MAPIEM, EA 4323, Université de Toulon, Toulon, France
| | - Cédric Garnier
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | - Gaël Durrieu
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | - Dario Omanović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sébastien D’Onofrio
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | - Christophe Le Poupon
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| | | | | | - Benjamin Misson
- Mediterranean Institute of Oceanography (MIO), UM110, CNRS, IRD, Université de Toulon, Aix-Marseille Université, Marseille, France
| |
Collapse
|
34
|
Guo Q, Li N, Chen S, Chen Y, Xie S. Response of freshwater sediment archaeal community to metal spill. CHEMOSPHERE 2019; 217:584-590. [PMID: 30445403 DOI: 10.1016/j.chemosphere.2018.11.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Archaea play an important role in the biogeochemical cycling of elements in the environment. Heavy metals are ubiquitous pollutants in the environment. Previous studies have revealed a considerable influence of metal pollution on the archaeal community, but the short-term response of the archaeal community to metal pollution remains unclear. Hence, the present study investigated the short versus long-term responses of overall archaeal communities in freshwater sediments after exposure to accidental metal pollution caused by the discharge of heavy metal-containing wastewater from an indium-producing factory. Quantitative PCR was used to determine the archaeal abundance, while Illumina MiSeq sequencing was applied to characterize the diversity and structure of the archaeal community. The abundance (2.47 × 105-1.55 × 108 archaeal 16S rRNA gene copies per gram dry sediment), diversity (Shannon diversity index = 2.49-4.45) and structure of overall archaeal community illustrated a drastic temporal change. The archaeal communities mainly comprised the phyla Euryarchaeota, Thaumarchaeota and Bathyarchaeota. The exposure to metal pollution induced an increase in the proportion of Euryarchaeota but lowered the proportion of Thaumarchaeota. The accidental metal pollution exerted a profound impact on the archaeal community in freshwater sediment. This study could contribute our understanding of the short versus long-term response of archaeal communities to metal pollution.
Collapse
Affiliation(s)
- Qingwei Guo
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Ningning Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Yao Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
35
|
An F, Diao Z, Lv J. Microbial diversity and community structure in agricultural soils suffering from 4 years of Pb contamination. Can J Microbiol 2018; 64:305-316. [DOI: 10.1139/cjm-2017-0278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heavy metal pollution has become a widespread environmental problem due to rapid economic development. The phylogenetic diversity and structure of microbial communities in lead (Pb)-contaminated Lou soils were investigated using Illumina MiSeq sequencing of 16S rRNA genes. The presence of Pb2+ in soil showed weak impact on the diversity of soil bacteria community, but it influenced the abundance of some genera of bacteria, as well as soil physicochemical properties. We found significant differences in the relative abundances of heavy-metal-resistant bacteria such as Bacillus, Streptococcus, and Arthrobacter at the genus level. Available Pb and total Pb negatively correlated with soil organic matter but positively affected available phosphorus. The abundance of main bacteria phyla was highly correlated with total Pb. The relative abundance of Gemmatimonadetes, Nitrospirae, and Planctomycetes was negatively correlated with total Pb. Collectively, Pb influences both the microbial community composition and physicochemical properties of soil.
