1
|
Li C, Zhang Y, Shi W, Peng Y, Han Y, Jiang S, Dong X, Zhang R. Viral diversity within marine biofilms and interactions with corrosive microbes. ENVIRONMENTAL RESEARCH 2024; 263:119991. [PMID: 39276831 DOI: 10.1016/j.envres.2024.119991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
In marine environments, a wide variety of microbes like bacteria, and archaea influence on the corrosion of materials. Viruses are widely distributed in biofilms among these microbes and may affect the corrosion process through interactions with key corrosive prokaryotes. However, understanding of the viral communities within biofilms and their interactions with corrosive microbes remains is limited. To improve this knowledge gap, 53 metagenomes were utilized to investigate the diversity of viruses within biofilms on 8 different materials and their interactions with corrosive microbes. Notably, the viruses within biofilms predominantly belonged to Caudoviricetes, and phylogenetic analysis of Caudoviricetes and protein-sharing networks with other environments revealed the presence of numerous novel viral clades in biofilms. The virus‒host linkages revealed a close association between viruses and corrosive microbes in biofilms. This means that viruses may modulate host corrosion-related metabolism through auxiliary metabolic genes. It was observed that the virus could enhance host resistance to metals and antibiotics via horizontal gene transfer. Interestingly, viruses could protect themselves from host antiviral systems through anti-defense systems. This study illustrates the diversity of viruses within biofilms formed on materials and the intricate interactions between viruses and corrosive microbes, showing the potential roles of viruses in corrosive biofilms.
Collapse
Affiliation(s)
- Chengpeng Li
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yimeng Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wenqing Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Shuqing Jiang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
2
|
Henshaw RJ, Moon J, Stehnach MR, Bowen BP, Kosina SM, Northen TR, Guasto JS, Floge SA. Metabolites from intact phage-infected Synechococcus chemotactically attract heterotrophic marine bacteria. Nat Microbiol 2024; 9:3184-3195. [PMID: 39548345 DOI: 10.1038/s41564-024-01843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/01/2024] [Indexed: 11/17/2024]
Abstract
Chemical cues mediate interactions between marine phytoplankton and bacteria, underpinning ecosystem-scale processes including nutrient cycling and carbon fixation. Phage infection alters host metabolism, stimulating the release of chemical cues from intact plankton, but how these dynamics impact ecology and biogeochemistry is poorly understood. Here we determine the impact of phage infection on dissolved metabolite pools from marine cyanobacteria and the subsequent chemotactic response of heterotrophic bacteria using time-resolved metabolomics and microfluidics. Metabolites released from intact, phage-infected Synechococcus elicited strong chemoattraction from Vibrio alginolyticus and Pseudoalteromonas haloplanktis, especially during early infection stages. Sustained bacterial chemotaxis occurred towards live-infected Synechococcus, contrasted by no discernible chemotaxis towards uninfected cyanobacteria. High-throughput microfluidics identified 5'-deoxyadenosine and 5'-methylthioadenosine as key attractants. Our findings establish that, before lysis, phage-infected picophytoplankton release compounds that attract motile heterotrophic bacteria, suggesting a mechanism for resource transfer that might impact carbon and nutrient fluxes across trophic levels.
Collapse
Affiliation(s)
- Richard J Henshaw
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
- Institute of Environmental Engineering, ETH Zürich, Zurich, Switzerland
| | - Jonathan Moon
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Michael R Stehnach
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
- Department of Physics, Brandeis University, Waltham, MA, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Suzanne M Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeffrey S Guasto
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA.
| | - Sheri A Floge
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
3
|
Kang Y, Wang J, Zhu C, Zheng M, Li Z. Unveiling the genomic diversity and ecological impact of phage communities in hospital wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135353. [PMID: 39094306 DOI: 10.1016/j.jhazmat.2024.135353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Phages are pivotal in shaping microbial communities and biogeochemical cycles, while our understanding of the diversity, functions potential, and resistance gene carriage of phages in hospital wastewater (HWW) remains limited. We collected influent and effluent samples from the 3 hospital wastewater treatment plants (HWTPs) to assess the diversity and fate of phages, the interactions between phages and hosts, and the presence of resistance genes and auxiliary metabolic genes (AMGs) encoded by phages. Compared to influent, effluent showed reduced phage abundance and altered composition, with decreases in Microviridae and Inoviridae. The gene-sharing network highlights that many phages in HWW are not classified in known viral genera, suggesting HWW as a rich source of new viruses. There was a significant association between phages and microorganisms, with approximately 32.57 % of phages expected to be capable of infecting microbial hosts, characterized primarily by lytic activity. A total of 8 unique antibiotic resistance genes, 13 unique metal resistance genes, and 5 mobile genetic elements were detected in 3 HWTPs phageomes. Phage AMGs have the potential to influence carbon, nitrogen, phosphorus, and sulfur metabolism, impacting biogeochemical cycles. This study reveals the genomic diversity and ecological role of phages in HWTPs, highlighting their environmental and ecosystem impact.
Collapse
Affiliation(s)
- Yutong Kang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Caizhong Zhu
- The Fourth Medical Center of Chinese PLA General Hospital, China
| | - Meiqin Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China.
| |
Collapse
|
4
|
Sheriff EK, Salvato F, Andersen SE, Chatterjee A, Kleiner M, Duerkop BA. Enterococcal quorum-controlled protease alters phage infection. FEMS MICROBES 2024; 5:xtae022. [PMID: 39156124 PMCID: PMC11328733 DOI: 10.1093/femsmc/xtae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Increased prevalence of multidrug-resistant bacterial infections has sparked interest in alternative antimicrobials, including bacteriophages (phages). Limited understanding of the phage infection process hampers our ability to utilize phages to their full therapeutic potential. To understand phage infection dynamics, we performed proteomics on Enterococcus faecalis infected with the phage VPE25. We discovered that numerous uncharacterized phage proteins are produced during phage infection of E. faecalis. Additionally, we identified hundreds of changes in bacterial protein abundances during infection. One such protein, enterococcal gelatinase (GelE), an fsr quorum-sensing-regulated protease involved in biofilm formation and virulence, was reduced during VPE25 infection. Plaque assays showed that mutation of either the quorum-sensing regulator fsrA or gelE resulted in plaques with a "halo" morphology and significantly larger diameters, suggesting decreased protection from phage infection. GelE-associated protection during phage infection is dependent on the putative murein hydrolase regulator LrgA and antiholin-like protein LrgB, whose expression have been shown to be regulated by GelE. Our work may be leveraged in the development of phage therapies that can modulate the production of GelE thereby altering biofilm formation and decreasing E. faecalis virulence.
Collapse
Affiliation(s)
- Emma K Sheriff
- Department of Immunology and Microbiology, School of Medicine, University of Colorado – Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, United States
| | - Fernanda Salvato
- Department of Plant and Microbial Biology, North Carolina State University, 112 Derieux Pl., Raleigh, NC 27695, United States
| | - Shelby E Andersen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado – Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, United States
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, School of Medicine, University of Colorado – Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, 112 Derieux Pl., Raleigh, NC 27695, United States
| | - Breck A Duerkop
- Department of Immunology and Microbiology, School of Medicine, University of Colorado – Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, United States
| |
Collapse
|
5
|
Yu W, Li X, Sun Q, Yi S, Zhang G, Chen L, Li Z, Li J, Luo L. Metabolomics and network pharmacology reveal the mechanism of Castanopsis honey against Streptococcus pyogenes. Food Chem 2024; 441:138388. [PMID: 38219368 DOI: 10.1016/j.foodchem.2024.138388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Streptococcus pyogenes (GAS) is one of the most virulent and infectious bacteria, severely threatening health and lives of people worldwide. Honey has been proven to have effective capability against GAS, but the underlying metabolites and mechanisms are still unclear. In this study, the Castanopsis honey (CH) showed significant antibacterial ability compared to other seven kinds of honey and artificial honey. Furthermore, the antibacterial metabolites and their targets in CH were screened by combined method of metabolomics, network pharmacology, and molecular docking. The results suggested that the activities of two antioxidant enzymes, glutathione peroxidase and tyrosyl tRNA synthetase identified as the primary targets, were significantly inhibited by CH, which significantly increased the level of oxidative stress in GAS. The results revealed a possibly novel mechanism regulating the oxidative stress and inhibits the growth in bacteria, providing strong experimental evidence to support the further development of CH as a novel antibacterial agent.
