1
|
Hashimoto A, Shibata S, Hirooka Y, Ohkuma M. Phylogenetic and morphological re-evaluation of Camptophora. Antonie Van Leeuwenhoek 2024; 117:109. [PMID: 39083124 DOI: 10.1007/s10482-024-01990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/17/2024] [Indexed: 10/16/2024]
Abstract
The genetic variety and habitats of Camptophora species, generally known as black yeast, have not been clarified. In this study, we re-evaluated Camptophora based on morphological observations and phylogenetic analyses. Because prior investigations on Camptophora only included a few strains/specimens, 24 Camptophora-related strains were newly obtained from 13 leaf samples of various plant species to redefine the genetic and species concepts of Camptophora. Their molecular phylogenetic relationships were examined using small subunit nuclear ribosomal DNA (nSSU, 18S rDNA), the internal transcribed spacer (ITS) rDNA operon, the large subunit nuclear ribosomal DNA (LSU, 28S rDNA), β-tubulin, the second largest subunit of RNA polymerase II (rpb2), and mitochondrial small subunit DNA (mtSSU). Single- and multi-locus analyses using nSSU-ITS-LSU-rpb2-mtSSU revealed a robust phylogenetic relationship among Camptophora species within Chaetothyriaceae. Camptophora species could be distinguished from other chaetothyriaceous genera by their snake-shaped conidia with microcyclic conidiation and loosely interwoven mycelial masses. Based on the results of phylogenetic analyses, two undescribed lineages were recognized, and Ca. schimae was excluded from the genus. ITS sequence comparison with environmental DNA sequences revealed that the distribution of the genus is restricted to the Asia-Pacific region. Camptophora has been isolated or detected from abrupt sources, and this was attributed to its microcycle. The mechanisms driving genetic diversity within species are discussed with respect to their phyllosphere habitats.
Collapse
Affiliation(s)
- Akira Hashimoto
- Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Saho Shibata
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, Koganei, Tokyo, 184-8584, Japan
- Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Yuuri Hirooka
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, Koganei, Tokyo, 184-8584, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| |
Collapse
|
2
|
Li Z, Tong H, Ni M, Zheng Y, Yang X, Tan Y, Li Z, Jiang M. An at-leg pellet and associated Penicillium sp. provide multiple protections to mealybugs. Commun Biol 2024; 7:580. [PMID: 38755282 PMCID: PMC11099121 DOI: 10.1038/s42003-024-06287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Beneficial fungi are well known for their contribution to insects' adaptation to diverse habitats. However, where insect-associated fungi reside and the underlying mechanisms of insect-fungi interaction are not well understood. Here, we show a pellet-like structure on the legs of mealybugs, a group of economically important insect pests. This at-leg pellet, formed by mealybugs feeding on tomato but not by those on cotton, potato, or eggplant, originates jointly from host secretions and mealybug waxy filaments. A fungal strain, Penicillium citrinum, is present in the pellets and it colonizes honeydew. P. citrinum can inhibit mealybug fungal pathogens and is highly competitive in honeydew. Compounds within the pellets also have inhibitory activity against mealybug pathogens. Further bioassays suggest that at-leg pellets can improve the survival rate of Phenacoccus solenopsis under pathogen pressure, increase their sucking frequency, and decrease the defense response of host plants. Our study presents evidences on how a fungi-associated at-leg pellet provides multiple protections for mealybugs through suppressing pathogens and host defense, providing new insights into complex insect × fungi × plant interactions and their coevolution.
Collapse
Affiliation(s)
- Zicheng Li
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Haojie Tong
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Meihong Ni
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Yiran Zheng
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Xinyi Yang
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Yumei Tan
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Zihao Li
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Mingxing Jiang
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Guo W, Song Y, Chen H, Li X. Dietary potential of the symbiotic fungus Penicillium herquei for the larvae of a nonsocial fungus-cultivating weevil Euops chinensis. Appl Environ Microbiol 2024; 90:e0153723. [PMID: 38445862 PMCID: PMC11022562 DOI: 10.1128/aem.01537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Many insect taxa cultivate fungi for food. Compared to well-known fungus cultivation in social insects, our knowledge on fungus cultivation in nonsocial insects is still limited. Here, we studied the nutritional potentials of the fungal cultivar, Penicillium herquei, for the larvae of its nonsocial insect farmer, Euops chinensis, a specialist on Japanese knotweed Reynoutria japonica. Overall, fungal hyphae and leaf rolls contained significantly higher carbon (C), stable isotopes of C (δ13C), and nitrogen (δ15N) but significantly lower C/N ratios compared to unrolled leaves, whereas insect bodies contained significantly higher N contents but lower C and C/N ratios compared to other types of samples. The MixSIAR model indicated that fungal hyphae contributed a larger proportion (0.626-0.797) to the diet of E. chinensis larvae than leaf materials. The levels of ergosterol, six essential amino acids, seven nonessential amino acids, and three B vitamins tested in fungal hyphae and/or leaf rolls were significantly higher than in unrolled leaves and/or larvae. The P. herquei genome contains the complete set of genes required for the biosynthesis of ergosterol, the essential amino acids valine and threonine, nine nonessential amino acids, and vitamins B2 and B3, whereas some genes associated with five essential and one nonessential amino acid were lost in the P. herquei genome. These suggest that P. herquei is capable of providing the E. chinensis larvae food with ergosterol, amino acids, and B vitamins. P. herquei appears to be able to synthesize or concentrate these nutrients considering that they were specifically concentrated in fungal hyphae. IMPORTANCE The cultivation of fungi for food has occurred across divergent insect lineages such as social ants, termites, and ambrosia beetles, as well as some seldom-reported solitary insects. Although the fungal cultivars of these insects have been studied for decades, the dietary potential of fungal cultivars for their hosts (especially for those nonsocial insects) is largely unknown. Our research on the mutualistic system Euops chinensis-Penicillium herquei represents an example of the diverse nutritional potentials of the fungal cultivar P. herquei in the diet of the larvae of its solitary host, E. chinensis. These results demonstrate that P. herquei has the potential to synthesize or concentrate ergosterol, amino acids, and B vitamins and benefits the larvae of E. chinensis. Our findings would shed light on poorly understood fungal cultivation mutualisms in nonsocial insects and underscore the nutritional importance of fungal cultivars in fungal cultivation mutualisms.
Collapse
Affiliation(s)
- Wenfeng Guo
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yu Song
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Hu Chen
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei, China
| | - Xiaoqiong Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Nishino T, Mukai H, Moriyama M, Hosokawa T, Tanahashi M, Tachikawa S, Nikoh N, Koga R, Fukatsu T. Defensive fungal symbiosis on insect hindlegs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586038. [PMID: 38585921 PMCID: PMC10996522 DOI: 10.1101/2024.03.25.586038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tympanal organs as "insect ears" have evolved repeatedly. Dinidorid stinkbugs were reported to possess a conspicuous tympanal organ on female's hindlegs. Here we report an unexpected discovery that the stinkbug's "tympanal organ" is actually a novel symbiotic organ. The stinkbug's "tympanum" is not membranous but a porous cuticle, where each pore connects to glandular secretory cells. In reproductive females, the hindleg organ is covered with fungal hyphae growing out of the pores. Upon oviposition, the females skillfully transfer the fungi from the organ to the eggs. The eggs are quickly covered with hyphae and physically protected against wasp parasitism. The fungi are mostly benign Cordycipitaceae entomopathogens and show considerable diversity among insect individuals and populations, indicating environmental acquisition of specific fungal associates. These results uncover a novel external fungal symbiosis in which host's elaborate morphological, physiological and behavioral specializations underpin the selective recruitment of benign entomopathogens for a defensive purpose.