Collapse
Affiliation(s)
- Fengqiu An
- College of Natural Resources and Environment, Northwest A&F University, Ministry of Agriculture Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Yangling 712100, People’s Republic of China
- College of Environmental and Chemical Engineering, Polytechnic University, Xi’an 710048, People’s Republic of China
| | - Zhan Diao
- College of Natural Resources and Environment, Northwest A&F University, Ministry of Agriculture Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Yangling 712100, People’s Republic of China
- Law School & Intellectual Property School, JiNan University, Guangzhou 510632, People’s Republic of China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Ministry of Agriculture Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Yangling 712100, People’s Republic of China
| |
Collapse
|
36
|
Compte-Port S, Borrego CM, Moussard H, Jeanbille M, Restrepo-Ortiz CX, de Diego A, Rodriguez-Iruretagoiena A, Gredilla A, Fdez-Ortiz de Vallejuelo S, Galand PE, Kalenitchenko D, Rols JL, Pokrovsky OS, Gonzalez AG, Camarero L, Muñiz S, Navarro-Navarro E, Auguet JC. Metal contaminations impact archaeal community composition, abundance and function in remote alpine lakes. Environ Microbiol 2018; 20:2422-2437. [PMID: 29687572 DOI: 10.1111/1462-2920.14252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022]
Abstract
Using the 16S rRNA and mcrA genes, we investigated the composition, abundance and activity of sediment archaeal communities within 18 high-mountain lakes under contrasted metal levels from different origins (bedrock erosion, past-mining activities and atmospheric depositions). Bathyarchaeota, Euryarchaeota and Woesearchaeota were the major phyla found at the meta-community scale, representing 48%, 18.3% and 15.2% of the archaeal community respectively. Metals were equally important as physicochemical variables in explaining the assemblage of archaeal communities and their abundance. Methanogenesis appeared as a process of central importance in the carbon cycle within sediments of alpine lakes as indicated by the absolute abundance of methanogen 16S rRNA and mcrA gene transcripts (105 to 109 copies g-1 ). We showed that methanogen abundance and activity were significantly reduced with increasing concentrations of Pb and Cd, two indicators of airborne metal contaminations. Considering the ecological importance of methanogenesis in sediment habitats, these metal contaminations may have system wide implications even in remote area such as alpine lakes. Overall, this work was pioneer in integrating the effect of long-range atmospheric depositions on archaeal communities and indicated that metal contamination might significantly compromise the contribution of Archaea to the carbon cycling of the mountain lake sediments.
Collapse
Affiliation(s)
- Sergi Compte-Port
- Group of Quality and Microbial Diversity, Catalan Institute for Water research (ICRA), Girona, Spain
| | - Carles M Borrego
- Group of Quality and Microbial Diversity, Catalan Institute for Water research (ICRA), Girona, Spain.,Group of Molecular Microbial Ecology (gEMM), Institute of Aquatic Ecology, University of Girona (UdG), Girona, Spain
| | - Hélène Moussard
- Equipe Environnement et Microbiologie (IPREM-EEM), UMR CNRS 5254, Université de Pau et des Pays de l'Adour, Pau, France
| | - Mathilde Jeanbille
- Department of plant pathology and forest mycology Swedish University of Agricultural Sciences, Box 7026, Uppsala, Sweden
| | | | - Alberto de Diego
- Department of analytical chemistry, Faculty of science and technology, University of Basque Country, Bilbao, Spain
| | | | - Ainara Gredilla
- Department of analytical chemistry, Faculty of science and technology, University of Basque Country, Bilbao, Spain
| | | | - Pierre E Galand
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls/Mer, F-66650, France
| | - Dimitri Kalenitchenko
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls/Mer, F-66650, France
| | - Jean-Luc Rols
- EcoLab, UMR CNRS 5245, Observatory of Midi-Pyrénées, University Paul Sabatier, Toulouse, France
| | - Oleg S Pokrovsky
- Geosciences and Environment Toulouse, UMR 5563 CNRS, 14 Avenue Edouard Belin 31400, Toulouse, France.,BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
| | - Aridane G Gonzalez
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Lluis Camarero
- Group of integrative freshwater ecology, Department of continental ecology, Center of advanced studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Selene Muñiz
- Pyrenean institute of ecology (IPE-CSIC), Zaragoza, Spain
| | | | | |
Collapse
|
37
|
Li X, Meng D, Li J, Yin H, Liu H, Liu X, Cheng C, Xiao Y, Liu Z, Yan M. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:908-917. [PMID: 28886536 DOI: 10.1016/j.envpol.2017.08.057] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 05/07/2023]
Abstract
Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions.