Collapse
Affiliation(s)
- Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health, (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaohua Li
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Qifang Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Shengxiang Yi
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Gaowei Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Lili Chen
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health, (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Junru Li
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health, (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; School of Life Sciences, Nanchang University, Nanchang 330031 China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
6
|
Greenrod STE, Cazares D, Johnson S, Hector TE, Stevens EJ, MacLean RC, King KC. Warming alters life-history traits and competition in a phage community. Appl Environ Microbiol 2024; 90:e0028624. [PMID: 38624196 PMCID: PMC11107170 DOI: 10.1128/aem.00286-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Host-parasite interactions are highly susceptible to changes in temperature due to mismatches in species thermal responses. In nature, parasites often exist in communities, and responses to temperature are expected to vary between host-parasite pairs. Temperature change thus has consequences for both host-parasite dynamics and parasite-parasite interactions. Here, we investigate the impact of warming (37°C, 40°C, and 42°C) on parasite life-history traits and competition using the opportunistic bacterial pathogen Pseudomonas aeruginosa (host) and a panel of three genetically diverse lytic bacteriophages (parasites). We show that phages vary in their responses to temperature. While 37°C and 40°C did not have a major effect on phage infectivity, infection by two phages was restricted at 42°C. This outcome was attributed to disruption of different phage life-history traits including host attachment and replication inside hosts. Furthermore, we show that temperature mediates competition between phages by altering their competitiveness. These results highlight phage trait variation across thermal regimes with the potential to drive community dynamics. Our results have important implications for eukaryotic viromes and the design of phage cocktail therapies.IMPORTANCEMammalian hosts often elevate their body temperatures through fevers to restrict the growth of bacterial infections. However, the extent to which fever temperatures affect the communities of phages with the ability to parasitize those bacteria remains unclear. In this study, we investigate the impact of warming across a fever temperature range (37°C, 40°C, and 42°C) on phage life-history traits and competition using a bacterium (host) and bacteriophage (parasite) system. We show that phages vary in their responses to temperature due to disruption of different phage life-history traits. Furthermore, we show that temperature can alter phage competitiveness and shape phage-phage competition outcomes. These results suggest that fever temperatures have the potential to restrict phage infectivity and drive phage community dynamics. We discuss implications for the role of temperature in shaping host-parasite interactions more widely.
Collapse
Affiliation(s)
| | - Daniel Cazares
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Serena Johnson
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Tobias E. Hector
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Emily J. Stevens
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - R. Craig MacLean
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Barno AR, Green K, Rohwer F, Silveira CB. Snow viruses and their implications on red snow algal blooms. mSystems 2024; 9:e0008324. [PMID: 38647296 PMCID: PMC11097641 DOI: 10.1128/msystems.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024] Open
Abstract
Algal blooms can give snowmelt a red color, reducing snow albedo and creating a runaway effect that accelerates snow melting. The occurrence of red snow is predicted to grow in polar and subpolar regions with increasing global temperatures. We hypothesize that these algal blooms affect virus-bacteria interactions in snow, with potential effects on snowmelt dynamics. A genomic analysis of double-stranded DNA virus communities in red and white snow from the Whistler region of British Columbia, Canada, identified 792 putative viruses infecting bacteria. The most abundant putative snow viruses displayed low genomic similarity with known viruses. We recovered the complete circular genomes of nine putative viruses, two of which were classified as temperate. Putative snow viruses encoded genes involved in energy metabolisms, such as NAD+ synthesis and salvage pathways. In model phages, these genes facilitate increased viral particle production and lysis rates. The frequency of temperate phages was positively correlated with microbial abundance in the snow samples. These results suggest the increased frequency of temperate virus-bacteria interactions as microbial densities increase during snowmelt. We propose that this virus-bacteria dynamic may facilitate the red snow algae growth stimulated by bacteria.IMPORTANCEMicrobial communities in red snow algal blooms contribute to intensifying snowmelt rates. The role of viruses in snow during this environmental shift, however, has yet to be elucidated. Here, we characterize novel viruses extracted from snow viral metagenomes and define the functional capacities of snow viruses in both white and red snow. These results are contextualized using the composition and functions observed in the bacterial communities from the same snow samples. Together, these data demonstrate the energy metabolism performed by viruses and bacteria in a snow algal bloom, as well as expand the overall knowledge of viral genomes in extreme environments.
Collapse
Affiliation(s)
- Adam R. Barno
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kevin Green
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | | |
Collapse
|
8
|
Sheriff EK, Salvato F, Andersen SE, Chatterjee A, Kleiner M, Duerkop BA. Enterococcal quorum-controlled protease alters phage infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593607. [PMID: 38766208 PMCID: PMC11100838 DOI: 10.1101/2024.05.10.593607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Increased prevalence of multidrug resistant bacterial infections has sparked interest in alternative antimicrobials, including bacteriophages (phages). Limited understanding of the phage infection process hampers our ability to utilize phages to their full therapeutic potential. To understand phage infection dynamics we performed proteomics on Enterococcus faecalis infected with the phage VPE25. We discovered numerous uncharacterized phage proteins are produced during phage infection of Enterococcus faecalis. Additionally, we identified hundreds of changes in bacterial protein abundances during infection. One such protein, enterococcal gelatinase (GelE), an fsr quorum sensing regulated protease involved in biofilm formation and virulence, was reduced during VPE25 infection. Plaque assays showed that mutation of either the fsrA or gelE resulted in plaques with a "halo" morphology and significantly larger diameters, suggesting decreased protection from phage infection. GelE-associated protection during phage infection is dependent on the murein hydrolase regulator LrgA and antiholin-like protein LrgB, whose expression have been shown to be regulated by GelE. Our work may be leveraged in the development of phage therapies that can modulate the production of GelE thereby altering biofilm formation and decreasing E. faecalis virulence.
Collapse
Affiliation(s)
- Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Fernanda Salvato
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695
| | - Shelby E. Andersen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
9
|
Yu M, Zhang M, Zeng R, Cheng R, Zhang R, Hou Y, Kuang F, Feng X, Dong X, Li Y, Shao Z, Jin M. Diversity and potential host-interactions of viruses inhabiting deep-sea seamount sediments. Nat Commun 2024; 15:3228. [PMID: 38622147 PMCID: PMC11018836 DOI: 10.1038/s41467-024-47600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Seamounts are globally distributed across the oceans and form one of the major oceanic biomes. Here, we utilized combined analyses of bulk metagenome and virome to study viral communities in seamount sediments in the western Pacific Ocean. Phylogenetic analyses and the protein-sharing network demonstrate extensive diversity and previously unknown viral clades. Inference of virus-host linkages uncovers extensive interactions between viruses and dominant prokaryote lineages, and suggests that viruses play significant roles in carbon, sulfur, and nitrogen cycling by compensating or augmenting host metabolisms. Moreover, temperate viruses are predicted to be prevalent in seamount sediments, which tend to carry auxiliary metabolic genes for host survivability. Intriguingly, the geographical features of seamounts likely compromise the connectivity of viral communities and thus contribute to the high divergence of viral genetic spaces and populations across seamounts. Altogether, these findings provides knowledge essential for understanding the biogeography and ecological roles of viruses in globally widespread seamounts.
Collapse
Affiliation(s)
- Meishun Yu
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Menghui Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Ruolin Cheng
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanping Hou
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Fangfang Kuang
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Xuejin Feng
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Xiyang Dong
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Yinfang Li
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China.
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China.
| |
Collapse
|
10
|
O’Connor PBF, Mahony J, Casey E, Baranov PV, van Sinderen D, Yordanova MM. Ribosome profiling reveals downregulation of UMP biosynthesis as the major early response to phage infection. Microbiol Spectr 2024; 12:e0398923. [PMID: 38451091 PMCID: PMC10986495 DOI: 10.1128/spectrum.03989-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Bacteria have evolved diverse defense mechanisms to counter bacteriophage attacks. Genetic programs activated upon infection characterize phage-host molecular interactions and ultimately determine the outcome of the infection. In this study, we applied ribosome profiling to monitor protein synthesis during the early stages of sk1 bacteriophage infection in Lactococcus cremoris. Our analysis revealed major changes in gene expression within 5 minutes of sk1 infection. Notably, we observed a specific and severe downregulation of several pyr operons which encode enzymes required for uridine monophosphate biosynthesis. Consistent with previous findings, this is likely an attempt of the host to starve the phage of nucleotides it requires for propagation. We also observed a gene expression response that we expect to benefit the phage. This included the upregulation of 40 ribosome proteins that likely increased the host's translational capacity, concurrent with a downregulation of genes that promote translational fidelity (lepA and raiA). In addition to the characterization of host-phage gene expression responses, the obtained ribosome profiling data enabled us to identify two putative recoding events as well as dozens of loci currently annotated as pseudogenes that are actively translated. Furthermore, our study elucidated alterations in the dynamics of the translation process, as indicated by time-dependent changes in the metagene profile, suggesting global shifts in translation rates upon infection. Additionally, we observed consistent modifications in the ribosome profiles of individual genes, which were apparent as early as 2 minutes post-infection. The study emphasizes our ability to capture rapid alterations of gene expression during phage infection through ribosome profiling. IMPORTANCE The ribosome profiling technology has provided invaluable insights for understanding cellular translation and eukaryotic viral infections. However, its potential for investigating host-phage interactions remains largely untapped. Here, we applied ribosome profiling to Lactococcus cremoris cultures infected with sk1, a major infectious agent in dairy fermentation processes. This revealed a profound downregulation of genes involved in pyrimidine nucleotide synthesis at an early stage of phage infection, suggesting an anti-phage program aimed at restricting nucleotide availability and, consequently, phage propagation. This is consistent with recent findings and contributes to our growing appreciation for the role of nucleotide limitation as an anti-viral strategy. In addition to capturing rapid alterations in gene expression levels, we identified translation occurring outside annotated regions, as well as signatures of non-standard translation mechanisms. The gene profiles revealed specific changes in ribosomal densities upon infection, reflecting alterations in the dynamics of the translation process.
