1
|
Ding K, Lu M, Zhang Y, Liu Q, Zhang Y, Li Y, Yang Q, Shen Z, Tong Z, Zhang J. Depth-dependent effects of forest diversification on soil functionality and microbial community characteristics in subtropical forests. Microbiol Res 2024; 289:127931. [PMID: 39442466 DOI: 10.1016/j.micres.2024.127931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Soil microbes are critical to the maintenance of forest ecosystem function and stability. Forest diversification, such as monocultures versus mixed forests stands, can strongly influence microbial community patterns and processes, as well as their role in soil ecosystem multifunctionality, such as in subtropical forest ecosystems. However, less is known about these patterns and processes vary with soil depth. Here, we investigated the results of an eight-year forest diversification field experiment comparing the soil ecosystem multifunctionality, bacterial and fungal community assembly, and network patterns in mixed versus monoculture plantations along vertical profiles (0-80 cm depth) in a subtropical region. We found that the introduction of broadleaf trees in coniferous monocultures led to enhanced synergies between multiple functions, thus improving soil multifunctionality. The effects of mixed plantations on the functional potential in top soils were greater than in deep soils, especially for carbon degradation genes (apu, xylA, cex, and glx). Microbial community assembly in the top layer, particularly in mixed plantations, was dominated by stochastic processes, whereas deterministic were more important in the deep layer. Soil microbial network complexity and stability were higher in the top layer of mixed plantations, but in the deep layer was monoculture. Interestingly, the changes in microbial communities and multifunctionality in the top layer were mainly related to variation in nutrients, whereas those in the deep were more influenced by soil moisture. Overall, we reveal positive effects of mixed forest stands on soil microbial characteristics and functionality compared to that of monocultures. Our findings highlighted the importance of enhancing functional diversity through the promotion of tree species diversity, and managers can better develop forest management strategies to promote soil health under global change scenarios.
Collapse
Affiliation(s)
- Kai Ding
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Meng Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Qiyan Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Yiman Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Yinrong Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Zhenming Shen
- Agricultural and Rural Bureau of Lin'an District, Hangzhou, Zhejiang 311300, PR China.
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China.
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
2
|
Wang H, Liu L, Luo Z, Chen J. Spatiotemporal dynamics of dinoflagellate communities in the Taiwan Strait and their correlations with micro-eukaryotic and bacterial communities. MARINE POLLUTION BULLETIN 2024; 208:117059. [PMID: 39366059 DOI: 10.1016/j.marpolbul.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Dinoflagellate blooms have negative adverse effects on marine ecosystems. However, our knowledge about the spatiotemporal distribution of dinoflagellate communities and their correlations with micro-eukaryotic and bacterial communities is still rare. Here, the sediment micro-eukaryotic and bacterial communities were explored in the Taiwan Strait (TWS) by 16S and 18S rRNA gene high-throughput sequencing. We found that the dinoflagellates were the most abundant algal group in TWS, and their relative abundance was higher in spring and autumn than in summer. Moreover, the species richness and community composition of dinoflagellates showed strong seasonal patterns. NO3-N and NH4-N had the strongest correlations with the spatiotemporal dynamics of community composition of dinoflagellates. The dinoflagellates had a significantly wider niche breadth than other algal groups for NH4-N, NO3-N and NO2-N, and therefore potentially contributed to a wider distribution range and high abundance in TWS. In addition, the dinoflagellates had stronger impacts on microeukaryotes than on bacteria for both community composition and species richness. However, the dinoflagellates showed close coexistence with bacteria but loose coexistence with microeukaryotes in spring co-occurrence networks. This close coexistence suggests the potentially strong synergy effects between dinoflagellates and bacteria in spring dinoflagellate blooms in TWS. Overall, this study revealed the distribution mechanisms of dinoflagellates in TWS based on niche breadth and also unveiled the different effects of dinoflagellates on micro-eukaryotic and bacterial communities.
Collapse
Affiliation(s)
- Hongwei Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Lemian Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China.
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, China
| | - Jianfeng Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
3
|
Fu Q, Ma K, Zhao J, Li J, Wang X, Zhao M, Fu X, Huang D, Chen H. Metagenomics unravel distinct taxonomic and functional diversities between terrestrial and aquatic biomes. iScience 2024; 27:111047. [PMID: 39435150 PMCID: PMC11492093 DOI: 10.1016/j.isci.2024.111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Microbes in terrestrial and aquatic ecosystems play crucial roles in driving ecosystem functions, but currently, there is a lack of comparison regarding their taxonomic and functional diversities. Here, we conducted a global analysis to investigate the disparities in microbial taxonomy and microbial-mediated biogeochemical cycles between terrestrial and aquatic ecosystems. Results showed a higher relative abundance of bacteria, especially Actinobacteria and Acidobacteria, in soil than water metagenomes, leading to a greater proportion of genes related to membrane transport, regulatory, and cellular signaling. Moreover, there was a higher abundance of genes associated with carbohydrate, sulfur, and potassium metabolisms in the soil, while those involved in nitrogen and iron metabolisms were more prevalent in the water. Thus, both soil and water microbiomes exhibited unique taxonomic and functional properties associated with biogeochemical processes, providing valuable insights into predicting and understanding the adaptation of microbes in different ecosystems in the face of climate change.
Collapse
Affiliation(s)
- Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Kayan Ma
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xueying Wang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Meiqi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Dandan Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
4
|
Wu N, Shi W, Zhang L, Wang H, Liu W, Ren Y, Li X, Gao Z, Wang X. Dynamic alterations and ecological implications of rice rhizosphere bacterial communities induced by an insect-transmitted reovirus across space and time. MICROBIOME 2024; 12:189. [PMID: 39363340 PMCID: PMC11448278 DOI: 10.1186/s40168-024-01910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/17/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Cereal diseases caused by insect-transmitted viruses are challenging to forecast and control because of their intermittent outbreak patterns, which are usually attributed to increased population densities of vector insects due to cereal crop rotations and indiscriminate use of pesticides, and lack of resistance in commercial varieties. Root microbiomes are known to significantly affect plant health, but there are significant knowledge gaps concerning epidemics of cereal virus diseases at the microbiome-wide scale under a variety of environmental and biological factors. RESULTS Here, we characterize the diversity and composition of rice (Oryza sativa) root-associated bacterial communities after infection by an insect-transmitted reovirus, rice black-streaked dwarf virus (RBSDV, genus Fijivirus, family Spinareoviridae), by sequencing the bacterial 16S rRNA gene amplified fragments from 1240 samples collected at a consecutive 3-year field experiment. The disease incidences gradually decreased from 2017 to 2019 in both Langfang (LF) and Kaifeng (KF). BRSDV infection significantly impacted the bacterial community in the rice rhizosphere, but this effect was highly susceptible to both the rice-intrinsic and external conditions. A greater correlation between the bacterial community in the rice rhizosphere and those in the root endosphere was found after virus infection, implying a potential relationship between the rice-intrinsic conditions and the rhizosphere bacterial community. The discrepant metabolites in rhizosphere soil were strongly and significantly correlated with the variation of rhizosphere bacterial communities. Glycerophosphates, amino acids, steroid esters, and triterpenoids were the metabolites most closely associated with the bacterial communities, and they mainly linked to the taxa of Proteobacteria, especially Rhodocyclaceae, Burkholderiaceae, and Xanthomonadales. In addition, the greenhouse pot experiments demonstrated that bulk soil microbiota significantly influenced the rhizosphere and endosphere communities and also regulated the RBSDV-mediated variation of rhizosphere bacterial communities. CONCLUSIONS Overall, this study reveals unprecedented spatiotemporal dynamics in rhizosphere bacterial communities triggered by RBSDV infection with potential implications for disease intermittent outbreaks. The finding has promising implications for future studies exploring virus-mediated plant-microbiome interactions. Video Abstract.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Wenchong Shi
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Hui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Yingdang Ren
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, P. R. China.
| | - Xiangdong Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China.
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| |
Collapse
|
5
|
Zhang Z, Lu J, Zhang S, Tian Z, Feng C, Liu Y. Analysis of bacterial community structure, functional variation, and assembly mechanisms in multi-media habitats of lakes during the frozen period. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116903. [PMID: 39205354 DOI: 10.1016/j.ecoenv.2024.116903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Ice, water, and sediment represent three interconnected habitats in lake ecosystems, and bacteria are crucial for maintaining ecosystem equilibrium and elemental cycling across these habitats. However, the differential characteristics and driving mechanisms of bacterial community structures in the ice, water, and sediments of seasonally frozen lakes remain unclear. In this study, high-throughput sequencing technology was used to analyze and compare the structure, function, network characteristics, and assembly mechanisms of bacterial communities in the ice, water, and sediment of Wuliangsuhai, a typical cold region in Inner Mongolia. The results showed that the bacterial communities in the ice and water phases had similar diversity and composition, with Proteobacteria, Bacteroidota, Actinobacteria, Campilobacterota, and Cyanobacteria as dominant phyla. The bacterial communities in sediments displayed significant differences from ice and water, with Chloroflexi, Proteobacteria, Firmicutes, Desulfobacterota, and Acidobacteriota being the dominant phyla. Notably, the bacterial communities in water exhibited higher spatial variability in their distribution than those in ice and sediment. This study also revealed that during the frozen period, the bacterial community species in the ice, water, and sediment media were dominated by cooperative relationships. Community assembly was primarily influenced by stochastic processes, with dispersal limitation and drift identified as the two most significant factors within this process. However, heterogeneous selection also played a significant role in the community composition. Furthermore, functions related to nitrogen, phosphorus, sulfur, carbon, and hydrogen cycling vary among bacterial communities in ice, water, and sediment. These findings elucidate the intrinsic mechanisms driving variability in bacterial community structure and changes in water quality across different media phases (ice, water, and sediment) in cold-zone lakes during the freezing period, offering new insights for water environmental protection and ecological restoration efforts in such environments.
Collapse
Affiliation(s)
- Zixuan Zhang
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Junping Lu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Water Resources Protection and Utilization, Hohhot 010018, China; Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in Inner Mongolia Section of the Yellow River Basin, Hohhot 010018, China.