Collapse
Affiliation(s)
- Takanori Nishino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiromi Mukai
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takahiro Hosokawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Masahiko Tanahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shuji Tachikawa
- Association for Nature Restoration and Conservation, Tokyo, Japan
| | - Naruo Nikoh
- Department of Liberal Arts, The Open University of Japan, Chiba, Japan
| | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Zhan Y, Zhou Y, Wang E, Miao X, Zhou T, Yan N, Chen C, Li Q. Effects of reductive soil disinfestation combined with different types of organic materials on the microbial community and functions. Microbiol Spectr 2024; 12:e0080223. [PMID: 38230941 PMCID: PMC10846035 DOI: 10.1128/spectrum.00802-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024] Open
Abstract
Reductive soil disinfestation (RSD) is an effective method to inhibit soilborne pathogens. However, it remains unclear how RSD combined with different types of organic materials affects the soil ecosystems of perennial plants. Pot experiments were conducted to investigate the effects of RSD incorporated with perilla (PF), alfalfa (MS), ethanol, and acetic acid on soil properties, enzyme activities, microbial communities and functions, and seedling growth. Results showed that RSD-related treatments improved soil properties and enzyme activities, changed microbial community composition and structure, enhanced microbial interactions and functions, and facilitated seedling growth. Compared with CK, RSD-related treatments increased soil pH, available nitrogen, and available potassium contents, sucrase and catalase activities, and decreased soil electric conductivity values. Meanwhile, RSD-related treatment also significantly reduced the relative abundance of Fusarium while increasing the relative abundance of Arthrobacter, Terrabacter, and Gemmatimonas. The reduction was more evident in PF and MS treatment, suggesting the potential for RSD combined with solid agricultural wastes to suppress pathogens. Furthermore, the microbial network of RSD-related treatment was more complex and interconnected, and the functions related to carbon, nitrogen, sulfur, and hydrogen cycling were significantly increased, while the functions of bacterial and fungal plant pathogens were decreased. Importantly, RSD-related treatments also significantly promoted seed germination and seedling growth. In summary, RSD combined with solid agricultural wastes is better than liquid easily degradable compounds by regulating the composition and function of microbial communities to improve soil quality and promote plant growth.IMPORTANCEReductive soil disinfestation (RSD) is an effective agricultural practice. We found that RSD combined with solid agricultural wastes is better than that of liquid easily degradable compounds, may improve soil quality and microbial community structure, inhibit the proliferation of pathogenic bacteria, and contribute to the growth of replanted crops. Thus, RSD combined with solid agricultural wastes is more effective than liquid easily degradable compounds.
Collapse
Affiliation(s)
- Yu Zhan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yi Zhou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ergang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xinyue Miao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Tingting Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ning Yan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Qiong Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Mayer VE, Voglmayr H, Blatrix R, Orivel J, Leroy C. Fungi as mutualistic partners in ant-plant interactions. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1213997. [PMID: 37850069 PMCID: PMC10577302 DOI: 10.3389/ffunb.2023.1213997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023]
Abstract
Associations between fungi and ants living in mutualistic relationship with plants ("plant-ants") have been known for a long time. However, only in recent years has the mutualistic nature, frequency, and geographical extent of associations between tropical arboreal ants with fungi of the ascomycete order Chaetothyriales and Capnodiales (belonging to the so-called "Black Fungi") become clear. Two groups of arboreal ants displaying different nesting strategies are associated with ascomycete fungi: carton-building ants that construct nest walls and galleries on stems, branches or below leaves which are overgrown by fungal hyphae, and plant-ants that make their nests inside living plants (myrmecophytes) in plant provided cavities (domatia) where ants cultivate fungi in small delimited "patches". In this review we summarize the current knowledge about these unsuspected plant-ant-fungus interactions. The data suggest, that at least some of these ant-associated fungi seem to have coevolved with ants over a long period of time and have developed specific adaptations to this lifestyle.
Collapse
Affiliation(s)
- Veronika E. Mayer
- Department of Botany and Biodiversity Research – Division of Structural and Functional Botany, University of Vienna, Wien, Austria
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research – Mycology Research Group, University of Vienna, Wien, Austria
| | - Rumsais Blatrix
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jérôme Orivel
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
| | - Céline Leroy
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|
7
|
Hong S, Sun Y, Chen H, Zhao P, Wang C. Fungus-insect interactions beyond bilateral regimes: the importance and strategy to outcompete host ectomicrobiomes by fungal parasites. Curr Opin Microbiol 2023; 74:102336. [PMID: 37320866 DOI: 10.1016/j.mib.2023.102336] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Fungus-insect interactions have long been investigated at the bilateral level to unveil the factors involved in mediating fungal entomopathogenicity and insect antifungal immunity. Emerging evidence has shown that insect cuticles are inhabited by different bacteria that can delay and deter fungal parasite infections. Entomopathogenic fungi (EPF), however, have evolved strategies to combat the colonization resistance mediated by insect ectomicrobiomes by producing antimicrobial peptides or antibiotic compounds. Deprivation of micronutrients may also be employed by EPF to counteract the ectomicrobiome antagonism. Further investigations of insect ectomicrobiome assemblage and fungal factors involved in outcompeting cuticular microbiomes may benefit the development of cost-effective mycoinsecticides while protecting ecologically and economically important insect species.
Collapse
Affiliation(s)
- Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlei Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haimin Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengfei Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
8
|
Hilker M, Salem H, Fatouros NE. Adaptive Plasticity of Insect Eggs in Response to Environmental Challenges. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:451-469. [PMID: 36266253 DOI: 10.1146/annurev-ento-120120-100746] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Insect eggs are exposed to a plethora of abiotic and biotic threats. Their survival depends on both an innate developmental program and genetically determined protective traits provided by the parents. In addition, there is increasing evidence that (a) parents adjust the egg phenotype to the actual needs, (b) eggs themselves respond to environmental challenges, and (c) egg-associated microbes actively shape the egg phenotype. This review focuses on the phenotypic plasticity of insect eggs and their capability to adjust themselves to their environment. We outline the ways in which the interaction between egg and environment is two-way, with the environment shaping the egg phenotype but also with insect eggs affecting their environment. Specifically, insect eggs affect plant defenses, host biology (in the case of parasitoid eggs), and insect oviposition behavior. We aim to emphasize that the insect egg, although it is a sessile life stage, actively responds to and interacts with its environment.