Collapse
Affiliation(s)
- Patrick B. F. O’Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- EIRNA Bio, Bioinnovation Hub, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eoghan Casey
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
11
|
Putzeys L, Wicke L, Boon M, van Noort V, Vogel J, Lavigne R. Refining the transcriptional landscapes for distinct clades of virulent phages infecting Pseudomonas aeruginosa. MICROLIFE 2024; 5:uqae002. [PMID: 38444699 PMCID: PMC10914365 DOI: 10.1093/femsml/uqae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The introduction of high-throughput sequencing has resulted in a surge of available bacteriophage genomes, unveiling their tremendous genomic diversity. However, our current understanding of the complex transcriptional mechanisms that dictate their gene expression during infection is limited to a handful of model phages. Here, we applied ONT-cappable-seq to reveal the transcriptional architecture of six different clades of virulent phages infecting Pseudomonas aeruginosa. This long-read microbial transcriptomics approach is tailored to globally map transcription start and termination sites, transcription units, and putative RNA-based regulators on dense phage genomes. Specifically, the full-length transcriptomes of LUZ19, LUZ24, 14-1, YuA, PAK_P3, and giant phage phiKZ during early, middle, and late infection were collectively charted. Beyond pinpointing traditional promoter and terminator elements and transcription units, these transcriptional profiles provide insights in transcriptional attenuation and splicing events and allow straightforward validation of Group I intron activity. In addition, ONT-cappable-seq data can guide genome-wide discovery of novel regulatory element candidates, including noncoding RNAs and riboswitches. This work substantially expands the number of annotated phage-encoded transcriptional elements identified to date, shedding light on the intricate and diverse gene expression regulation mechanisms in Pseudomonas phages, which can ultimately be sourced as tools for biotechnological applications in phage and bacterial engineering.
Collapse
Affiliation(s)
- Leena Putzeys
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Laura Wicke
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| |
Collapse
|
12
|
Bloch S, Nejman-Faleńczyk B, Licznerska K, Dydecka A, Topka-Bielecka G, Necel A, Węgrzyn A, Węgrzyn G. Complex effects of the exo-xis region of the Shiga toxin-converting bacteriophage Φ24 B genome on the phage development and the Escherichia coli host physiology. J Appl Genet 2024; 65:191-211. [PMID: 37968427 PMCID: PMC10789677 DOI: 10.1007/s13353-023-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Lambdoid bacteriophages are excellent models in studies on molecular aspects of virus-host interactions. However, some of them carry genes encoding toxins which are responsible for virulence of pathogenic strains of bacteria. Shiga toxin-converting bacteriophages (Stx phages) encode Shiga toxins that cause virulence of enterohemorrhagic Escherichia coli (EHEC), and their effective production depends on Stx prophage induction. The exo-xis region of the lambdoid phage genome consists of genes which are dispensable for the phage multiplication under laboratory conditions; however, they might modulate the virus development. Nevertheless, their exact effects on the phage and host physiology remained unclear. Here, we present results of complex studies on the role of the exo-xis region of bacteriophage Φ24B, one of Stx2b phages. Transcriptomic analyses, together with proteomic and metabolomic studies, provided the basis for understanding the functions of the exo-xis region. Genes from this region promoted lytic development of the phage over lysogenization. Moreover, expression of the host genes coding for DnaK, DnaJ, GrpE, and GroELS chaperones was impaired in the cells infected with the Δexo-xis phage mutant, relative to the wild-type virus, corroborating the conclusion about lytic development promotion by the exo-xis region. Proteomic and metabolomic analyses indicated also modulation of gad and nrf operons, and levels of amino acids and acylcarnitines, respectively. In conclusion, the exo-xis region controls phage propagation and host metabolism by influencing expression of different phage and bacterial genes, directing the virus to the lytic rather than lysogenic developmental mode.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | | | | | | | - Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Węgrzyn
- Phage Therapy Center, University Center for Applied and Interdisciplinary Research, University of Gdansk, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
13
|
Goff JL, Lui LM, Nielsen TN, Poole FL, Smith HJ, Walker KF, Hazen TC, Fields MW, Arkin AP, Adams MWW. Mixed waste contamination selects for a mobile genetic element population enriched in multiple heavy metal resistance genes. ISME COMMUNICATIONS 2024; 4:ycae064. [PMID: 38800128 PMCID: PMC11128244 DOI: 10.1093/ismeco/ycae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/11/2024] [Indexed: 05/29/2024]
Abstract
Mobile genetic elements (MGEs) like plasmids, viruses, and transposable elements can provide fitness benefits to their hosts for survival in the presence of environmental stressors. Heavy metal resistance genes (HMRGs) are frequently observed on MGEs, suggesting that MGEs may be an important driver of adaptive evolution in environments contaminated with heavy metals. Here, we report the meta-mobilome of the heavy metal-contaminated regions of the Oak Ridge Reservation subsurface. This meta-mobilome was compared with one derived from samples collected from unimpacted regions of the Oak Ridge Reservation subsurface. We assembled 1615 unique circularized DNA elements that we propose to be MGEs. The circular elements from the highly contaminated subsurface were enriched in HMRG clusters relative to those from the nearby unimpacted regions. Additionally, we found that these HMRGs were associated with Gamma and Betaproteobacteria hosts in the contaminated subsurface and potentially facilitate the persistence and dominance of these taxa in this region. Finally, the HMRGs were associated with conjugative elements, suggesting their potential for future lateral transfer. We demonstrate how our understanding of MGE ecology, evolution, and function can be enhanced through the genomic context provided by completed MGE assemblies.
Collapse
Affiliation(s)
- Jennifer L Goff
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Kathleen F Walker
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37916, United States
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37916, United States
- Genome Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
14
|
Schwartzkopf CM, Taylor VL, Groleau MC, Faith DR, Schmidt AK, Lamma TL, Brooks DM, Déziel E, Maxwell KL, Secor PR. Inhibition of PQS signaling by the Pf bacteriophage protein PfsE enhances viral replication in Pseudomonas aeruginosa. Mol Microbiol 2024; 121:116-128. [PMID: 38038061 PMCID: PMC10842821 DOI: 10.1111/mmi.15202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Quorum sensing, a bacterial signaling system that coordinates group behaviors as a function of cell density, plays an important role in regulating viral (phage) defense mechanisms in bacteria. The opportunistic pathogen Pseudomonas aeruginosa is a model system for the study of quorum sensing. P. aeruginosa is also frequently infected by Pf prophages that integrate into the host chromosome. Upon induction, Pf phages suppress host quorum sensing systems; however, the physiological relevance and mechanism of suppression are unknown. Here, we identify the Pf phage protein PfsE as an inhibitor of Pseudomonas Quinolone Signal (PQS) quorum sensing. PfsE binds to the host protein PqsA, which is essential for the biosynthesis of the PQS signaling molecule. Inhibition of PqsA increases the replication efficiency of Pf virions when infecting a new host and when the Pf prophage switches from lysogenic replication to active virion replication. In addition to inhibiting PQS signaling, our prior work demonstrates that PfsE also binds to PilC and inhibits type IV pili extension, protecting P. aeruginosa from infection by type IV pili-dependent phages. Overall, this work suggests that the simultaneous inhibition of PQS signaling and type IV pili by PfsE may be a viral strategy to suppress host defenses to promote Pf replication while at the same time protecting the susceptible host from competing phages.
Collapse
Affiliation(s)
| | | | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Tyrza L. Lamma
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Karen L. Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
15
|
Hernández Villamizar S, Chica Cárdenas LA, Morales Mancera LT, Vives Florez MJ. Anaerobiosis, a neglected factor in phage-bacteria interactions. Appl Environ Microbiol 2023; 89:e0149123. [PMID: 37966212 PMCID: PMC10734468 DOI: 10.1128/aem.01491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Many parameters affect phage-bacteria interaction. Some of these parameters depend on the environment in which the bacteria are present. Anaerobiosis effect on phage infection in facultative anaerobic bacteria has not yet been studied. The absence of oxygen triggers metabolic changes in facultative bacteria and this affects phage infection and viral life cycle. Understanding how an anaerobic environment can alter the behavior of phages during infection is relevant for the phage therapy success.