| | - Sheng Zhang
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Water Resources Protection and Utilization, Hohhot 010018, China; Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in Inner Mongolia Section of the Yellow River Basin, Hohhot 010018, China
| | - Zhiqiang Tian
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chen Feng
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yinghui Liu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
6
|
Wang X, Wang H, Liang Y, McMinn A, Wang M. Community organization and network complexity and stability: contrasting strategies of prokaryotic versus eukaryotic microbiomes in the Bohai Sea and Yellow Sea. mSphere 2024; 9:e0039524. [PMID: 39136485 PMCID: PMC11423591 DOI: 10.1128/msphere.00395-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 09/26/2024] Open
Abstract
Unraveling the effects of spatial gradients on microbiome assembly and association is a challenging topic that remains understudied in the coastal ecosystem. Here, we aimed to investigate the effects of spatial variation on the network complexity and stability of plankton microbiomes in the Bohai Sea and Yellow Sea. These seas serve as spawning and nursery grounds for economically important fisheries valued at billions of dollars annually. Environmental heterogeneity structures microbial communities into distinct spatial patterns, leading to complex direct/indirect relationships and broader ecological niches of bacterioplankton compared to microeukaryotic communities. Interestingly, salinity gradients positively influenced the richness of rare subgroups of bacterioplankton, while the rare microeukaryotic subgroups showed an opposite trend. Abundant subgroups of prokaryotic/eukaryotic microbiomes exhibited greater environmental niche breadth and lower phylogenetic distance compared to the rare subgroups. Stochastic processes contributed greatly to microbiome dynamics, and deterministic processes governed the bacterioplankton organization with a lower phylogenetic turnover rate. Compared to microeukaryotes, bacterioplankton exhibit higher network modularity, complexity, and robustness and lower fragmentation, and vulnerability. These observations offer vital insights into the anti-interference ability and resistance of plankton microbiomes in response to environmental gradients in terms of organization and survival strategy as well as their adaptability to environmental disturbances.IMPORTANCEAn in-depth understanding of community organization and stability of coastal microbiomes is crucial to determining the sustainability of marine ecosystems, such as the Bohai Sea and Yellow Sea. Distinct responses between prokaryotic and eukaryotic microbiomes to spatial heterogeneity were observed in terms of geographical distribution, phylogenetic distance, niche breadth, and community assembly process. Environmental variations are significantly correlated with the dynamics of rare eukaryotic plankton subcommunities compared to prokaryotic plankton subcommunities. Deterministic processes shaped prokaryotic plankton community organization with a lower phylogenic turnover rate. Rare subgroups had noticeably higher phylogenetic distance and lower niche breadth than the corresponding abundant subgroups. Prokaryotic microbiomes had higher molecular network complexity and stability compared to microeukaryotes. Results presented here show how environmental gradients alter both the geographical characteristics of the microbial organization in coastal seas and also their co-occurrence network complexity and stability and thus have critical implications for nutrient and energy cycling.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Hualong Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| |
Collapse
|
7
|
Pu W, Wang M, Song D, Zhao W, Sheng X, Huo T, Du X, Sui X. Bacterial Diversity in Sediments from Lianhuan Lake, Northeast China. Microorganisms 2024; 12:1914. [PMID: 39338588 PMCID: PMC11433699 DOI: 10.3390/microorganisms12091914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Lake microbiota play a crucial role in geochemical cycles, influencing both energy flow and material production. However, the distribution patterns of bacterial communities in lake sediments remain largely unclear. In this study, we used 16S rRNA high-throughput sequencing technology to investigate the bacterial structure and diversity in sediments across different locations (six independent lakes) within Lianhuan Lake and analyzed their relationship with environmental factors. Our findings revealed that both the alpha and beta diversity of sediment bacterial communities varied significantly among the six independent lakes. Furthermore, changes between lakes had a significant impact on the relative abundance of bacterial phyla, such as Pseudomonadota and Chloroflexota. The relative abundance of Pseudomonadota was highest in Habuta Lake and lowest in Xihulu Lake, while Chloroflexota abundance was lowest in Habuta Lake and highest in Tiehala Lake. At the genus level, the relative abundance of Luteitalea was highest in Xihulu Lake compared to the other five lakes, whereas the relative abundances of Clostridium, Thiobacillus, and Ilumatobacter were highest in Habuta Lake. Mantel tests and heatmaps revealed that the relative abundance of Pseudomonadota was significantly negatively correlated with pH, while the abundance of Chloroflexota was significantly positively correlated with total phosphorus and total nitrogen in water, and negatively correlated with electrical conductivity. In conclusion, this study significantly enhances our understanding of bacterial communities in the different lakes within the Lianhuan Lake watershed.
Collapse
Affiliation(s)
- Wenmiao Pu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Science, Heilongjiang University, Harbin 150080, China
- Heilongjiang River Basin Fishery Ecological Environment Monitoring Center, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Mingyu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Dan Song
- Heilongjiang River Basin Fishery Ecological Environment Monitoring Center, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Wei Zhao
- Heilongjiang River Basin Fishery Ecological Environment Monitoring Center, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
- College of Marine Science and Environment, Dalian Ocean University, No. 52, Heishijiao Street, Shahekou District, Dalian 116023, China
| | - Xuran Sheng
- Heilongjiang River Basin Fishery Ecological Environment Monitoring Center, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Tangbin Huo
- Heilongjiang River Basin Fishery Ecological Environment Monitoring Center, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Xue Du
- Heilongjiang River Basin Fishery Ecological Environment Monitoring Center, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
8
|
Wu Z, Xiong X, Liu G, Zhu H. The enhanced neutral process with decreasing cell size: a study on phytoplankton metacommunities from the glacier-fed river of Qinghai-Xizang Plateau. Appl Environ Microbiol 2024; 90:e0045724. [PMID: 39150266 PMCID: PMC11409636 DOI: 10.1128/aem.00457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
The cell size of phytoplankton is an important defining functional trait that can serve as a driver and sentinel of phytoplankton community structure and function. However, the study of the assembly patterns and drivers of phytoplankton metacommunities with different cell sizes has not been widely carried out. In this study, we systematically investigated the biodiversity patterns, drivers, and assembly processes of the three phytoplankton cell sizes (micro: 20-200 μm; nano: 2-20 μm; pico: 0.2-2 μm) in the Za'gya Zangbo River from the source to the estuary using 18S rDNA amplicon sequencing. The results demonstrated that the alpha diversity and co-occurrence network complexity for all three sizes of phytoplankton increased to a peak downstream of the glacier sources and then decreased to the estuary. The nanophytoplankton subcommunity consistently had the highest alpha diversity and co-occurrence network complexity. On the other hand, total beta diversity followed a unimodal trend of decreasing and then increasing from source to estuary, and was dominated by species replacement components. In addition, deterministic processes driven mainly by physiochemical indices (PCIs) and biogenic elements (BGEs) dominated the assembly of micro- and nanophytoplankton subcommunities, whereas stochastic processes driven by geographical factors (GGFs) dominated the assembly of picophytoplankton subcommunities. The results explained the contradictions in previous studies of phytoplankton community assembly processes in highland aquatic ecosystems, elucidating the different contributions of deterministic and stochastic processes, and the complexity of compositional mechanisms in shaping the assembly of micro-, nano-, and picophytoplankton in this highland glacial river. IMPORTANCE The cell size of phytoplankton is a key life-history trait and key determinant, and phytoplankton of different cell sizes are differentially affected by ecological processes. However, the study of the assembly patterns and drivers of phytoplankton metacommunities with different cell sizes has not been widely carried out. We provide an in-depth analysis of phytoplankton community diversity across three cell sizes in the glacier-fed river, describing how the pattern of phytoplankton communities differs across cell sizes in response to geochemical gradients. The results show that the smaller phytoplankton (picophytoplankton) are relatively more influenced by dispersal-based stochastic processes, whereas larger ones (microphytoplankton and nanophytoplankton) are more structured by selection-based deterministic processes.
Collapse
Affiliation(s)
- Zhihua Wu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guoxiang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
9
|
Zou X, Yao K, Zeng Z, Zeng F, Lu L, Zhang H. Effect of different vegetation restoration patterns on community structure and co-occurrence networks of soil fungi in the karst region. FRONTIERS IN PLANT SCIENCE 2024; 15:1440951. [PMID: 39297014 PMCID: PMC11408217 DOI: 10.3389/fpls.2024.1440951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
Introduction The Grain for Green Project (GGP) by the Chinese government was an important vegetation restoration project in ecologically fragile and severely degraded karst regions. Soil fungi play a facilitating role in the cycling of nutrients both above and below the ground, which is crucial for maintaining ecosystem function and stability. In karst regions, their role is particularly critical due to the unique geological and soil characteristics, as they mitigate soil erosion, enhance soil fertility, and promote vegetation growth. However, little is known about how the implementation of this project shifts the co-occurrence network topological features and assembly processes of karst soil fungi, which limits our further understanding of karst vegetation restoration. Methods By using MiSeq high-throughput sequencing combined with null model analysis technology, we detected community diversity, composition, co-occurrence networks, and assembly mechanisms of soil fungi under three GGP patterns (crop, grassland, and plantation) in the southwestern karst region. Results Ascomycota and Basidiomycota were the main fungal phyla in all the karst soils. Returning crop to plantation and grassland had no significant effect on α diversity of soil fungi (P > 0.05), but did significantly affect the β diversity (P = 0.001). Soil moisture and total nitrogen (TN) were the main factors affecting the community structure of soil fungi. Compared with crop, soil fungi networks in grassland and plantation exhibited a higher nodes, edges, degree, and relatively larger network size, indicating that vegetation restoration enhanced fungal interactions. The soil fungi networks in grassland and plantation were more connected than those in crop, implying that the interaction between species was further strengthened after returning the crop to plantation and grassland. In addition, null-model analysis showed that the assembly process of soil fungal communities from crop to grassland and plantation shifted from an undominant process to dispersal limitation. Discussion These data indicated that GGP in karst region changed the composition and assembly mechanisms of the soil fungal community and enhanced the interaction between fungal species, which can contribute to a better understanding of the fungal mechanisms involved in the restoration of degraded karst soils through vegetation recovery.
Collapse
Affiliation(s)
- Xiaoxiao Zou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Karst Dynamics Laboratory, Ministry of Natural Resources, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
- School of Life Science, Guizhou Normal University, Guiyang, China
| | - Kai Yao
- School of Life Science, Guizhou Normal University, Guiyang, China
| | - Zhaoxia Zeng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, China
| | - Fuping Zeng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, China
| | - Lihong Lu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, China
| | - Hao Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, China
| |
Collapse
|
10
|
Chang C, Hu E, Shi Y, Pan B, Li M. Linking microbial community coalescence to ecological diversity, community assembly and species coexistence in a typical subhumid river catchment in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173367. [PMID: 38796011 DOI: 10.1016/j.scitotenv.2024.173367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Community coalescence denotes the amalgamation of biotic and abiotic factors across multiple intact ecological communities. Despite the growing attention given to the phenomenon of coalescence, there remains limited investigation into community coalescence in single and multiple source habitats and its impact on microbial community assemblages in sinks. This study focused on a major river catchment in northern China. We investigated microbial community coalescence across different habitats (i.e., water, sediment, biofilm, and riparian soil) and seasons (i.e., summer and winter). Using 16S rRNA gene amplicon sequence variants, we examined the relationship between community coalescence and microbial diversity, assembly processes, and species coexistence. The results showed that the intensity of microbial community coalescence was higher in the same habitat pairs compared to disparate habitat pairs in both summer and winter. During the occurrence of microbial community coalescence, the assembly processes regulated the intensity of coalescence. When the microbial community exhibited strong heterogeneous selection (heterogeneous environmental conditions leading to more dissimilar community structures), the intensity of community coalescence was low. With the assembly process shifted towards stochasticity, coalescence intensity increased gradually. However, when homogeneous selection (homogeneous environmental conditions leading to more similar community structures) predominantly shaped microbial communities, coalescence intensity exceeded the threshold of 0.25-0.30. Moreover, the enhanced intensity of community coalescence could increase the complexity of microbial networks, thereby enhancing species coexistence. Furthermore, the assembly processes mediated the relationship between community coalescence and species coexistence, underscoring the pivotal role of intermediate intensity of community coalescence in maintaining efficient species coexistence. In conclusion, this study highlights the crucial role of community coalescence originating from single and multiple source habitats in shaping microbial communities in sinks, thus emphasizing its central importance in watershed ecosystems.
Collapse
Affiliation(s)
- Chao Chang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, Shaanxi, China
| | - Yifei Shi
- Shaanxi Environmental Investigation and Assessment Center, Xi'an 710054, Shaanxi, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Wu G, Shi W, Zheng L, Wang X, Tan Z, Xie E, Zhang D. Impacts of organophosphate pesticide types and concentrations on aquatic bacterial communities and carbon cycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134824. [PMID: 38876013 DOI: 10.1016/j.jhazmat.2024.134824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/01/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Organophosphorus pesticides (OPPs) are important chemical stressors in aquatic ecosystems, and they attract increasing more attentions recently. However, the impacts of different OPPs on carbon cycling remain unclear, particularly for those functional-yet-uncultivable microbes. This study investigated the change in lake aquatic microbial communities in the presence of dichlorvos, monocrotophos, omethoate and parathion. All OPPs significantly inhibited biomass (p < 0.05) and the expression of carbon cycle-related cbbLG gene (p < 0.01), and altered aquatic microbial community structure, interaction, and assembly. Variance partitioning analysis showed a stronger impact of pesticide type on microbial biomass and community structure, where pesticide concentration played more significant roles in carbon cycling. From analysis of cbbLG gene and PICRUSt2, Luteolibacter and Verrucomicrobiaceae assimilated inorganic carbon through Wood-Ljungdahl pathway, whereas it was Calvin-Benson-Bassham cycle for Cyanobium PCC-6307. This work provides a deeper insight into the behavior and mechanisms of microbial community change in aquatic system in response to OPPs, and explicitly unravels the impacts of OPPs on their carbon-cycling functions.