Collapse
Affiliation(s)
- Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany;
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany;
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
9
|
Guo W, Wang W, Tang J, Li T, Li X. Genome analysis and genomic comparison of a fungal cultivar of the nonsocial weevil Euops chinensis reveals its plant decomposition and protective roles in fungus-farming mutualism. Front Microbiol 2023; 14:1048910. [PMID: 36876094 PMCID: PMC9978505 DOI: 10.3389/fmicb.2023.1048910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Fungus-farming mutualisms are models for studying co-evolutionary among species. Compared to well-documented fungus-farming in social insects, the molecular aspects of fungus-farming mutualisms in nonsocial insects have been poorly explored. Euops chinensis is a solitary leaf-rolling weevil feeding on Japanese knotweed (Fallopia japonica). This pest has evolved a special proto-farming bipartite mutualism with the fungus Penicillium herquei, which provide nutrition and defensive protection for the E. chinensis larvae. Here, the genome of P. herquei was sequenced, and the structure and specific gene categories in the P. herquei genome were then comprehensively compared with the other two well-studied Penicillium species (P. decumbens and P. chrysogenum). The assembled P. herquei genome had a 40.25 Mb genome size with 46.7% GC content. A diverse set of genes associating with carbohydrate-active enzymes, cellulose and hemicellulose degradation, transporter, and terpenoid biosynthesis were detected in the P. herquei genome. Comparative genomics demonstrate that the three Penicillium species show similar metabolic and enzymatic potential, however, P. herquei has more genes associated with plant biomass degradation and defense but less genes associating with virulence pathogenicity. Our results provide molecular evidence for plant substrate breakdown and protective roles of P. herquei in E. chinensis mutualistic system. Large metabolic potential shared by Penicillium species at the genus level may explain why some Penicillium species are recruited by the Euops weevils as crop fungi.
Collapse
Affiliation(s)
- Wenfeng Guo
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China.,Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Wei Wang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Jun Tang
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Tianyu Li
- Wuhan Benagen Technology Company Limited, Wuhan, Hubei, China
| | - Xiaoqiong Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Bacterial ectosymbionts in cuticular organs chemically protect a beetle during molting stages. THE ISME JOURNAL 2022; 16:2691-2701. [PMID: 36056153 PMCID: PMC9666510 DOI: 10.1038/s41396-022-01311-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
In invertebrates, the cuticle is the first and major protective barrier against predators and pathogen infections. While immune responses and behavioral defenses are also known to be important for insect protection, the potential of cuticle-associated microbial symbionts to aid in preventing pathogen entry during molting and throughout larval development remains unexplored. Here, we show that bacterial symbionts of the beetle Lagria villosa inhabit unusual dorsal invaginations of the insect cuticle, which remain open to the outer surface and persist throughout larval development. This specialized location enables the release of several symbiont cells and the associated protective compounds during molting. This facilitates ectosymbiont maintenance and extended defense during larval development against antagonistic fungi. One Burkholderia strain, which produces the antifungal compound lagriamide, dominates the community across all life stages, and removal of the community significantly impairs the survival probability of young larvae when exposed to different pathogenic fungi. We localize both the dominant bacterial strain and lagriamide on the surface of eggs, larvae, pupae, and on the inner surface of the molted cuticle (exuvia), supporting extended protection. These results highlight adaptations for effective defense of immature insects by cuticle-associated ectosymbionts, a potentially key advantage for a ground-dwelling insect when confronting pathogenic microbes.
Collapse
|
11
|
Janke RS, Moog S, Weiss B, Kaltenpoth M, Flórez LV. Morphological adaptation for ectosymbiont maintenance and transmission during metamorphosis in Lagria beetles. Front Physiol 2022; 13:979200. [PMID: 36111144 PMCID: PMC9468232 DOI: 10.3389/fphys.2022.979200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
The diversity and success of holometabolous insects is partly driven by metamorphosis, which allows for the exploitation of different niches and decouples growth and tissue differentiation from reproduction. Despite its benefits, metamorphosis comes with the cost of temporal vulnerability during pupation and challenges associated with tissue reorganizations. These rearrangements can also affect the presence, abundance, and localization of beneficial microbes in the host. However, how symbionts are maintained or translocated during metamorphosis and which adaptations are necessary from each partner during this process remains unknown for the vast majority of symbiotic systems. Here, we show that Lagria beetles circumvent the constraints of metamorphosis by maintaining defensive symbionts on the surface in specialized cuticular structures. The symbionts are present in both sexes throughout larval development and during the pupal phase, in line with a protective role during the beetle’s immature stages. By comparing symbiont titer and morphology of the cuticular structures between sexes using qPCR, fluorescence in situ hybridization, and micro-computed tomography, we found that the organs likely play an important role as a symbiont reservoir for transmission to female adults, since symbiont titers and structures are reduced in male pupae. Using symbiont-sized fluorescent beads, we demonstrate transfer from the region of the dorsal symbiont-housing organs to the opening of the reproductive tract of adult females, suggesting that symbiont relocation on the outer surface is possible, even without specialized symbiont adaptations or motility. Our results illustrate a strategy for holometabolous insects to cope with the challenge of symbiont maintenance during metamorphosis via an external route, circumventing problems associated with internal tissue reorganization. Thereby, Lagria beetles keep a tight relationship with their beneficial partners during growth and metamorphosis.
Collapse
Affiliation(s)
- Rebekka S. Janke
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Safira Moog
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Benjamin Weiss
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V. Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Laura V. Flórez,
| |
Collapse
|
12
|
Barcoto MO, Rodrigues A. Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Front Microbiol 2022; 13:812143. [PMID: 35685924 PMCID: PMC9171207 DOI: 10.3389/fmicb.2022.812143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have extensively transformed the biosphere by extracting and disposing of resources, crossing boundaries of planetary threat while causing a global crisis of waste overload. Despite fundamental differences regarding structure and recalcitrance, lignocellulose and plastic polymers share physical-chemical properties to some extent, that include carbon skeletons with similar chemical bonds, hydrophobic properties, amorphous and crystalline regions. Microbial strategies for metabolizing recalcitrant polymers have been selected and optimized through evolution, thus understanding natural processes for lignocellulose modification could aid the challenge of dealing with the recalcitrant human-made polymers spread worldwide. We propose to look for inspiration in the charismatic fungal-growing insects to understand multipartite degradation of plant polymers. Independently evolved in diverse insect lineages, fungiculture embraces passive or active fungal cultivation for food, protection, and structural purposes. We consider there is much to learn from these symbioses, in special from the community-level degradation of recalcitrant biomass and defensive metabolites. Microbial plant-degrading systems at the core of insect fungicultures could be promising candidates for degrading synthetic plastics. Here, we first compare the degradation of lignocellulose and plastic polymers, with emphasis in the overlapping microbial players and enzymatic activities between these processes. Second, we review the literature on diverse insect fungiculture systems, focusing on features that, while supporting insects' ecology and evolution, could also be applied in biotechnological processes. Third, taking lessons from these microbial communities, we suggest multidisciplinary strategies to identify microbial degraders, degrading enzymes and pathways, as well as microbial interactions and interdependencies. Spanning from multiomics to spectroscopy, microscopy, stable isotopes probing, enrichment microcosmos, and synthetic communities, these strategies would allow for a systemic understanding of the fungiculture ecology, driving to application possibilities. Detailing how the metabolic landscape is entangled to achieve ecological success could inspire sustainable efforts for mitigating the current environmental crisis.
Collapse
Affiliation(s)
- Mariana O. Barcoto
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
13
|
Pons I, González Porras MÁ, Breitenbach N, Berger J, Hipp K, Salem H. For the road: calibrated maternal investment in light of extracellular symbiont transmission. Proc Biol Sci 2022; 289:20220386. [PMID: 35473381 PMCID: PMC9043728 DOI: 10.1098/rspb.2022.0386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Faithful transmission of beneficial symbionts is critical for the persistence of mutualisms. Many insect groups rely on extracellular routes that require microbial symbionts to survive outside the host during transfer. However, given a prolonged aposymbiotic phase in offspring, how do mothers mitigate the risk of symbiont loss due to unsuccessful transmission? Here, we investigated symbiont regulation and reacquisition during extracellular transfer in the tortoise beetle, Chelymorpha alternans (Coleoptera: Cassidinae). Like many cassidines, C. alternans relies on egg caplets to vertically propagate its obligate symbiont Candidatus Stammera capleta. On average, each caplet is supplied with 12 symbiont-bearing spheres where Stammera is embedded. We observe limited deviation (±2.3) in the number of spheres allocated to each caplet, indicating strict maternal control over symbiont supply. Larvae acquire Stammera 1 day prior to eclosion but are unable to do so after hatching, suggesting that a specific developmental window governs symbiont uptake. Experimentally manipulating the number of spheres available to each egg revealed that a single sphere is sufficient to ensure successful colonization by Stammera relative to the 12 typically packaged within a caplet. Collectively, our findings shed light on a tightly regulated symbiont transmission cycle optimized to ensure extracellular transfer.