Collapse
|
16
|
Minch B, Akter S, Weinheimer A, Rahman MS, Parvez MAK, Rezwana Rahman S, Ahmed MF, Moniruzzaman M. Phylogenetic diversity and functional potential of large and cell-associated viruses in the Bay of Bengal. mSphere 2023; 8:e0040723. [PMID: 37902318 PMCID: PMC10732071 DOI: 10.1128/msphere.00407-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The BoB, the world's largest bay, is of significant economic importance to surrounding countries, particularly Bangladesh, which heavily relies on its coastal resources. Concurrently, the BoB holds substantial ecological relevance due to the region's high vulnerability to climate change-induced impacts. Yet, our understanding of the BoB's microbiome in relation to marine food web and biogeochemical cycling remains limited. Particularly, there are little or no data on the viral diversity and host association in the BoB. We examined the viral community in two distinct BoB coastal regions to reveal a multitude of viral species interacting with a wide range of microbial hosts, some of which play key roles in coastal biogeochemical cycling or potential pathogens. Furthermore, we demonstrate that the BoB coast harbors a diverse community of large and giant viruses, underscoring the importance of investigating understudied environments to discover novel viral lineages with complex metabolic capacities.
Collapse
Affiliation(s)
- Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA
| | - Salma Akter
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | | | - M. Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | | | - Md Firoz Ahmed
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA
| |
Collapse
|
17
|
Schwartzkopf CM, Taylor VL, Groleau MC, Faith DR, Schmidt AK, Lamma TL, Brooks DM, Déziel E, Maxwell KL, Secor PR. Inhibition of PQS signaling by the Pf bacteriophage protein PfsE enhances viral replication in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554831. [PMID: 37662248 PMCID: PMC10473763 DOI: 10.1101/2023.08.25.554831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Quorum sensing, a bacterial signaling system that coordinates group behaviors as a function of cell density, plays an important role in regulating viral (phage) defense mechanisms in bacteria. The opportunistic pathogen Pseudomonas aeruginosa is a model system for the study of quorum sensing. P. aeruginosa is also frequently infected by Pf prophages that integrate into the host chromosome. Upon induction, Pf phages suppress host quorum sensing systems; however, the physiological relevance and mechanism of suppression are unknown. Here, we identify the Pf phage protein PfsE as an inhibitor of Pseudomonas Quinolone Signal (PQS) quorum sensing. PfsE binds to the host protein PqsA, which is essential for the biosynthesis of the PQS signaling molecule. Inhibition of PqsA increases the replication efficiency of Pf virions when infecting a new host and when the Pf prophage switches from lysogenic replication to active virion replication. In addition to inhibiting PQS signaling, our prior work demonstrates that PfsE also binds to PilC and inhibits type IV pili extension, protecting P. aeruginosa from infection by type IV pili-dependent phages. Overall, this work suggests that the simultaneous inhibition of PQS signaling and type IV pili by PfsE may be a viral strategy to suppress host defenses to promote Pf replication while at the same time protecting the susceptible host from competing phages.
Collapse
Affiliation(s)
| | | | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Tyrza L. Lamma
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Karen L. Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
18
|
von Strempel A, Weiss AS, Wittmann J, Salvado Silva M, Ring D, Wortmann E, Clavel T, Debarbieux L, Kleigrewe K, Stecher B. Bacteriophages targeting protective commensals impair resistance against Salmonella Typhimurium infection in gnotobiotic mice. PLoS Pathog 2023; 19:e1011600. [PMID: 37603558 PMCID: PMC10470868 DOI: 10.1371/journal.ppat.1011600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/31/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
Gut microbial communities protect the host against a variety of major human gastrointestinal pathogens. Bacteriophages (phages) are ubiquitous in nature and frequently ingested via food and drinking water. Moreover, they are an attractive tool for microbiome engineering due to the lack of known serious adverse effects on the host. However, the functional role of phages within the gastrointestinal microbiome remain poorly understood. Here, we investigated the effects of microbiota-directed phages on infection with the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm), using a gnotobiotic mouse model (OMM14) for colonization resistance (CR). We show, that phage cocktails targeting Escherichia coli and Enterococcus faecalis acted in a strain-specific manner. They transiently reduced the population density of their respective target before establishing coexistence for up to 9 days. Infection susceptibility to S. Tm was markedly increased at an early time point after challenge with both phage cocktails. Surprisingly, OMM14 mice were also susceptible 7 days after a single phage inoculation, when the targeted bacterial populations were back to pre-phage administration density. Concluding, our work shows that phages that dynamically modulate the density of protective members of the gut microbiota can provide opportunities for invasion of bacterial pathogens, in particular at early time points after phage application. This suggests, that phages targeting protective members of the microbiota may increase the risk for Salmonella infection.
Collapse
Affiliation(s)
- Alexandra von Strempel
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna S. Weiss
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Diana Ring
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Esther Wortmann
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Zheng X, Al Naggar Y, Wu Y, Liu D, Hu Y, Wang K, Jin X, Peng W. Untargeted metabolomics description of propolis's in vitro antibacterial mechanisms against Clostridium perfringens. Food Chem 2023; 406:135061. [PMID: 36481515 DOI: 10.1016/j.foodchem.2022.135061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Propolis is a natural resinous substance that is collected by honeybees (Apis mellifera) with promising antibacterial effects. Here, we examined the antibacterial activity of Chinese propolis against Clostridium perfringens, a bacterial pathogen that threatens food safety and causes intestinal erosion. The inhibitory effects of the ethanolic extract of Chinese propolis (CPE) on human-associated C. perfringens strains were determined by using the circle of inhibition, the minimum inhibitory concentrations, and bactericidal concentrations. CPE also induced morphological elongation, bacterial cell wall damage, and intracellular material leakage in C. perfringens. Untargeted HPLC-qTOF-MS-based metabolomics analysis of the bacterial metabolic compounds revealed that propolis triggered glycerophospholipid metabolism, one carbon pool by folate, and d-glutamine and d-glutamate metabolism alterations in C. perfringens. Finally, caffeic acid phenethyl ester was identified as the key active ingredient in CPE. This study suggested the usage of propolis as an alternative to antibiotics in controlling C. perfringens.
Collapse
Affiliation(s)
- Xing Zheng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China; Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Yuchen Wu
- Shanghai High School International Division (SHSID), Shanghai 200231, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Wenjun Peng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
20
|
Tang H, Abouleila Y, Saris A, Shimizu Y, Ottenhoff THM, Mashaghi A. Ebola virus-like particles reprogram cellular metabolism. J Mol Med (Berl) 2023; 101:557-568. [PMID: 36959259 PMCID: PMC10036248 DOI: 10.1007/s00109-023-02309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Ebola virus can trigger a release of pro-inflammatory cytokines with subsequent vascular leakage and impairment of clotting finally leading to multiorgan failure and shock after entering and infecting patients. Ebola virus is known to directly target endothelial cells and macrophages, even without infecting them, through direct interactions with viral proteins. These interactions affect cellular mechanics and immune processes, which are tightly linked to other key cellular functions such as metabolism. However, research regarding metabolic activity of these cells upon viral exposure remains limited, hampering our understanding of its pathophysiology and progression. Therefore, in the present study, an untargeted cellular metabolomic approach was performed to investigate the metabolic alterations of primary human endothelial cells and M1 and M2 macrophages upon exposure to Ebola virus-like particles (VLP). The results show that Ebola VLP led to metabolic changes among endothelial, M1, and M2 cells. Differential metabolite abundance and perturbed signaling pathway analysis further identified specific metabolic features, mainly in fatty acid-, steroid-, and amino acid-related metabolism pathways for all the three cell types, in a host cell specific manner. Taken together, this work characterized for the first time the metabolic alternations of endothelial cells and two primary human macrophage subtypes after Ebola VLP exposure, and identified the potential metabolites and pathways differentially affected, highlighting the important role of those host cells in disease development and progression. KEY MESSAGES: • Ebola VLP can lead to metabolic alternations in endothelial cells and M1 and M2 macrophages. • Differential abundance of metabolites, mainly including fatty acids and sterol lipids, was observed after Ebola VLP exposure. • Multiple fatty acid-, steroid-, and amino acid-related metabolism pathways were observed perturbed.
Collapse
Affiliation(s)
- Huaqi Tang
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yasmine Abouleila
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
21
|
Zünd M, Dunham SJB, Rothman JA, Whiteson KL. What Lies Beneath? Taking the Plunge into the Murky Waters of Phage Biology. mSystems 2023; 8:e0080722. [PMID: 36651762 PMCID: PMC9948730 DOI: 10.1128/msystems.00807-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The sequence revolution revealed that bacteria-infecting viruses, known as phages, are Earth's most abundant biological entities. Phages have far-reaching impacts on the form and function of microbial communities and play a fundamental role in ecological processes. However, even well into the sequencing revolution, we have only just begun to explore the murky waters around the phage biology iceberg. Many viral reads cannot be assigned to a culturable isolate, and reference databases are biased toward more easily collectible samples, which likely distorts our conclusions. This minireview points out alternatives to mapping reads to reference databases and highlights innovative bioinformatic and experimental approaches that can help us overcome some of the challenges in phage research and better decipher the impact of phages on microbial communities. Moving beyond the identification of novel phages, we highlight phage metabolomics as an important influencer of bacterial host cell physiology and hope to inspire the reader to consider the effects of phages on host metabolism and ecosystems at large. We encourage researchers to report unassigned/unknown sequencing reads and contigs and to continue developing alternative methods to investigate phages within sequence data.