Collapse
Affiliation(s)
- Guanxiong Wu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wei Shi
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhanming Tan
- College of Horticulture and Forestry, Tarim University, Alar, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
12
|
Wei J, Chen W, Wen D. Rare biosphere drives deterministic community assembly, co-occurrence network stability, and system performance in industrial wastewater treatment system. ENVIRONMENT INTERNATIONAL 2024; 190:108887. [PMID: 39024826 DOI: 10.1016/j.envint.2024.108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Bacterial community is strongly associated with activated sludge performance, but there still remains a knowledge gap regarding the rare bacterial community assembly and their influence on the system performance in industrial wastewater treatment plants (IWWTPs). Here, we investigated bacterial communities in 11 full-scale IWWTPs with similar process designs, aiming to uncover ecological processes and functional traits regulating abundant and rare communities. Our findings indicated that abundant bacterial community assembly was governed by stochastic processes; thereby, abundant taxa are generally present in wastewater treatment compartments across different industrial types. On the contrary, rare bacterial taxa were primarily driven by deterministic processes (homogeneous selection 61.9%-79.7%), thus they only exited in specific IWWTPs compartments and wastewater types. The co-occurrence networks analysis showed that the majority of keystone taxa were rare bacterial taxa, with rare taxa contributing more to network stability. Furthermore, rare bacteria rather than abundant bacteria in the oxic compartment contributed more to the degradation of xenobiotics compounds, and they were main potential drivers of pollutant removal. This study demonstrated the irreplaceable roles of rare bacterial taxa in maintaining system performance of IWWTPs, and called for environmental engineers and microbial ecologists to increase their attention on rare biosphere.
Collapse
Affiliation(s)
- Jie Wei
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weidong Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Wang Y, Weng MY, Zhong JW, He L, Guo DJ, Luo D, Xue JY. Microbial Metagenomics Revealed the Diversity and Distribution Characteristics of Groundwater Microorganisms in the Middle and Lower Reaches of the Yangtze River Basin. Microorganisms 2024; 12:1551. [PMID: 39203393 PMCID: PMC11356026 DOI: 10.3390/microorganisms12081551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Groundwater is one of the important freshwater resources on Earth and is closely related to human activities. As a good biological vector, a more diverse repertory of antibiotic resistance genes in the water environment would have a profound impact on human medical health. Therefore, this study conducted a metagenomic sequencing analysis of water samples from groundwater monitoring points in the middle and lower reaches of the Yangtze River to characterize microbial community composition and antibiotic resistance in the groundwater environment. Our results show that different microbial communities and community composition were the driving factors in the groundwater environment, and a diversity of antibiotic resistance genes in the groundwater environment was detected. The main source of antibiotic resistance gene host was determined by correlation tests and analyses. In this study, metagenomics was used for the first time to comprehensively analyze microbial communities in groundwater systems in the middle and lower reaches of the Yangtze River basin. The data obtained from this study serve as an invaluable resource and represent the basic metagenomic characteristics of groundwater microbial communities in the middle and lower reaches of the Yangtze River basin. These findings will be useful tools and provide a basis for future research on water microbial community and quality, greatly expanding the depth and breadth of our understanding of groundwater.
Collapse
Affiliation(s)
- Yue Wang
- Lower Changjiang River Bureau of Hydrological and Water Resources Survey, Nanjing 210011, China; (Y.W.); (J.-W.Z.); (L.H.); (D.-J.G.)
| | - Ming-Yu Weng
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China;
| | - Ji-Wen Zhong
- Lower Changjiang River Bureau of Hydrological and Water Resources Survey, Nanjing 210011, China; (Y.W.); (J.-W.Z.); (L.H.); (D.-J.G.)
| | - Liang He
- Lower Changjiang River Bureau of Hydrological and Water Resources Survey, Nanjing 210011, China; (Y.W.); (J.-W.Z.); (L.H.); (D.-J.G.)
| | - De-Jun Guo
- Lower Changjiang River Bureau of Hydrological and Water Resources Survey, Nanjing 210011, China; (Y.W.); (J.-W.Z.); (L.H.); (D.-J.G.)
| | - Dong Luo
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China
| | - Jia-Yu Xue
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
14
|
Karlicki M, Bednarska A, Hałakuc P, Maciszewski K, Karnkowska A. Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning. FEMS Microbiol Ecol 2024; 100:fiae104. [PMID: 39039016 DOI: 10.1093/femsec/fiae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification.
Collapse
Affiliation(s)
- Michał Karlicki
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Bednarska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
15
|
Sun J, Zhou H, Cheng H, Chen Z, Wang Y. Bacterial abundant taxa exhibit stronger environmental adaption than rare taxa in the Arctic Ocean sediments. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106624. [PMID: 38943698 DOI: 10.1016/j.marenvres.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Marine bacteria influence Earth's environmental dynamics in fundamental ways by controlling the biogeochemistry and productivity of the oceans. However, little is known about the survival strategies of their abundant and rare taxa, especially in polar marine environments. Here, bacterial environmental adaptation, community assembly processes, and co-occurrence patterns between abundant and rare taxa were compared in the Arctic Ocean sediments. Results indicated that the diversity of rare taxa is significantly higher than that of abundant taxa, whereas the distance-decay rate of rare taxa community similarity is over 1.5 times higher than that of abundant taxa. Furthermore, abundant taxa exhibited broader environmental breadth and stronger phylogenetic signals compared to rare taxa. Additionally, the community assembly processes of the abundant taxa were predominantly governed by 81% dispersal limitation, while rare taxa were primarily influenced by 48% heterogeneous selection. The co-occurrence network further revealed the abundant taxa formed a more complex network to enhance their environmental adaptability. This study revealed the differences in environmental responses and community assembly processes between bacterial abundant and rare taxa in polar ocean sediments, providing some valuable insights for understanding their environmental adaptation strategies in marine ecosystems.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China.
| |
Collapse
|
16
|
Du W, Li J, Zhang G, Yu K, Liu S. Spatiotemporal Variations in Co-Occurrence Patterns of Planktonic Prokaryotic Microorganisms along the Yangtze River. Microorganisms 2024; 12:1282. [PMID: 39065051 PMCID: PMC11278652 DOI: 10.3390/microorganisms12071282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Bacteria and archaea are foundational life forms on Earth and play crucial roles in the development of our planet's biological hierarchy. Their interactions influence various aspects of life, including eukaryotic cell biology, molecular biology, and ecological dynamics. However, the coexistence network patterns of these microorganisms within natural river ecosystems, vital for nutrient cycling and environmental health, are not well understood. To address this knowledge gap, we systematically explored the non-random coexistence patterns of planktonic bacteria and archaea in the 6000-km stretch of the Yangtze River by using high-throughput sequencing technology. By analyzing the O/R ratio, representing the divergence between observed (O%) and random (R%) co-existence incidences, and the module composition, we found a preference of both bacteria and archaea for intradomain associations over interdomain associations. Seasons notably influenced the co-existence of bacteria and archaea, and archaea played a more crucial role in spring as evidenced by their predominant presence of interphyla co-existence and more species as keystone ones. The autumn network was characterized by a higher node or edge number, greater graph density, node degree, degree centralization, and nearest neighbor degree, indicating a more complex and interconnected structure. Landforms markedly affected microbial associations, with more complex networks and more core species found in plain and non-source areas. Distance-decay analysis suggested the importance of geographical distance in shaping bacteria and archaea co-existence patterns (more pronounced in spring). Natural, nutrient, and metal factors, including water temperature, NH4+-N, Fe, Al, and Ni were identified as crucial determinants shaping the co-occurrence patterns. Overall, these findings revealed the dynamics of prokaryotic taxa coexistence patterns in response to varying environmental conditions and further contributed to a broader understanding of microbial ecology in freshwater biogeochemical cycling.
Collapse
Affiliation(s)
- Wenran Du
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Jiacheng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guohua Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shufeng Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Wang YC, Lv YH, Wang C, Deng Y, Lin YT, Jiang GY, Hu XR, Crittenden JC. Stochastic processes shape microbial community assembly in biofilters: Hidden role of rare taxa. BIORESOURCE TECHNOLOGY 2024; 402:130838. [PMID: 38740312 DOI: 10.1016/j.biortech.2024.130838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Stochastic and deterministic processes are the major themes governing microbial community assembly; however, their roles in bioreactors are poorly understood. Herein, the mechanisms underlying microbial assembly and the effect of rare taxa were studied in biofilters. Phylogenetic tree analysis revealed differences in microbial communities at various stages. Null model analysis showed that stochastic processes shaped the community assembly, and deterministic processes emerged only in the inoculated activated sludge after domestication. This finding indicates the dominant role of stochastic factors (biofilm formation, accumulation, and aging). The Sloan neutral model corroborated the advantages of stochastic processes and mainly attributed these advantages to rare taxa. Cooccurrence networks revealed the importance of rare taxa, which accounted for more than 85% of the keystones. Overall, these results provide good foundations for understanding community assembly, especially the role of rare taxa, and offer theoretical support for future community design and reactor regulation.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
18
|
Dong X, Chen M, Chen Q, Liu K, Long J, Li Y, Ren Y, Yang T, Zhou J, Herath S, Peng X. Rare microbial taxa as the major drivers of nutrient acquisition under moss biocrusts in karst area. Front Microbiol 2024; 15:1384367. [PMID: 38751717 PMCID: PMC11094542 DOI: 10.3389/fmicb.2024.1384367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Karst rocky desertification refers to the process of land degradation caused by various factors such as climate change and human activities including deforestation and agriculture on a fragile karst substrate. Nutrient limitation is common in karst areas. Moss crust grows widely in karst areas. The microorganisms associated with bryophytes are vital to maintaining ecological functions, including climate regulation and nutrient circulation. The synergistic effect of moss crusts and microorganisms may hold great potential for restoring degraded karst ecosystems. However, our understanding of the responses of microbial communities, especially abundant and rare taxa, to nutrient limitations and acquisition in the presence of moss crusts is limited. Different moss habitats exhibit varying patterns of nutrient availability, which also affect microbial diversity and composition. Therefore, in this study, we investigated three habitats of mosses: autochthonal bryophytes under forest, lithophytic bryophytes under forest and on cliff rock. We measured soil physicochemical properties and enzymatic activities. We conducted high-throughput sequencing and analysis of soil microorganisms. Our finding revealed that autochthonal moss crusts under forest had higher nutrient availability and a higher proportion of copiotrophic microbial communities compared to lithophytic moss crusts under forest or on cliff rock. However, enzyme activities were lower in autochthonal moss crusts under forest. Additionally, rare taxa exhibited distinct structures in all three habitats. Analysis of co-occurrence network showed that rare taxa had a relatively high proportion in the main modules. Furthermore, we found that both abundant and rare taxa were primarily assembled by stochastic processes. Soil properties significantly affected the community assembly of the rare taxa, indirectly affecting microbial diversity and complexity and finally nutrient acquisition. These findings highlight the importance of rare taxa under moss crusts for nutrient acquisition. Addressing this knowledge gap is essential for guiding ongoing ecological restoration projects in karst rocky desertification regions.
Collapse
Affiliation(s)
- Xintong Dong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Man Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qi Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kangfei Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Long
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yunzhou Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yinuo Ren
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Tao Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jinxing Zhou
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Saman Herath
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - Xiawei Peng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| |
Collapse
|
19
|
Zheng Y, Li S, Feng X, He X, Li Y. Seasonality regulates the distinct assembly patterns of microeukaryotic plankton communities in the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37705-37716. [PMID: 38780846 DOI: 10.1007/s11356-024-33613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
The hydrographic and environmental factors along the Three Gorges Reservoir (TGR) have been significantly altered since the Three Gorges Dam (TGD) began working in 2006. Here, we collected 54 water samples, and then measured the environmental factors, followed by sequencing of the 18S rRNA gene and subsequent analysis of community assembly mechanisms. The findings indicated that the majority of environmental variables (such as AN, TP, Chl-a, CODMn, and Cu) exhibited both temporal and spatial variations due to the influences of the TGD. The distribution of different environmental factors and microeukaryotic plankton communities is influenced by the changing seasons. The community structure in TGR showed variations across three seasons, possibly due to variations in their environmental preferences, inherent dissimilarities, and seasonal succession. Furthermore, different communities exhibited a comparable distance-decay trend, suggesting that distinct taxa are likely to exhibit a similar spatial distribution. In addition, the community formation in TGR was influenced by both deterministic and stochastic factors, with the balance between them being mainly controlled by the season. Specifically, deterministic processes could explain 33.9-51.1% of community variations, while stochastic processes could contribute 23.5-32.2%. The findings of this research demonstrated that the varying ecological processes' significance relied on environmental gradients, geographical scale, and ecological conditions. This could offer a fresh outlook on comprehending the composition, assembly mechanisms, and distribution patterns of microeukaryotic plankton in reservoir ecosystems.
