1
|
Zhang Y, Li X, Ren A, Yao M, Chen C, Zhang H, van der Meer W, Liu G. Impacts of water treatments on bacterial communities of biofilm and loose deposits in drinking water distribution systems. ENVIRONMENT INTERNATIONAL 2024; 190:108893. [PMID: 39079336 DOI: 10.1016/j.envint.2024.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
Treated drinking water is delivered to customers through drinking water distribution systems (DWDSs). Although studies have focused on exploring the microbial ecology of DWDSs, knowledge about the effects of different water treatments on the bacterial community of biofilm and loose deposits in DWDS is limited. This study assessed the effects of additional treatments on the bacterial communities developed in 10 months' old pilot DWDSs. The results showed a similar bacterial community in the pipe-wall biofilm, which was dominated by Novosphingobium spp. (20-82 %) and Sphingomonas spp. (11-53 %), regardless of the treatment applied. The bacterial communities that were retained in the distribution systems (including pipe-wall biofilm and loose deposits) were similar to the particle-associated bacteria (PAB) in the corresponding supply water. The additional treatments showed clear effects of the removal and/or introduction of particles. The genera Aeromonas spp., Clostridium spp., Legionella spp., and Pseudomonas spp., which contain opportunistic pathogenic species, were only detected among the PAB in ion exchange system. Our study demonstrated that the biofilm community is consistent across treatments, and the contribution from bacteria in loose deposits is important but can be controlled by removing particles. These findings offer more insight into the origin and development of microbial ecology in DWDSs and suggest paths for further research on the possibility of managing the microbial ecology in distribution systems.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| | - Xiaoming Li
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Anran Ren
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| | - Mingchen Yao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| | - Chen Chen
- Beijing Waterworks Group Co., Ltd., Beijing, China
| | - Haichen Zhang
- Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
| | - Walter van der Meer
- Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, the Netherlands
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands.
| |
Collapse
|
2
|
Ryser R, Chase JM, Gauzens B, Häussler J, Hirt MR, Rosenbaum B, Brose U. Landscape configuration can flip species-area relationships in dynamic meta-food-webs. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230138. [PMID: 38913064 PMCID: PMC11391306 DOI: 10.1098/rstb.2023.0138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 06/25/2024] Open
Abstract
Spatial and trophic processes profoundly influence biodiversity, yet ecological theories often treat them independently. The theory of island biogeography and related theories on metacommunities predict higher species richness with increasing area across islands or habitat patches. In contrast, food-web theory explores the effects of traits and network structure on coexistence within local communities. Exploring the mechanisms by which landscape configurations interact with food-web dynamics in shaping metacommunities is important for our understanding of biodiversity. Here, we use a meta-food-web model to explore the role of landscape configuration in determining species richness and show that when habitat patches are interconnected by dispersal, more species can persist on smaller islands than predicted by classical theory. When patch sizes are spatially aggregated, this effect flattens the slope of the species-area relationship. Surprisingly, when landscapes have random patch-size distributions, the slope of the species-area relationships can even flip and become negative. This could be explained by higher biomass densities of lower trophic levels that then support species occupying higher trophic levels, which only persist on small and well-connected patches. This highlights the importance of simultaneously considering landscape configuration and local food-web dynamics to understand drivers of species-area relationships in metacommunities.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute for Computer Science, Martin Luther University Halle-Wittenberg, Halle 06108, Germany
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Johanna Häussler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Benjamin Rosenbaum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| |
Collapse
|
3
|
Liu J, Huang X, Jiang X, Qing C, Li Y, Xia P. Loss of submerged macrophytes in shallow lakes alters bacterial and archaeal community structures, and reduces their co-occurrence networks connectivity and complexity. Front Microbiol 2024; 15:1380805. [PMID: 38601927 PMCID: PMC11004660 DOI: 10.3389/fmicb.2024.1380805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Bacteria and archaea are important components in shallow lake ecosystems and are crucial for biogeochemical cycling. While the submerged macrophyte loss is widespread in shallow lakes, the effect on the bacteria and archaea in the sediment and water is not yet widely understood. Methods In this study, 16S rRNA gene sequencing was used to explore the bacteria and archaea in samples taken from the sediment and water in the submerged macrophyte abundant (MA) and submerged macrophyte loss (ML) areas of Caohai Lake, Guizhou, China. Results The results showed that the dominant bacterial phyla were Proteobacteria and Chloroflexi in the sediment; the dominant phyla were Proteobacteria, Actinobacteriota, and Bacteroidota in the water. The dominant archaea in sediment and water were the same, in the order of Crenarchaeota, Thermoplasmatota, and Halobacterota. Non-metric multidimensional scaling (NMDS) analyses showed that bacterial and archaeal community structures in the water were significantly affected by the loss of submerged macrophytes, but not by significant changes in the sediment. This suggests that the loss of submerged macrophytes has a stronger effect on the bacterial and archaeal community structures in water than in sediment. Furthermore, plant biomass (PB) was the key factor significantly influencing the bacterial community structure in water, while total nitrogen (TN) was the main factor significantly influencing the archaeal community structure in water. The loss of submerged macrophytes did not significantly affect the alpha diversity of the bacterial and archaeal communities in either the sediment or water. Based on network analyses, we found that the loss of submerged macrophytes reduced the connectivity and complexity of bacterial patterns in sediment and water. For archaea, network associations were stronger for MA network than for ML network in sediment, but network complexity for archaea in water was not significantly different between the two areas. Discussion This study assesses the impacts of submerged macrophyte loss on bacteria and archaea in lakes from microbial perspective, which can help to provide further theoretical basis for microbiological research and submerged macrophytes restoration in shallow lakes.
Collapse
Affiliation(s)
- Jiahui Liu
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Xianfei Huang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Xin Jiang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Chun Qing
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Yue Li
- Guizhou Caohai National Nature Reserve Management Committee, Bijie, Guizhou, China
| | - Pinhua Xia
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| |
Collapse
|
4
|
DeVilbiss SE, Taylor JM, Hicks M. Salinization and sedimentation drive contrasting assembly mechanisms of planktonic and sediment-bound bacterial communities in agricultural streams. GLOBAL CHANGE BIOLOGY 2023; 29:5615-5633. [PMID: 37548955 DOI: 10.1111/gcb.16905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Agriculture is the most dominant land use globally and is projected to increase in the future to support a growing human population but also threatens ecosystem structure and services. Bacteria mediate numerous biogeochemical pathways within ecosystems. Therefore, identifying linkages between stressors associated with agricultural land use and responses of bacterial diversity is an important step in understanding and improving resource management. Here, we use the Mississippi Alluvial Plain (MAP) ecoregion, a highly modified agroecosystem, as a case study to better understand agriculturally associated drivers of stream bacterial diversity and assembly mechanisms. In the MAP, we found that planktonic bacterial communities were strongly influenced by salinity. Tolerant taxa increased with increasing ion concentrations, likely driving homogenous selection which accounted for ~90% of assembly processes. Sediment bacterial phylogenetic diversity increased with increasing agricultural land use and was influenced by sediment particle size, with assembly mechanisms shifting from homogenous to variable selection as differences in median particle size increased. Within individual streams, sediment heterogeneity was correlated with bacterial diversity and a subsidy-stress relationship along the particle size gradient was observed. Planktonic and sediment communities within the same stream also diverged as sediment particle size decreased. Nutrients including carbon, nitrogen, and phosphorus, which tend to be elevated in agroecosystems, were also associated with detectable shifts in bacterial community structure. Collectively, our results establish that two understudied variables, salinity and sediment texture, are the primary drivers of bacterial diversity within the studied agroecosystem, whereas nutrients are secondary drivers. Although numerous macrobiological communities respond negatively, we observed increasing bacterial diversity in response to agricultural stressors including salinization and sedimentation. Elevated taxonomic and phylogenetic bacterial diversity likely increases the probability of detecting community responses to stressors. Thus, bacteria community responses may be more reliable for establishing water quality goals within highly modified agroecosystems that have experienced shifting baselines.
Collapse
Affiliation(s)
- Stephen E DeVilbiss
- U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Oxford, Mississippi, USA
| | - Jason M Taylor
- United States Department of Agriculture-Agricultural Research Service, National Sedimentation Laboratory, Oxford, Mississippi, USA
| | - Matthew Hicks
- United States Geological Survey, Lower Mississippi-Gulf Water Science Center, Jackson, Mississippi, USA
| |
Collapse
|
5
|
Sagua MI, Nuozzi G, Sánchez ML, Huber P, Perdomo S, Schiaffino MR. Unraveling the effect of land use on the bacterioplankton community composition from highly impacted shallow lakes at a regional scale. FEMS Microbiol Ecol 2023; 99:fiad109. [PMID: 37715304 DOI: 10.1093/femsec/fiad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
Bacterioplankton communities play a crucial role in global biogeochemical processes and are highly sensitive to changes induced by natural and anthropogenic stressors in aquatic ecosystems. We assessed the influence of Land Use Land Cover (LULC), environmental, and geographic changes on the bacterioplankton structure in highly connected and impacted shallow lakes within the Salado River basin, Buenos Aires, Argentina. Additionally, we investigated how changes in LULC affected the limnological characteristics of these lakes at a regional scale. Our analysis revealed that the lakes were ordinated by sub-basins (upper and lower) depending on their LULC characteristics and limnological properties. In coincidence, the same ordination was observed when considering the Bacterioplankton Community Composition (BCC). Spatial and environmental predictors significantly explained the variation in BCC, although when combined with LULC the effect was also important. While the pure LULC effect did not explain a significant percentage of BCC variation, the presence of atrazine in water, an anthropogenic variable linked to LULC, directly influenced both the BCC and some Amplicon Sequence Variants (ASVs) in particular. Our regional-scale approach contributes to understanding the complexity of factors driving bacterioplankton structure and how LULC pervasively affect these communities in highly impacted shallow lake ecosystems from the understudied Southern Hemisphere.