Collapse
Affiliation(s)
- Xiaoqi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China; School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Cheng Cheng
- School of Life Science, Hunan University of Science and Technology, Yuhu District, Xiangtan, Hunan Province 411201, China
| | - Yunhua Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Mingli Yan
- School of Life Science, Hunan University of Science and Technology, Yuhu District, Xiangtan, Hunan Province 411201, China.
| |
Collapse
|
38
|
Motlagh AM, Bhattacharjee AS, Coutinho FH, Dutilh BE, Casjens SR, Goel RK. Insights of Phage-Host Interaction in Hypersaline Ecosystem through Metagenomics Analyses. Front Microbiol 2017; 8:352. [PMID: 28316597 PMCID: PMC5334351 DOI: 10.3389/fmicb.2017.00352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/20/2017] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages, as the most abundant biological entities on Earth, place significant predation pressure on their hosts. This pressure plays a critical role in the evolution, diversity, and abundance of bacteria. In addition, phages modulate the genetic diversity of prokaryotic communities through the transfer of auxiliary metabolic genes. Various studies have been conducted in diverse ecosystems to understand phage-host interactions and their effects on prokaryote metabolism and community composition. However, hypersaline environments remain among the least studied ecosystems and the interaction between the phages and prokaryotes in these habitats is poorly understood. This study begins to fill this knowledge gap by analyzing bacteriophage-host interactions in the Great Salt Lake, the largest prehistoric hypersaline lake in the Western Hemisphere. Our metagenomics analyses allowed us to comprehensively identify the bacterial and phage communities with Proteobacteria, Firmicutes, and Bacteroidetes as the most dominant bacterial species and Siphoviridae, Myoviridae, and Podoviridae as the most dominant viral families found in the metagenomic sequences. We also characterized interactions between the phage and prokaryotic communities of Great Salt Lake and determined how these interactions possibly influence the community diversity, structure, and biogeochemical cycles. In addition, presence of prophages and their interaction with the prokaryotic host was studied and showed the possibility of prophage induction and subsequent infection of prokaryotic community present in the Great Salt Lake environment under different environmental stress factors. We found that carbon cycle was the most susceptible nutrient cycling pathways to prophage induction in the presence of environmental stresses. This study gives an enhanced snapshot of phage and prokaryote abundance and diversity as well as their interactions in a hypersaline complex ecosystem, which can pave the way for further research studies.
Collapse
Affiliation(s)
- Amir Mohaghegh Motlagh
- Department of Civil and Environmental Engineering, University of Utah Salt Lake, UT, USA
| | - Ananda S Bhattacharjee
- Department of Civil and Environmental Engineering, University of Utah Salt Lake, UT, USA
| | - Felipe H Coutinho
- Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil; Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical CentreNijmegen, Netherlands
| | - Bas E Dutilh
- Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil; Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical CentreNijmegen, Netherlands; Theoretical Biology and Bioinformatics, Utrecht UniversityUtrecht, Netherlands
| | | | - Ramesh K Goel
- Department of Civil and Environmental Engineering, University of Utah Salt Lake, UT, USA
| |
Collapse
|
39
|
Niu J, Chao J, Xiao Y, Chen W, Zhang C, Liu X, Rang Z, Yin H, Dai L. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate. J Basic Microbiol 2017; 57:3-11. [PMID: 27643917 DOI: 10.1002/jobm.201600222] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/06/2016] [Indexed: 01/01/2023]
Abstract
Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health.
Collapse
Affiliation(s)
- Jiaojiao Niu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Jin Chao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Tobacco Monopoly Bureau of Xiangxi Autonomous Prefecture, Jishou, 416000, China
| | - Yunhua Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Wu Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Chao Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Zhongwen Rang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Linjian Dai
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
40
|
Drewniak L, Krawczyk PS, Mielnicki S, Adamska D, Sobczak A, Lipinski L, Burec-Drewniak W, Sklodowska A. Physiological and Metagenomic Analyses of Microbial Mats Involved in Self-Purification of Mine Waters Contaminated with Heavy Metals. Front Microbiol 2016; 7:1252. [PMID: 27559332 PMCID: PMC4978725 DOI: 10.3389/fmicb.2016.01252] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/28/2016] [Indexed: 11/16/2022] Open
Abstract
Two microbial mats found inside two old (gold and uranium) mines in Zloty Stok and Kowary located in SW Poland seem to form a natural barrier that traps heavy metals leaking from dewatering systems. We performed complex physiological and metagenomic analyses to determine which microorganisms are the main driving agents responsible for self-purification of the mine waters and identify metabolic processes responsible for the observed features. SEM and energy dispersive X-ray microanalysis showed accumulation of heavy metals on the mat surface, whereas, sorption experiments showed that neither microbial mats were completely saturated with heavy metals present in the mine waters, indicating that they have a large potential to absorb significant quantities of metal. The metagenomic analysis revealed that Methylococcaceae and Methylophilaceae families were the most abundant in both communities, moreover, it strongly suggest that backbones of both mats were formed by filamentous bacteria, such as Leptothrix, Thiothrix, and Beggiatoa. The Kowary bacterial community was enriched with the Helicobacteraceae family, whereas the Zloty Stok community consist mainly of Sphingomonadaceae, Rhodobacteraceae, and Caulobacteraceae families. Functional (culture-based) and metagenome (sequence-based) analyses showed that bacteria involved in immobilization of heavy metals, rather than those engaged in mobilization, were the main driving force within the analyzed communities. In turn, a comparison of functional genes revealed that the biofilm formation and heavy metal resistance (HMR) functions are more desirable in microorganisms engaged in water purification than the ability to utilize heavy metals in the respiratory process (oxidation-reduction). These findings provide insight on the activity of bacteria leading, from biofilm formation to self-purification, of mine waters contaminated with heavy metals.