Collapse
Affiliation(s)
- Yu Zheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Suping Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiao Feng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xinhua He
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
- School of Biological Sciences, University of Western, Australia, Perth, WA, 6009, Australia
| | - Yong Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
20
|
Hidalgo-Martinez K, Giachini AJ, Schneider M, Soriano A, Baessa MP, Martins LF, de Oliveira VM. Shifts in structure and dynamics of the soil microbiome in biofuel/fuel blend-affected areas triggered by different bioremediation treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33663-33684. [PMID: 38687451 DOI: 10.1007/s11356-024-33304-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
The use of biofuels has grown in the last decades as a consequence of the direct environmental impacts of fossil fuel use. Elucidating structure, diversity, species interactions, and assembly mechanisms of microbiomes is crucial for understanding the influence of environmental disturbances. However, little is known about how contamination with biofuel/petrofuel blends alters the soil microbiome. Here, we studied the dynamics in the soil microbiome structure and composition of four field areas under long-term contamination with biofuel/fossil fuel blends (ethanol 10% and gasoline 90%-E10; ethanol 25% and gasoline 75%-E25; soybean biodiesel 20% and diesel 80%-B20) submitted to different bioremediation treatments along a temporal gradient. Soil microbiomes from biodiesel-polluted areas exhibited higher richness and diversity index values and more complex microbial communities than ethanol-polluted areas. Additionally, monitored natural attenuation B20-polluted areas were less affected by perturbations caused by bioremediation treatments. As a consequence, once biostimulation was applied, the degradation was slower compared with areas previously actively treated. In soils with low diversity and richness, the impact of bioremediation treatments on the microbiomes was greater, and as a result, the hydrocarbon degradation extent was higher. The network analysis showed that all abundant keystone taxa corresponded to well-known degraders, suggesting that the abundant species are core targets for biostimulation in soil remediation processes. Altogether, these findings showed that the knowledge gained through the study of microbiomes in contaminated areas may help design and conduct optimized bioremediation approaches, paving the way for future rationalized and efficient pollutant mitigation strategies.
Collapse
Affiliation(s)
- Kelly Hidalgo-Martinez
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas E Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, SP, CEP 13148-218, Brazil.
- Programa de Pós-Graduação de Genética E Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, CEP 13083-970, Brazil.
| | - Admir José Giachini
- Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA)-Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha-Rua José Olímpio da Silva, 1326-Bairro Tapera, Florianópolis, SC, 88049-500, Brazil
| | - Marcio Schneider
- Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA)-Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha-Rua José Olímpio da Silva, 1326-Bairro Tapera, Florianópolis, SC, 88049-500, Brazil
| | - Adriana Soriano
- PETROBRAS/R&D Center (CENPES), Cidade Universitária, Av. Horácio Macedo, Ilha Do Fundão, Rio de Janeiro, 950, ZIP 21941-915, Brazil
| | - Marcus Paulus Baessa
- PETROBRAS/R&D Center (CENPES), Cidade Universitária, Av. Horácio Macedo, Ilha Do Fundão, Rio de Janeiro, 950, ZIP 21941-915, Brazil
| | - Luiz Fernando Martins
- PETROBRAS/R&D Center (CENPES), Cidade Universitária, Av. Horácio Macedo, Ilha Do Fundão, Rio de Janeiro, 950, ZIP 21941-915, Brazil
| | - Valéria Maia de Oliveira
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas E Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, SP, CEP 13148-218, Brazil
| |
Collapse
|
21
|
Liu S, Liu R, Zhang S, Shen Q, Chen J, Ma H, Ge C, Hao L, Zhang J, Shi S, Pang C. The Contributions of Sub-Communities to the Assembly Process and Ecological Mechanisms of Bacterial Communities along the Cotton Soil-Root Continuum Niche Gradient. Microorganisms 2024; 12:869. [PMID: 38792699 PMCID: PMC11123189 DOI: 10.3390/microorganisms12050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
Soil microbes are crucial in shaping the root-associated microbial communities. In this study, we analyzed the effect of the soil-root niche gradient on the diversity, composition, and assembly of the bacterial community and co-occurrence network of two cotton varieties. The results revealed that the bacterial communities in cotton soil-root compartment niches exhibited a skewed species abundance distribution, dominated by abundant taxa showing a strong spatial specificity. The assembly processes of the rhizosphere bacterial communities were mainly driven by stochastic processes, dominated by the enrichment pattern and supplemented by the depletion pattern to recruit bacteria from the bulk soil, resulting in a more stable bacterial community. The assembly processes of the endosphere bacterial communities were determined by processes dominated by the depletion pattern and supplemented by the enrichment pattern to recruit species from the rhizosphere, resulting in a decrease in the stability and complexity of the community co-occurrence network. The compartment niche shaped the diversity of the bacterial communities, and the cotton variety genotype was an important source of diversity in bacterial communities within the compartment niche. We suggest that the moderate taxa contribute to significantly more changes in the diversity of the bacterial community than the rare and abundant taxa during the succession of bacterial communities in the cotton root-soil continuum.
Collapse
Affiliation(s)
- Shaodong Liu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Ruihua Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Siping Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Shen
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Chen
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Huijuan Ma
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Changwei Ge
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Lidong Hao
- Postdoctoral Mobile Station, Lanzhou University, Lanzhou 730000, China
| | - Jinshan Zhang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shubing Shi
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Chaoyou Pang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
22
|
Yang S, Hou Q, Li N, Wang P, Zhao H, Chen Q, Qin X, Huang J, Li X, Liao N, Jiang G, Dong K, Zhang T. Rare subcommunity maintains the stability of ecosystem multifunctionality by deterministic assembly processes in subtropical estuaries. Front Microbiol 2024; 15:1365546. [PMID: 38706965 PMCID: PMC11066265 DOI: 10.3389/fmicb.2024.1365546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Microorganisms, especially rare microbial species, are crucial in estuarine ecosystems for driving biogeochemical processes and preserving biodiversity. However, the understanding of the links between ecosystem multifunctionality (EMF) and the diversity of rare bacterial taxa in estuary ecosystems remains limited. Employing high-throughput sequencing and a variety of statistical methods, we assessed the diversities and assembly process of abundant and rare bacterioplankton and their contributions to EMF in a subtropical estuary. Taxonomic analysis revealed Proteobacteria as the predominant phylum among both abundant and rare bacterial taxa. Notably, rare taxa demonstrated significantly higher taxonomic diversity and a larger species pool than abundant taxa. Additionally, our findings highlighted that deterministic assembly processes predominantly shape microbial communities, with heterogeneous selection exerting a stronger influence on rare taxa. Further analysis reveals that rare bacterial beta-diversity significantly impacts to EMF, whereas alpha diversity did not. The partial least squares path modeling (PLS-PM) analysis demonstrated that the beta diversity of abundant and rare taxa, as the main biotic factor, directly affected EMF, while temperature and total organic carbon (TOC) were additional key factors to determine the relationship between beta diversity and EMF. These findings advance our understanding of the distribution features and ecological knowledge of the abundant and rare taxa in EMF in subtropical estuaries, and provide a reference for exploring the multifunctionality of different biospheres in aquatic environments.
Collapse
Affiliation(s)
- Shu Yang
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | - Qinghua Hou
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Nan Li
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Re-sources, Hangzhou, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | - Qingxiang Chen
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Xinyi Qin
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | | | - Xiaoli Li
- School of Agriculture, Ludong University, Yantai, China
| | - Nengjian Liao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Gonglingxia Jiang
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Republic of Korea
| | - Tianyu Zhang
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
23
|
Zheng B, Dong P, Zhao T, Deng Y, Li J, Song L, Wang J, Zhou L, Shi J, Wu Z. Strategies for regulating the intensity of different cyanobacterial blooms: Insights from the dynamics and stability of bacterioplankton communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170707. [PMID: 38325489 DOI: 10.1016/j.scitotenv.2024.170707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The occurrence of cyanobacterial blooms is increasing in frequency and magnitude due to climate change and human activities, which poses a direct threat to drinking water security. The impacts of abiotic and biotic factors on the development of blooms have been well studied; however, control strategies for different bloom intensities have rarely been explored from the perspective of the dynamics and stability of bacterioplankton communities. Here, a network analysis was used to investigate the interactions and stability of microbial communities during different periods of R. raciborskii bloom in an inland freshwater lake. The abundance and diversity of rare taxa were significantly higher than that of abundant taxa throughout the bloom cycle. At the pre-bloom (PB) stage, microbial interactions among the different bacterial groups were weak but strongly negatively correlated, indicating low robustness and weak disturbance resistance within the community. However, community stability was better, and microbial interactions became more complicated at the high-bloom (HB) and low-bloom (LB) stages. Interestingly, rare taxa were significantly responsible for community stability and connectivity despite their low relative abundance. The Mantel test revealed that Secchi depth (SD), orthophosphate (PO43--P), and dissolved oxygen (DO) were significantly positively correlated with abundant taxa, rare taxa and PB. DO was significantly positively correlated with HB, intermediate taxa, and rare taxa, while water temperature (WT), N/P and total nitrogen (TN) were significantly positively correlated with LB, abundant taxa, intermediate taxa, and rare taxa. These findings suggest that reducing the PO43--P concentration at the PB stage may be an effective approach to preventing the development of R. raciborskii blooms, while regulating rare taxa at the HB and LB stages may be a key factor in controlling R. raciborskii blooms.
Collapse
Affiliation(s)
- Baohai Zheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Peichang Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Teng Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuting Deng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jie Li
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jinna Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ling Zhou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
Gao Y, Li Y, Shang J, Zhang W. Temporal profiling of sediment microbial communities in the Three Gorges Reservoir Area discovered time-dissimilarity patterns and multiple stable states. WATER RESEARCH 2024; 252:121225. [PMID: 38309070 DOI: 10.1016/j.watres.2024.121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Microbial communities play vital roles in cycling nutrients and maintaining water quality in aquatic ecosystems. To better understand the dynamics of microbial communities and to pave way to effective ecological remediation, it's essential to reveal the temporal patterns of the communities and to identify their states. However, research exploring the dynamic changes of microbial communities needs a large amount of time-series data, which could be an extravagant requirement for a single study. In this research, we overcame this challenge by conducting a meta-analysis of years of accumulations of 16S rRNA high-throughput sequencing data from the Three Gorges Reservoir Area (TGRA), an ecological and environmental hotspot. For better understanding the microbial communities time-dissimilarity dynamics, three microbial communities time-dissimilarity patterns were hypothesized, and the linear pattern in the TGRA was validated. In addition, to explore the stability of microbial communities in the TGRA, two alternative stable states were revealed, and their differences in community richness, alpha diversity indices, community composition, ecological network topological properties, and metabolic functions were demonstrated. In short, two states of microbial communities showed distinct richness and alpha diversity indices, and the communities in one state were more dominated by Halomonas and Nitrosopumilaceae genera, facilitating nitrogen cycling metabolic processes; whilst the main genera of the other state were Bathyarchaeia and Methanosaeta, which favored methane-related metabolism. Moreover, different studies and environmental differences between mainstream and tributaries were attributed as the potential inducing factors of the state division. Our study provides a comprehensive insight into the dynamics and stability of microbial communities in the TGRA, and a reference for future studies on microbial community dynamics.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
25
|
Liu L, Wang H, Guo Y, Yan Q, Chen J. Human-induced homogenization of microbial taxa and function in a subtropical river and its impacts on community stability. WATER RESEARCH 2024; 252:121198. [PMID: 38295455 DOI: 10.1016/j.watres.2024.121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Combination of taxa and function can provide a more comprehensive picture on human-induced microbial homogenization. Here, we obtained 2.58 billion high-throughput sequencing reads and 479 high-quality metagenome-assembled genomes (MAGs) of planktonic microbial communities in a subtropical river for 5 years. We found the microbial taxa homogenization and functional homogenization were uncoupled. Although human activities in downstream sites significantly decreased the taxonomic diversity of non-abundant ASV communities (16S rRNA gene amplicon sequence variants), they did not significantly decrease the taxonomic diversity of abundant ASV and total observed MAG communities. However, the total observed MAG communities in downstream sites tended to homogenize into some specific taxa which encode human-activity-related functional genes, such as nutrient cycles, greenhouse gas emission, antibiotic and arsenic resistance. Those specific MAGs with high taxonomic diversity caused the weak heterogenization of total observed MAG communities in downstream sites. Moreover, functional homogenization promoted the synchrony among downstream MAGs, and these MAGs constructed some specific network modules might to synergistically execute or resist the human-activity-related functions. High synchrony also led to the tandem effects among MAGs and thus decreased community stability. Overall, our findings revealed the links of microbial taxa, functions and stability under human activity impacts, and provided a strong evidence to encourage us re-thinking biotic homogenization based on microbial taxa and their functional attributes.