Collapse
Affiliation(s)
- Inès Pons
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | | | - Noa Breitenbach
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Jürgen Berger
- Electron Microscopy Facility, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| |
Collapse
|
14
|
Show BK, Banerjee S, Banerjee A, GhoshThakur R, Hazra AK, Mandal NC, Ross AB, Balachandran S, Chaudhury S. Insect gut bacteria: a promising tool for enhanced biogas production. REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2022; 21:1-25. [DOI: 10.1007/s11157-021-09607-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/29/2021] [Indexed: 07/19/2023]
|
15
|
Abstract
Beetles are hosts to a remarkable diversity of bacterial symbionts. In this article, we review the role of these partnerships in promoting beetle fitness following a surge of recent studies characterizing symbiont localization and function across the Coleoptera. Symbiont contributions range from the supplementation of essential nutrients and digestive or detoxifying enzymes to the production of bioactive compounds providing defense against natural enemies. Insights on this functional diversity highlight how symbiosis can expand the host's ecological niche, but also constrain its evolutionary potential by promoting specialization. As bacterial localization can differ within and between beetle clades, we discuss how it corresponds to the microbe's beneficial role and outline the molecular and behavioral mechanisms underlying symbiont translocation and transmission by its holometabolous host. In reviewing this literature, we emphasize how the study of symbiosis can inform our understanding of the phenotypic innovations behind the evolutionary success of beetles.
Collapse
Affiliation(s)
- Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany;
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz 55128, Germany
| |
Collapse
|
16
|
Zhou F, Gao Y, Liu M, Xu L, Wu X, Zhao X, Zhang X. Bacterial Inhibition on Beauveria bassiana Contributes to Microbiota Stability in Delia antiqua. Front Microbiol 2021; 12:710800. [PMID: 34690955 PMCID: PMC8527029 DOI: 10.3389/fmicb.2021.710800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/01/2021] [Indexed: 02/01/2023] Open
Abstract
Given the multiple roles of associated microbiota in improving animal host fitness in a microbial environment, increasing numbers of researchers have focused on how the associated microbiota keeps stable under complex environmental factors, especially some biological ones. Recent studies show that associated microbiota interacts with pathogenic microbes. However, whether and how the interaction would influence microbiota stability is limitedly investigated. Based on the interaction among Delia antiqua, its associated microbiota, and one pathogen Beauveria bassiana, the associated microbiota's response to the pathogen was determined in this study. Besides, the underlying mechanism for the response was also preliminarily investigated. Results showed that B. bassiana neither infect D. antiqua larvae nor did it colonize inside the associated microbiota, and both the bacterial and fungal microbiota kept stable during the interaction. Further experiments showed that bacterial microbiota almost completely inhibited conidial germination and mycelial growth of B. bassiana during its invasion, while fungal microbiota did not inhibit conidial germination and mycelial growth of B. bassiana. According to the above results, individual dominant bacterial species were isolated, and their inhibition on conidial germination and mycelial growth of B. bassiana was reconfirmed. Thus, these results indicated that bacterial instead of fungal microbiota blocked B. bassiana conidia and stabilized the associated microbiota of D. antiqua larvae during B. bassiana invasion. The findings deepened the understanding of the role of associated microbiota–pathogen microbe interaction in maintaining microbiota stability. They may also contribute to the development of novel biological control agents and pest management strategies.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Yunxiao Gao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Mei Liu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xiaoyan Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| |
Collapse
|
17
|
Banerjee S, Maiti TK, Roy RN. Enzyme producing insect gut microbes: an unexplored biotechnological aspect. Crit Rev Biotechnol 2021; 42:384-402. [PMID: 34612103 DOI: 10.1080/07388551.2021.1942777] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
To explore the unmapped biotechnologically important microbial platforms for human welfare, the insect gut system is such a promising arena. Insects, the inhabitant of all ecological niches, harbor a healthy diversified microbial population in their versatile gut environment. This deep-rooted symbiotic relationship between insects and gut microbes is the result of several indispensable microbial performances that include: enzyme production, detoxification of plant defense compounds and insecticides, maintenance of life cycle, host fertility, bioremediation, pest biocontrol, production of antimicrobial compounds, and in addition provide vitamins, amino acids, and lactic acids to their hosts. Insects have developed such symbiotic interactions with different microorganisms for nutritional benefits like the digestion of dietary compounds by the production of several key hydrolytic enzymes viz: amylase, cellulase, lignocellulase, protease, lipase, xylanase, pectinase, chitinase, laccase, etc. The nutritional enrichment offered by these microbes to insects may be the key factor in the evolutionary attainment of this group. Around one million insect species are grouped under 31 orders, however, only ten of such groups' have been studied in relation to enzyme-producing gut microbes. Moreover, insect gut symbionts are a potential source of biotechnologically active biomolecules as these microbes go through a course of selection pressures in their host gut environment. As symbiosis has pronounced potential regarding the production of novel compounds, especially enzymes with multidimensional industrial capabilities, so there are ample scopes to explore this treasure box for human welfare. Biological significance as well as industrially compatible capabilities can categorize these insect gut symbionts as an unexplored biotechnological aspect.
Collapse
Affiliation(s)
- Sandipan Banerjee
- Microbiology Research Laboratory, Department of Botany, Dr. B. N. Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan, India.,Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, India
| | | | - Raj Narayan Roy
- Microbiology Research Laboratory, Department of Botany, Dr. B. N. Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan, India
| |
Collapse
|
18
|
Van Moll L, De Smet J, Cos P, Van Campenhout L. Microbial symbionts of insects as a source of new antimicrobials: a review. Crit Rev Microbiol 2021; 47:562-579. [PMID: 34032192 DOI: 10.1080/1040841x.2021.1907302] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To stop the antimicrobial resistance crisis, there is an urgent need for increased investment in antimicrobial research and development. Currently, many researchers are focussing on insects and their microbiota in the search for new antimicrobials. This review summarizes recent literature dedicated to the antimicrobial screening of insect symbionts and/or their metabolites to uncover their value in early drug discovery. We summarize the main steps in the methodology used to isolate and identify active insect symbionts and have noted substantial variation among these studies. There is a clear trend in isolating insect Streptomyces bacteria, but a broad range of other symbionts has been found to be active as well. The microbiota of many insect genera and orders remains untargeted so far, which leaves much room for future research. The antimicrobial screening of insect symbionts has led to the discovery of a diverse array of new active biomolecules, mainly peptides, and polyketides. Here, we discuss 15 of these symbiont-produced compounds and their antimicrobial profile. Cyphomycin, isolated from a Streptomyces symbiont of a Cyphomyrmex fungus-growing ant, seems to be the most promising insect symbiont-derived antimicrobial so far. Overall, insect microbiota appears to be a promising search area to discover new antimicrobial drug candidates.