Collapse
Affiliation(s)
- Mirjam Zünd
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Sage J. B. Dunham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Katrine L. Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| |
Collapse
|
22
|
Dantas R, Brocchi M, Pacheco Fill T. Chemical-Biology and Metabolomics Studies in Phage-Host Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:71-100. [PMID: 37843806 DOI: 10.1007/978-3-031-41741-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
For many years, several studies have explored the molecular mechanisms involved in the infection of bacteria by their specific phages to understand the main infection strategies and the host defense strategies. The modulation of the mechanisms involved in the infection, as well as the expression of key substances in the development of the different life cycles of phages, function as a natural source of strategies capable of promoting the control of different pathogens that are harmful to human and animal health. Therefore, this chapter aims to provide an overview of the mechanisms involved in virus-bacteria interaction to explore the main compounds produced or altered as a chemical survival strategy and the metabolism modulation when occurring a host-phage interaction. In this context, emphasis will be given to the chemistry of peptides/proteins and enzymes encoded by bacteriophages in the control of pathogenic bacteria and the use of secondary metabolites recently reported as active participants in the mechanisms of phage-bacteria interaction. Finally, metabolomics strategies developed to gain new insights into the metabolism involved in the phage-host interaction and the metabolomics workflow in host-phage interaction will be presented.
Collapse
Affiliation(s)
- Rodolfo Dantas
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Brocchi
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Taícia Pacheco Fill
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
23
|
Growth Substrate and Prophage Induction Collectively Influence Metabolite and Lipid Profiles in a Marine Bacterium. mSystems 2022; 7:e0058522. [PMID: 35972149 PMCID: PMC9600351 DOI: 10.1128/msystems.00585-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacterial growth substrates influence a variety of biological functions, including the biosynthesis and regulation of lipid intermediates. The extent of this rewiring is not well understood nor has it been considered in the context of virally infected cells. Here, we used a one-host-two-temperate phage model system to probe the combined influence of growth substrate and phage infection on host carbon and lipid metabolism. Using untargeted metabolomics and lipidomics, we reported the detection of a suite of metabolites and lipid classes for two Sulfitobacter lysogens provided with three growth substrates of differing complexity and nutrient composition (yeast extract/tryptone [complex], glutamate and acetate). The growth medium led to dramatic differences in the detectable intracellular metabolites, with only 15% of 175 measured metabolites showing overlap across the three growth substrates. Between-strain differences were most evident in the cultures grown on acetate, followed by glutamate then complex medium. Lipid distribution profiles were also distinct between cultures grown on different substrates as well as between the two lysogens grown in the same medium. Five phospholipids, three aminolipid, and one class of unknown lipid-like features were identified. Most (≥94%) of these 75 lipids were quantifiable in all samples. Metabolite and lipid profiles were strongly determined by growth medium composition and modestly by strain type. Because fluctuations in availability and form of carbon substrates and nutrients, as well as virus pressure, are common features of natural systems, the influence of these intersecting factors will undoubtedly be imprinted in the metabolome and lipidome of resident bacteria. IMPORTANCE Community-level metabolomics approaches are increasingly used to characterize natural microbial populations. These approaches typically depend upon temporal snapshots from which the status and function of communities are often inferred. Such inferences are typically drawn from lab-based studies of select model organisms raised under limited growth conditions. To better interpret community-level data, the extent to which ecologically relevant bacteria demonstrate metabolic flexibility requires elucidation. Herein, we used an environmentally relevant model heterotrophic marine bacterium to assess the relationship between growth determinants and metabolome. We also aimed to assess the contribution of phage activity to the host metabolome. Striking differences in primary metabolite and lipid profiles appeared to be driven primarily by growth regime and, secondarily, by phage type. These findings demonstrated the malleable nature of metabolomes and lipidomes and lay the foundation for future studies that relate cellular composition with function in complex environmental microbial communities.
Collapse
|
24
|
Locke H, Bidle KD, Thamatrakoln K, Johns CT, Bonachela JA, Ferrell BD, Wommack KE. Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Adv Virus Res 2022; 114:67-146. [PMID: 39492214 DOI: 10.1016/bs.aivir.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus-host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean-the physical, chemical, and biological landscape-influences the likelihood of both virus-host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.
Collapse
Affiliation(s)
- Hannah Locke
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - Kay D Bidle
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | | | - Christopher T Johns
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | - Juan A Bonachela
- Rutgers Univ., Dept. of Ecology, Evolution & Natural Resources, New Brunswick, NJ, United States
| | - Barbra D Ferrell
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - K Eric Wommack
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States.
| |
Collapse
|
25
|
Howard-Varona C, Roux S, Bowen BP, Silva LP, Lau R, Schwenck SM, Schwartz S, Woyke T, Northen T, Sullivan MB, Floge SA. Protist impacts on marine cyanovirocell metabolism. ISME COMMUNICATIONS 2022; 2:94. [PMID: 37938263 PMCID: PMC9723779 DOI: 10.1038/s43705-022-00169-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 07/26/2023]
Abstract
The fate of oceanic carbon and nutrients depends on interactions between viruses, prokaryotes, and unicellular eukaryotes (protists) in a highly interconnected planktonic food web. To date, few controlled mechanistic studies of these interactions exist, and where they do, they are largely pairwise, focusing either on viral infection (i.e., virocells) or protist predation. Here we studied population-level responses of Synechococcus cyanobacterial virocells (i.e., cyanovirocells) to the protist Oxyrrhis marina using transcriptomics, endo- and exo-metabolomics, photosynthetic efficiency measurements, and microscopy. Protist presence had no measurable impact on Synechococcus transcripts or endometabolites. The cyanovirocells alone had a smaller intracellular transcriptional and metabolic response than cyanovirocells co-cultured with protists, displaying known patterns of virus-mediated metabolic reprogramming while releasing diverse exometabolites during infection. When protists were added, several exometabolites disappeared, suggesting microbial consumption. In addition, the intracellular cyanovirocell impact was largest, with 4.5- and 10-fold more host transcripts and endometabolites, respectively, responding to protists, especially those involved in resource and energy production. Physiologically, photosynthetic efficiency also increased, and together with the transcriptomics and metabolomics findings suggest that cyanovirocell metabolic demand is highest when protists are present. These data illustrate cyanovirocell responses to protist presence that are not yet considered when linking microbial physiology to global-scale biogeochemical processes.
Collapse
Affiliation(s)
| | - Simon Roux
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- U.S. DOE Joint Genome Institute, Berkeley, CA, USA
| | | | - Leslie P Silva
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Syft Technologies, Ltd, Christchurch, 8024, New Zealand
| | - Rebecca Lau
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Cellular and Molecular Medicine and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Sarah M Schwenck
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA
| | - Samuel Schwartz
- Department of Biology, Wake Forest University, Winston Salem, NC, USA
| | - Tanja Woyke
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- U.S. DOE Joint Genome Institute, Berkeley, CA, USA
| | - Trent Northen
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- U.S. DOE Joint Genome Institute, Berkeley, CA, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.
| | - Sheri A Floge
- Department of Biology, Wake Forest University, Winston Salem, NC, USA.
| |
Collapse
|
26
|
Kim HJ, Li Y, Zimmermann M, Lee Y, Lim HW, Leong Tan AS, Choi I, Ko Y, Lee S, Seo JJ, Seo M, Jeon HK, Cechetto J, Hoong Yam JK, Yang L, Sauer U, Jang S, Pethe K. Pharmacological perturbation of thiamine metabolism sensitizes Pseudomonas aeruginosa to multiple antibacterial agents. Cell Chem Biol 2022; 29:1317-1324.e5. [PMID: 35901793 DOI: 10.1016/j.chembiol.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/18/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
New therapeutic concepts are critically needed for carbapenem-resistant Pseudomonas aeruginosa, an opportunistic pathogen particularly recalcitrant to antibiotics. The screening of around 230,000 small molecules yielded a very low hit rate of 0.002% after triaging for known antibiotics. The only novel hit that stood out was the antimetabolite oxythiamine. Oxythiamine is a known transketolase inhibitor in eukaryotic cells, but its antibacterial potency has not been reported. Metabolic and transcriptomic analyses indicated that oxythiamine is intracellularly converted to oxythiamine pyrophosphate and subsequently inhibits several vitamin-B1-dependent enzymes, sensitizing the bacteria to several antibiotic and non-antibiotic drugs such as tetracyclines, 5-fluorouracil, and auranofin. The positive interaction between 5-fluorouracil and oxythiamine was confirmed in a murine ocular infection model, indicating relevance during infection. Together, this study revealed a system-level significance of thiamine metabolism perturbation that sensitizes P. aeruginosa to multiple small molecules, a property that could inform on the development of a rational drug combination.