Collapse
Affiliation(s)
- Lemian Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China.
| | - Hongwei Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou 350108, China
| | - Yisong Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China
| | - Qi Yan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou 350108, China
| | - Jianfeng Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
26
|
Li Y, Ma G, Xi Y, Wang S, Zeng X, Jia Y. Divergent adaptation strategies of abundant and rare bacteria to salinity stress and metal stress in polluted Jinzhou Bay. ENVIRONMENTAL RESEARCH 2024; 245:118030. [PMID: 38151148 DOI: 10.1016/j.envres.2023.118030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Understanding how abundant (AT) and rare (RT) taxa adapt to diverse environmental stresses is vital for assessing ecological processes, yet remains understudied. We collected sediment samples from Liaoning Province, China, representing rivers (upstream of wastewater outlet), estuaries (wastewater outlets), and Jinzhou Bay (downstream of wastewater outlets), to comprehensively evaluate AT and RT adaptation strategies to both natural stressors (salinity stress) and anthropogenic stressors (metal stress). Generally, RT displayed higher α- and β-diversities and taxonomic groups compared to AT. Metal and salinity stresses induced distinct α-diversity responses in AT and RT, while β-diversity remained consistent. Both subcommunities were dominated by Woeseia genus. Metal stress emerged as the primary driver of diversity and compositional discrepancies in AT and RT. Notably, AT responded more sensitively to salinity stress than RT. Stress increased topological parameters in the biotic network of AT subcommunities while decreasing values in RT subcommunities, concurrently loosening interactions of AT with other taxa and strengthening interactions of RT with others in biotic networks. RT generally exhibited greater diversity of metal resistance genes compared to AT. Greater numbers of genes related to salinity tolerance was observed for the RT than for AT. Compared to AT, RT demonstrated higher diversity of metal resistance genes and a greater abundance of genes associated with salinity tolerance. Additionally, deterministic processes governed AT community assembly, reinforced by salinity stress. However, the opposite trend was observed in the RT, where the importance of stochastic process gradually increased with metal stresses. The study is centered on exploring the adaptation strategies of both AT and RT to environmental stress. It underscores the importance of future research incorporating diverse ecosystems and a range of environmental stressors to draw broader and more reliable conclusions. This comprehensive approach is essential for gaining a thorough understanding of the adaptive mechanisms employed by these microorganisms.
Collapse
Affiliation(s)
- Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Guoqing Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yimei Xi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| |
Collapse
|
27
|
Hao H, Yue Y, Chen Q, Yang Y, Kuai B, Wang Q, Xiao T, Chen H, Zhang J. Effects of an efficient straw decomposition system mediated by Stropharia rugosoannulata on soil properties and microbial communities in forestland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170226. [PMID: 38280599 DOI: 10.1016/j.scitotenv.2024.170226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Cultivation of Stropharia rugosoannulata with straw in forestland is effective for straw biodegradation and can prevent the waste of straw resources and environmental pollution and generate economic benefits. However, there is a lack of systematic evaluation of spent mushroom substrate (SMS) input into forestland, such as soil properties and microbial succession. In this experiment, 0 (CK), 10 (SA), 20 (SB), 30 (SC), 40 (SD), and 50 (SE) kg/m2 straw were used to cultivate S. rugosoannulata, and two soil layers (0-10 cm, 10-20 cm) of the cultivated forestland were analyzed. The results indicated that SMS significantly promoted nutrient accumulation in forestland. The bacterial alpha diversity in the SC treatment group was greater than that in the control and gradually decreased to the control level with interannual changes, while the trend of fungal alpha diversity was opposite to that of bacterial alpha diversity. Furthermore, the SC treatment group positively affected soil nitrogen metabolism-related microorganisms for two consecutive years and significantly promoted tree growth. Habitat niche breadth and null model analysis revealed that bacterial communities were more sensitive than fungal communities after SMS input. Linear mixed model (LMM) analysis revealed that SMS supplementation significantly positively affected bacteria (Gammaproteobacteria and Bacteroidota) and significantly negatively affected fungi (Coniochaetales). The constructed fungal-bacterial co-occurrence networks exhibited modularity, and the five types of bacteria were significantly correlated with soil organic matter (SOM), soil organic carbon (SOC), available potassium (AK), available phosphorus (AAP) and available nitrogen (AN) levels. The structural equation model (SEM) showed that bacterial diversity responded more to changes in soil nutrients than did fungal diversity. Overall, 30 kg/m2 of straw decomposition and 2 years of continuous cultivation were beneficial to soil health. This study provides new insights into the rational decomposition of straw and maintenance of forestland ecological balance by S. rugosoannulata.
Collapse
Affiliation(s)
- Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yihong Yue
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qun Chen
- School of Biology Food and Environment, Hefei University, Hefei 23060, China
| | - Yan Yang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Tingting Xiao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
28
|
Mao L, Kang J, Sun R, Liu J, Ge J, Ping W. Ecological succession of abundant and rare subcommunities during aerobic composting in the presence of residual amoxicillin. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133456. [PMID: 38211525 DOI: 10.1016/j.jhazmat.2024.133456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Aerobic composting increases the content of soluble nutrients and facilitates the safe treatment of livestock manure. Although different taxa play crucial roles in maintaining ecological functionality, the succession patterns of community composition and assembly of rare and abundant subcommunities during aerobic composting under antibiotic stress and their contributions to ecosystem functionality remain unclear. Therefore, this study used 16 S rRNA gene sequencing technology to reveal the response mechanisms of diverse microbial communities and the assembly processes of abundant and rare taxa to amoxicillin during aerobic composting. The results indicated that rare taxa exhibited distinct advantages in terms of diversity, community composition, and ecological niche width compared with abundant taxa, highlighting their significance in maintaining ecological community dynamics. In addition, deterministic (heterogeneous selection) and stochastic processes (dispersal limitation) play roles in the community succession and functional dynamics of abundant and rare subcommunities. The findings of this study may contribute to a better understanding of the relative importance of deterministic and stochastic assembly processes in composting systems, and the ecological functions of diverse microbial communities, ultimately leading to improved ecological environment.
Collapse
Affiliation(s)
- Liangyang Mao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Rui Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jiaxin Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| |
Collapse
|
29
|
Zheng S, Liu M, Han Q, Pang L, Cao H. Seasonal variation and human impacts of the river biofilm bacterial communities in the Shiting River in southeastern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:341. [PMID: 38436747 DOI: 10.1007/s10661-024-12490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Bacterial communities in epilithic biofilm plays an important role in biogeochemistry processes in freshwater ecosystems. Nevertheless, our understanding of the geographical and seasonal variations of the composition of bacterial communities in the biofilm of gravels on river bed is still limited. Various anthropogenic activities also influence the biofilm bacteria in gravel rivers. By taking the Shiting River in the upper Yangtze River basin in Sichuan Province as an example, we studied the geographical and seasonal variations of epilithic bacteria and the impacts of weirs and other human activities (e.g., sewage pollution). The river has experienced severe degradation since the Ms 8.0 Wenchuan Earthquake, and weirs were constructed to prevent bed erosion. We collected epilithic biofilms samples at 17 sites along ~ 30 km river reach of the Shiting River in the autumn of 2021 and the summer of 2022, respectively. We applied 16S rRNA gene high-throughput sequencing technology and Functional Annotation of Prokaryotic Taxa (FAPROTAX) to analyze the seasonal and biogeographic patterns and potential functions of the biofilm bacterial communities. The results showed that epilithic bacteria from the two surveys exhibited variation in community composition, bacterial diversity and potential functions. The bacteria samples collected in the autumn have much higher alpha diversity and richness than those collected in the summer. Bacterial richness and diversity were lower downstream of the weirs than upstream. Low diversity was observed at a sampling site influenced by sewage inflow, which contains high level of nitrogen-related chemicals.
Collapse
Affiliation(s)
- Shan Zheng
- Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China, Earthquake Administration (Tianjin University), Tianjin, 300350, China.
- School of Civil Engineering, Tianjin University, Tianjin, 300350, China.
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| | - Min Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
| | - Qinghua Han
- Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China, Earthquake Administration (Tianjin University), Tianjin, 300350, China
- School of Civil Engineering, Tianjin University, Tianjin, 300350, China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Huiqun Cao
- Changjiang River Scientific Research Institute, Wuhan, 430010, China
| |
Collapse
|
30
|
Zhang H, Pan S, Ma B, Huang T, Kosolapov DB, Ma M, Liu X, Liu H, Liu X. Multivariate statistical and bioinformatic analyses for the seasonal variations of actinobacterial community structures in a drinking water reservoir. J Environ Sci (China) 2024; 137:1-17. [PMID: 37979999 DOI: 10.1016/j.jes.2023.02.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 11/20/2023]
Abstract
Actinobacterial community is a conspicuous part of aquatic ecosystems and displays an important role in the case of biogeochemical cycle, but little is known about the seasonal variation of actinobacterial community in reservoir ecological environment. In this study, the high-throughput techniques were used to investigate the structure of the aquatic actinobacterial community and its inducing water quality parameters in different seasons. The results showed that the highest diversity and abundance of actinobacterial community occurred in winter, with Sporichthya (45.42%) being the most abundant genus and Rhodococcus sp. (29.32%) being the most abundant species. Network analysis and correlation analysis suggested that in autumn the dynamics of actinobacterial community were influenced by more factors and Nocardioides sp. SX2R5S2 was the potential keystone species which was negatively correlated with temperature (R = -0.72, P < 0.05). Changes in environmental factors could significantly affect the changes in actinobacterial community, and the dynamics of temperature, dissolved oxygen (DO), and turbidity are potential conspicuous factors influencing seasonal actinobacterial community trends. The partial least squares path modeling further elucidated that the combined effects of DO and temperature not only in the diversity of actinobacterial community but also in other water qualities, while the physiochemical parameters (path coefficient = 1.571, P < 0.05) was strong environmental factors in natural mixture period. These results strengthen our understanding of the dynamics and structures of actinobacterial community in the drinking water reservoirs and provide scientific guidance for further water quality management and protection in water sources.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl, 152742, Russia
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
31
|
Bontemps Z, Moënne-Loccoz Y, Hugoni M. Stochastic and deterministic assembly processes of microbial communities in relation to natural attenuation of black stains in Lascaux Cave. mSystems 2024; 9:e0123323. [PMID: 38289092 PMCID: PMC10878041 DOI: 10.1128/msystems.01233-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 02/21/2024] Open
Abstract
Community assembly processes are complex and understanding them represents a challenge in microbial ecology. Here, we used Lascaux Cave as a stable, confined environment to quantify the importance of stochastic vs deterministic processes during microbial community dynamics across the three domains of life in relation to an anthropogenic disturbance that had resulted in the side-by-side occurrence of a resistant community (unstained limestone), an impacted community (present in black stains), and a resilient community (attenuated stains). Metabarcoding data showed that the microbial communities of attenuated stains, black stains, and unstained surfaces differed, with attenuated stains being in an intermediate position. We found four scenarios to explain community response to disturbance in stable conditions for the three domains of life. Specifically, we proposed the existence of a fourth, not-documented yet scenario that concerns the always-rare microbial taxa, where stochastic processes predominate even after disturbance but are replaced by deterministic processes during post-disturbance recovery. This suggests a major role of always-rare taxa in resilience, perhaps because they might provide key functions required for ecosystem recovery.IMPORTANCEThe importance of stochastic vs deterministic processes in cave microbial ecology has been a neglected topic so far, and this work provided an opportunity to do so in a context related to the dynamics of black-stain alterations in Lascaux, a UNESCO Paleolithic cave. Of particular significance was the discovery of a novel scenario for always-rare microbial taxa in relation to disturbance, in which stochastic processes are replaced later by deterministic processes during post-disturbance recovery, i.e., during attenuation of black stains.