Collapse
Affiliation(s)
- Mara I Sagua
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Roque Saez Pena 456 (6000), Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA) - UNNOBA-UNSAdA-CONICET, Monteagudo 2772 (2700), Pergamino, Buenos Aires, Argentina
| | - Guillermina Nuozzi
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Roque Saez Pena 456 (6000), Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA) - UNNOBA-UNSAdA-CONICET, Monteagudo 2772 (2700), Pergamino, Buenos Aires, Argentina
| | - María L Sánchez
- CONICET - Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Universidad de Buenos Aires, Intendente Guiraldes 2160 (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, Intendente Guiraldes 2160 (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Huber
- Instituto Nacional de Limnología (INALI, CONICET-UNL). Colectora RN 168 Km 0 (3000), Paraje El Pozo, Santa Fe, Argentina
- Departamento de Hydrobiologia, Universidade Federal de São Carlos (UFSCar). Rodovia Washington Luis S/N - Monjolinho (13565-905), São Carlos, São Paulo, Brazil
| | - Santiago Perdomo
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Roque Saez Pena 456 (6000), Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA) - UNNOBA-UNSAdA-CONICET, Monteagudo 2772 (2700), Pergamino, Buenos Aires, Argentina
| | - María R Schiaffino
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Roque Saez Pena 456 (6000), Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA) - UNNOBA-UNSAdA-CONICET, Monteagudo 2772 (2700), Pergamino, Buenos Aires, Argentina
| |
Collapse
|
6
|
Ren H, Wang G, Ding W, Li H, Shen X, Shen D, Jiang X, Qadeer A. Response of dissolved organic matter (DOM) and microbial community to submerged macrophytes restoration in lakes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116185. [PMID: 37207736 DOI: 10.1016/j.envres.2023.116185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Microorganisms play a crucial role in the biogeochemical processes of Dissolved Organic Matter (DOM), and the properties of DOM also significantly influence changes in microbial community characteristics. This interdependent relationship is vital for the flow of matter and energy within aquatic ecosystems. The presence, growth state, and community characteristics of submerged macrophytes determine the susceptibility of lakes to eutrophication, and restoring a healthy submerged macrophyte community is an effective way to address this issue. However, the transition from eutrophic lakes dominated by planktic algae to medium or low trophic lakes dominated by submerged macrophytes involves significant changes. Changes in aquatic vegetation have greatly affected the source, composition, and bioavailability of DOM. The adsorption and fixation functions of submerged macrophytes determine the migration and storage of DOM and other substances from water to sediment. Submerged macrophytes regulate the characteristics and distribution of microbial communities by controlling the distribution of carbon sources and nutrients in the lake. They further affect the characteristics of the microbial community in the lake environment through their unique epiphytic microorganisms. The unique process of submerged macrophyte recession or restoration can alter the DOM-microbial interaction pattern in lakes through its dual effects on DOM and microbial commu-----nities, ultimately changing the stability of carbon and mineralization pathways in lakes, such as the release of methane and other greenhouse gases. This review provides a fresh perspective on the dynamic changes of DOM and the role of the microbiome in the future of lake ecosystems.
Collapse
Affiliation(s)
- Haoyu Ren
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guoxi Wang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wanchang Ding
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - He Li
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xian Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongbo Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xia Jiang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Abdul Qadeer
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
7
|
Zhang Z, Li J, Li H, Wang L, Zhou Y, Li S, Zhang Z, Feng K, Deng Y. Environmental DNA metabarcoding reveals the influence of human activities on microeukaryotic plankton along the Chinese coastline. WATER RESEARCH 2023; 233:119730. [PMID: 36801577 DOI: 10.1016/j.watres.2023.119730] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Microeukaryotic plankton, with its extremely diverse taxa, is a key component in both the marine food web and biogeochemical cycling. Coastal seas, which are home to the numerous microeukaryotic plankton that underpin the functions of these aquatic ecosystems, are often impacted by human activities. However, understanding the biogeographical patterns of diversity and community structure of microeukaryotic plankton and the role that major shaping factors play at the continent scale is still a challenge in coastal ecology. Here, the biogeographic patterns of biodiversity, community structure, and co-occurrence patterns were investigated by environmental DNA (eDNA) based approaches. Unlike most eDNA studies, we combined several methods (in silico PCR, mock and environmental communities) to systematically evaluate the specificity and coverage of primers to overcome the limitation of marker selection on biodiversity recovery. The 1380F/1510R primer set showed the best performance for the amplification of coastal plankton with the highest coverage, sensitivity, and resolution. We showed a unimodal pattern for planktonic alpha diversity with latitude (P < 0.001), and nutrient-related factors (NO3N, NO2N, and NH4N) were the leading predictors for spatial patterning. Significant regional biogeographic patterns and potential drivers for planktonic communities were found across coastal regions. All communities generally fitted the regional distance-decay relationship (DDR) model with the strongest spatial turnover rate was found in the Yalujiang (YLJ) estuary (P < 0.001). The environmental factors, especially inorganic nitrogen and heavy metals (HMs), had the greatest impact on planktonic community similarity in the Beibu Bay (BB) and East China Sea (ECS). Furthermore, we observed spatial plankton co-occurrence patterns, and the networked topology and structure were strongly driven by potential anthropogenic activity factors (nutrients and HMs). Overall, our study provided a systematic approach for metabarcode primer selection in eDNA-based biodiversity monitoring and revealed that the spatial pattern of the microeukaryotic plankton community was mainly controlled by regional human activity-related factors.
Collapse
Affiliation(s)
- Zheng Zhang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Jiang Li
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources; Key Laboratory of Ecological Environment Science and Technology, Ministry of Natural Resources, Qingdao, China, 266061.
| | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Linlin Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Yuqi Zhou
- Institute of Soil and Water Resources and Environmental Science College of Environmental and Natural Resource Sciences, Zhejiang University, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
8
|
Brenes-Guillén L, Vidaurre-Barahona D, Avilés-Vargas L, Castro-Gutierrez V, Gómez-Ramírez E, González-Sánchez K, Mora-López M, Umaña-Villalobos G, Uribe-Lorío L, Hassard F. First insights into the prokaryotic community structure of Lake Cote, Costa Rica: Influence on nutrient cycling. Front Microbiol 2022; 13:941897. [PMID: 36262328 PMCID: PMC9574093 DOI: 10.3389/fmicb.2022.941897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Prokaryotic diversity in lakes has been studied for many years mainly focusing on community structure and how the bacterial assemblages are driven by physicochemical conditions such as temperature, oxygen, and nutrients. However, little is known about how the composition and function of the prokaryotic community changes upon lake stratification. To elucidate this, we studied Lake Cote in Costa Rica determining prokaryotic diversity and community structure in conjunction with physicochemistry along vertical gradients during stratification and mixing periods. Of the parameters measured, ammonium, oxygen, and temperature, in that order, were the main determinants driving the variability in the prokaryotic community structure of the lake. Distinct stratification of Lake Cote occurred (March 2018) and the community diversity was compared to a period of complete mixing (March 2019). The microbial community analysis indicated that stratification significantly altered the bacterial composition in the epi-meta- and hypolimnion. During stratification, the Deltaproteobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, and Euryarchaeota were dominant in the hypolimnion yet largely absent in surface layers. Among these taxa, strict or facultative anaerobic bacteria were likely contributing to the lake nitrogen biogeochemical cycling, consistent with measurements of inorganic nitrogen measurements and microbial functional abundance predictions. In general, during both sampling events, a higher abundance of Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and Cyanobacteria was found in the oxygenated layers. Lake Cote had a unique bacterial diversity, with 80% of Amplicon Sequence Variant (ASV) recovered similar to unclassified/uncultured strains and exhibits archetypal shallow lake physicochemical but not microbial fluctuations worthy of further investigation. This study provides an example of lake hydrodynamics impacts to microbial community and their function in Central American lakes with implications for other shallow, upland, and oligotrophic lake systems.
Collapse
Affiliation(s)
- Laura Brenes-Guillén
- Cellular and Molecular Biology Research Center, University of Costa Rica, San José, Costa Rica
| | | | - Lidia Avilés-Vargas
- Research Center in Sciences of the Sea and Limnology, University of Costa Rica, San José, Costa Rica
| | | | - Eddy Gómez-Ramírez
- Research Center in Sciences of the Sea and Limnology, University of Costa Rica, San José, Costa Rica
| | - Kaylen González-Sánchez
- Research Center in Sciences of the Sea and Limnology, University of Costa Rica, San José, Costa Rica
| | - Marielos Mora-López
- Cellular and Molecular Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Gerardo Umaña-Villalobos
- Research Center in Sciences of the Sea and Limnology, University of Costa Rica, San José, Costa Rica
| | - Lorena Uribe-Lorío
- Cellular and Molecular Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, Cranfield, United Kingdom
- Institute for Nanotechnology and Water Sustainability, University of South Africa, Johannesburg, South Africa
- *Correspondence: Francis Hassard,
| |
Collapse
|
9
|
Changes in the intestinal microbiota of Pacific white shrimp (Litopenaeus vannamei) with different severities of Enterocytozoon hepatopenaei infection. J Invertebr Pathol 2022; 191:107763. [PMID: 35568066 DOI: 10.1016/j.jip.2022.107763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022]
Abstract
The intestinal microbiota of the Pacific white shrimp Litopenaeus vannamei during Enterocytozoon hepatopenaei (EHP) infection was investigated by 16S rRNA gene-based analysis. The results showed that bacterial diversity in the intestine of L. vannamei was high, but it decreased with increasing severity of EHP infection. The relative abundances of the phyla Planctomycetes, Actinobacteria and Acidobacteria decreased significantly with a decrease in body size or EHP infection severity (P<0.05). The most abundant genera were Pseudomonas, Methylobacterium, Bradyrhizobium, Bacteroides, Vibrio, Prevotella and so on. In addition, the relative abundances of some bacteria, such as Pseudomonas, Bradyrhizobium, Bacteroides and Vibrio, increased significantly with a decrease in body size or EHP infection severity (P<0.05). These findings suggest that changes in the intestinal microbiota occur depending on the severity of EHP infection.
Collapse
|
10
|
Qin M, Xu H, Zhao D, Zeng J, Wu QL. Aquaculture drives distinct patterns of planktonic and sedimentary bacterial communities: insights into co-occurrence pattern and assembly processes. Environ Microbiol 2022; 24:4079-4093. [PMID: 35099108 DOI: 10.1111/1462-2920.15922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 11/03/2022]
Abstract
Aquaculture would change the environmental condition in the lake ecosystem, affecting the structure and function of the aquatic ecosystem. However, little is known about the underlying mechanisms controlling the distribution patterns of bacterial community respond to aquaculture in water column and sediment. Here, we investigated the composition, co-occurrence patterns, and assembly processes of planktonic and sedimentary bacterial communities (PBC vs. SBC) from an aquaculture-influenced zone of the Eastern Lake Taihu, China. We found that aquaculture activity greatly influenced the diversity and composition of SBC by inducing excess nitrogen into the sediments. Meanwhile, network analysis revealed that aquaculture activity strengthened species interactions within the SBC network but weakened the species interactions within the PBC network. Aquaculture activity also increased the importance of deterministic processes governing the assembly of SBC by heightening the importance of environmental filtering, whereas it decreased the relative importance of deterministic processes within the assembly of PBC. In addition, ecological restoration with macrophytes increased the diversity of PBC and formed a more stable PBC network by increasing the number of network keystones. Overall, our results indicated that aquaculture drove distinct co-occurrence patterns and assembly mechanisms of PBC and SBC. This study has fundamental implications in the lake ecosystem for evaluating the microbially mediated ecological consequences of aquaculture.
Collapse
Affiliation(s)
- Mengyu Qin
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Huimin Xu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.,Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
11
|
DeWolf EI, Calder WJ, Harrison JG, Randolph GD, Noren BE, Weinig C. Aquatic Macrophytes Are Associated With Variation in Biogeochemistry and Bacterial Assemblages of Mountain Lakes. Front Microbiol 2022; 12:777084. [PMID: 35154025 PMCID: PMC8828945 DOI: 10.3389/fmicb.2021.777084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 01/04/2023] Open
Abstract
In aquatic systems, microbes likely play critical roles in biogeochemical cycling and ecosystem processes, but much remains to be learned regarding microbial biogeography and ecology. The microbial ecology of mountain lakes is particularly understudied. We hypothesized that microbial distribution among lakes is shaped, in part, by aquatic plant communities and the biogeochemistry of the lake. Specifically, we investigated the associations of yellow water lilies (Nuphar polysepala) with the biogeochemistry and microbial assemblages within mountain lakes at two scales: within a single lake and among lakes within a mountain range. We first compared the biogeochemistry of lakes without water lilies to those colonized to varying degrees by water lilies. Lakes with >10% of the surface occupied by water lilies had lower pH and higher dissolved organic carbon than those without water lilies and had a different microbial composition. Notably, cyanobacteria were negatively associated with water lily presence, a result consistent with the past observation that macrophytes outcompete phytoplankton and can suppress cyanobacterial and algal blooms. To examine the influence of macrophytes on microbial distribution within a lake, we characterized microbial assemblages present on abaxial and adaxial water lily leaf surfaces and in the water column. Microbial diversity and composition varied among all three habitats, with the highest diversity of microbes observed on the adaxial side of leaves. Overall, this study suggests that water lilies influence the biogeochemistry and microbiology of mountains lakes.