Collapse
Affiliation(s)
- Laurence Van Moll
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium.,Department of Microbial and Molecular Systems (M2S), KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Jeroen De Smet
- Department of Microbial and Molecular Systems (M2S), KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Paul Cos
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Leen Van Campenhout
- Department of Microbial and Molecular Systems (M2S), KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Li J, Sang M, Jiang Y, Wei J, Shen Y, Huang Q, Li Y, Ni J. Polyene-Producing Streptomyces spp. From the Fungus-Growing Termite Macrotermes barneyi Exhibit High Inhibitory Activity Against the Antagonistic Fungus Xylaria. Front Microbiol 2021; 12:649962. [PMID: 33868208 PMCID: PMC8047067 DOI: 10.3389/fmicb.2021.649962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
Fungus-growing termites are engaged in a tripartite mutualism with intestinal microbes and a monocultivar (Termitomyces sp.) in the fungus garden. The termites are often plagued by entomopathogen (Metarhizium anisopliae) and fungus garden is always threatened by competitors (Xylaria spp.). Here, we aim to understand the defensive role of intestinal microbes, the actinomycetes which were isolated from the gut of Macrotermes barneyi. We obtained 44 antifungal isolates, which showed moderate to strong inhibition to Xylaria sp. HPLC analysis indicated that different types of polyenes (tetraene, pentene, and heptaene) existed in the metabolites of 10 strong antifungal Streptomyces strains. Two pentene macrolides (pentamycin and 1′14-dihydroxyisochainin) were firstly purified from Streptomyces strain HF10, both exhibiting higher activity against Xylaria sp. and M. anisopliae than cultivar Termitomyces. Subsequently, tetraene and heptaene related gene disruption assay showed that the mutant strains lost the ability to produce corresponding polyenes, and they also had significantly decreased activities against Xylaria sp. and M. anisopliae compared to that of wild type strains. These results indicate that polyene-producing Streptomyces from the guts of M. barneyi have strong inhibition to competitor fungus and polyenes contribute to inhibitory effects on Xylaria sp.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Moli Sang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yutong Jiang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jianhua Wei
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qihong Huang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yaoyao Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.,School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
20
|
Symbiotic Bacterium-Derived Organic Acids Protect Delia antiqua Larvae from Entomopathogenic Fungal Infection. mSystems 2020; 5:5/6/e00778-20. [PMID: 33203688 PMCID: PMC7677000 DOI: 10.1128/msystems.00778-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Colonization resistance, i.e., the protective effects of associated microbiota for the animal host against pathogen infection, has been studied widely over the last 100 years. However, few molecules mediating colonization resistance have been identified. In the symbiosis formed by Delia antiqua and its associated microbes, six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana, providing an ideal model to investigate the chemical mechanism for colonization resistance. Subsequently using this symbiotic system, we first compared effects of the six bacterial species, and one control bacterium (Klebsiella oxytoca) that showed no antifungal effects, on B. bassiana and its infection of D. antiqua Second, metabolomic profiles of the six bacteria and K. oxytoca were compared to identify candidate metabolites that may prevent infection. Third, the concentrations of candidate metabolites in situ from axenic and nonaxenic larvae were determined. Finally, effects of artificial metabolite cocktails on B. bassiana and its infection of D. antiqua larvae were determined. Results showed that compared to K. oxytoca, the six bacteria produced a metabolite cocktail showing inhibitory effects on conidial germination, mycelial growth of B. bassiana, and fungal infection. Our work revealed novel molecules that mediate colonization resistance, which could help in developing chemical mechanisms of colonization resistance. Moreover, this work may aid in discovery and expansion of new bioactive antibiotics, promoting development of prophylactic and therapeutic approaches for treating infectious diseases.IMPORTANCE The protection of associated microbiota for their animal hosts against pathogen infection has been studied widely over the last 100 years. However, how those microbes protect the animal host remains unclear. In former studies, body surface microbes of one insect, Delia antiqua, protected the insect larvae from infection with the entomopathogen Beauveria bassiana By comparing the metabolites produced by microbes that protect the insect and microbes that cannot protect the insect, the question of how the microbes protect the insect is answered. It turns out that body surface bacteria produce a metabolite cocktail that inhibits colonization of B. bassiana and consequently protects the insect. This work reveals novel molecules with antifungal activity, which may aid in discovery and expansion of new prophylactic and therapeutic natural chemicals for treating infectious diseases.
Collapse
|
21
|
Pyszko P, Višňovská D, Drgová M, Šigut M, Drozd P. Effect of Bacterial and Fungal Microbiota Removal on the Survival and Development of Bryophagous Beetles. ENVIRONMENTAL ENTOMOLOGY 2020; 49:902-911. [PMID: 32514554 DOI: 10.1093/ee/nvaa060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 06/11/2023]
Abstract
Insect microbiota may play a wide range of roles in host physiology. Among others, microbiota can be involved in diet processing or protection against pathogens, both of which are potentially important in bryophagous (moss-feeding) insects, which survive on extreme diets and live in the stable environment of moss clumps suitable for the growth of fungi and bacteria. We treated Cytilus sericeus (Forster, 1771) (Coleoptera: Byrrhidae) as a model organism with bactericides and fungicides to test the effect of bacterial and fungal removal on egg hatching and larval development. Furthermore, we supplied larvae with adult feces to determine whether feces is a source of beneficial microbiota or pathogens. Bactericides had a positive effect, but fungicides had a negative effect on beetle fitness, both of which manifested during egg hatching. The feces did not play a positive role. Our conclusions indicate the presence of beneficial fungal microbiota associated with eggs but not transmitted through feces. Based on preliminary cultivation and fungicide tests, Fusarium or Penicillium may be important for suppressing pathogens, but their exact role needs to be further studied.
Collapse
Affiliation(s)
- Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho, Ostrava, Czech Republic
| | - Denisa Višňovská
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho, Ostrava, Czech Republic
| | - Michaela Drgová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho, Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho, Ostrava, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho, Ostrava, Czech Republic
| |
Collapse
|
22
|
Fukuda TTH, Cassilly CD, Gerdt JP, Henke MT, Helfrich EJN, Mevers E. Research Tales from the Clardy Laboratory: Function-Driven Natural Product Discovery. JOURNAL OF NATURAL PRODUCTS 2020; 83:744-755. [PMID: 32105475 DOI: 10.1021/acs.jnatprod.9b01086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past 70 years, the search for small molecules from nature has transformed biomedical research: natural products are the basis for half of all pharmaceuticals; the quest for total synthesis of natural products fueled development of methodologies for organic synthesis; and their biosynthesis presented unprecedented biochemical transformations, expanding our chemo-enzymatic toolkit. Initially, the discovery of small molecules was driven by bioactivity-guided fractionation. However, this approach yielded the frequent rediscovery of already known metabolites. As a result, focus shifted to identifying novel scaffolds through either structure-first methods or genome mining, relegating function as a secondary concern. Over the past two decades, the laboratory of Jon Clardy has taken an alternative route and focused on an ecology-driven, function-first approach in pursuit of uncovering bacterial small molecules with biological activity. In this review, we highlight several examples that showcase this ecology-first approach. Though the highlighted systems are diverse, unifying themes are (1) to understand how microbes interact with their host or environment, (2) to gain insights into the environmental roles of microbial metabolites, and (3) to explore pharmaceutical potential from these ecologically relevant metabolites.