Collapse
Affiliation(s)
- Hyung Jun Kim
- Discovery Biology Department, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Yingying Li
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Michael Zimmermann
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology in Zürich (ETHZ), Zürich, Switzerland
| | - Yunmi Lee
- Discovery Biology Department, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Hui Wen Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Alvin Swee Leong Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Inhee Choi
- Translation Research Department, Medicinal Chemistry Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Yoonae Ko
- Translation Research Department, Medicinal Chemistry Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Sangchul Lee
- Translation Research Department, Medicinal Chemistry Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Jeong Jea Seo
- Translation Research Department, Medicinal Chemistry Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Mooyoung Seo
- Translation Research Department, Medicinal Chemistry Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Hee Kyoung Jeon
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Jonathan Cechetto
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Joey Kuok Hoong Yam
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology in Zürich (ETHZ), Zürich, Switzerland
| | - Soojin Jang
- Discovery Biology Department, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
27
|
Zhang K, Li S, Wang Y, Wang Z, Mulvenna N, Yang H, Zhang P, Chen H, Li Y, Wang H, Gao Y, Wigneshweraraj S, Matthews S, Zhang K, Liu B. Bacteriophage protein PEIP is a potent Bacillus subtilis enolase inhibitor. Cell Rep 2022; 40:111026. [PMID: 35793626 DOI: 10.1016/j.celrep.2022.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 11/03/2022] Open
Abstract
Enolase is a highly conserved enzyme that presents in all organisms capable of glycolysis or fermentation. Its immediate product phosphoenolpyruvate is essential for other important processes like peptidoglycan synthesis and the phosphotransferase system in bacteria. Therefore, enolase inhibitors are of great interest. Here, we report that Gp60, a phage-encoded enolase inhibitor protein (PEIP) of bacteriophage SPO1 for Bacillus subtilis, is an enolase inhibitor. PEIP-expressing bacteria exhibit growth attenuation, thinner cell walls, and safranin color in Gram staining owing to impaired peptidoglycan synthesis. We solve the structure of PEIP-enolase tetramer and show that PEIP disassembles enolase by disrupting the basic dimer unit. The structure reveals that PEIP does not compete for substrate binding but induces a cascade of conformational changes that limit accessibility to the enolase catalytic site. This phage-inspired disassembly of enolase represents an alternative strategy for the development of anti-microbial drugs.
Collapse
Affiliation(s)
- Kaining Zhang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhihao Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nancy Mulvenna
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Hang Yang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Peipei Zhang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Huan Chen
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Hongliang Wang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yongxiang Gao
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | - Steve Matthews
- Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
28
|
Antosiak A, Šulčius S, Malec P, Tokodi N, Łobodzińska A, Dziga D. Cyanophage infections reduce photosynthetic activity and expression of CO 2 fixation genes in the freshwater bloom-forming cyanobacterium Aphanizomenon flos-aquae. HARMFUL ALGAE 2022; 116:102215. [PMID: 35710200 DOI: 10.1016/j.hal.2022.102215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria play a significant role in ecosystem functioning as photosynthetic and CO2 fixing microorganisms. Whether and to what extent cyanophages alter these carbon and energy cycles in their cyanobacterial hosts is still poorly understood. In this study, we investigated changes in photosynthetic activity (PSII), expression of genes associated with the light phase of photosynthesis (psbA, petA, ndhK) and carbon metabolism (rbcL, zwf) as well as intracellular ATP and NADHP concentrations in freshwater bloom-forming filamentous cyanobacterium Aphanizomenon flos-aquae infected by cyanophage vB_AphaS-CL131. We found that PSII activity and expression level of rbcL genes, indicating potential for CO2 fixation, had decreased in response to cyanophage adsorption and DNA injection. During the period of viral DNA replication and assembly, PSII performance and gene expression remained at this decreased level and did not change significantly, indicating lack of transcriptional shutdown by the cyanophage. Combined, these observations suggest that although there is little to no interference between cyanophage DNA replication, host transcription and cellular metabolism, A. flos-aquae underwent a physiological state-shift toward lower efficiency of carbon and energy cycling. This further suggest potential cascading effect for co-occurring non-infected members of the microbial community.
Collapse
Affiliation(s)
- Adam Antosiak
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland.
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania.
| | - Przemysław Malec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland.
| | - Nada Tokodi
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland; Department of Biology and Ecology, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Antonia Łobodzińska
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland.
| | - Dariusz Dziga
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland.
| |
Collapse
|
29
|
Heinrichs ME, Heyerhoff B, Arslan-Gatz BS, Seidel M, Niggemann J, Engelen B. Deciphering the Virus Signal Within the Marine Dissolved Organic Matter Pool. Front Microbiol 2022; 13:863686. [PMID: 35694303 PMCID: PMC9184803 DOI: 10.3389/fmicb.2022.863686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses are ubiquitously distributed in the marine environment, influencing microbial population dynamics and biogeochemical cycles on a large scale. Due to their small size, they fall into the oceanographic size-class definition of dissolved organic matter (DOM; <0.7 μm). The purpose of our study was to investigate if there is a detectable imprint of virus particles in natural DOM following standard sample preparation and molecular analysis routines using ultrahigh-resolution mass spectrometry (FT-ICR-MS). Therefore, we tested if a molecular signature deriving from virus particles can be detected in the DOM fingerprint of a bacterial culture upon prophage induction and of seawater containing the natural microbial community. Interestingly, the virus-mediated lysate of the infected bacterial culture differed from the cell material of a physically disrupted control culture in its molecular composition. Overall, a small subset of DOM compounds correlated significantly with virus abundances in the bacterial culture setup, accounting for <1% of the detected molecular formulae and <2% of the total signal intensity of the DOM dataset. These were phosphorus- and nitrogen-containing compounds and they were partially also detected in DOM samples from other studies that included high virus abundances. While some of these formulae matched with typical biomolecules that are constituents of viruses, others matched with bacterial cell wall components. Thus, the identified DOM molecular formulae were probably not solely derived from virus particles but were partially also derived from processes such as the virus-mediated bacterial cell lysis. Our results indicate that a virus-derived DOM signature is part of the natural DOM and barely detectable within the analytical window of ultrahigh-resolution mass spectrometry when a high natural background is present.
Collapse
Affiliation(s)
- Mara E. Heinrichs
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Benedikt Heyerhoff
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Berin S. Arslan-Gatz
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Michael Seidel
- Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Jutta Niggemann
- Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Bert Engelen
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
30
|
Johnson G, Banerjee S, Putonti C. Diversity of Pseudomonas aeruginosa Temperate Phages. mSphere 2022; 7:e0101521. [PMID: 35196122 PMCID: PMC8865926 DOI: 10.1128/msphere.01015-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 02/08/2023] Open
Abstract
Modern sequencing technologies have provided insight into the genetic diversity of numerous species, including the human pathogen Pseudomonas aeruginosa. Bacterial genomes often harbor bacteriophage genomes (prophages), which can account for upwards of 20% of the genome. Prior studies have found P. aeruginosa prophages that contribute to their host's pathogenicity and fitness. These advantages come in many different forms, including the production of toxins, promotion of biofilm formation, and displacement of other P. aeruginosa strains. While several different genera and species of P. aeruginosa prophages have been studied, there has not been a comprehensive study of the overall diversity of P. aeruginosa-infecting prophages. Here, we present the results of just such an analysis. A total of 6,852 high-confidence prophages were identified from 5,383 P. aeruginosa genomes from strains isolated from the human body and other environments. In total, 3,201 unique prophage sequences were identified. While 53.1% of these prophage sequences displayed sequence similarity to publicly available phage genomes, novel and highly mosaic prophages were discovered. Among these prophages, there is extensive diversity, including diversity within the functionally conserved integrase and C repressor coding regions, two genes responsible for prophage entering and persisting through the lysogenic life cycle. Analysis of integrase, C repressor, and terminase coding regions revealed extensive reassortment among P. aeruginosa prophages. This catalog of P. aeruginosa prophages provides a resource for future studies into the evolution of the species. IMPORTANCE Prophages play a critical role in the evolution of their host species and can also contribute to the virulence and fitness of pathogenic species. Here, we conducted a comprehensive investigation of prophage sequences from 5,383 publicly available Pseudomonas aeruginosa genomes from human as well as environmental isolates. We identified a diverse population of prophages, including tailed phages, inoviruses, and microviruses; 46.9% of the prophage sequences found share no significant sequence similarity with characterized phages, representing a vast array of novel P. aeruginosa-infecting phages. Our investigation into these prophages found substantial evidence of reassortment. In producing this, the first catalog of P. aeruginosa prophages, we uncovered both novel prophages as well as genetic content that have yet to be explored.