Collapse
Affiliation(s)
- Ella Ide DeWolf
- Department of Botany, University of Wyoming, Laramie, WY, United States
- *Correspondence: Ella Ide DeWolf,
| | | | | | | | | | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
12
|
Chao C, Wang L, Li Y, Yan Z, Liu H, Yu D, Liu C. Response of sediment and water microbial communities to submerged vegetations restoration in a shallow eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149701. [PMID: 34419912 DOI: 10.1016/j.scitotenv.2021.149701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Submerged macrophytes are the main primary producers in shallow lakes and play an important role in structuring communities. Aquatic microbes are also an important component of aquatic ecosystems and play important roles in maintaining the health and stability of ecosystems. However, little is known about the interactions between macrophytes and microbes during the reintroduction of submerged vegetation. Here, we chose restored zones dominated by four different submerged vegetations and a bare zone in a shallow eutrophic lake to unveil the microbial diversity, composition and structure changes in sediment and water samples after submerged macrophytes were recovered for one and a half years (July 2019) and two years (April 2020). We found that the recovery of submerged vegetations decreased phosphorus content in water and sediments but increased nitrogen and carbon content in sediments. We observed that the transparency of water in the restored zones was significantly higher than that in the bare zone in July. The recovery of submerged vegetations significantly influenced the alpha diversity of bacterial communities in sediments, with higher values observed in restored zones than in bare zones, whereas no significant influence was found in the water samples. In July, the macrophyte species showed strong effects on the bacterial community composition in water and relatively little effect in sediment. However, a strong effect of the macrophyte species on the composition of bacterial communities in sediments was observed in April, which may be related to the decomposition of plant litter and the decay of detritus. Additionally, the dissimilarity of the sedimentary bacterial community may increase more slowly with environmental changes than the planktonic bacterial community dissimilarity. These results suggest that the large-scale restoration of aquatic macrophytes can not only improve water quality and change sediment characteristics but can also affect the diversity and compositions of bacterial communities, and these effects seem to be very long-lasting.
Collapse
Affiliation(s)
- Chuanxin Chao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Ligong Wang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Yang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Zhiwei Yan
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Huimin Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| |
Collapse
|
13
|
Temporal Patterns of Bacterial and Viral Communities during Algae Blooms of a Reservoir in Macau. Toxins (Basel) 2021; 13:toxins13120894. [PMID: 34941731 PMCID: PMC8704429 DOI: 10.3390/toxins13120894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Compositions of microbial communities associated with blooms of algae in a storage reservoir in Macau, China were investigated between 2013 and 2016. Algae were enumerated by visible light microscopy. Profiles of organisms in water were examined by 16S rRNA sequences and viral metagenomics, based on next generation sequencing. Results of 16S rRNA sequencing indicated that majority of the identified organisms were bacteria closely related to Proteobacteria, Cyanobacteria, Verrucomicrobia, Bacteroidetes, and Actinobacteria. Metagenomics sequences demonstrated that the dominant virus was Phycodnavirus, accounting for 70% of the total population. Patterns of relative numbers of bacteria in the microbial community and their temporal changes were determined through alpha diversity indices, principal coordinates analysis (PCoA), relative abundance, and visualized by Venn diagrams. Ways in which the bacterial and viral communities are influenced by various water-related variables were elucidated based on redundancy analysis (RDA). Relationships of the relative numbers of bacteria with trophic status in a reservoir used for drinking water in Macau, provided insight into associations of Phycodnavirus and Proteobacteria with changes in blooms of algae.
Collapse
|
14
|
Sun H, Pan B, He H, Zhao G, Jiang X, Han X, Wang H. Characterization of the bacterioplankton community and the influencing factors in the upper reaches of the Han River basin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61748-61759. [PMID: 34189692 DOI: 10.1007/s11356-021-14906-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The upper reaches of the Han River are the source region of water for the Middle Route of China's South-to-North Water Diversion Project, mainly for household, industrial, and irrigation purposes. Planktonic bacteria are more sensitive than macroorganisms to water physical and chemical properties and play a critical role in biogeochemical processes in river ecosystems. In November 2017 and April 2018, a systematic and methodical survey was carried out to evaluate the water quality and bacterial communities, on the mainstem of the Han River and its five main tributaries. In this study, high-throughput sequencing technology has been employed to investigate the bacterioplankton community composition. The results indicated the following: (1) diversity increased downstream, especially in the upper reaches of the Han River. (2) The relative abundance of Actinobacteria increased with the increase of river length, while that of Bacteroidetes decreased slightly. (3) Five tributaries were found to be importance sources of taxa to the Han River; however, in both months, a large proportion of operational taxonomic units (37.84% and 36.34%, respectively) had unknown sources. (4) Finally, redundancy analysis (RDA) and Bioenv analysis showed that environmental parameters (pH, TN, Cond, NH4+-N, DO, NO2--N, Chl-a, and T) had a great influence (p ≤ 0.05) on the bacterioplankton community. These research results are beneficial for the managing the ecological system, protecting the tributary biodiversity, and conserving the mainstem and tributaries of the Han River basin.
Collapse
Affiliation(s)
- He Sun
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China.
| | - Haoran He
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Gengnan Zhao
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Xiaoming Jiang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Xu Han
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Hao Wang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| |
Collapse
|
15
|
Kolmakova OV, Trusova MY, Baturina OA, Kabilov MR. Bacteria of Lake Pyasino and Adjacent Rivers after an Accidental Diesel Spill in 2020. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Dickey JR, Swenie RA, Turner SC, Winfrey CC, Yaffar D, Padukone A, Beals KK, Sheldon KS, Kivlin SN. The Utility of Macroecological Rules for Microbial Biogeography. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.633155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macroecological rules have been developed for plants and animals that describe large-scale distributional patterns and attempt to explain the underlying physiological and ecological processes behind them. Similarly, microorganisms exhibit patterns in relative abundance, distribution, diversity, and traits across space and time, yet it remains unclear the extent to which microorganisms follow macroecological rules initially developed for macroorganisms. Additionally, the usefulness of these rules as a null hypothesis when surveying microorganisms has yet to be fully evaluated. With rapid advancements in sequencing technology, we have seen a recent increase in microbial studies that utilize macroecological frameworks. Here, we review and synthesize these macroecological microbial studies with two main objectives: (1) to determine to what extent macroecological rules explain the distribution of host-associated and free-living microorganisms, and (2) to understand which environmental factors and stochastic processes may explain these patterns among microbial clades (archaea, bacteria, fungi, and protists) and habitats (host-associated and free living; terrestrial and aquatic). Overall, 78% of microbial macroecology studies focused on free living, aquatic organisms. In addition, most studies examined macroecological rules at the community level with only 35% of studies surveying organismal patterns across space. At the community level microorganisms often tracked patterns of macroorganisms for island biogeography (74% confirm) but rarely followed Latitudinal Diversity Gradients (LDGs) of macroorganisms (only 32% confirm). However, when microorganisms and macroorganisms shared the same macroecological patterns, underlying environmental drivers (e.g., temperature) were the same. Because we found a lack of studies for many microbial groups and habitats, we conclude our review by outlining several outstanding questions and creating recommendations for future studies in microbial ecology.
Collapse
|
17
|
Ihua MW, FitzGerald JA, Guihéneuf F, Jackson SA, Claesson MJ, Stengel DB, Dobson ADW. Diversity of bacteria populations associated with different thallus regions of the brown alga Laminaria digitata. PLoS One 2020; 15:e0242675. [PMID: 33237941 PMCID: PMC7688147 DOI: 10.1371/journal.pone.0242675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022] Open
Abstract
Stipitate kelp species such as Laminaria digitata dominate most cold-water subtidal rocky shores and form underwater forests which are among the most productive coastal systems worldwide. Laminaria also sustains rich bacterial communities which offer a variety of biotechnological applications. However, to date, in-depth studies on the diversity and uniqueness of bacterial communities associated with this macroalgal species, their ecological role and their interactions with the alga are under-represented. To address this, the epibacterial populations associated with different thallus regions (holdfast, stipe, meristem, blade) of this brown seaweed were investigated using high-throughput Illumina sequencing of the 16S rRNA genes. The results show that epibacterial communities of the brown seaweed are significantly different and specific to the thallus region, with the shared bacterial population comprising of only 1.1% of the total amplicon sequence variants. The diverse holdfast and blade tissues formed distinct clusters while the meristem and stipe regions are more closely related. The data obtained further supports the hypothesis that macroalgal bacterial communities are shaped by morphological niches and display specificity.
Collapse
Affiliation(s)
- Maureen W. Ihua
- School of Microbiology, University College Cork, Cork, Ireland
| | - Jamie A. FitzGerald
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | | | | | - Marcus J. Claesson
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Dagmar B. Stengel
- Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland Galway, Galway, Ireland
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Le Moigne A, Bartosiewicz M, Schaepman-Strub G, Abiven S, Pernthaler J. The biogeochemical variability of Arctic thermokarst ponds is reflected by stochastic and niche-driven microbial community assembly processes. Environ Microbiol 2020; 22:4847-4862. [PMID: 32996246 PMCID: PMC7702111 DOI: 10.1111/1462-2920.15260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 01/22/2023]
Abstract
Shallow thermokarst ponds are a conspicuous landscape element of the Arctic Siberian tundra with high biogeochemical variability. Little is known about how microbes from the regional species pool assemble into local pond communities and how the resulting patterns affect functional properties such as dissolved organic carbon (DOC) remineralization and greenhouse gas (GHG) turnover. We analysed the pelagic microbiomes of 20 ponds in north‐eastern Siberia in the context of their physico‐chemical properties. Ponds were categorized as polygonal or trough according to their geomorphological origin. The diversity of bacteria and eukaryotic microbes was assessed by ribosomal gene tag sequencing. Null model analysis revealed an important role of stochastic assembly processes within ponds of identical origin, in particular for genotypes only occurring in few systems. Nevertheless, the two pond types clearly represented distinct niches for both the bacterial and eukaryotic microbial communities. Carbon dioxide concentration, indicative of heterotrophic microbial processes, varied greatly, especially in the trough ponds. Methane concentrations were lower in polygonal ponds and were correlated with the estimated abundance of methanotrophs. Thus, the overall functional variability of Arctic ponds reflects the stochastic assembly of their microbial communities. Distinct functional subcommunities can, nevertheless, be related to GHG concentrations.