Collapse
Affiliation(s)
- Taise T H Fukuda
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Chelsi D Cassilly
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph P Gerdt
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Matthew T Henke
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Eric J N Helfrich
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
23
|
Abstract
The evolution of a mutualism requires reciprocal interactions whereby one species provides a service that the other species cannot perform or performs less efficiently. Services exchanged in insect-fungus mutualisms include nutrition, protection, and dispersal. In ectosymbioses, which are the focus of this review, fungi can be consumed by insects or can degrade plant polymers or defensive compounds, thereby making a substrate available to insects. They can also protect against environmental factors and produce compounds antagonistic to microbial competitors. Insects disperse fungi and can also provide fungal growth substrates and protection. Insect-fungus mutualisms can transition from facultative to obligate, whereby each partner is no longer viable on its own. Obligate dependency has (a) resulted in the evolution of morphological adaptations in insects and fungi, (b) driven the evolution of social behaviors in some groups of insects, and (c) led to the loss of sexuality in some fungal mutualists.
Collapse
Affiliation(s)
- Peter H W Biedermann
- Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany;
| | - Fernando E Vega
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA;
| |
Collapse
|
24
|
Nuotclà JA, Biedermann PHW, Taborsky M. Pathogen defence is a potential driver of social evolution in ambrosia beetles. Proc Biol Sci 2019; 286:20192332. [PMID: 31847779 PMCID: PMC6939916 DOI: 10.1098/rspb.2019.2332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022] Open
Abstract
Social immunity-the collective behavioural defences against pathogens-is considered a crucial evolutionary force for the maintenance of insect societies. It has been described and investigated primarily in eusocial insects, but its role in the evolutionary trajectory from parental care to eusociality is little understood. Here, we report on the existence, plasticity, effectiveness and consequences of social pathogen defence in experimental nests of cooperatively breeding ambrosia beetles. After an Aspergillus spore buffer solution or a control buffer solution had been injected in laboratory nests, totipotent adult female workers increased their activity and hygienic behaviours like allogrooming and cannibalism. Such social immune responses had not been described for a non-eusocial, cooperatively breeding insect before. Removal of beetles from Aspergillus-treated nests in a paired experimental design revealed that the hygienic behaviours of beetles significantly reduced pathogen prevalence in the nest. Furthermore, in response to pathogen injections, female helpers delayed dispersal and thus prolonged their cooperative phase within their mother's nest. Our findings of appropriate social responses to an experimental immune challenge in a cooperatively breeding beetle corroborate the view that social immunity is not an exclusive attribute of eusocial insects, but rather a concomitant and presumably important feature in the evolutionary transitions towards complex social organization.
Collapse
Affiliation(s)
- Jon A. Nuotclà
- Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Peter H. W. Biedermann
- Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, Am Hubland, Biocenter, 97074 Wuerzburg, Germany
| | - Michael Taborsky
- Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| |
Collapse
|
25
|
Agamennone V, Le NG, van Straalen NM, Brouwer A, Roelofs D. Antimicrobial activity and carbohydrate metabolism in the bacterial metagenome of the soil-living invertebrate Folsomia candida. Sci Rep 2019; 9:7308. [PMID: 31086216 PMCID: PMC6513849 DOI: 10.1038/s41598-019-43828-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
The microbiome associated with an animal's gut and other organs is considered an integral part of its ecological functions and adaptive capacity. To better understand how microbial communities influence activities and capacities of the host, we need more information on the functions that are encoded in a microbiome. Until now, the information about soil invertebrate microbiomes is mostly based on taxonomic characterization, achieved through culturing and amplicon sequencing. Using shotgun sequencing and various bioinformatics approaches we explored functions in the bacterial metagenome associated with the soil invertebrate Folsomia candida, an established model organism in soil ecology with a fully sequenced, high-quality genome assembly. Our metagenome analysis revealed a remarkable diversity of genes associated with antimicrobial activity and carbohydrate metabolism. The microbiome also contains several homologs to F. candida genes that were previously identified as candidates for horizontal gene transfer (HGT). We suggest that the carbohydrate- and antimicrobial-related functions encoded by Folsomia's metagenome play a role in the digestion of recalcitrant soil-born polysaccharides and the defense against pathogens, thereby significantly contributing to the adaptation of these animals to life in the soil. Furthermore, the transfer of genes from the microbiome may constitute an important source of new functions for the springtail.
Collapse
Affiliation(s)
- Valeria Agamennone
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands.
- Department of Microbiology and Systems Biology, TNO, Zeist, The Netherlands.
| | - Ngoc Giang Le
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nico M van Straalen
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Dick Roelofs
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
|
27
|
Lin B, Wang L, Hussain M, Zhang X, Tian J, Qi S, Liu X, Xiang M. Microbiota analysis revealed vertical transmission and microbial adjusting function of symbiotic fungus in the attelabid weevil fungiculture. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1717-1721. [PMID: 30904975 DOI: 10.1007/s11427-018-9475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Lin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Wang
- Institute of Apicultural Research, Chinese Academy of Agriculture Sciences, Beijing, 100093, China
| | - Muzammil Hussain
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoling Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianqing Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sha Qi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Zhou F, Wu X, Xu L, Guo S, Chen G, Zhang X. Repressed Beauveria bassiana infections in Delia antiqua due to associated microbiota. PEST MANAGEMENT SCIENCE 2019; 75:170-179. [PMID: 29797399 DOI: 10.1002/ps.5084] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/18/2018] [Accepted: 05/17/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Insects form both mutualistic and antagonistic relationships with microbes, and some antagonistic microbes have been used as biocontrol agents (BCAs) in pest management. Contextually, BCAs may be inhibited by beneficial insect symbionts, which can become potential barriers to entomopathogen-dependent pest biocontrol. Using the symbioses formed by one devastating dipteran pest, Delia antiqua, and its associated microbes as a model system, we sought to determine whether the antagonistic interaction between BCAs and microbial symbionts could affect the outcome of entomopathogen-dependent pest biocontrol. RESULTS The result showed that in contrast to non-axenic D. antiqua larvae, i.e., onion maggots, axenic larvae lost resistance to the entomopathogenic Beauveria bassiana, and the re-inoculation of microbiota increased the resistance of axenic larvae to B. bassiana. Furthermore, bacteria frequently isolated from larvae, including Citrobacter freundii, Enterobacter ludwigii, Pseudomonas protegens, Serratia plymuthica, Sphingobacterium faecium and Stenotrophomonas maltophilia, suppressed B. bassiana conidia germination and hyphal growth, and the re-inoculation of specific individual bacteria enhanced the resistance of axenic larvae to B. bassiana. CONCLUSION Bacteria associated with larvae, including C. freundii, E. ludwigii, P. protegens, S. plymuthica, S. faecium and S. maltophilia, can inhibit B. bassiana infection. Removing the microbiota can suppress larval resistance to fungal infection. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Letian Xu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, China
| | - Shuhai Guo
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Guanhong Chen
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
29
|
Ren F, Chen S, Zhang Y, Zhu S, Xiao J, Liu X, Su R, Che Y. Hawaiienols A-D, Highly Oxygenated p-Terphenyls from an Insect-Associated Fungus, Paraconiothyrium hawaiiense. JOURNAL OF NATURAL PRODUCTS 2018; 81:1752-1759. [PMID: 30024750 DOI: 10.1021/acs.jnatprod.8b00106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Four new highly oxygenated p-terphenyls, hawaiienols A-D (1-4), have been isolated from cultures of Paraconiothyrium hawaiiense, a fungus associated with the Septobasidium-infected insect Diaspidiotus sp.; their structures were elucidated primarily by NMR experiments. The absolute configurations of 1 and 2-4 were assigned by single-crystal X-ray diffraction analysis using Cu Kα radiation and via electronic circular dichroism calculations, respectively. Compound 1 incorporated the first naturally occurring 4,7-dioxatricyclo[3.2.1.03,6]octane unit in its p-terphenyl skeleton and showed cytotoxicity toward six human tumor cell lines.