Collapse
Affiliation(s)
- Genevieve Johnson
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Swarnali Banerjee
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
31
|
Hendrix H, Zimmermann-Kogadeeva M, Zimmermann M, Sauer U, De Smet J, Muchez L, Lissens M, Staes I, Voet M, Wagemans J, Ceyssens PJ, Noben JP, Aertsen A, Lavigne R. Metabolic reprogramming of Pseudomonas aeruginosa by phage-based quorum sensing modulation. Cell Rep 2022; 38:110372. [PMID: 35172131 DOI: 10.1016/j.celrep.2022.110372] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/29/2021] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
The Pseudomonas quinolone signal (PQS) is a multifunctional quorum sensing molecule of key importance to P. aeruginosa. Here, we report that the lytic Pseudomonas bacterial virus LUZ19 targets this population density-dependent signaling system by expressing quorum sensing targeting protein (Qst) early during infection. We demonstrate that Qst interacts with PqsD, a key host quinolone signal biosynthesis pathway enzyme, resulting in decreased levels of PQS and its precursor 2-heptyl-4(1H)-quinolone. The lack of a functional PqsD enzyme impairs LUZ19 infection but is restored by external supplementation of 2-heptyl-4(1H)-quinolone, suggesting that LUZ19 exploits the PQS system for successful infection. We establish a broad functional interaction network of Qst, which includes enzymes of cofactor biosynthesis pathways (CoaC/ThiD) and a non-ribosomal peptide synthetase pathway (PA1217). Qst therefore represents an exquisite example of intricate reprogramming of the bacterium by a phage, which may be further exploited as tool to combat antibiotic resistant bacterial pathogens.
Collapse
Affiliation(s)
- Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | | | - Michael Zimmermann
- Institute of Molecular Systems Biology, ETH Zurich, 8092 Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, 8092 Zürich, Switzerland
| | - Jeroen De Smet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Laurens Muchez
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Maries Lissens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Ines Staes
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium.
| |
Collapse
|
32
|
Han ML, Nang SC, Lin YW, Zhu Y, Yu HH, Wickremasinghe H, Barlow CK, Creek DJ, Crawford S, Rao G, Dai C, Barr JJ, Chan K, Turner Schooley R, Velkov T, Li J. Comparative metabolomics revealed key pathways associated with the synergistic killing of multidrug-resistant Klebsiella pneumoniae by a bacteriophage-polymyxin combination. Comput Struct Biotechnol J 2022; 20:485-495. [PMID: 35070170 PMCID: PMC8760530 DOI: 10.1016/j.csbj.2021.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/21/2023] Open
Abstract
Resistance to the last-line polymyxins is emerging in multidrug-resistant Klebsiella pneumoniae and phage therapy is a promising alternative. However, phage monotherapy often rapidly causes resistance and few studies have examined antibiotic-phage combinations against K. pneumoniae. Here, we investigated the combination of polymyxin B with a novel phage pK8 against an mcr-1-carrying polymyxin-resistant clinical isolate Kp II-503 (polymyxin B MIC, 8 mg/L). The phage genome was sequenced and bacterial metabolomes were analysed at 4 and 24 h following the treatment with polymyxin B (16 mg/L), phage pK8 (102 PFU/mL) and their combination. Minimal metabolic changes across 24 h were observed with polymyxin B alone; whereas a significant inhibition of the citrate cycle, pentose phosphate pathway, amino acid and nucleotide metabolism occurred with the phage-polymyxin combination at both 4 and 24 h, but with phage alone only at 4 h. The development of resistance to phage alone was associated with enhanced membrane lipid and decreased amino acid biosynthesis in Kp II-503. Notably, cAMP, cGMP and cCMP were significantly enriched (3.1–6.6 log2fold) by phage alone and the combination only at 4 h. This is the first systems pharmacology study to investigate the enhanced bacterial killing by polymyxin-phage combination and provides important mechanistic information on phage killing, resistance and antibiotic-phage combination in K. pneumoniae.
Collapse
|
33
|
Malone LM, Hampton HG, Morgan XC, Fineran PC. Type I CRISPR-Cas provides robust immunity but incomplete attenuation of phage-induced cellular stress. Nucleic Acids Res 2021; 50:160-174. [PMID: 34928385 PMCID: PMC8754663 DOI: 10.1093/nar/gkab1210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/14/2022] Open
Abstract
During infection, phages manipulate bacteria to redirect metabolism towards viral proliferation. To counteract phages, some bacteria employ CRISPR-Cas systems that provide adaptive immunity. While CRISPR-Cas mechanisms have been studied extensively, their effects on both the phage and the host during phage infection remains poorly understood. Here, we analysed the infection of Serratia by a siphovirus (JS26) and the transcriptomic response with, or without type I-E or I-F CRISPR-Cas immunity. In non-immune Serratia, phage infection altered bacterial metabolism by upregulating anaerobic respiration and amino acid biosynthesis genes, while flagella production was suppressed. Furthermore, phage proliferation required a late-expressed viral Cas4 homologue, which did not influence CRISPR adaptation. While type I-E and I-F immunity provided robust defence against phage infection, phage development still impacted the bacterial host. Moreover, DNA repair and SOS response pathways were upregulated during type I immunity. We also discovered that the type I-F system is controlled by a positive autoregulatory feedback loop that is activated upon phage targeting during type I-F immunity, leading to a controlled anti-phage response. Overall, our results provide new insight into phage-host dynamics and the impact of CRISPR immunity within the infected cell.
Collapse
Affiliation(s)
- Lucia M Malone
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Hannah G Hampton
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Xochitl C Morgan
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
34
|
DNA Viral Diversity, Abundance, and Functional Potential Vary across Grassland Soils with a Range of Historical Moisture Regimes. mBio 2021; 12:e0259521. [PMID: 34724822 PMCID: PMC8567247 DOI: 10.1128/mbio.02595-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Soil viruses are abundant, but the influence of the environment and climate on soil viruses remains poorly understood. Here, we addressed this gap by comparing the diversity, abundance, lifestyle, and metabolic potential of DNA viruses in three grassland soils with historical differences in average annual precipitation, low in eastern Washington (WA), high in Iowa (IA), and intermediate in Kansas (KS). Bioinformatics analyses were applied to identify a total of 2,631 viral contigs, including 14 complete viral genomes from three deep metagenomes (1 terabase [Tb] each) that were sequenced from bulk soil DNA. An additional three replicate metagenomes (∼0.5 Tb each) were obtained from each location for statistical comparisons. Identified viruses were primarily bacteriophages targeting dominant bacterial taxa. Both viral and host diversity were higher in soil with lower precipitation. Viral abundance was also significantly higher in the arid WA location than in IA and KS. More lysogenic markers and fewer clustered regularly interspaced short palindromic repeats (CRISPR) spacer hits were found in WA, reflecting more lysogeny in historically drier soil. More putative auxiliary metabolic genes (AMGs) were also detected in WA than in the historically wetter locations. The AMGs occurring in 18 pathways could potentially contribute to carbon metabolism and energy acquisition in their hosts. Structural equation modeling (SEM) suggested that historical precipitation influenced viral life cycle and selection of AMGs. The observed and predicted relationships between soil viruses and various biotic and abiotic variables have value for predicting viral responses to environmental change.
Collapse
|
35
|
Comparison of bacteria disintegration methods and their influence on data analysis in metabolomics. Sci Rep 2021; 11:20859. [PMID: 34675363 PMCID: PMC8531443 DOI: 10.1038/s41598-021-99873-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolomic experiments usually contain many different steps, each of which can strongly influence the obtained results. In this work, metabolic analyses of six bacterial strains were performed in light of three different bacterial cell disintegration methods. Three strains were gram-negative (Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae), and three were gram-positive (Corynebacterium glutamicum, Bacillus cereus, and Enterococcus faecalis). For extraction, the methanol–water extraction method (1:1) was chosen. To compare the efficiency of different cell disintegration methods, sonication, sand mill, and tissue lyser were used. For bacterial extract metabolite analysis, 1H NMR together with univariate and multivariate analyses were applied. The obtained results showed that metabolite concentrations are strongly dependent on the cell lysing methodology used and are different for various bacterial strains. The results clearly show that one of the disruption methods gives the highest concentration for most identified compounds (e. g. sand mill for E. faecalis and tissue lyser for B. cereus). This study indicated that the comparison of samples prepared by different procedures can lead to false or imprecise results, leaving an imprint of the disintegration method. Furthermore, the presented results showed that NMR might be a useful bacterial strain identification and differentiation method. In addition to disintegration method comparison, the metabolic profiles of each elaborated strain were analyzed, and each exhibited its metabolic profile. Some metabolites were identified by the 1H NMR method in only one strain. The results of multivariate data analyses (PCA) show that regardless of the disintegration method used, the strain group can be identified. Presented results can be significant for all types of microbial studies containing the metabolomic targeted and non-targeted analysis.