Collapse
Affiliation(s)
- Alizée Le Moigne
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland.,URPP Global Change and Biodiversity, University of Zürich, Zürich, Switzerland
| | - Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Gabriela Schaepman-Strub
- URPP Global Change and Biodiversity, University of Zürich, Zürich, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Samuel Abiven
- Department of Geography, University of Zurich, Zürich, Switzerland.,Laboratoire de Géologie, UMR 8538 Ecole Normale Supérieure, CNRS, PSL Research University, Paris, France.,Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP-Ecotron IledeFrance), Département de Biologie, Ecole Normale Supérieure, CNRS, PSL Research University, Paris, France
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland.,URPP Global Change and Biodiversity, University of Zürich, Zürich, Switzerland
| |
Collapse
|
19
|
Yang M, Shi J, Wang B, Xiao J, Li W, Liu CQ. Control of Hydraulic Load on Bacterioplankton Diversity in Cascade Hydropower Reservoirs, Southwest China. MICROBIAL ECOLOGY 2020; 80:537-545. [PMID: 32462390 DOI: 10.1007/s00248-020-01523-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/05/2020] [Indexed: 05/25/2023]
Abstract
Hydroelectric reservoirs are highly regulated ecosystems, where the understanding on bacterioplankton has been very limited so far. In view of significant changes in river hydrological conditions by dam construction, hydraulic load (i.e., the ratio of mean water depth to water retention time) was assumed to control bacterioplankton diversity in cascading hydropower reservoirs. To evaluate this hypothesis, we investigated bacterioplankton composition and diversity using high-throughput sequencing and related environmental variables in eleven reservoirs on the Wujiang River, Southwest China. Our results showed a decrease of bacterioplankton diversity index with an increase of reservoir hydraulic load. This is because hydraulic load governs dissolved oxygen variation in the water column, which is a key factor shaping bacterioplankton composition in these hydroelectric reservoirs. In contrast, bacterioplankton abundance was mainly affected by nutrient-related environmental factors. Therefore, from a hydrological perspective, hydraulic load is a decisive factor for the bacterioplankton diversity in the hydroelectric reservoirs. This study can improve the understanding of reservoir bacterial ecology, and the empirical relationship between hydraulic load and bacterioplankton diversity index will help to quantitatively evaluate ecological effects of river damming.
Collapse
Affiliation(s)
- Meiling Yang
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Jie Shi
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Baoli Wang
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Jing Xiao
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Wanzhu Li
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
20
|
Ellegaard KM, Suenami S, Miyazaki R, Engel P. Vast Differences in Strain-Level Diversity in the Gut Microbiota of Two Closely Related Honey Bee Species. Curr Biol 2020. [PMID: 32531278 DOI: 10.1101/2020.01.23.916296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Most bacterial species encompass strains with vastly different gene content. Strain diversity in microbial communities is therefore considered to be of functional importance. Yet little is known about the extent to which related microbial communities differ in diversity at this level and which underlying mechanisms may constrain and maintain strain-level diversity. Here, we used shotgun metagenomics to characterize and compare the gut microbiota of two honey bee species, Apis mellifera and Apis cerana, which diverged about 6 mya. Although the host species are colonized largely by the same bacterial 16S rRNA phylotypes, we find that their communities are host specific when analyzed with genomic resolution. Moreover, despite their similar ecology, A. mellifera displayed a much higher diversity of strains and functional gene content in the microbiota compared to A. cerana, both per colony and per individual bee. In particular, the gene repertoire for polysaccharide degradation was massively expanded in the microbiota of A. mellifera relative to A. cerana. Bee management practices, divergent ecological adaptation, or habitat size may have contributed to the observed differences in microbiota genomic diversity of these key pollinator species. Our results illustrate that the gut microbiota of closely related animal hosts can differ vastly in genomic diversity while displaying similar levels of diversity based on the 16S rRNA gene. Such differences are likely to have consequences for gut microbiota functioning and host-symbiont interactions, highlighting the need for metagenomic studies to understand the ecology and evolution of microbial communities.
Collapse
Affiliation(s)
- Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, 169-8555 Tokyo, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
21
|
Nyirabuhoro P, Liu M, Xiao P, Liu L, Yu Z, Wang L, Yang J. Seasonal Variability of Conditionally Rare Taxa in the Water Column Bacterioplankton Community of Subtropical Reservoirs in China. MICROBIAL ECOLOGY 2020; 80:14-26. [PMID: 31836929 DOI: 10.1007/s00248-019-01458-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Conditionally rare bacteria are ubiquitous and perhaps the most diverse of microbial lifeforms, but their temporal dynamics remain largely unknown. High-throughput and deep sequencing of the 16S rRNA gene has allowed us to identify and compare the conditionally rare taxa with other bacterioplankton subcommunities. In this study, we examined the effect of season, water depth, and ecological processes on the fluctuations of bacterial subcommunities (including abundant, conditionally rare, moderate, and rare taxa) from three subtropical reservoirs in China. We discovered that the conditionally rare taxa (CRT) made up 49.7 to 71.8% of the bacterioplankton community richness, and they accounted for 70.6 to 84.4% of the temporal changes in the community composition. Beta-diversity analysis revealed strong seasonal succession patterns among all bacterioplankton subcommunities, suggesting abundant, conditionally rare, moderate, and rare taxa subcommunities have comparable environmental sensitivity. The dominant phyla of CRT were Proteobacteria, Actinobacteria, and Bacteroidetes, whose variations were strongly correlated with environmental variables. Both deterministic and stochastic processes showed strong effect on bacterioplankton community assembly, with deterministic patterns more pronounced for CRT subcommunity. The difference in bacterial community composition was strongly linked with seasonal change rather than water depth. The seasonal patterns of CRT expand our understanding of underlying mechanisms for bacterial community structure and composition. This implies their importance in the function and stability of freshwater ecosystem after environmental disturbance.
Collapse
Affiliation(s)
- Pascaline Nyirabuhoro
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Xiao
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lemian Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine, Fuzhou University, Fuzhou, 350116, China
| | - Zheng Yu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lina Wang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
22
|
Schulhof MA, Allen AE, Allen EE, Mladenov N, McCrow JP, Jones NT, Blanton J, Cavalheri HB, Kaul D, Symons CC, Shurin JB. Sierra Nevada mountain lake microbial communities are structured by temperature, resources and geographic location. Mol Ecol 2020; 29:2080-2093. [DOI: 10.1111/mec.15469] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Marika A. Schulhof
- Division of Biological Sciences University of California San Diego La Jolla CA USA
| | - Andrew E. Allen
- Scripps Institution of Oceanography University of California San Diego La Jolla CA USA
- Department of Microbial and Environmental Genomics J. Craig Venter Institute La Jolla CA USA
| | - Eric E. Allen
- Division of Biological Sciences University of California San Diego La Jolla CA USA
- Scripps Institution of Oceanography University of California San Diego La Jolla CA USA
| | - Natalie Mladenov
- Department of Civil, Construction, & Environmental Engineering San Diego State University San Diego CA USA
| | - John P. McCrow
- Department of Microbial and Environmental Genomics J. Craig Venter Institute La Jolla CA USA
| | - Natalie T. Jones
- Division of Biological Sciences University of California San Diego La Jolla CA USA
- School of Biological Sciences University of Queensland Brisbane Qld Australia
| | - Jessica Blanton
- Scripps Institution of Oceanography University of California San Diego La Jolla CA USA
| | - Hamanda B. Cavalheri
- Division of Biological Sciences University of California San Diego La Jolla CA USA
| | - Drishti Kaul
- Department of Microbial and Environmental Genomics J. Craig Venter Institute La Jolla CA USA
| | - Celia C. Symons
- Division of Biological Sciences University of California San Diego La Jolla CA USA
- Department of Ecology and Evolutionary Biology University of California Irvine Irvine CA USA
| | - Jonathan B. Shurin
- Division of Biological Sciences University of California San Diego La Jolla CA USA
| |
Collapse
|
23
|
Ellegaard KM, Suenami S, Miyazaki R, Engel P. Vast Differences in Strain-Level Diversity in the Gut Microbiota of Two Closely Related Honey Bee Species. Curr Biol 2020; 30:2520-2531.e7. [PMID: 32531278 PMCID: PMC7342003 DOI: 10.1016/j.cub.2020.04.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/31/2023]
Abstract
Most bacterial species encompass strains with vastly different gene content. Strain diversity in microbial communities is therefore considered to be of functional importance. Yet little is known about the extent to which related microbial communities differ in diversity at this level and which underlying mechanisms may constrain and maintain strain-level diversity. Here, we used shotgun metagenomics to characterize and compare the gut microbiota of two honey bee species, Apis mellifera and Apis cerana, which diverged about 6 mya. Although the host species are colonized largely by the same bacterial 16S rRNA phylotypes, we find that their communities are host specific when analyzed with genomic resolution. Moreover, despite their similar ecology, A. mellifera displayed a much higher diversity of strains and functional gene content in the microbiota compared to A. cerana, both per colony and per individual bee. In particular, the gene repertoire for polysaccharide degradation was massively expanded in the microbiota of A. mellifera relative to A. cerana. Bee management practices, divergent ecological adaptation, or habitat size may have contributed to the observed differences in microbiota genomic diversity of these key pollinator species. Our results illustrate that the gut microbiota of closely related animal hosts can differ vastly in genomic diversity while displaying similar levels of diversity based on the 16S rRNA gene. Such differences are likely to have consequences for gut microbiota functioning and host-symbiont interactions, highlighting the need for metagenomic studies to understand the ecology and evolution of microbial communities. Metagenomics reveals differences in gut microbiota diversity beyond the 16S rRNA gene Apis cerana and Apis mellifera harbor distinct species and strains in their gut Diversity is much higher in A. mellifera per individual bee and within colonies Major differences in functions are related to polysaccharide degradation
Collapse
Affiliation(s)
- Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, 169-8555 Tokyo, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
24
|
Yanez-Montalvo A, Gómez-Acata S, Águila B, Hernández-Arana H, Falcón LI. The microbiome of modern microbialites in Bacalar Lagoon, Mexico. PLoS One 2020; 15:e0230071. [PMID: 32210450 PMCID: PMC7094828 DOI: 10.1371/journal.pone.0230071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/20/2020] [Indexed: 11/18/2022] Open
Abstract
Microbialites are highly diverse microbial communities that represent modern examples of the oldest life forms, stromatolites (dated >3.7 Ga). Bacalar Lagoon, in Mexico, harbors the largest freshwater microbialite occurrences of the world; yet diverse anthropogenic activities are changing the oligotrophic conditions of the lagoon. The objective of this work was to perform a spatial exploration of the microbialites of Bacalar Lagoon, analyze their prokaryote diversity, following a high throughput sequencing approach of the V4 region of the 16S rDNA, and correlate to the environmental parameters that influence the structure of these communities. The results indicate the presence of microbialites throughout the periphery of the lagoon. The microbiome of the microbialites is composed primarily of Proteobacteria (40-80%), Cyanobacteria (1-11%), Bacteroidetes (7-8%), Chloroflexi (8-14%), Firmicutes (1-23%), Planctomycetes (1-8%), and Verrucomicrobia (1-4%). Phylogenetic distance analyses suggests two distinct groups of microbialites associated with regions in the lagoon that have differences in their environmental parameters, including soluble reactive silicate (in the north), bicarbonates and available forms of nitrogen (ammonium, nitrates and nitrites) (in the south). These microbialite groups had differences in their microbiome composition associated to strong anthropogenic pressure on water quality (agriculture, landfill leachate, lack of water treatment infrastructure and intensive tourism), which were related to a loss of microbial diversity.