Collapse
Affiliation(s)
- Zélia Bontemps
- UMR 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Villeurbanne, France
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Yvan Moënne-Loccoz
- UMR 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Villeurbanne, France
| | - Mylène Hugoni
- UMR 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Villeurbanne, France
- UMR 5240 Microbiologie Adaptation et Pathogénie, INSA Lyon, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
- Institut Universitaire de France (IUF), France
| |
Collapse
|
32
|
Manirakiza B, Zhang S, Addo FG, Yu M, Alklaf SA. Interactions between water quality and microbes in epiphytic biofilm and superficial sediment of lake in trophic agriculture area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169321. [PMID: 38103607 DOI: 10.1016/j.scitotenv.2023.169321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Epiphytic and superficial sediment biofilm-dwelling microbial communities play a pivotal role in water quality regulation and biogeochemical cycling in shallow lakes. However, the interactions are far from clear between water physicochemical parameters and microbial community on aquatic plants and in surface sediments of lake in trophic agriculture area. This study employed Illumina sequencing, Partial Least Squares Path Modeling (PLS-PM), and physico-chemical analytical methods to explore the interactions between water quality and microbes (bacteria and eukaryotes) in three substrates of trophic shallow Lake Cyohoha North, Rwanda. The Lake Cyohoha was significantly polluted with total phosphorus (TP), total nitrogen (TN), nitrate nitrogen (NO3-N), and ammonia nitrogen (NH3-N) in the wet season compared to the dry season. PLS-PM revealed a strong positive correlation (+0.9301) between land use types and physico-chemical variables in the rainy season. In three substrates of the trophic lake, Proteobacteria, Cyanobacteria, Firmicutes, and Actinobacteria were dominant phyla in the bacterial communities, and Rotifers, Platyhelminthes, Gastrotricha, and Ascomycota dominated in microeukaryotic communities. As revealed by null and neutral models, stochastic processes predominantly governed the assembly of bacterial and microeukaryotic communities in biofilms and surface sediments. Network analysis revealed that the microbial interconnections in Ceratophyllum demersum were more stable and complex compared to those in Eichhornia crassipes and sediments. Co-occurrence network analysis (|r| > 0.7, p < 0.05) revealed that there were complex interactions among physicochemical parameters and microbes in epiphytic and sediment biofilms, and many keystone microbes on three substrates played important role in nutrients removal, food web and microbial community stable. These findings emphasize that eutrophic water influence the structure, composition, and interactions of microbes in epiphytic and surface sediment biofilms, and provided new insights into the interconnections between water quality and microbial community in presentative substrates in tropical lacustrine ecosystems in agriculturally polluted areas. The study provides useful information for water quality protection and aquatic plants restoration for policy making and catchment management.
Collapse
Affiliation(s)
- Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, 3900, Kigali, Rwanda
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Ma Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Salah Alden Alklaf
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
33
|
Wu H, Bertilsson S, Li Y, Zhang W, Niu L, Cai W, Cong H, Zhang C. Influence of rapid vertical mixing on bacterial community assembly in stratified water columns. ENVIRONMENTAL RESEARCH 2024; 243:117886. [PMID: 38081344 DOI: 10.1016/j.envres.2023.117886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024]
Abstract
Water column mixing homogenizes thermal and chemical gradients which are known to define distribution of microbial communities and influence the prevailing biogeochemical processes. Little is however known about the effects of rapid water column mixing on the vertical distribution of microbial communities in stratified reservoirs. To address this knowledge gap, physicochemical properties and microbial community composition from 16 S rRNA amplicon sequencing were analyzed before and after mixing of vertically stratified water-column bioreactors. Our results showed that α-diversity of bacterial communities decreased from bottom to surface during periods of thermal stratification. After an experimental mixing event, bacterial community diversity experienced a significant decrease throughout the water column and network connectivity was disrupted, followed by slow recovery. Significant differences in composition were seen for both total (DNA) and active (RNA) bacterial communities when comparing surface and bottom layer during periods of stratification, and when comparing samples collected before mixing and after re-stratification. The dominant predicted community assembly processes for stratified conditions were deterministic while such processes were less important during recovery from episodic mixing. Water quality characteristics of stratified water were significantly correlated with bacterial community diversity and structure. Furthermore, structural equation modeling analyses showed that changes in sulfur may have the greatest direct effect on bacterial community composition. Our results imply that rapid vertical mixing caused by episodic weather extremes and hydrological operations may have a long-term effect on microbial communities and biogeochemical processes.
Collapse
Affiliation(s)
- Hainan Wu
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou, 225009, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Wei Cai
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou, 225009, PR China
| | - Haibing Cong
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou, 225009, PR China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| |
Collapse
|
34
|
Yang K, Liu W, Lin HM, Chen T, Yang T, Zhang B, Wen X. Ecological and functional differences of abundant and rare sub-communities in wastewater treatment plants across China. ENVIRONMENTAL RESEARCH 2024; 243:117749. [PMID: 38061589 DOI: 10.1016/j.envres.2023.117749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
The microbial community in activated sludge is composed of a small number of abundant sub-community with high abundance and a large number of rare sub-community with limited abundance. Our knowledge regarding the ecological properties of both abundant and rare sub-communities in activated sludge is limited. This article presented an analysis of functional prediction, assembly mechanisms, and biogeographic distribution characteristics of abundant and rare sub-communities in 211 activated sludge samples from 60 wastewater treatment plants across China. Moreover, this study investigated the dominant factors influencing the community structure of these two microbial groups. The results showed that the functions associated with carbon and nitrogen cycling were primarily detected in abundant sub-community, while rare sub-community were primarily involved in sulfur cycling. Both microbial groups were mainly influenced by dispersal limitation, which, to some extent, resulted in a distance-decay relationship in their biogeographic distribution. Moreover, a higher spatial turnover rate of rare sub-communities (0.0887) suggested that spatial differences in microbial community structure among different WWTPs may mainly result from rare sub-community. Moreover, SEM showed that geographic locations affected rare sub-communities greatly, which agreed with their higher dispersal limitation and turnover rate. In contrast, influent characteristics showed stronger correlations with abundant sub-communities, suggesting that abundant sub-community may contribute more to the removal of pollutants. This study enhanced our understanding of abundant and rare microorganisms in activated sludge especially the role of rare species and provided scientific evidence for precise regulation and control of wastewater treatment plants.
Collapse
Affiliation(s)
- Kuo Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Wei Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui-Min Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Research Center of Food Environment and Public Health Engineering, Minzu University of China, Beijing 100081, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Research Center of Food Environment and Public Health Engineering, Minzu University of China, Beijing 100081, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Research Center of Food Environment and Public Health Engineering, Minzu University of China, Beijing 100081, China.
| | - Xianghua Wen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Zuo J, Xiao P, Heino J, Tan F, Soininen J, Chen H, Yang J. Eutrophication increases the similarity of cyanobacterial community features in lakes and reservoirs. WATER RESEARCH 2024; 250:120977. [PMID: 38128306 DOI: 10.1016/j.watres.2023.120977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/05/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Eutrophication of inland waters is a mostly anthropogenic phenomenon impacting aquatic biodiversity worldwide, and might change biotic community structure and ecosystem functions. However, little is known about the patterns of cyanobacterial community variations and changes both on alpha and beta diversity levels in response to eutrophication. Here, we investigated cyanobacterial communities sampled at 140 sites from 59 lakes and reservoirs along a strong eutrophication gradient in eastern China through using CPC-IGS and 16S rRNA gene amplicon sequencing. We found that taxonomic diversity increased, but phylogenetic diversity decreased significantly along the eutrophication gradient. Both niche width and niche overlap of cyanobacteria significantly decreased from low- to high-nutrient waterbodies. Cyanobacterial community distance-decay relationship became weaker from mesotrophic to hypereutrophic waterbodies, while ecological uniqueness (i.e., local contributions to beta diversity) tended to increase in high-nutrient waterbodies. Latitude and longitude were more important in shaping cyanobacterial community structure than other environmental variables. These findings suggest that eutrophication affects alpha and beta diversity of cyanobacterial communities, leading to increasingly similar community structures in lakes and reservoirs with a higher level of eutrophication. Our work highlights how cyanobacterial communities respond to anthropogenic eutrophication and calls for an urgent need to develop conservation and management strategies to control lake eutrophication and protect freshwater biodiversity.
Collapse
Affiliation(s)
- Jun Zuo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 8000, Oulu FI-90014, Finland
| | - Fengjiao Tan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
36
|
Zheng S, Wang J, Qiao F, Cheng Z, Miao A, Yu G, Chen Z. Responses of microbial communities subjected to hydrodynamically induced disturbances in an organic contaminated site. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120022. [PMID: 38198836 DOI: 10.1016/j.jenvman.2024.120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Organic contaminated sites have gained significant attention as a prominent contributor to shallow groundwater contamination. However, limited knowledge exists regarding the impact of hydrodynamic effects on microbially mediated contaminant degradation at such sites. In this study, we investigated the distribution characteristics and community structure of prokaryotic microorganisms at the selected site during both wet and dry seasons, with a particular focus on their environmental adaptations. The results revealed significant seasonal variations (P < 0.05) in the α-diversity of prokaryotes within groundwater. The dry season showed more exclusive OTUs than the wet season. The response of prokaryotic metabolism to organic pollution pressure in different seasons was explored by PICRUSt2, and enzymes associated with the degradation of organic pollutants were identified based on the predicted functions. The results showed that hormesis was considered as an adaptive response of microbial communities under pollution stress. In addition, structural equation models demonstrated that groundwater level fluctuations can, directly and indirectly, affect the abundance and diversity of prokaryotes through other factors such as oxidation reduction potential (ORP), dissolved oxygen (DO), and naphthalene (Nap). Overall, our findings imply that the taxonomic composition and functional properties of prokaryotes in groundwater in organic contaminated sites is influenced by the interaction between seasonal variations and characteristics of organic pollution. The results provide new insights into microbiological processes in groundwater systems in organic contaminated sites.
Collapse
Affiliation(s)
- Shiyu Zheng
- School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China
| | - Jinguo Wang
- School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China.
| | - Fei Qiao
- School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China
| | - Zhou Cheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Aihua Miao
- China National Chemical Civil Engineering Co., Ltd, Nanjing, 210031, China
| | - Guangwen Yu
- China National Chemical Civil Engineering Co., Ltd, Nanjing, 210031, China
| | - Zhou Chen
- School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
37
|
Jiang R, Wang D, Jia S, Li Q, Liu S, Zhang XX. Dynamics of bacterioplankton communities in the estuary areas of the Taihu Lake: Distinct ecological mechanisms of abundant and rare communities. ENVIRONMENTAL RESEARCH 2024; 242:117782. [PMID: 38036201 DOI: 10.1016/j.envres.2023.117782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
As the crucial confluences of rivers and lakes, the estuary areas with varied hydrodynamic exchanges intensively affect the bacterioplankton communities, whereas the ecological characteristics of the bacterioplankton in the areas have not been well understood. Here, the distribution patterns and assembly mechanisms of bacterioplankton communities in the estuary areas of the Taihu Lake were investigated using high-throughput sequencing and multivariate statistical analyses. Our results showed obvious seasonal variations in bacterioplankton diversity and community composition, which had significant correlations with water temperature. Neutral and null models together revealed that stochastic processes (especially dispersal limitation) were the major processes in shaping the communities across different seasons. By contrast, heterogeneous selection in deterministic processes exhibited increased impacts on community assembly during summer and autumn, which was significantly related to the comprehensive water quality index (WQI) rather than any single factor. In this study, rare communities displayed more pronounced seasonal dynamics compared to abundant communities, likely due to their sensitivity towards environmental factors. Accordingly, the heterogeneous selection of deterministic processes largely shaped the rare communities. These results enriched our understanding of the assembly mechanisms of bacterioplankton communities in estuary areas and emphasized the specific co-occurrence patterns of abundant and rare communities.