Collapse
Affiliation(s)
- Fengxia Ren
- State Key Laboratory of Toxicology & Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , Beijing 100850 , People's Republic of China
| | - Shenxi Chen
- State Key Laboratory of Mycology, Institute of Microbiology , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Toxicology & Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , Beijing 100850 , People's Republic of China
| | - Shuaiming Zhu
- State Key Laboratory of Toxicology & Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , Beijing 100850 , People's Republic of China
| | - Junhai Xiao
- State Key Laboratory of Toxicology & Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , Beijing 100850 , People's Republic of China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Ruibin Su
- State Key Laboratory of Toxicology & Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , Beijing 100850 , People's Republic of China
| | - Yongsheng Che
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy , Nankai University , Tianjin 300350 , People's Republic of China
| |
Collapse
|
30
|
Mantilleri A. Brentidae Acratini du massif du Mitaraka, en Guyane: une synthèse des données (Insecta, Coleoptera, Curculionoidea). ZOOSYSTEMA 2018. [DOI: 10.5252/zoosystema2018v40a15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Antoine Mantilleri
- Muséum national d'Histoire naturelle, Direction des collections, case postale 50, 57 rue Cuvier, F-75231 Paris cedex 05 (France)
| |
Collapse
|
31
|
Evolutionary stability of antibiotic protection in a defensive symbiosis. Proc Natl Acad Sci U S A 2018; 115:E2020-E2029. [PMID: 29444867 DOI: 10.1073/pnas.1719797115] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The increasing resistance of human pathogens severely limits the efficacy of antibiotics in medicine, yet many animals, including solitary beewolf wasps, successfully engage in defensive alliances with antibiotic-producing bacteria for millions of years. Here, we report on the in situ production of 49 derivatives belonging to three antibiotic compound classes (45 piericidin derivatives, 3 streptochlorin derivatives, and nigericin) by the symbionts of 25 beewolf host species and subspecies, spanning 68 million years of evolution. Despite a high degree of qualitative stability in the antibiotic mixture, we found consistent quantitative differences between species and across geographic localities, presumably reflecting adaptations to combat local pathogen communities. Antimicrobial bioassays with the three main components and in silico predictions based on the structure and specificity in polyketide synthase domains of the piericidin biosynthesis gene cluster yield insights into the mechanistic basis and ecoevolutionary implications of producing a complex mixture of antimicrobial compounds in a natural setting.
Collapse
|
32
|
Van Arnam EB, Currie CR, Clardy J. Defense contracts: molecular protection in insect-microbe symbioses. Chem Soc Rev 2018; 47:1638-1651. [DOI: 10.1039/c7cs00340d] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insects frequently host microbes that produce defensive molecules: a successful protective strategy and also an opportunity for antibiotic discovery
Collapse
Affiliation(s)
- Ethan B. Van Arnam
- Keck Science Department
- Claremont McKenna
- Pitzer
- and Scripps Colleges
- Claremont
| | | | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology
- Harvard Medical School
- Boston
- USA
| |
Collapse
|
33
|
Zhou F, Xu L, Wang S, Wang B, Lou Q, Lu M, Sun J. Bacterial volatile ammonia regulates the consumption sequence of d-pinitol and d-glucose in a fungus associated with an invasive bark beetle. THE ISME JOURNAL 2017; 11:2809-2820. [PMID: 28800134 PMCID: PMC5702737 DOI: 10.1038/ismej.2017.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023]
Abstract
Interactions among microbial symbionts have multiple roles in the maintenance of insect-microbe symbiosis. However, signals mediating microbial interactions have been scarcely studied. In the classical model system of bark beetles and fungal associates, fungi increase the fitness of insects. However, not all interactions are mutualistic, some of these fungal symbionts compete for sugars with beetle larvae. How this antagonistic effect is alleviated is unknown, and recent research suggests potential roles of bacterial symbionts. Red turpentine beetle (RTB), Dendroctonus valens LeConte, is an invasive pest in China, and it leads to wide spread, catastrophic mortality to Chinese pines. In the symbiotic system formed by RTB, fungi and bacteria, volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae. However, active components of these volatiles are unknown. We detected 67 volatiles by Gas Chromatography-Mass Spectrometer (GC-MS). Seven of them were identified as candidate chemicals mediating bacteria-fungus interactions, among which ammonia made L. procerum consume its secondary carbon source D-pinitol instead of its preferred carbohydrate D-glucose. In conclusion, ammonia regulated the consumption sequence of these two carbon sources in the fungal symbiont.
Collapse
Affiliation(s)
- Fangyuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shandong Provincial Key Laboratory for Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Jinan, China
| | - Letian Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Hubei University, Wuhan, China
| | - Shanshan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Health Sciences, Anhui University, Hefei, China
| | - Bo Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Qiaozhe Lou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Phylogeny and morphological analyses of Penicillium section Sclerotiora (Fungi) lead to the discovery of five new species. Sci Rep 2017; 7:8233. [PMID: 28811639 PMCID: PMC5557846 DOI: 10.1038/s41598-017-08697-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/13/2017] [Indexed: 12/01/2022] Open
Abstract
Phylogeny of Penicillium section Sclerotiora is still limitedly investigated. In this study, five new species of Penicillium are identified from the samples collected from different places of China, and named P. austrosinicum, P. choerospondiatis, P. exsudans, P. sanshaense and P. verrucisporum. The conidiophores of P. austrosinicum and P. exsudans are monoverticillate like most members of the section, while the rest species are biverticillate similar to the only two species P. herquei and P. malachiteum previously reported in the section Sclerotiora. The phylogenetic positions of the new taxa are determined based on the sequence data of ITS, BenA, CaM and RPB2 regions, which reveals that all the species with biverticillate condiophores form a well-supported subclade in the section. The new Penicillium species clearly differ from the existing species of the genus in culture characteristics on four standard growth media, microscopic features, and sequence data. Morphological discrepancies are discussed between the new species and their allies.
Collapse
|
35
|
Abstract
Covering: 2010 up to 2017Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer. The human microbiome is now integral to the most recent chapter in animal-microbe symbiosis studies and plant-microbe symbioses have significantly advanced our understanding of natural products biosynthesis; this also is the case for studies of fungal-microbe symbioses. However, much less is known about microbe-microbe systems involving interspecies interactions. Microbe-derived small molecules (i.e. antibiotics and quorum sensing molecules, etc.) have been shown to regulate transcription in microbes within the same environmental niche, suggesting interspecies interactions whereas, intraspecies interactions, such as those that exploit autoinducing small molecules, also modulate gene expression based on environmental cues. We, and others, contend that symbioses provide almost unlimited opportunities for the discovery of new bioactive compounds whose activities and applications have been evolutionarily optimized. Particularly intriguing is the possibility that environmental effectors can guide laboratory expression of secondary metabolites from "orphan", or silent, biosynthetic gene clusters (BGCs). Notably, many of the studies summarized here result from advances in "omics" technologies and highlight how symbioses have given rise to new anti-bacterial and antifungal natural products now being discovered.