Collapse
Affiliation(s)
- Alfredo Yanez-Montalvo
- UNAM, Instituto de Ecología, Parque Científico y Tecnológico de Yucatán, Sierra Papacal, Yucatán, México
- El Colegio de la Frontera Sur Unidad Chetumal, Chetumal, Quintana Roo, Mexico
| | - Selene Gómez-Acata
- UNAM, Instituto de Ecología, Parque Científico y Tecnológico de Yucatán, Sierra Papacal, Yucatán, México
| | - Bernardo Águila
- UNAM, Instituto de Ecología, Parque Científico y Tecnológico de Yucatán, Sierra Papacal, Yucatán, México
| | | | - Luisa I. Falcón
- UNAM, Instituto de Ecología, Parque Científico y Tecnológico de Yucatán, Sierra Papacal, Yucatán, México
| |
Collapse
|
25
|
Diatom-Derived Polyunsaturated Aldehydes Are Unlikely to Influence the Microbiota Composition of Laboratory-Cultured Diatoms. Life (Basel) 2020; 10:life10030029. [PMID: 32213870 PMCID: PMC7151586 DOI: 10.3390/life10030029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/18/2020] [Accepted: 03/20/2020] [Indexed: 01/30/2023] Open
Abstract
Diatom-derived oxylipins, including polyunsaturated aldehydes (PUA), are considered to have infochemical, allelochemical and bacteriostatic properties, with plausible roles as grazing deterrents and regulators of inter- and intraspecific competition. However, the extent and mechanisms of how PUA influence diatom–bacteria interactions remain unresolved. In this study, impacts on the diversity of the associated bacterial communities (microbiota) of two contrasting Skeletonema marinoi strains (a PUA and a non-PUA producer) were investigated under three nitrate conditions in batch culture. Further, the response of the culture microbiota was studied when spiked with PUA at ecologically relevant concentrations (86nM octadienal and 290nM heptadienal). Of the 741 identified OTUs, Proteobacteria was the most abundant phylum (62.10%), followed by Bacteroidetes (12.33%) and Firmicutes (6.11%). Escherichia/Shigella were the most abundant genera for all treatments. Similar communities were present in both spiked and non-spiked cultures suggesting they can tolerate PUA exposure at realistic concentrations. This study suggests that PUA are not major drivers of diatom–bacteria interactions in laboratory cultures.
Collapse
|
26
|
Marmen S, Blank L, Al-Ashhab A, Malik A, Ganzert L, Lalzar M, Grossart HP, Sher D. The Role of Land Use Types and Water Chemical Properties in Structuring the Microbiomes of a Connected Lake System. Front Microbiol 2020; 11:89. [PMID: 32117119 PMCID: PMC7029742 DOI: 10.3389/fmicb.2020.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/15/2020] [Indexed: 02/04/2023] Open
Abstract
Lakes and other freshwater bodies are intimately connected to the surrounding land, yet to what extent land-use affects the quality of freshwater and the microbial communities living in various freshwater environments is largely unknown. We address this question through an analysis of the land use surrounding 46 inter-connected lakes located within seven different drainage basins in northern Germany, and the microbiomes of these lakes during early summer. Lake microbiome structure was not correlated with the specific drainage basin or by basin size, and bacterial distribution did not seem to be limited by distance. Instead, land use within the drainage basin could predict, to some extent, NO2 + NO3 concentrations in the water, which (together with temperature, chlorophyll a and total phosphorus) correlated to some extent with the water microbiome structure. Land use directly surrounding the water bodies, however, had little observable effects on water quality or the microbiome. Several microbial lineages, including Cyanobacteria and Verrucomicrobia, were differentially partitioned between the lakes. Significantly more data, including time-series measurements of land use and water chemical properties, are needed to fully understand the interaction between the environment and the organization of microbial communities.
Collapse
Affiliation(s)
- Sophi Marmen
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Lior Blank
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Rishon Lezion, Israel
| | - Ashraf Al-Ashhab
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Microbial Metagenomics Division, Dead Sea and Arava Science Center, Masada, Israel
| | - Assaf Malik
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Lars Ganzert
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
27
|
Li M, Mi T, Yu Z, Ma M, Zhen Y. Planktonic Bacterial and Archaeal Communities in an Artificially Irrigated Estuarine Wetland: Diversity, Distribution, and Responses to Environmental Parameters. Microorganisms 2020; 8:microorganisms8020198. [PMID: 32023944 PMCID: PMC7074933 DOI: 10.3390/microorganisms8020198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022] Open
Abstract
Bacterial and archaeal communities play important roles in wetland ecosystems. Although the microbial communities in the soils and sediments of wetlands have been studied extensively, the comprehensive distributions of planktonic bacterial and archaeal communities and their responses to environmental variables in wetlands remain poorly understood. The present study investigated the spatiotemporal characteristics of the bacterial and archaeal communities in the water of an artificially irrigated estuarine wetland of the Liaohe River, China, explored whether the wetland effluent changed the bacterial and archaeal communities in the Liaohe River, and evaluated the driving environmental factors. Within the study, 16S rRNA quantitative PCR methods and MiSeq high-throughput sequencing were used. The bacterial and archaeal 16S rRNA gene abundances showed significant temporal variation. Meanwhile, the bacterial and archaeal structures showed temporal but not spatial variation in the wetland and did not change in the Liaohe River after wetland drainage. Moreover, the bacterial communities tended to have higher diversity in the wetland water in summer and in the scarce zone, while a relatively higher diversity of archaeal communities was found in autumn and in the intensive zone. DO, pH and PO4-P were proven to be the essential environmental parameters shaping the planktonic bacterial and archaeal community structures in the Liaohe River estuarine wetland (LEW). The LEW had a high potential for methanogenesis, which could be reflected by the composition of the microbial communities.
Collapse
Affiliation(s)
- Mingyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tiezhu Mi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China
| | - Manman Ma
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yu Zhen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Correspondence: ; Tel.: +86-532-6678-1940
| |
Collapse
|
28
|
Illumina MiSeq sequencing and network analysis the distribution and co-occurrence of bacterioplankton in Danjiangkou Reservoir, China. Arch Microbiol 2020; 202:859-873. [PMID: 31894394 DOI: 10.1007/s00203-019-01798-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/26/2019] [Accepted: 12/15/2019] [Indexed: 10/25/2022]
Abstract
Network analysis has contributed to studies of the interactions of microorganisms and the identification of key populations. However, such analysis has rarely been conducted in the study of reservoir bacterioplankton communities. This study investigated the bacterioplankton community composition in the surface water of the Danjiangkou Reservoir using the Illumina MiSeq sequencing platform. We observed that the bacterioplankton community primarily consisted of 27 phyla and 336 genera, including Actinobacteria, Proteobacteria, and Bacteroidetes, demonstrating the richness of the community composition. Redundancy analysis of the bacterioplankton communities and environmental variables showed that the total nitrogen (TN), pH, chemical oxygen demand (COD), and permanganate index (CODMn) were important factors affecting the bacterioplankton distribution. Network analysis was performed using the relative abundances of bacterioplankton based on the phylogenetic molecular ecological network (pMEN) method. The connectivity of node i within modules (Zi), the connectivity of node i among modules (Pi), and the number of key bacteria were high at the Taizishan and Heijizui sites, which were associated with higher TN contents than at the other sites. Among the physicochemical properties of water, TN, ammonia nitrogen (NH4-N), pH, COD, and dissolved oxygen (DO) might have great influences on the functional units of the bacterial communities in bacterioplankton molecular networks. This study improves the understanding of the structure and function of bacterioplankton communities in the Danjiangkou Reservoir.
Collapse
|
29
|
Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, Juliarni, Rastelli E, Danovaro R, Corinaldesi C, Kitahashi T, Tasumi E, Nishizawa M, Takai K, Nomaki H, Nunoura T. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME JOURNAL 2019; 14:740-756. [PMID: 31827245 PMCID: PMC7031335 DOI: 10.1038/s41396-019-0564-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 12/28/2022]
Abstract
Hadal trench bottom (>6000 m below sea level) sediments harbor higher microbial cell abundance compared with adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been well explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and Mariana Trenches. Tag-sequencing analyses showed specific distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortia that covaried across regions. Our results further support that the OM cycle is driven by hadal currents and/or rapid burial shapes microbial community structures at trench bottom sites, in addition to vertical deposition from the surface ocean. Our trans-trench analysis highlights intra- and inter-trench distributions of microbial assemblages and geochemistry in surface seafloor sediments, providing novel insights into ultradeep-sea microbial ecology, one of the last frontiers on our planet.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.
| | - Miho Hirai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Yohei Matsui
- Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Akiko Makabe
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Hiroaki Minegishi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.,Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, 350-8585, Saitama, Japan
| | - Miwako Tsuda
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Juliarni
- Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Eugenio Rastelli
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| | - Roberto Danovaro
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Tomo Kitahashi
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Eiji Tasumi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Manabu Nishizawa
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Hidetaka Nomaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.
| |
Collapse
|
30
|
Gendron EMS, Darcy JL, Hell K, Schmidt SK. Structure of bacterial and eukaryote communities reflect in situ controls on community assembly in a high-alpine lake. J Microbiol 2019; 57:852-864. [DOI: 10.1007/s12275-019-8668-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 01/16/2023]
|
31
|
Kavazos CRJ, Huggett MJ, Mueller U, Horwitz P. Bacterial and ciliate biofilm community structure at different spatial levels of a salt lake meta-community. FEMS Microbiol Ecol 2019; 94:5066167. [PMID: 30124812 DOI: 10.1093/femsec/fiy148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 08/01/2018] [Indexed: 11/14/2022] Open
Abstract
Meta-communities are assembled along an ecological scale that determines local and regional diversity. Spatial patterns have been detected in planktonic bacterial communities at distances <20 m, but little is known about the occurrence of similar variation for other microbial groups and changes in microbial meta-community assembly at different levels of a meta-community. To examine this variation, the biofilm of eight saline ponds were used to investigate processes shaping diversity within ponds (β) and between ponds (δ). Bacterial and ciliate communities were assessed using ARISA and T-RFLP respectively, while diversity partitioning methods were used to examine the importance of taxonomic turnover and variation partitioning was used to distinguish spatial from environmental determinants. The results show that turnover is important for determining β- and δ-diversity of biofilms. Spatial factors are important drivers of bacterial β-diversity but were unimportant for ciliate β-diversity. Environmental variation was a strong determinant of bacterial and ciliate δ-diversity, suggesting sorting processes are important for assembling pond communities. Determinants of diversity in bacteria are not universal for ciliates, suggesting higher functional redundancy of bacteria or the greater niche breadth of ciliates may be important in discriminating assembly processes between the two organisms.