Collapse
Affiliation(s)
- Lukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Pawel S Krawczyk
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy Sciences Warsaw, Poland
| | - Sebastian Mielnicki
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Dorota Adamska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy Sciences Warsaw, Poland
| | - Adam Sobczak
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy Sciences Warsaw, Poland
| | - Leszek Lipinski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy Sciences Warsaw, Poland
| | | | - Aleksandra Sklodowska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
41
|
Jie S, Li M, Gan M, Zhu J, Yin H, Liu X. Microbial functional genes enriched in the Xiangjiang River sediments with heavy metal contamination. BMC Microbiol 2016; 16:179. [PMID: 27502206 PMCID: PMC4976514 DOI: 10.1186/s12866-016-0800-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. Results A total of 25595 functional genes involved in different biogeochemical processes have been detected in three sites, and different diversities and structures of microbial functional genes were observed. The analysis of gene overlapping, unique genes, and various diversity indices indicated a significant correlation between the level of heavy metal contamination and the functional diversity. Plentiful resistant genes related to various metal were detected, such as copper, arsenic, chromium and mercury. The results indicated a significantly higher abundance of genes involved in metal resistance including sulfate reduction genes (dsr) in studied site with most serious heavy metal contamination, such as cueo, mer, metc, merb, tehb and terc gene. With regard to the relationship between the environmental variables and microbial functional structure, S, Cu, Cd, Hg and Cr were the dominating factor shaping the microbial distribution pattern in three sites. Conclusions This study suggests that high level of heavy metal contamination resulted in higher functional diversity and the abundance of metal resistant genes. These variation therefore significantly contribute to the resistance, resilience and stability of the microbial community subjected to the gradient of heavy metals contaminant in Xiangjiang River. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0800-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiqi Jie
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Mingming Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China. .,Department of Botany and Microbiology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA.
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| |
Collapse
|
42
|
Xie Y, Wang J, Wu Y, Ren C, Song C, Yang J, Yu H, Giesy JP, Zhang X. Using in situ bacterial communities to monitor contaminants in river sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:348-357. [PMID: 26866572 DOI: 10.1016/j.envpol.2016.01.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Bacterial communities in sediments of human-impacted rivers are exposed to multiple anthropogenic contaminants and eventually lead to biodiversity lost and ecological functions disable. Nanfei River of Anhui province has been contaminated by pollutants from industrial and/or agricultural sources. This study was conducted to investigate the structure of in situ sediment bacterial communities in Nanfei River and to examine the correlation between the different taxonomic components and contaminant concentrations. The bacterial communities were dominated by Proteobacteria, Bacteroidetes and Chloroflexi. Both the profiles of environmental predictors and the composition of microbial communities differed among agriculture, industrial and confluence regions. There were significant associations between bacterial community phylogenies and the measured contaminants in the sediments. Nutrients (TN and TP) and two metals (Cd and Zn) were negatively correlated with the essential "core" of the bacterial interaction network (Betaproteobacteria and Deltaproteobacteria). Metals (Fe, Ni and Zn) and nutrients (TN and TP) had higher impact on bacterial community compositions than PAHs, OPs and PRTs according to the correlation and network analyses. Furthermore, several sensitive candidate genera were identified as potential bioindicators to monitor key contaminants by species contaminant correlation analysis. Overall, in situ bacterial communities could provide a useful tool for monitoring and assessing ecological stressors in freshwater sediments.