Collapse
Affiliation(s)
- Navid Adnani
- University of Wisconsin Madison, School of Pharmacy, Div. of Pharmaceutical Sciences, 777 Highland Ave., Madison, WI 53705-2222, USA.
| | | | | |
Collapse
|
36
|
Flórez LV, Scherlach K, Gaube P, Ross C, Sitte E, Hermes C, Rodrigues A, Hertweck C, Kaltenpoth M. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat Commun 2017; 8:15172. [PMID: 28452358 PMCID: PMC5414355 DOI: 10.1038/ncomms15172] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/06/2017] [Indexed: 11/17/2022] Open
Abstract
Pathogenic and mutualistic bacteria associated with eukaryotic hosts often lack distinctive genomic features, suggesting regular transitions between these lifestyles. Here we present evidence supporting a dynamic transition from plant pathogenicity to insect-defensive mutualism in symbiotic Burkholderia gladioli bacteria. In a group of herbivorous beetles, these symbionts protect the vulnerable egg stage against detrimental microbes. The production of a blend of antibiotics by B. gladioli, including toxoflavin, caryoynencin and two new antimicrobial compounds, the macrolide lagriene and the isothiocyanate sinapigladioside, likely mediate this defensive role. In addition to vertical transmission, these insect symbionts can be exchanged via the host plant and retain the ability to initiate systemic plant infection at the expense of the plant's fitness. Our findings provide a paradigm for the transition between pathogenic and mutualistic lifestyles and shed light on the evolution and chemical ecology of this defensive mutualism.
Collapse
Affiliation(s)
- Laura V. Flórez
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745 Jena, Germany
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstraβe 11a, 07745 Jena, Germany
| | - Paul Gaube
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745 Jena, Germany
| | - Claudia Ross
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstraβe 11a, 07745 Jena, Germany
| | - Elisabeth Sitte
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstraβe 11a, 07745 Jena, Germany
| | - Cornelia Hermes
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstraβe 11a, 07745 Jena, Germany
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP-São Paulo State University, Av. 24A, n. 1515-Bela Vista, Rio Claro, São Paulo 13506-900, Brazil
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstraβe 11a, 07745 Jena, Germany
- Chair for Natural Product Chemistry, Friedrich Schiller University, 07743 Jena, Germany
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745 Jena, Germany
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| |
Collapse
|
37
|
Cheng C, Zhou F, Lu M, Sun J. Inducible pine rosin defense mediates interactions between an invasive insect-fungal complex and newly acquired sympatric fungal associates. Integr Zool 2016; 10:453-64. [PMID: 25939920 DOI: 10.1111/1749-4877.12138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mutualism between insects and fungi drives insect evolutionary diversification and niche expansion; for invasive insects, however, mechanisms by which they maintain mutualistic relationships with beneficial fungi have not been clearly explored. Here, we report that an invasive herbivorous insect, the red turpentine beetle (RTB), with its co-invasive mutualistic fungus, Leptographium procerum, has newly acquired a set of sympatric fungi during invasion, which could potentially outcompete the RTB mutualistic fungus. Host pine Pinus tabuliformis exhibited more rosin-based responses to the sympatric fungi than to RTB mutualistic fungus and, in return, the rapidly induced rosin suppressed the sympatric fungi more significantly than L. procerum. In addition, from direct fungal pairing competitions, we found that the antagonistic effects of sympatric fungi on L. procerum were drastically reduced under induced rosin defense. Our results together with previous findings imply that pine oleoresin defense (turpentine and rosin) might have been exploited by the invasive mutualistic fungus L. procerum, which helps to explain its invasion success and, by extension, its mutualistic partner RTB in China.
Collapse
Affiliation(s)
- Chihang Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fangyuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Ford SA, King KC. Harnessing the Power of Defensive Microbes: Evolutionary Implications in Nature and Disease Control. PLoS Pathog 2016; 12:e1005465. [PMID: 27058881 PMCID: PMC4826280 DOI: 10.1371/journal.ppat.1005465] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Suzanne A. Ford
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (SAF); (KCK)
| | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (SAF); (KCK)
| |
Collapse
|
39
|
Beemelmanns C, Guo H, Rischer M, Poulsen M. Natural products from microbes associated with insects. Beilstein J Org Chem 2016; 12:314-27. [PMID: 26977191 PMCID: PMC4778507 DOI: 10.3762/bjoc.12.34] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/02/2016] [Indexed: 12/11/2022] Open
Abstract
Here we review discoveries of secondary metabolites from microbes associated with insects. We mainly focus on natural products, where the ecological role has been at least partially elucidated, and/or the pharmaceutical properties evaluated, and on compounds with unique structural features. We demonstrate that the exploration of specific microbial–host interactions, in combination with multidisciplinary dereplication processes, has emerged as a successful strategy to identify novel chemical entities and to shed light on the ecology and evolution of defensive associations.
Collapse
Affiliation(s)
- Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Huijuan Guo
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Maja Rischer
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Michael Poulsen
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Building 3, 1st floor, 2100 Copenhagen East, Denmark
| |
Collapse
|
40
|
Zhou F, Lou Q, Wang B, Xu L, Cheng C, Lu M, Sun J. Altered Carbohydrates Allocation by Associated Bacteria-fungi Interactions in a Bark Beetle-microbe Symbiosis. Sci Rep 2016; 6:20135. [PMID: 26839264 PMCID: PMC4738288 DOI: 10.1038/srep20135] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/30/2015] [Indexed: 11/28/2022] Open
Abstract
Insect-microbe interaction is a key area of research in multiplayer symbiosis, yet little is known about the role of microbe-microbe interactions in insect-microbe symbioses. The red turpentine beetle (RTB) has destroyed millions of healthy pines in China and forms context-dependent relationships with associated fungi. The adult-associated fungus Leptographium procerum have played key roles in RTB colonization. However, common fungal associates (L. procerum and Ophiostoma minus) with RTB larvae compete for carbohydrates. Here, we report that dominant bacteria associated with RTB larvae buffer the competition by inhibiting the growth and D-glucose consumption of O. minus. However, they didn’t inhibit the growth of L. procerum and forced this fungus to consume D-pinitol before consuming D-glucose, even though D-glucose was available and a better carbon source not only for L. procerum but also for RTB larvae and associated bacteria. This suggests the most frequently isolated bacteria associated with RTB larvae could affect fungal growth and the sequence of carbohydrate consumption. Thus, this regulates carbohydrate allocation in the RTB larva-microbe community, which may in turn benefit RTB larvae development. We also discuss the mechanism of carbohydrate allocation in the RTB larva-microbe community, and its potential contribution to the maintenance of a symbiotic community.
Collapse
Affiliation(s)
- Fangyuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaozhe Lou
- Technical Center, Hebei Entry-Exit Inspection and Quarantine Bureau, Shijiazhuang, 050051, China
| | - Bo Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
| | - Letian Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chihang Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
41
|
Berasategui A, Shukla S, Salem H, Kaltenpoth M. Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol 2016; 100:1567-1577. [PMID: 26659224 PMCID: PMC4737797 DOI: 10.1007/s00253-015-7186-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 12/21/2022]
Abstract
Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.
Collapse
Affiliation(s)
- Aileen Berasategui
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Biochemistry Department, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Shantanu Shukla
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Hassan Salem
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Department for Evolutionary Ecology, Institute of Zoology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|