Collapse
Affiliation(s)
- Christopher R J Kavazos
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Megan J Huggett
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia.,Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia.,School of Environmental and Life Sciences, The University of Newcastle, 10 Chittaway Dr, Ourimbah, NSW 2258, Australia
| | - Ute Mueller
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia.,Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Pierre Horwitz
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| |
Collapse
|
32
|
Geyer KM, Barrett JE. Unimodal productivity–diversity relationships among bacterial communities in a simple polar soil ecosystem. Environ Microbiol 2019; 21:2523-2532. [DOI: 10.1111/1462-2920.14639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Kevin M. Geyer
- Department of Natural Resources and the EnvironmentUniversity of New Hampshire Durham New Hampshire USA
- Department of Biological SciencesVirginia Polytechnic Institute and State University Blacksburg Virginia USA
| | - John E. Barrett
- Department of Biological SciencesVirginia Polytechnic Institute and State University Blacksburg Virginia USA
| |
Collapse
|
33
|
Zanardini E, May E, Purdy KJ, Murrell JC. Nutrient cycling potential within microbial communities on culturally important stoneworks. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:147-154. [PMID: 30346661 PMCID: PMC7379959 DOI: 10.1111/1758-2229.12707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/24/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Previous studies on microbes associated with deterioration of cultural heritage (CH) stoneworks have revealed a diverse microbiota adapted to stresses such as low nutrients, aridity and high salinity, temperatures and radiation. However, the function of these pioneer microbial communities is still unclear. This study examines bacterial and archaeal diversity in exfoliated and dark encrustation sandstone from Portchester Castle (UK) by 16S rRNA and functional gene analyses. Bacterial and archaeal communities from the exfoliated sites were distinctly different from the dark encrustation. Detected genera were linked to extreme environmental conditions, various potential functional roles and degradation abilities. From these data it was possible to reconstruct almost complete nitrogen and sulfur cycles, as well as autotrophic carbon fixation and mineral transformation processes. Analysis of RNA showed that many of the detected genera in these nutrient cycles were probably active in situ. Thus, CH stonework microbial communities are highly diverse and potentially self-sustaining ecosystems capable of cycling carbon, nitrogen and sulfur as well as the stone biodeterioration processes that lead to alterations such as exfoliation and corrosion. These results highlight the importance of diversity and internal recycling capacity in the development of microbial communities in harsh and low energy systems.
Collapse
Affiliation(s)
- Elisabetta Zanardini
- School of Life SciencesUniversity of WarwickCoventryUK
- Department of Science and High TechnologyUniversity of InsubriaComoItaly
| | - Eric May
- School of Biological SciencesUniversity of PortsmouthPortsmouthUK
| | | | - J. Colin Murrell
- School of Environmental SciencesUniversity of East AngliaNorwichUK
| |
Collapse
|
34
|
Ihua MW, Guihéneuf F, Mohammed H, Margassery LM, Jackson SA, Stengel DB, Clarke DJ, Dobson ADW. Microbial Population Changes in Decaying Ascophyllum nodosum Result in Macroalgal-Polysaccharide-Degrading Bacteria with Potential Applicability in Enzyme-Assisted Extraction Technologies. Mar Drugs 2019; 17:E200. [PMID: 30934874 PMCID: PMC6520818 DOI: 10.3390/md17040200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 11/23/2022] Open
Abstract
Seaweeds are of significant interest in the food, pharmaceutical, and agricultural industries as they contain several commercially relevant bioactive compounds. Current extraction methods for macroalgal-derived metabolites are, however, problematic due to the complexity of the algal cell wall which hinders extraction efficiencies. The use of advanced extraction methods, such as enzyme-assisted extraction (EAE), which involve the application of commercial algal cell wall degrading enzymes to hydrolyze the cell wall carbohydrate network, are becoming more popular. Ascophyllum nodosum samples were collected from the Irish coast and incubated in artificial seawater for six weeks at three different temperatures (18 °C, 25 °C, and 30 °C) to induce decay. Microbial communities associated with the intact and decaying macroalga were examined using Illumina sequencing and culture-dependent approaches, including the novel ichip device. The bacterial populations associated with the seaweed were observed to change markedly upon decay. Over 800 bacterial isolates cultured from the macroalga were screened for the production of algal cell wall polysaccharidases and a range of species which displayed multiple hydrolytic enzyme activities were identified. Extracts from these enzyme-active bacterial isolates were then used in EAE of phenolics from Fucus vesiculosus and were shown to be more efficient than commercial enzyme preparations in their extraction efficiencies.
Collapse
Affiliation(s)
- Maureen W Ihua
- School of Microbiology, University College Cork, Cork, Ireland.
| | - Freddy Guihéneuf
- Sorbonne Université, CNRS-INSU, Laboratoire d'Océanographie de Villefranche-sur-Mer (LOV), 06230 Villefranche-sur-mer, France.
| | | | | | | | - Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland Galway, Galway H91 TK3, Ireland.
| | - David J Clarke
- School of Microbiology, University College Cork, Cork, Ireland.
- APC Microbiome Institute, University College Cork, Cork T12 TY20, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.
- School of Microbiology, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland.
| |
Collapse
|
35
|
Xiong J, Xuan L, Yu W, Zhu J, Qiu Q, Chen J. Spatiotemporal successions of shrimp gut microbial colonization: high consistency despite distinct species pool. Environ Microbiol 2019; 21:1383-1394. [PMID: 30828926 DOI: 10.1111/1462-2920.14578] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Abstract
Aquatic animals encounter suites of novel planktonic microbes during their development. Although hosts have been shown to exert strong selection on their gut microbiota from surrounding environment, to what extent and the generality that the gut microbiota and the underlying ecological processes are affected by biotic and abiotic variations are largely unclear. Here, these concerns were explored by coupling spatiotemporal data on gut and rearing water bacterial communities with environmental variables over shrimp life stages at spatially distant locations. Shrimp gut microbiotas significantly changed mirroring their development, as evidenced by gut bacterial signatures of shrimp life stage contributing 95.5% stratification accuracy. Shrimp sourced little (2.6%-15.8%) of their gut microbiota from their rearing water. This microbial resistance was reflected by weak compositional differences between shrimp farming spatially distinct locations where species pools were distinct. Consistently, the assembly of shrimp gut microbiota was not adequately explained by the rearing water variables and bacterial community, but rather by host-age-associated biotic features. The successions of shrimp gut microbiota were droved by replacement (βsim), rather than by nestedness (βnes), while those of bacterioplankton communities were equally governed by replacement and nestedness. Our study highlights how shrimp gut bacterial community assembly is coupled to their development, rearing species pool, and that the successional pattern of host-associated communities is differed from that of free-living bacteria.
Collapse
Affiliation(s)
- Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Lixia Xuan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Weina Yu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| |
Collapse
|
36
|
Abstract
By combining a genome-centric metagenomic approach with a culture-based approach, we investigated the genomic adaptations of prevalent populations in an engineered oligotrophic freshwater system. We found evidence for widespread positive selection on genes involved in phosphorus and carbon scavenging pathways and for gene expansions in motility and environmental sensing to be important genomic adaptations of the abundant taxon in this system. In addition, microscopic and flow cytometric analysis of the first freshwater representative of this population (Ramlibacter aquaticus LMG 30558T) demonstrated phenotypic plasticity, possibly due to the metabolic versatility granted by its larger genome, to be a strategy to cope with nutrient limitation. Our study clearly demonstrates the need for the use of a broad set of genomic tools combined with culture-based physiological characterization assays to investigate and validate genomic adaptations. We examined the genomic adaptations of prevalent bacterial taxa in a highly nutrient- and ion-depleted freshwater environment located in the secondary cooling water system of a nuclear research reactor. Using genome-centric metagenomics, we found that none of the prevalent bacterial taxa were related to typical freshwater bacterial lineages. We also did not identify strong signatures of genome streamlining, which has been shown to be one of the ecoevolutionary forces shaping the genome characteristics of bacterial taxa in nutrient-depleted environments. Instead, focusing on the dominant taxon, a novel Ramlibacter sp. which we propose to name Ramlibacter aquaticus, we detected extensive positive selection on genes involved in phosphorus and carbon scavenging pathways. These genes were involved in the high-affinity phosphate uptake and storage into polyphosphate granules, metabolism of nitrogen-rich organic matter, and carbon/energy storage into polyhydroxyalkanoate. In parallel, comparative genomics revealed a high number of paralogs and an accessory genome significantly enriched in environmental sensing pathways (i.e., chemotaxis and motility), suggesting extensive gene expansions in R. aquaticus. The type strain of R. aquaticus (LMG 30558T) displayed optimal growth kinetics and productivity at low nutrient concentrations, as well as substantial cell size plasticity. Our findings with R. aquaticus LMG 30558T demonstrate that positive selection and gene expansions may represent successful adaptive strategies to oligotrophic environments that preserve high growth rates and cellular productivity. IMPORTANCE By combining a genome-centric metagenomic approach with a culture-based approach, we investigated the genomic adaptations of prevalent populations in an engineered oligotrophic freshwater system. We found evidence for widespread positive selection on genes involved in phosphorus and carbon scavenging pathways and for gene expansions in motility and environmental sensing to be important genomic adaptations of the abundant taxon in this system. In addition, microscopic and flow cytometric analysis of the first freshwater representative of this population (Ramlibacter aquaticus LMG 30558T) demonstrated phenotypic plasticity, possibly due to the metabolic versatility granted by its larger genome, to be a strategy to cope with nutrient limitation. Our study clearly demonstrates the need for the use of a broad set of genomic tools combined with culture-based physiological characterization assays to investigate and validate genomic adaptations.
Collapse
|
37
|
Paver SF, Muratore D, Newton RJ, Coleman ML. Reevaluating the Salty Divide: Phylogenetic Specificity of Transitions between Marine and Freshwater Systems. mSystems 2018; 3:e00232-18. [PMID: 30443603 PMCID: PMC6234284 DOI: 10.1128/msystems.00232-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
Marine and freshwater microbial communities are phylogenetically distinct, and transitions between habitat types are thought to be infrequent. We compared the phylogenetic diversity of marine and freshwater microorganisms and identified specific lineages exhibiting notably high or low similarity between marine and freshwater ecosystems using a meta-analysis of 16S rRNA gene tag-sequencing data sets. As expected, marine and freshwater microbial communities differed in the relative abundance of major phyla and contained habitat-specific lineages. At the same time, and contrary to expectations, many shared taxa were observed in both habitats. Based on several metrics, we found that Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and Betaproteobacteria contained the highest number of closely related marine and freshwater sequences, suggesting comparatively recent habitat transitions in these groups. Using the abundant alphaproteobacterial group SAR11 as an example, we found evidence that new lineages, beyond the recognized LD12 clade, are detected in freshwater at low but reproducible abundances; this evidence extends beyond the 16S rRNA locus to core genes throughout the genome. Our results suggest that shared taxa are numerous, but tend to occur sporadically and at low relative abundance in one habitat type, leading to an underestimation of transition frequency between marine and freshwater habitats. Rare taxa with abundances near or below detection, including lineages that appear to have crossed the salty divide relatively recently, may possess adaptations enabling them to exploit opportunities for niche expansion when environments are disturbed or conditions change. IMPORTANCE The distribution of microbial diversity across environments yields insight into processes that create and maintain this diversity as well as potential to infer how communities will respond to future environmental changes. We integrated data sets from dozens of freshwater lake and marine samples to compare diversity across open water habitats differing in salinity. Our novel combination of sequence-based approaches revealed lineages that likely experienced a recent transition across habitat types. These taxa are promising targets for studying physiological constraints on salinity tolerance. Our findings contribute to understanding the ecological and evolutionary controls on microbial distributions, and open up new questions regarding the plasticity and adaptability of particular lineages.