Collapse
Affiliation(s)
- Yuwei Xie
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jizhong Wang
- Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yaketon Wu
- Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chen Ren
- Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chao Song
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - John P Giesy
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
43
|
Cornall A, Rose A, Streten C, McGuinness K, Parry D, Gibb K. Molecular screening of microbial communities for candidate indicators of multiple metal impacts in marine sediments from northern Australia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:468-484. [PMID: 26274631 DOI: 10.1002/etc.3205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
Coastal sediments accumulate metals from anthropogenic sources and as a consequence industry is required to monitor sediment health. The total concentration of a metal does not necessarily reflect its potential toxicity or biological impact, so biological assessment tools are useful for monitoring. Rapid biological assessment tools sensitive enough to detect relatively small increases in metal concentrations would provide early warning of future ecosystem impact. The authors investigated in situ populations of Archaea and Bacteria as potential tools for rapid biological assessment in sediment at 4 northern Australian coastal locations over 2 yr, in both wet and dry seasons. The 1 M HCl-extractable concentrations of metals in sediment were measured, and Archaeal and Bacterial community profiles were obtained by next-generation sequencing of sediment deoxyribonucleic acid (DNA). Species response curves were used to identify several taxonomic groups with potential as biological indicators of metal impact. Spatial variation, sediment grain size, water depth, and dissolved oxygen also correlated with microbial population shifts. Seasonal variation was less important than geographic location. Metal-challenge culture trials supported the identification of metal-resistant and -sensitive taxa. In situ Archaea and Bacteria are potentially sensitive indicators for changes in bioavailable concentrations of metals; however, the complexity of the system suggests it is important to identify metal-specific functional genes that may be informed by these sequencing surveys, and thus provide a useful addition to identity-based assays.
Collapse
Affiliation(s)
- Alyssa Cornall
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - Alea Rose
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - Claire Streten
- Charles Darwin University, Darwin, Northern Territory, Australia
- Australian Institute of Marine Science, Darwin, Northern Territory, Australia
| | - Keith McGuinness
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - David Parry
- Charles Darwin University, Darwin, Northern Territory, Australia
- Australian Institute of Marine Science, Darwin, Northern Territory, Australia
| | - Karen Gibb
- Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
44
|
Ni C, Horton DJ, Rui J, Henson MW, Jiang Y, Huang X, Learman DR. High concentrations of bioavailable heavy metals impact freshwater sediment microbial communities. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1189-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Henson MW, Santo Domingo JW, Kourtev PS, Jensen RV, Dunn JA, Learman DR. Metabolic and genomic analysis elucidates strain-level variation in Microbacterium spp. isolated from chromate contaminated sediment. PeerJ 2015; 3:e1395. [PMID: 26587353 PMCID: PMC4647564 DOI: 10.7717/peerj.1395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/19/2015] [Indexed: 01/04/2023] Open
Abstract
Hexavalent chromium [Cr(VI)] is a soluble carcinogen that has caused widespread contamination of soil and water in many industrial nations. Bacteria have the potential to aid remediation as certain strains can catalyze the reduction of Cr(VI) to insoluble and less toxic Cr(III). Here, we examine Cr(VI) reducing Microbacterium spp. (Cr-K1W, Cr-K20, Cr-K29, and Cr-K32) isolated from contaminated sediment (Seymore, Indiana) and show varying chromate responses despite the isolates' phylogenetic similarity (i.e., identical 16S rRNA gene sequences). Detailed analysis identified differences based on genomic metabolic potential, growth and general metabolic capabilities, and capacity to resist and reduce Cr(VI). Taken together, the discrepancies between the isolates demonstrate the complexity inter-strain variation can have on microbial physiology and related biogeochemical processes.