Collapse
Affiliation(s)
- Ruiming Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qisheng Li
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of Environment, Nanjing University, Nanjing, 210023, China; China Three Gorges Construction Engineering Corporation, Beijing, 100048, China
| | - Shengnan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
38
|
Lian C, Xiang J, Cai H, Ke J, Ni H, Zhu J, Zheng Z, Lu K, Yang W. Microalgae Inoculation Significantly Shapes the Structure, Alters the Assembly Process, and Enhances the Stability of Bacterial Communities in Shrimp-Rearing Water. BIOLOGY 2024; 13:54. [PMID: 38275730 PMCID: PMC10813777 DOI: 10.3390/biology13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Intensive shrimp farming may lead to adverse environmental consequences due to discharged water effluent. Inoculation of microalgae can moderate the adverse effect of shrimp-farming water. However, how bacterial communities with different lifestyles (free-living (FL) and particle-attached (PA)) respond to microalgal inoculation is unclear. In the present study, we investigated the effects of two microalgae (Nannochloropsis oculata and Thalassiosira weissflogii) alone or in combination in regulating microbial communities in shrimp-farmed water and their potential applications. PERMANOVA revealed significant differences among treatments in terms of time and lifestyle. Community diversity analysis showed that PA bacteria responded more sensitively to different microalgal treatments than FL bacteria. Redundancy analysis (RDA) indicated that the bacterial community was majorly influenced by environmental factors, compared to microalgal direct influence. Moreover, the neutral model analysis and the average variation degree (AVD) index indicated that the addition of microalgae affected the bacterial community structure and stability during the stochastic process, and the PA bacterial community was the most stable with the addition of T. weissflogii. Therefore, the present study revealed the effects of microalgae and nutrient salts on bacterial communities in shrimp aquaculture water by adding microalgae to control the process of community change. This study is important for understanding the microbial community assembly and interpreting complex interactions among zoo-, phyto-, and bacterioplankton in shrimp aquaculture ecosystems. Additionally, these findings may contribute to the sustainable development of shrimp aquaculture and ecosystem conservation.
Collapse
Affiliation(s)
- Chen Lian
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Jie Xiang
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Huifeng Cai
- Fishery Technical Management Service Station of Yinzhou District, Ningbo 315100, China;
| | - Jiangdong Ke
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Heng Ni
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Kaihong Lu
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Wen Yang
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| |
Collapse
|
39
|
Yan K, Lu DS, Ding CJ, Wang Y, Tian YR, Su XH, Dong YF, Wang YP. Rare and abundant bacterial communities in poplar rhizosphere soils respond differently to genetic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168216. [PMID: 37923276 DOI: 10.1016/j.scitotenv.2023.168216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Interactions between plants and soil microbes are important to plant hybrid breeding under global change. However, the relationship between host plants and rhizosphere soil microorganisms has not been fully elucidated. Understanding the rhizosphere microbial structure of parents and progenies would provide a deeper insight into how genetic effects modulate the relationship between plants and soil. In this study, two family groups of poplar trees (A: parents and their two progenies; B: parents and their one progeny) with different genetic backgrounds (including seven genotypes) were selected from a common garden, and their rhizobacterial communities were analyzed to explore parent-progeny relationships. Our results showed significant differences in phylogenetic diversity, the number of 16S genes and the structure of rhizosphere bacterial communities (Adonis: R2 = 0.166, P < 0.01) between different family groups. Rhizosphere bacterial community structure was significantly dominated by genetic effects. Compared with abundant taxa, genetic effects were more powerful drivers of rare taxa. In addition, bacterial communities of hybrid progenies were all significantly more similar to their parents compared to the other group of parents, especially among rare taxa. The two poplar family groups exhibited differences between their rhizosphere bacterial co-occurrence networks. Group B had a relatively complex network with 2380 edges and 468 nodes, while group A had 1829 edges and 304 nodes. Soil organic carbon and carbon to nitrogen ratio (C/N) also influenced the rhizosphere bacterial community assembly. This was especially true for soil C/N, which explained 23 % of the β-nearest taxon index (βNTI) variation in rare taxa. Our results reveal the relationship of rhizosphere microorganisms between parents and progenies. This can help facilitate an understanding of the combination of plant breeding with microbes resource utilization and provide a theoretical basis for scientific advancement to support the development of forestry industry.
Collapse
Affiliation(s)
- Kun Yan
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - De Shan Lu
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chang Jun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yan Wang
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yong Ren Tian
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Hua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | | | - Yan Ping Wang
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
40
|
Li Y, Sun X, Zhang M, Khan A, Sun W. Dominant role of rare bacterial taxa rather than abundant taxa in driving the tailing primary succession. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132807. [PMID: 37879275 DOI: 10.1016/j.jhazmat.2023.132807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Primary ecological succession is imperative for tailing vegetation, driven notably by microbes that enhance tailing nutrient status. Yet, the roles of abundant and rare taxa in tailing primary succession remain underexplored. This study investigates these subcommunities across three succession stages (i.e., original tailing, biological crusts, grasslands). Throughout primary succession, alpha diversity and functional gene abundances of the rare taxa (RT) group consistently rise from bare tailings to grasslands. Conversely, the abundant taxa (AT) group displays an opposing trend. Intriguingly, employing co-occurrence networks, keystone taxa, mantel tests, similarity percentage analysis, and structural equation model, the study uncovers that RT wields a more pivotal role than AT in driving tailing primary succession. Community assembly analysis reveals stochastic control of AT and deterministic control of RT. Additionally, primary succession reinforces stochastic processes in AT, while RT's deterministic process remains unaffected. By unveiling these dynamics, the research enriches our understanding of primary ecological succession in tailings. Recognition of unique diversity patterns and community assembly mechanisms for rare and abundant subcommunities advances tailing ecosystem comprehension and informs ecological restoration strategies. This study thus contributes valuable insights to the complex interplay of microbial taxa during tailing primary succession.
Collapse
Affiliation(s)
- Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Miaomiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ajmal Khan
- Department of Environmental Sciences, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
41
|
Liu L, Wang H, Luo Z, Chen J. Biogeographic patterns of micro-eukaryotic generalists and specialists and their effects on regional α-diversity at inter-oceanic scale. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106261. [PMID: 37981448 DOI: 10.1016/j.marenvres.2023.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Inter-oceanic scale studies allow us to understand the global spread of micro-organisms in marine ecosystems. In this study, micro-eukaryotic communities in marine surface sediment were collected from tropical to Arctic sites. We found that micro-eukaryotic generalists had much higher intraspecific variation than specialists which allow them to distribute more widely through higher spatiotemporal asynchrony and complementary niche preferences among conspecific taxa. Moreover, comparing to the host-associated protozoa and small metazoa, the algae and free-living protozoa with higher intraspecific variation allow them to have wider distribution ranges. Species abundance also played an important role in driving the distribution ranges of generalists and specialists. The generalists had important effects on regional α-diversity even at an inter-oceanic scale which led to the micro-eukaryotic species richness in polar sites to be mainly influenced by the regional generalists but not the local specialists. In particular, more than 97% of algal species in polar sites were shared with the tropical and subtropical sites (including toxic dinoflagellate). Overall, our study suggests that the effects of global change and human activities on the vulnerable high latitude habitats may lead to biotic homogenization for the whole microbial community (not only the dispersal of some harmful algae) through the potential long-distance spread of generalists.
Collapse
Affiliation(s)
- Lemian Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China.
| | - Hongwei Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, China.
| | - Jianfeng Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
42
|
Zhang Y, Liu J, Song D, Yao P, Zhu S, Zhou Y, Jin J, Zhang XH. Stochasticity-driven weekly fluctuations distinguished the temporal pattern of particle-associated microorganisms from its free-living counterparts in temperate coastal seawater. WATER RESEARCH 2024; 248:120849. [PMID: 37979570 DOI: 10.1016/j.watres.2023.120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Microbial community dynamics directly determine their ecosystem functioning. Despite the well-known annual recurrence pattern, little is known how different lifestyles affect the temporal variation and how community assembly mechanisms change over different temporal scales. Here, through a high-resolution observation of size fractionated samples over 60 consecutive weeks, we investigate the distinction in weekly distribution pattern and assembly mechanism between free-living (FL) and particle-associated (PA) communities in highly dynamic coastal environments. A clear pattern of annual recurrence was observed, which was more pronounced in FL compared to PA, resulting in higher temporal specificity in the former samples. Both the two size fractions displayed significant temporal distance-decay patterns, yet the PA community showed a higher magnitude of community variation between adjacent weeks, likely caused by sudden, drastic and long-lived blooms of heterotrophic bacteria. Generally, determinism (environmental selection) had a greater effect on the community assembly than stochasticity (random birth, death, and dispersal events), with significant contributions from temperature and inorganic nutrients. However, a clear shift in the temporal assembly pattern was observed, transitioning from a prevalence of stochastic processes driving short-term (within a month) fluctuations to a dominance of deterministic processes over longer time intervals. Between adjacent weeks, stochasticity was more important in the community assembly of PA than FL. This study revealed that stochastic processes can lead to rapid, dramatic and irregular PA community fluctuations, indicating weak resistance and resilience to disturbances, which considering the role of PA microbes in carbon processing would significantly affect the coastal carbon cycle. Our results provided a new insight into the microbial community assembly mechanisms in the temporal dimension.
Collapse
Affiliation(s)
- Yulin Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Derui Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Peng Yao
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shaodong Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yi Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jian Jin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
43
|
Liu L, Zhong KX, Chen Q, Wang Y, Zhang T, Jiao N, Zheng Q. Selective cell lysis pressure on rare and abundant prokaryotic taxa across a shelf-to-slope continuum in the Northern South China Sea. Appl Environ Microbiol 2023; 89:e0139323. [PMID: 38014961 PMCID: PMC10734510 DOI: 10.1128/aem.01393-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Virus-induced host lysis contributes up to 40% of total prokaryotic mortality and plays crucial roles in shaping microbial composition and diversity in the ocean. Nonetheless, what taxon-specific cell lysis is caused by viruses remains to be studied. The present study, therefore, examined the taxon-specific cell lysis and estimated its contribution to the variations in the rare and abundant microbial taxa. The results demonstrate that taxon-specific mortality differed in surface and bottom of the coastal environment. In addition, active rare taxa are more susceptible to heightened lytic pressure and suggested the importance of viral lysis in regulating the microbial community composition. These results improve our understanding of bottom-up (abiotic environmental variables) and top-down (viral lysis) controls contributing to microbial community assembly in the ocean.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Kevin Xu Zhong
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - Qi Chen
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Yu Wang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Ting Zhang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
44
|
Qiu Y, Zhang K, Zhao Y, Zhao Y, Wang B, Wang Y, He T, Xu X, Bai T, Zhang Y, Hu S. Climate warming suppresses abundant soil fungal taxa and reduces soil carbon efflux in a semi-arid grassland. MLIFE 2023; 2:389-400. [PMID: 38818267 PMCID: PMC10989086 DOI: 10.1002/mlf2.12098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 06/01/2024]
Abstract
Soil microorganisms critically affect the ecosystem carbon (C) balance and C-climate feedback by directly controlling organic C decomposition and indirectly regulating nutrient availability for plant C fixation. However, the effects of climate change drivers such as warming, precipitation change on soil microbial communities, and C dynamics remain poorly understood. Using a long-term field warming and precipitation manipulation in a semi-arid grassland on the Loess Plateau and a complementary incubation experiment, here we show that warming and rainfall reduction differentially affect the abundance and composition of bacteria and fungi, and soil C efflux. Warming significantly reduced the abundance of fungi but not bacteria, increasing the relative dominance of bacteria in the soil microbial community. In particular, warming shifted the community composition of abundant fungi in favor of oligotrophic Capnodiales and Hypocreales over potential saprotroph Archaeorhizomycetales. Also, precipitation reduction increased soil total microbial biomass but did not significantly affect the abundance or diversity of bacteria. Furthermore, the community composition of abundant, but not rare, soil fungi was significantly correlated with soil CO2 efflux. Our findings suggest that alterations in the fungal community composition, in response to changes in soil C and moisture, dominate the microbial responses to climate change and thus control soil C dynamics in semi-arid grasslands.