Collapse
Affiliation(s)
- Sara F. Paver
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Daniel Muratore
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Maureen L. Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
38
|
Obertegger U, Bertilsson S, Pindo M, Larger S, Flaim G. Temporal variability of bacterioplankton is habitat driven. Mol Ecol 2018; 27:4322-4335. [PMID: 30176079 DOI: 10.1111/mec.14855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 11/27/2022]
Abstract
Temporal dynamics of bacterioplankton are rarely investigated for multiple habitats and years within individual lakes, limiting our understanding of the variability of bacterioplankton community (BC) composition with respect to environmental factors. We assessed the BC composition of a littoral and two pelagic habitats (euphotic zone and hypolimnion) of Lake Tovel monthly from April 2014 to May 2017 by high-throughput sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The three habitats differed in temperature, light, oxygen and hydrology. In particular, the littoral was the most hydrologically unstable because it receives most of the lake inflow, the hypolimnion was the most stable because of its hydrologically sheltered position, and the pelagic euphotic habitat was intermediate. Consequently, we hypothesized different temporal patterns of BC composition for all three habitats according to their environmental differences. We applied PERMANOVA, nonmetric multidimensional scaling and source-sink analysis to characterize BC composition. Overall, BCs were different among habitats with the littoral showing the highest variability and the hypolimnion the highest stability. The BC of rainy 2014 was distinct from the BCs of other years irrespective of the habitats considered. Seasonal differences in BCs were limited to spring, probably linked to meltwater inflow and mixing. Thus, temporal effects related to year and season were linked to the hydrological gradient of habitats. We suggest that despite potential within-lake dispersal of bacterioplankton by water flow and mixing, local environmental conditions played a major role in Lake Tovel, fostering distinct BCs in the three habitats.
Collapse
Affiliation(s)
- Ulrike Obertegger
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Stefan Bertilsson
- Limnology and Science for Life Laboratory, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Simone Larger
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giovanna Flaim
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
39
|
Deng Y, Ning D, Qin Y, Xue K, Wu L, He Z, Yin H, Liang Y, Buzzard V, Michaletz ST, Zhou J. Spatial scaling of forest soil microbial communities across a temperature gradient. Environ Microbiol 2018; 20:3504-3513. [PMID: 30051570 DOI: 10.1111/1462-2920.14303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 04/03/2018] [Accepted: 05/31/2018] [Indexed: 11/29/2022]
Abstract
Temperature is an important correlate of global patterns of biodiversity, yet the mechanisms driving these relationships are not well understood. Taxa-area relationships (TARs) have been intensively examined, but the effects of temperature on TARs, particularly for microbial communities, are largely undocumented. Here we present a continental-scale description of temperature-dependent nested TARs of microbial communities (bacteria and archaea) from soils of six forest sites spanning a temperature gradient from subalpine Colorado to tropical Panama. Our results revealed that spatial scaling rates (z-values) of microbial communities varied with both taxonomic resolutions and phylogenetic groups. Additionally, microbial TAR z-values increased with temperature (r = 0.739, P < 0.05), but were not correlated with other environmental variables tested (P > 0.05), indicating that microbial spatial scaling rate is temperature-dependent. Understanding how temperature affects the spatial scaling of microbial biodiversity is of fundamental importance for preservation of soil biodiversity and management of ecosystems.
Collapse
Affiliation(s)
- Ye Deng
- Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China.,CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Yujia Qin
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Kai Xue
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyou Wu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA.,School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Huaqun Yin
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA.,School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yuting Liang
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA.,State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Vanessa Buzzard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Sean T Michaletz
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA.,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94270, USA.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
40
|
Salmaso N, Albanese D, Capelli C, Boscaini A, Pindo M, Donati C. Diversity and Cyclical Seasonal Transitions in the Bacterial Community in a Large and Deep Perialpine Lake. MICROBIAL ECOLOGY 2018; 76:125-143. [PMID: 29192335 DOI: 10.1007/s00248-017-1120-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
High-throughput sequencing (HTS) was used to analyze the seasonal variations in the bacterioplankton community composition (BCC) in the euphotic layer of a large and deep lake south of the Alps (Lake Garda). The BCC was analyzed throughout two annual cycles by monthly samplings using the amplification and sequencing of the V3-V4 hypervariable region of the 16S rRNA gene by the MiSeq Illumina platform. The dominant and most diverse bacterioplankton phyla were among the more frequently reported in freshwater ecosystems, including the Proteobacteria, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, and Planctomycetes. As a distinctive feature, the development of the BCC showed a cyclical temporal pattern in the two analyzed years and throughout the euphotic layer. The recurring temporal development was controlled by the strong seasonality in water temperature and thermal stratification, and by cyclical temporal changes in nutrients and, possibly, by the remarkable annual cyclical development of cyanobacteria and eukaryotic phytoplankton hosting bacterioplankton that characterizes Lake Garda. Further downstream analyses of operational taxonomic units associated to cyanobacteria allowed confirming the presence of the most abundant taxa previously identified by microscopy and/or phylogenetic analyses, as well as the presence of other small Synechococcales/Chroococcales and rare Nostocales never identified so far in the deep lakes south of the Alps. The implications of the high diversity and strong seasonality are relevant, opening perspectives for the definition of common and discriminating patterns characterizing the temporal and spatial distribution in the BCC, and for the application of the new sequencing technologies in the monitoring of water quality in large and deep lakes.
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy.
| | - Davide Albanese
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Camilla Capelli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| |
Collapse
|
41
|
Echeverría-Vega A, Chong G, Serrano AE, Guajardo M, Encalada O, Parro V, Blanco Y, Rivas L, Rose KC, Moreno-Paz M, Luque JA, Cabrol NA, Demergasso CS. Watershed-Induced Limnological and Microbial Status in Two Oligotrophic Andean Lakes Exposed to the Same Climatic Scenario. Front Microbiol 2018; 9:357. [PMID: 29556224 PMCID: PMC5844981 DOI: 10.3389/fmicb.2018.00357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/14/2018] [Indexed: 12/04/2022] Open
Abstract
Laguna Negra and Lo Encañado are two oligotrophic Andean lakes forming part of the system fed by meltwater from distinct glacial tongues of the Echaurren glacier in central Chile, which is in a recession period. The recent increase in temperature and decline in precipitation have led to an increase of glacial meltwater and sediments entering these lakes. Although the lacustrine systems are also hydrogeologically connected, the limnology of the lakes is strongly controlled by the surface processes related to the respective sub-watersheds and hydrology. Watershed characteristics (area and length, slope, lithology, resistance to erosion, among others) affect the chemical and physical characteristics of both lakes (e.g., nutrient concentration and turbidity). We studied physical and chemical variables and performed 16S rRNA amplicon sequencing to determine the specific microbial signature of the lakes. The transparency, temperature, turbidity and concentrations of chlorophyll-a, dissolved organic matter, nutrients and the total number of cells, revealed the different status of both lakes at the time of sampling. The predominant bacterial groups in both lakes were Proteobacteria, Verrucomicrobia, and Bacteroidetes. Interestingly, the contribution of phototrophs was significantly higher in LN compared to LE (13 and 4% respectively) and the major fraction corresponded to Anoxygenic Phototrophs (AP) represented by Chloroflexi, Alpha, and Betaproteobacteria. Multivariate analyses showed that the nutrient levels and the light availability of both lakes, which finally depend on the hydrological characteristics of the respective watersheds, explain the differential community composition/function. The abundance of a diverse photoheterotrophic bacterioplankton community suggests that the ability to utilize solar energy along with organic and inorganic substrates is a key function in these oligotrophic mountain lakes.
Collapse
Affiliation(s)
| | - Guillermo Chong
- Departamento de Ciencias Geológicas, Universidad Católica de Norte, Antofagasta, Chile
| | - Antonio E Serrano
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile
| | - Mariela Guajardo
- Centro de Investigación Científica y Tecnológica para la Minería, Antofagasta, Chile
| | - Olga Encalada
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile
| | - Victor Parro
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Luis Rivas
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - José A Luque
- Departamento de Ciencias Geológicas, Universidad Católica de Norte, Antofagasta, Chile.,Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Nathalie A Cabrol
- Carl Sagan Center, SETI Institute, Mountain View, CA, United States.,Space Science Division, NASA Ames Research Center, Moffett Field, CA, United States
| | | |
Collapse
|
42
|
Liu T, Zhang AN, Wang J, Liu S, Jiang X, Dang C, Ma T, Liu S, Chen Q, Xie S, Zhang T, Ni J. Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze River. MICROBIOME 2018; 6:16. [PMID: 29351813 PMCID: PMC5775685 DOI: 10.1186/s40168-017-0388-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 12/17/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bacterial communities are essential to the biogeochemical cycle in riverine ecosystems. However, little is presently known about the integrated biogeography of planktonic and sedimentary bacterial communities in large rivers. RESULTS This study provides the first spatiotemporal pattern of bacterial communities in the Yangtze River, the largest river in Asia with a catchment area of 1,800,000 km2. We find that sedimentary bacteria made larger contributions than planktonic bacteria to the bacterial diversity of the Yangzte River ecosystem with the sediment subgroup providing 98.8% of 38,906 operational taxonomic units (OTUs) observed in 280 samples of synchronous flowing water and sediment at 50 national monitoring stations covering a 4300 km reach. OTUs within the same phylum displayed uniform seasonal variations, and many phyla demonstrated autumn preference throughout the length of the river. Seasonal differences in bacterial communities were statistically significant in water, whereas bacterial communities in both water and sediment were geographically clustered according to five types of landforms: mountain, foothill, basin, foothill-mountain, and plain. Interestingly, the presence of two huge dams resulted in a drastic fall of bacterial taxa in sediment immediately downstream due to severe riverbed scouring. The integrity of the biogeography is satisfactorily interpreted by the combination of neutral and species sorting perspectives in meta-community theory for bacterial communities in flowing water and sediment. CONCLUSIONS Our study fills a gap in understanding of bacterial communities in one of the world's largest river and highlights the importance of both planktonic and sedimentary communities to the integrity of bacterial biogeographic patterns in a river subject to varying natural and anthropogenic impacts.
Collapse
Affiliation(s)
- Tang Liu
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - An Ni Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiawen Wang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Shufeng Liu
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Xiaotao Jiang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chenyuan Dang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Tao Ma
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Qian Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Shuguang Xie
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China.
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
43
|
Liu K, Liu Y, Jiao N, Xu B, Gu Z, Xing T, Xiong J. Bacterial community composition and diversity in Kalakuli, an alpine glacial-fed lake in Muztagh Ata of the westernmost Tibetan Plateau. FEMS Microbiol Ecol 2017; 93:3906652. [PMID: 28854676 DOI: 10.1093/femsec/fix085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
It is widely accepted that bacterial community composition and diversity in remote alpine lakes are structured by environmental conditions such as nutrient status and temperature. However, the mechanisms that underlie and structure bacterial community composition and diversity in alpine lakes remain unclear. We used 16S rRNA gene-based Illumina MiSeq sequencing to investigate the complex ecological interactions between bacterial communities and nutrient status in Kalakuli Lake, an alpine glacial-fed lake in Muztagh Ata of the westernmost Tibetan Plateau. Our results indicated that the bacterial community was dominated by the Actinobacteria and Proteobacteria. The results of threshold estimates showed that there were apparent shifts in dominance from the Proteobacteria to Actinobacteria groups associated with increasing carbon to nitrogen (C:N) ratio, and the change points were 6.794 and 2.448, respectively. Using multiple statistical methods, we found that the abiotic factors of dissolved organic carbon and total nitrogen had substantial impacts on bacterial diversity, while bacterial community compositions were significantly correlated with both the biotic element of bacterial abundance and the abiotic ones, temperature and pH. These findings demonstrated that the C:N ratio played a significant role in shifting dominant bacterial assemblages in the Kalakuli watershed and provided evidence of nutrients affecting bacterial community composition and diversity. We argue that this study could further shed light on how climate change-induced glacial retreat may impact bacterial communities in glacial-fed lakes under future global warming scenarios.