Collapse
Affiliation(s)
- Michael W Henson
- Institute for Great Lakes Research and Department of Biology, Central Michigan University , Mount Pleasant, MI , United States
| | - Jorge W Santo Domingo
- National Risk Management Research Laboratory, Environmental Protection Agency , Cincinnati, OH , USA
| | - Peter S Kourtev
- Department of Biology, Central Michigan University , Mount Pleasant, MI , United States
| | - Roderick V Jensen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech) , Blacksburg, VA , United States
| | - James A Dunn
- Institute for Great Lakes Research and Department of Biology, Central Michigan University , Mount Pleasant, MI , United States
| | - Deric R Learman
- Institute for Great Lakes Research and Department of Biology, Central Michigan University , Mount Pleasant, MI , United States
| |
Collapse
|
46
|
Kwon MJ, Yang JS, Lee S, Lee G, Ham B, Boyanov MI, Kemner KM, O'Loughlin EJ. Geochemical characteristics and microbial community composition in toxic metal-rich sediments contaminated with Au-Ag mine tailings. JOURNAL OF HAZARDOUS MATERIALS 2015; 296:147-157. [PMID: 25917692 DOI: 10.1016/j.jhazmat.2015.04.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/17/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
The effects of extreme geochemical conditions on microbial community composition were investigated for two distinct sets of sediment samples collected near weathered mine tailings. One set (SCH) showed extraordinary geochemical characteristics: As (6.7-11.5%), Pb (1.5-2.1%), Zn (0.1-0.2%), and pH (3.1-3.5). The other set (SCL) had As (0.3-1.2%), Pb (0.02-0.22%), and Zn (0.01-0.02%) at pH 2.5-3.1. The bacterial communities in SCL were clearly different from those in SCH, suggesting that extreme geochemical conditions affected microbial community distribution even on a small spatial scale. The clones identified in SCL were closely related to acidophilic bacteria in the taxa Acidobacterium (18%), Acidomicrobineae (14%), and Leptospirillum (10%). Most clones in SCH were closely related to Methylobacterium (79%) and Ralstonia (19%), both well-known metal-resistant bacteria. Although total As was extremely high, over 95% was in the form of scorodite (FeAsO4·2H2O). Acid-extractable As was only ∼118 and ∼14 mg kg(-1) in SCH and SCL, respectively, below the level known to be toxic to bacteria. Meanwhile, acid-extractable Pb and Zn in SCH were above toxic concentrations. Because As was present in an oxidized, stable form, release of Pb and/or Zn (or a combination of toxic metals in the sediment) from the sediment likely accounts for the differences in microbial community structure. The results also suggest that care should be taken when investigating mine tailings, because large differences in chemical/biological properties can occur over small spatial scales.
Collapse
Affiliation(s)
- Man Jae Kwon
- Korea Institute of Science and Technology, Gangneung, South Korea.
| | - Jung-Seok Yang
- Korea Institute of Science and Technology, Gangneung, South Korea.
| | - Seunghak Lee
- Korea Institute of Science and Technology, Seoul, South Korea
| | | | - Baknoon Ham
- Korea Institute of Science and Technology, Gangneung, South Korea
| | - Maxim I Boyanov
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA; Bulgarian Academy of Sciences, Institute of Chemical Engineering, Sofia, Bulgaria
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | | |
Collapse
|
47
|
Yin H, Niu J, Ren Y, Cong J, Zhang X, Fan F, Xiao Y, Zhang X, Deng J, Xie M, He Z, Zhou J, Liang Y, Liu X. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci Rep 2015; 5:14266. [PMID: 26391875 PMCID: PMC4585741 DOI: 10.1038/srep14266] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/21/2015] [Indexed: 11/09/2022] Open
Abstract
Response of biological communities to environmental stresses is a critical issue in ecology, but how microbial communities shift across heavy metal gradients remain unclear. To explore the microbial response to heavy metal contamination (e.g., Cr, Mn, Zn), the composition, structure and functional potential of sedimentary microbial community were investigated by sequencing of 16S rRNA gene amplicons and a functional gene microarray. Analysis of 16S rRNA sequences revealed that the composition and structure of sedimentary microbial communities changed significantly across a gradient of heavy metal contamination, and the relative abundances were higher for Firmicutes, Chloroflexi and Crenarchaeota, but lower for Proteobacteria and Actinobacteria in highly contaminated samples. Also, molecular ecological network analysis of sequencing data indicated that their possible interactions might be enhanced in highly contaminated communities. Correspondently, key functional genes involved in metal homeostasis (e.g., chrR, metC, merB), carbon metabolism, and organic remediation showed a higher abundance in highly contaminated samples, indicating that bacterial communities in contaminated areas may modulate their energy consumption and organic remediation ability. This study indicated that the sedimentary indigenous microbial community may shift the composition and structure as well as function priority and interaction network to increase their adaptability and/or resistance to environmental contamination.