Collapse
Affiliation(s)
- Yunpeng Qiu
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Kangcheng Zhang
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Yunfeng Zhao
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Yexin Zhao
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Bianbian Wang
- Ningxia Yunwu Mountains Grassland Natural Reserve AdministrationGuyuanChina
| | - Yi Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi'anChina
| | - Tangqing He
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Xinyu Xu
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Tongshuo Bai
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Yi Zhang
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Shuijin Hu
- Department of Entomology & Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
45
|
Li H, Hong Y, Gao M, An X, Yang X, Zhu Y, Chen J, Su J. Distinct responses of airborne abundant and rare microbial communities to atmospheric changes associated with Chinese New Year. IMETA 2023; 2:e140. [PMID: 38868217 PMCID: PMC10989829 DOI: 10.1002/imt2.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 06/14/2024]
Abstract
Airborne microorganisms, including pathogens, would change with surrounding environments and become issues of global concern due to their threats to human health. Microbial communities typically contain a few abundant but many rare species. However, how the airborne abundant and rare microbial communities respond to environmental changes is still unclear, especially at hour scale. Here, we used a sequencing approach based on bacterial 16S rRNA genes and fungal ITS2 regions to investigate the high time-resolved dynamics of airborne bacteria and fungi and to explore the responses of abundant and rare microbes to the atmospheric changes. Our results showed that air pollutants and microbial communities were significantly affected by human activities related to the Chinese New Year (CNY). Before CNY, significant hour-scale changes in both abundant and rare subcommunities were observed, while only abundant bacterial subcommunity changed with hour time series during CNY. Air pollutants and meteorological parameters explained 61.5%-74.2% variations of abundant community but only 13.3%-21.6% variations of rare communities. These results suggested that abundant species were more sensitive to environmental changes than rare taxa. Stochastic processes predominated in the assembly of abundant communities, but deterministic processes determined the assembly of rare communities. Potential bacterial pathogens during CNY were the highest, suggesting an increased health risk of airborne microbes during CNY. Overall, our findings highlighted the "holiday effect" of CNY on airborne microbes and expanded the current understanding of the ecological mechanisms and health risks of microbes in a changing atmosphere.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - You‐Wei Hong
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Meng‐Ke Gao
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- College of Resource and Environmental ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xin‐Li An
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao‐Ru Yang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Guan Zhu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
- State Key Lab of Urban and Regional Ecology, Research Center for Eco‐environmental SciencesChinese Academy of SciencesBeijingChina
| | - Jin‐Sheng Chen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Jian‐Qiang Su
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
46
|
Chen W, Zhou H, Wu Y, Wang J, Zhao Z, Li Y, Qiao L, Chen K, Liu G, Ritsema C, Geissen V, Sha X. Effects of deterministic assembly of communities caused by global warming on coexistence patterns and ecosystem functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118912. [PMID: 37678020 DOI: 10.1016/j.jenvman.2023.118912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Seasonal rhythms in biological and ecological dynamics are fundamental in regulating the structuring of microbial communities. Evaluating the seasonal rhythms of microorganisms in response to climate change could provide information on their variability and stability over longer timescales (>20-year). However, information on temporal variability in microorganism responses to medium- and long-term global warming is limited. In this study, we aimed to elucidate the temporal dynamics of microbial communities in response to global warming; to this end, we integrated data on the maintenance of species diversity, community composition, temporal turnover rates (v), and community assembly process in two typical ecosystems (meadows and shrub habitat) on the Qinghai-Tibet Plateau. Our results showed that 21 years of global warming would increase the importance of the deterministic process for microorganisms in both ecosystems across all seasons (R2 of grassland (GL) control: 0.524, R2 of GL warming: 0.467; R2 of shrubland (SL) control: 0.556, R2 of SL warming: 0.543), reducing species diversity and altering community composition. Due to environmental filtration pressure from 21 years of warming, the low turnover rate (v of warming: -3.13/-2.00, v of control: -2.44/-1.48) of soil microorganisms reduces the resistance and resilience of ecological communities, which could lead to higher community similarity and more clustered taxonomic assemblages occurring across years. Changes to temperature might increase selection pressure on specialist taxa, which directly causes dominant species (v of warming: -1.63, v of control: -2.49) primarily comprising these taxa to be more strongly impacted by changing temperature than conditionally (v of warming: -1.47, v of control: -1.75) or always rare taxa (v of warming: -0.57, v of control: -1.33). Evaluation of the seasonal rhythms of microorganisms in response to global warming revealed that the variability and stability of different microbial communities in different habitats had dissimilar biological and ecological performances when challenged with an external disturbance. The balance of competition and cooperation, because of environmental selection, also influenced ecosystem function in complex terrestrial ecosystems. Overall, our study enriches the limited information on the temporal variability in microorganism responses to 21 years of global warming, and provides a scientific basis for evaluating the impact of climate warming on the temporal stability of soil ecosystems.
Collapse
Affiliation(s)
- Wenjing Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Moutai Institute, Renhuai, 564500, PR China
| | - Huakun Zhou
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China
| | - Yang Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Jie Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Ziwen Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Yuanze Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Leilei Qiao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Kelu Chen
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; Moutai Institute, Renhuai, 564500, PR China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China
| | - Coen Ritsema
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Violette Geissen
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Xue Sha
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China.
| |
Collapse
|
47
|
Qiu Z, Li J, Wang P, Wang D, Han L, Gao X, Shu J. Response of soil bacteria on habitat-specialization and abundance gradient to different afforestation types. Sci Rep 2023; 13:18181. [PMID: 37875517 PMCID: PMC10598043 DOI: 10.1038/s41598-023-44468-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Studies involving response of subgroups of soil microorganisms to forest change, especially comparative studies on habitat-specialization and abundance gradient were still lack. In this study, we analyzed the response of soil bacterial diversity and structure to afforestation types and its relationship to environment of Fanggan ecological restoration area under the classification of subgroups by habitat-specialization and abundance gradient based on abundance ratio respectively. The results were: (1) On the habitat-specialization gradient, the variation of OTUs species number and abundance was consistent and positively correlated with habitat-specialization; on the abundance gradient, the variation was opposite and OTUs species number was negatively correlated with abundance gradient; (2) The distribution frequency of each subgroup on both gradients was the highest in broad-leaved forests, but the abundance was the opposite. The distribution frequency of the same stand showed no difference among habitat-specialization subgroups, but the abundant subgroup in broad-leaved forests was the highest among the abundance subgroups; (3) α-diversity was positively correlated with habitat-specialization but negatively with abundance, with the highest mostly in broad-leaved and mixed forests; (4) Community structure among stands on habitat-specialization gradient showed no significant difference, but that of rare subgroup between broad-leaved forests and other stands significantly differed. Plant diversity and vegetation composition correlated stronger with community structure than spatial distance and soil physicochemical properties on both gradients. Our results provided a new perspective for revealing the effects of afforestation types on soil bacteria from the comparison of habitat specialization and abundance gradient.
Collapse
Affiliation(s)
- Zhenlu Qiu
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Jie Li
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Peng Wang
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Dong Wang
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Li Han
- College of Biological and Chemical Enginering, Qilu Institute of Technology, Jinan, 250200, China
| | - Xiaojuan Gao
- College of Biological and Chemical Enginering, Qilu Institute of Technology, Jinan, 250200, China
| | - Jing Shu
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China.
| |
Collapse
|
48
|
Shao Q, Zhu Z, Zhou C. Alteration in Community Dynamics of Chaetoceros curvisetus and Bacterioplankton Communities in Response to Surfactin Exposure. Microorganisms 2023; 11:2596. [PMID: 37894254 PMCID: PMC10609649 DOI: 10.3390/microorganisms11102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The use of surfactin is a promising method to mitigate algal blooms. However, little is known about surfactin toxicity to algae and bacterioplankton. Here, we treated Chaetoceros curvisetus, the dominant species of algal blooms in the East China Sea, with 0, 0.5, 1, 2, 3, and 4 mg/L of surfactin for 96 h to investigate temporal variability. Our results showed that low concentrations of surfactin (<2 mg/L) changed the cell morphology of C. curvisetus, and higher concentrations (>3 mg/L) had lethal effects. Meanwhile, we examined the community dynamics of the free-living (FL, 0.22-5 μm) and particle-attached (PA, >5 μm) bacterioplankton of C. curvisetus in response to different surfactin concentrations and cultivation periods. Both PA and FL bacterioplankton were mainly composed of Proteobacteria, Actinobacteria, and Bacteroidetes, while FL bacterioplankton were more diverse than PA bacterioplankton. The variations of FL and PA bacterioplankton were significantly constrained by the surfactin concentration. Surfactin changed the lifestyle of some bacterioplankton from FL to PA, which mainly belonged to abundant bacterioplankton. Furthermore, we identified some surfactin-sensitive species/taxa. Our study will help enhance the ability to predict marine microbial responses under the effect of surfactin, providing a research foundation for this new harmful algal bloom mitigation method.
Collapse
Affiliation(s)
- Qianwen Shao
- Ningbo Institute of Oceanography, Ningbo 315832, China;
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zhujun Zhu
- Ningbo Institute of Oceanography, Ningbo 315832, China;
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China;
| |
Collapse
|
49
|
Qian X, Tang X, Tian W, Xiao X, Wang Y, Lv Q, Li H, Feng S. Climate factors and host chemical profiles jointly drives the bacterial community assembly in Mussaenda pubescens stems. ENVIRONMENTAL RESEARCH 2023; 235:116687. [PMID: 37467942 DOI: 10.1016/j.envres.2023.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Endophytic bacteria residing within host plants can significantly impact on the host's growth, health, and overall relationship with its surrounding environment. However, the process that shape the community assembly of stem bacterial endophytes (SBEs) remains poorly understood. This study explored the community structure, co-occurrence patterns, and ecological processes of the SBEs inhabiting the shrub host, Mussaenda pubescens, across seven locations in southeastern China. We found that the absolute abundances, alpha diversity, and community composition of SBE communities exhibited notable differences among various host populations. Stem chemical characteristics were the most important factors influencing SBE community distribution, followed by geographic distance and climatic factors. The beta diversity decomposition analyses indicated that SBE community dissimilarities between sites were nearly equally driven by similarity, replacement diversity, and richness difference. The co-occurrence network analysis revealed that the keystone taxa were mostly observed in rare species, which may be essential for preserving the ecosystem's functions. Conditionally abundant taxa (CAT) showcased the highest closeness centrality, while exhibiting the lowest degree centrality and betweenness centrality as opposed to rare taxa. In addition, stochastic processes also played an important role in structuring SBE communities, with ecological drift being the dominant factor for both abundant and rare taxa. This study would deepen our understanding of the ecological dynamics and microbial interactions within plant endophytic microbiomes.
Collapse
Affiliation(s)
- Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xinghao Tang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Academy of Forestry Sciences, Fuzhou, 350012, China
| | - Weiwei Tian
- Sichuan Academy of Chinese Medical Sciences, Chengdu, 610041, China
| | - Xiangxi Xiao
- Fujian Academy of Forestry Sciences, Fuzhou, 350012, China
| | - Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, 014030, China
| | - Qixin Lv
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Hanzhou Li
- Wuhan Benagen Technology Company, Wuhan, 430000, China
| | - Song Feng
- College of Civil Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
50
|
Hu Y, Zhang J, Wang Y, Hu S. Distinct mechanisms shape prokaryotic community assembly across different land-use intensification. WATER RESEARCH 2023; 245:120601. [PMID: 37708774 DOI: 10.1016/j.watres.2023.120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Changes in land-use intensity can have a far-reaching impact on river water quality and prokaryotic community composition. While research has been conducted to investigate the assembly mechanism of prokaryotic communities, the contributions of neutral theory and niche theory to prokaryotic community assembly under different land-use intensities remain unknown. In this study, a total of 251 sampling sites were set up in the Yangtze River basin to explore the assembly mechanism under different land-use intensities. Briefly, a "source" landscape can generate pollution, whereas a "sink" landscape can prevent pollution. Firstly, our result showed that higher land-use intensity might disturb the balance between the "source" and "sink" landscape patterns, resulting in water quality deterioration. Then the prokaryotic community assembly was classified into five ecological processes, namely homogeneous selection, homogenizing dispersal, undominated processes, dispersal limitation, and variable selection. The higher land-use intensity was found to strengthen the homogeneous selection, leading to the homogenization of the community at the whole basin scale. Finally, our findings demonstrated that the Yangtze River Basin's prokaryotic community displayed a distance-decay pattern when land-use intensity was low, with a greater contribution from neutral theory to its assembly. On the other hand, with a higher land-use intensity, the degradation of the aquatic environment increased the impacts of environmental filtering on the prokaryotic community, and niche theory played a stronger role in its assembly. Our findings show how land-use intensity influence the formation of prokaryotic communities, which will be an invaluable guide for managing land use and understanding the prokaryotic community assembly mechanisms in the Yangtze River Basin.
Collapse
Affiliation(s)
- Yuxin Hu
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan 430010, Hubei, China.
| | - Jing Zhang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan 430010, Hubei, China
| | - Yingcai Wang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan 430010, Hubei, China.
| | - Sheng Hu
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan 430010, Hubei, China.
| |
Collapse
|