Collapse
Affiliation(s)
- Keshao Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Baiqing Xu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengquan Gu
- University of Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 1000101, China
| | - Tingting Xing
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 1000101, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo 315211, China
| |
Collapse
|
44
|
The sensitivity and stability of bacterioplankton community structure to wind-wave turbulence in a large, shallow, eutrophic lake. Sci Rep 2017; 7:16850. [PMID: 29203907 PMCID: PMC5715125 DOI: 10.1038/s41598-017-17242-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/05/2017] [Indexed: 12/03/2022] Open
Abstract
Lakes are strongly influenced by wind-driven wave turbulence. The direct physical effects of turbulence on bacterioplankton community structure however, have not yet been addressed and remains poorly understood. To examine the stability of bacterioplankton communities under turbulent conditions, we simulated conditions in the field to evaluate the responses of the bacterioplankton community to physical forcing in Lake Taihu, using high-throughput sequencing and flow cytometry. A total of 4,520,231 high quality sequence reads and 74,842 OTUs were obtained in all samples with α-proteobacteria, γ-proteobacteria and Actinobacteria being the most dominant taxa. The diversity and structure of bacterioplankton communities varied during the experiment, but were highly similar based on the same time of sampling, suggesting that bacterioplankton communities are insensitive to wind wave turbulence in the lake. This stability could be associated with the traits associated with bacteria. In particular, turbulence favored the growth of bacterioplankton, which enhanced biogeochemical cycling of nutrients in the lake. This study provides a better understanding of bacterioplankton communities in lake ecosystems exposed to natural mixing/disturbances.
Collapse
|
45
|
Huggett MJ, Kavazos CRJ, Bernasconi R, Czarnik R, Horwitz P. Bacterioplankton assemblages in coastal ponds reflect the influence of hydrology and geomorphological setting. FEMS Microbiol Ecol 2017; 93:3828103. [PMID: 28505366 DOI: 10.1093/femsec/fix067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/14/2017] [Indexed: 02/01/2023] Open
Abstract
The factors that shape microbial community assembly in aquatic ecosystems have been widely studied; yet it is still unclear how distinct communities within a connected landscape influence one another. Coastal lakes are recipients of, and thus are connected to, both marine and terrestrial environments. Thus, they may host microbial assemblages that reflect the relative degree of influence by, and connectivity to, either system. In order to address this idea, we interrogated microbial community diversity at 49 sites in seven ponds in two seasons in the Lake MacLeod basin, a system fed by seawater flowing inland through underground karst. Environmental and spatial variation within ponds explain <9% of the community structure, while identity of the pond that samples were taken from explains 50% of community variation. That is, ponds each host distinct assemblages despite similarities in size, environment and position in the landscape, indicating a dominant role for local species sorting. The ponds contain a substantial amount of previously unknown microbial taxa, reflecting the unusual nature of this inland system. Rare marine taxa, possibly dispersed from seawater assemblages via the underground karst connection, are abundant within the inland system, suggesting an important role for regional dispersal within the metacommunities.
Collapse
Affiliation(s)
- Megan J Huggett
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia.,Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Christopher R J Kavazos
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Rachele Bernasconi
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Robert Czarnik
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia.,Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Pierre Horwitz
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| |
Collapse
|
46
|
Lee ZMP, Poret-Peterson AT, Siefert JL, Kaul D, Moustafa A, Allen AE, Dupont CL, Eguiarte LE, Souza V, Elser JJ. Nutrient Stoichiometry Shapes Microbial Community Structure in an Evaporitic Shallow Pond. Front Microbiol 2017; 8:949. [PMID: 28611750 PMCID: PMC5447685 DOI: 10.3389/fmicb.2017.00949] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
Nutrient availability and ratios can play an important role in shaping microbial communities of freshwater ecosystems. The Cuatro Ciénegas Basin (CCB) in Mexico is a desert oasis where, perhaps paradoxically, high microbial diversity coincides with extreme oligotrophy. To better understand the effects of nutrients on microbial communities in CCB, a mesocosm experiment was implemented in a stoichiometrically imbalanced pond, Lagunita, which has an average TN:TP ratio of 122 (atomic). The experiment had four treatments, each with five spatial replicates – unamended controls and three fertilization treatments with different nitrogen:phosphorus (N:P) regimes (P only, N:P = 16 and N:P = 75 by atoms). In the water column, quantitative PCR of the 16S rRNA gene indicated that P enrichment alone favored proliferation of bacterial taxa with high rRNA gene copy number, consistent with a previously hypothesized but untested connection between rRNA gene copy number and P requirement. Bacterial and microbial eukaryotic community structure was investigated by pyrosequencing of 16S and 18S rRNA genes from the planktonic and surficial sediment samples. Nutrient enrichment shifted the composition of the planktonic community in a treatment-specific manner and promoted the growth of previously rare bacterial taxa at the expense of the more abundant, potentially endemic, taxa. The eukaryotic community was highly enriched with phototrophic populations in the fertilized treatment. The sediment microbial community exhibited high beta diversity among replicates within treatments, which obscured any changes due to fertilization. Overall, these results showed that nutrient stoichiometry can be an important factor in shaping microbial community structure.
Collapse
Affiliation(s)
- Zarraz M-P Lee
- School of Life Sciences, Arizona State University, TempeAZ, United States
| | | | - Janet L Siefert
- Department of Statistics, Rice University, HoustonTX, United States
| | - Drishti Kaul
- J. Craig Venter Institute, La JollaCA, United States
| | - Ahmed Moustafa
- Department of Biology and Biotechnology Graduate Program, American University in CairoNew Cairo, Egypt
| | - Andrew E Allen
- J. Craig Venter Institute, La JollaCA, United States.,Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La JollaCA, United States
| | | | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - James J Elser
- School of Life Sciences, Arizona State University, TempeAZ, United States.,Flathead Lake Biological Station, University of Montana, PolsonMT, United States
| |
Collapse
|
47
|
Pernthaler J. Competition and niche separation of pelagic bacteria in freshwater habitats. Environ Microbiol 2017; 19:2133-2150. [PMID: 28370850 DOI: 10.1111/1462-2920.13742] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 11/29/2022]
Abstract
Freshwater bacterioplankton assemblages are composed of sympatric populations that can be delineated, for example, by ribosomal RNA gene relatedness and that differ in key ecophysiological properties. They may be free-living or attached, specialized for particular concentrations or subsets of substrates, or invest a variable amount of their resources in defence traits against protistan predators and viruses. Some may be motile and tactic whereas others are not, with far-reaching implications for their respective life styles and niche partitioning. The co-occurrence of competitors with overlapping growth requirements has profound consequences for the stability of community functions; it can to some extent be explained by habitat factors such as the microscale complexity and spatiotemporal variability of the lacustrine environments. On the other hand, the composition and diversity of freshwater microbial assemblages also reflects non-equilibrium states, dispersal and the stochasticity of community assembly processes. This review synoptically discusses the competition and niche separation of heterotrophic bacterial populations (defined at various levels of phylogenetic resolution) in the pelagic zone of inland surface waters from a variety of angles, focusing on habitat heterogeneity and the resulting biogeographic distribution patterns, the ecophysiological adaptations to the substrate field and the interactions of prokaryotes with predators and viruses.
Collapse
Affiliation(s)
- Jakob Pernthaler
- Limnological Station Kilchberg, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Comte J, Berga M, Severin I, Logue JB, Lindström ES. Contribution of different bacterial dispersal sources to lakes: Population and community effects in different seasons. Environ Microbiol 2017; 19:2391-2404. [DOI: 10.1111/1462-2920.13749] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/28/2017] [Accepted: 04/02/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Jérôme Comte
- Department of Ecology and Genetics/Limnology; Uppsala University; Norbyvägen 18D Uppsala 75236 Sweden
| | - Mercè Berga
- Department of Ecology and Genetics/Limnology; Uppsala University; Norbyvägen 18D Uppsala 75236 Sweden
- Biological Oceanography, Leibniz-Institute for Baltic Sea Research; Warnemünde (IOW); Seestrasse 15 Rostock Germany
| | - Ina Severin
- Department of Ecology and Genetics/Limnology; Uppsala University; Norbyvägen 18D Uppsala 75236 Sweden
| | - Jürg Brendan Logue
- Department of Ecology and Genetics/Limnology; Uppsala University; Norbyvägen 18D Uppsala 75236 Sweden
| | - Eva S. Lindström
- Department of Ecology and Genetics/Limnology; Uppsala University; Norbyvägen 18D Uppsala 75236 Sweden
| |
Collapse
|
49
|
Dong Z, Wang K, Chen X, Zhu J, Hu C, Zhang D. Temporal dynamics of bacterioplankton communities in response to excessive nitrate loading in oligotrophic coastal water. MARINE POLLUTION BULLETIN 2017; 114:656-663. [PMID: 27773533 DOI: 10.1016/j.marpolbul.2016.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
Coastal ecosystems are receiving elevated loads of nitrogen (N) from anthropogenic sources. Understanding how excessive N loading affects bacterioplankton communities is critical to predict the biodiversity of marine ecosystems under conditions of eutrophic disturbance. In this study, oligotrophic coastal water microcosms were perturbed with nitrate in two loading modes: 1) one-off loading at the beginning of the incubation period; and 2) periodic loading every two days for 16days. Turnover in the bacterioplankton community was investigated by 16S rDNA gene amplicon sequencing. The alpha diversity of the bacterioplankton community showed great temporal variability and similar responses to the different treatments. Bacterioplankton community composition was influenced remarkably by time and N loading mode. The effects of N loading on bacterioplankton community structure showed obvious temporal variation, probably because of the great temporal variation in environmental parameters. This study provides insights into the effects of N pollution in anthropogenically perturbed marine environments.
Collapse
Affiliation(s)
- Zhiying Dong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| | - Kai Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo 315211, China
| | - Xinxin Chen
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jianlin Zhu
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| | - Changju Hu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Demin Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo 315211, China.
| |
Collapse
|
50
|
Wang J, Pan F, Soininen J, Heino J, Shen J. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat Commun 2016; 7:13960. [PMID: 28000677 PMCID: PMC5187590 DOI: 10.1038/ncomms13960] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023] Open
Abstract
Climate effects and human impacts, that is, nutrient enrichment, simultaneously drive spatial biodiversity patterns. However, there is little consensus about their independent effects on biodiversity. Here we manipulate nutrient enrichment in aquatic microcosms in subtropical and subarctic regions (China and Norway, respectively) to show clear segregation of bacterial species along temperature gradients, and decreasing alpha and gamma diversity toward higher nutrients. The temperature dependence of species richness is greatest at extreme nutrient levels, whereas the nutrient dependence of species richness is strongest at intermediate temperatures. For species turnover rates, temperature effects are strongest at intermediate and two extreme ends of nutrient gradients in subtropical and subarctic regions, respectively. Species turnover rates caused by nutrients do not increase toward higher temperatures. These findings illustrate direct effects of temperature and nutrients on biodiversity, and indirect effects via primary productivity, thus providing insights into how nutrient enrichment could alter biodiversity under future climate scenarios.
Collapse
Affiliation(s)
- Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing 210008, China
- Department of Geosciences and Geography, University of Helsinki, Helsinki FIN-00014, Finland
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing 210023, China
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, Helsinki FIN-00014, Finland
| | - Jani Heino
- Finnish Environment Institute, Natural Environment Centre, Biodiversity, Oulu FI-90014, Finland
| | - Ji Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing 210008, China
| |
Collapse
|