Collapse
Affiliation(s)
- Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Jiaojiao Niu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Youhua Ren
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410083, China
| | - Jing Cong
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xiaoxia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Beijing 100081, China.,Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fenliang Fan
- Key Laboratory of Plant Nutrition and Fertilizer, Beijing 100081, China.,Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunhua Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Jie Deng
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman 73019, USA
| | - Ming Xie
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman 73019, USA
| | - Zhili He
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman 73019, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman 73019, USA.,School of Environment, Tsinghua University, Beijing 100084, China.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94710, USA
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| |
Collapse
|
48
|
Microbial DNA records historical delivery of anthropogenic mercury. ISME JOURNAL 2015; 9:2541-50. [PMID: 26057844 PMCID: PMC4817628 DOI: 10.1038/ismej.2015.86] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/01/2015] [Accepted: 04/19/2015] [Indexed: 11/08/2022]
Abstract
Mercury (Hg) is an anthropogenic pollutant that is toxic to wildlife and humans, but the response of remote ecosystems to globally distributed Hg is elusive. Here, we use DNA extracted from a dated sediment core to infer the response of microbes to historical Hg delivery. We observe a significant association between the mercuric reductase gene (merA) phylogeny and the timing of Hg deposition. Using relaxed molecular clock models, we show a significant increase in the scaled effective population size of the merA gene beginning ~200 years ago, coinciding with the Industrial Revolution and a coincident strong signal for positive selection acting on residues in the terminal region of the mercuric reductase. This rapid evolutionary response of microbes to changes in the delivery of anthropogenic Hg indicates that microbial genomes record ecosystem response to pollutant deposition in remote regions.
Collapse
|
49
|
Metagenome of a microbial community inhabiting a metal-rich tropical stream sediment. PLoS One 2015; 10:e0119465. [PMID: 25742617 PMCID: PMC4351183 DOI: 10.1371/journal.pone.0119465] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/29/2015] [Indexed: 12/21/2022] Open
Abstract
Here, we describe the metagenome and functional composition of a microbial community in a historically metal-contaminated tropical freshwater stream sediment. The sediment was collected from the Mina Stream located in the Iron Quadrangle (Brazil), one of the world's largest mining regions. Environmental DNA was extracted and was sequenced using SOLiD technology, and a total of 7.9 Gbp was produced. A taxonomic profile that was obtained by comparison to the Greengenes database revealed a complex microbial community with a dominance of Proteobacteria and Parvarcheota. Contigs were recruited by bacterial and archaeal genomes, especially Candidatus Nitrospira defluvii and Nitrosopumilus maritimus, and their presence implicated them in the process of N cycling in the Mina Stream sediment (MSS). Functional reconstruction revealed a large, diverse set of genes for ammonium assimilation and ammonification. These processes have been implicated in the maintenance of the N cycle and the health of the sediment. SEED subsystems functional annotation unveiled a high degree of diversity of metal resistance genes, suggesting that the prokaryotic community is adapted to metal contamination. Furthermore, a high metabolic diversity was detected in the MSS, suggesting that the historical arsenic contamination is no longer affecting the prokaryotic community. These results expand the current knowledge of the microbial taxonomic and functional composition of tropical metal-contaminated freshwater sediments.
Collapse
|
50
|
Azarbad H, Niklińska M, Laskowski R, van Straalen NM, van Gestel CAM, Zhou J, He Z, Wen C, Röling WFM. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiol Ecol 2014; 91:1-11. [DOI: 10.1093/femsec/fiu003] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|