Collapse
|
36
|
Trubl G, Kimbrel JA, Liquet-Gonzalez J, Nuccio EE, Weber PK, Pett-Ridge J, Jansson JK, Waldrop MP, Blazewicz SJ. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. MICROBIOME 2021; 9:208. [PMID: 34663463 PMCID: PMC8522061 DOI: 10.1186/s40168-021-01154-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/19/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Winter carbon loss in northern ecosystems is estimated to be greater than the average growing season carbon uptake and is primarily driven by microbial decomposers. Viruses modulate microbial carbon cycling via induced mortality and metabolic controls, but it is unknown whether viruses are active under winter conditions (anoxic and sub-freezing temperatures). RESULTS We used stable isotope probing (SIP) targeted metagenomics to reveal the genomic potential of active soil microbial populations under simulated winter conditions, with an emphasis on viruses and virus-host dynamics. Arctic peat soils from the Bonanza Creek Long-Term Ecological Research site in Alaska were incubated under sub-freezing anoxic conditions with H218O or natural abundance water for 184 and 370 days. We sequenced 23 SIP-metagenomes and measured carbon dioxide (CO2) efflux throughout the experiment. We identified 46 bacterial populations (spanning 9 phyla) and 243 viral populations that actively took up 18O in soil and respired CO2 throughout the incubation. Active bacterial populations represented only a small portion of the detected microbial community and were capable of fermentation and organic matter degradation. In contrast, active viral populations represented a large portion of the detected viral community and one third were linked to active bacterial populations. We identified 86 auxiliary metabolic genes and other environmentally relevant genes. The majority of these genes were carried by active viral populations and had diverse functions such as carbon utilization and scavenging that could provide their host with a fitness advantage for utilizing much-needed carbon sources or acquiring essential nutrients. CONCLUSIONS Overall, there was a stark difference in the identity and function of the active bacterial and viral community compared to the unlabeled community that would have been overlooked with a non-targeted standard metagenomic analysis. Our results illustrate that substantial active virus-host interactions occur in sub-freezing anoxic conditions and highlight viruses as a major community-structuring agent that likely modulates carbon loss in peat soils during winter, which may be pivotal for understanding the future fate of arctic soils' vast carbon stocks. Video abstract.
Collapse
Affiliation(s)
- Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Jeffrey A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jose Liquet-Gonzalez
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Erin E Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Department of Life and Environmental Sciences, University of California, Merced, CA, 95343, USA
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mark P Waldrop
- U.S. Geological Survey, Geology, Minerals, Energy, and Geophysics Science Center, Menlo Park, CA, USA
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
37
|
Jacobson TB, Callaghan MM, Amador-Noguez D. Hostile Takeover: How Viruses Reprogram Prokaryotic Metabolism. Annu Rev Microbiol 2021; 75:515-539. [PMID: 34348026 DOI: 10.1146/annurev-micro-060621-043448] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reproduce, prokaryotic viruses must hijack the cellular machinery of their hosts and redirect it toward the production of viral particles. While takeover of the host replication and protein synthesis apparatus has long been considered an essential feature of infection, recent studies indicate that extensive reprogramming of host primary metabolism is a widespread phenomenon among prokaryotic viruses that is required to fulfill the biosynthetic needs of virion production. In this review we provide an overview of the most significant recent findings regarding virus-induced reprogramming of prokaryotic metabolism and suggest how quantitative systems biology approaches may be used to provide a holistic understanding of metabolic remodeling during lytic viral infection. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tyler B Jacobson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Melanie M Callaghan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
38
|
Mangalea MR, Paez-Espino D, Kieft K, Chatterjee A, Chriswell ME, Seifert JA, Feser ML, Demoruelle MK, Sakatos A, Anantharaman K, Deane KD, Kuhn KA, Holers VM, Duerkop BA. Individuals at risk for rheumatoid arthritis harbor differential intestinal bacteriophage communities with distinct metabolic potential. Cell Host Microbe 2021; 29:726-739.e5. [PMID: 33957082 PMCID: PMC8186507 DOI: 10.1016/j.chom.2021.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized in seropositive individuals by the presence of anti-cyclic citrullinated protein (CCP) antibodies. RA is linked to the intestinal microbiota, yet the association of microbes with CCP serology and their contribution to RA is unclear. We describe intestinal phage communities of individuals at risk for developing RA, with or without anti-CCP antibodies, whose first-degree relatives have been diagnosed with RA. We show that at-risk individuals harbor intestinal phage compositions that diverge based on CCP serology, are dominated by Streptococcaceae, Bacteroidaceae, and Lachnospiraceae phages, and may originate from disparate ecosystems. These phages encode unique repertoires of auxiliary metabolic genes, which associate with anti-CCP status, suggesting that these phages directly influence the metabolic and immunomodulatory capability of the microbiota. This work sets the stage for the use of phages as preclinical biomarkers and provides insight into a possible microbial-based causation of RA disease development.
Collapse
Affiliation(s)
- Mihnea R Mangalea
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Meagan E Chriswell
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer A Seifert
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marie L Feser
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - M Kristen Demoruelle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristine A Kuhn
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
39
|
Moon K, Cho JC. Metaviromics coupled with phage-host identification to open the viral 'black box'. J Microbiol 2021; 59:311-323. [PMID: 33624268 DOI: 10.1007/s12275-021-1016-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/22/2022]
Abstract
Viruses are found in almost all biomes on Earth, with bacteriophages (phages) accounting for the majority of viral particles in most ecosystems. Phages have been isolated from natural environments using the plaque assay and liquid medium-based dilution culturing. However, phage cultivation is restricted by the current limitations in the number of culturable bacterial strains. Unlike prokaryotes, which possess universally conserved 16S rRNA genes, phages lack universal marker genes for viral taxonomy, thus restricting cultureindependent analyses of viral diversity. To circumvent these limitations, shotgun viral metagenome sequencing (i.e., metaviromics) has been developed to enable the extensive sequencing of a variety of viral particles present in the environment and is now widely used. Using metaviromics, numerous studies on viral communities have been conducted in oceans, lakes, rivers, and soils, resulting in many novel phage sequences. Furthermore, auxiliary metabolic genes such as ammonic monooxygenase C and β-lactamase have been discovered in viral contigs assembled from viral metagenomes. Current attempts to identify putative bacterial hosts of viral metagenome sequences based on sequence homology have been limited due to viral sequence variations. Therefore, culture-independent approaches have been developed to predict bacterial hosts using single-cell genomics and fluorescentlabeling. This review focuses on recent viral metagenome studies conducted in natural environments, especially in aquatic ecosystems, and their contributions to phage ecology. Here, we concluded that although metaviromics is a key tool for the study of viral ecology, this approach must be supplemented with phage-host identification, which in turn requires the cultivation of phage-bacteria systems.
Collapse
Affiliation(s)
- Kira Moon
- Biological Resources Utilization Division, Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
40
|
Huang X, Jiao N, Zhang R. The genomic content and context of auxiliary metabolic genes in roseophages. Environ Microbiol 2021; 23:3743-3757. [PMID: 33511765 DOI: 10.1111/1462-2920.15412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/24/2021] [Indexed: 11/26/2022]
Abstract
Marine bacteriophages frequently possess auxiliary metabolic genes (AMGs) that accelerate host metabolism during phage infection. The significance of AMGs in phage infecting the ecologically important Roseobacter clade, found predominantly in marine environments, remains to be determined. Here, we analysed the distribution and genomic context of 180 AMGs, annotated into 20 types, across 50 roseophage genomes. Roseophages share seven high-frequency AMGs (trx, grx, RNR, thyX, DCD, phoH, and mazG), most of them involved in the nucleotide biosynthesis pathway that represent conserved intra and inter operational taxonomic units (OTUs), and share ≥97% full-length DNA sequence similarity. Sporadic AMGs (dUTPase, lexA, degS, Que, NAPRT, AHL, pcnB, ctrA, RTX, RNR-nrdA, RNR-nrdE, wclP, and flgJ), present in only one or two OTUs, show high functional diversity. The roseophage AMG repertoire weakly correlates with environmental factors, while host range partially explains the sporadic AMG distribution. Locally co-linear blocks distribution index (LDI) analysis indicated that high-frequency roseopodovirus AMGs are restricted to particular genomic islands, possibly originating from limited historical acquisition events. Low-frequency roseopodovirus AMGs and all roseosiphovirus AMGs have high LDI values, implying multiple historical acquisition events. In summary, roseophages have acquired a range of AMGs through horizontal gene transfer, and the forces shaping the evolution of roseophages are described.
Collapse
Affiliation(s)
- Xingyu Huang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
41
|
van Kessel JC, Mukherjee S. Another battle won in the phage-host arms race: Pseudomonas phage blocks quorum sensing regulator LasR. Mol Cell 2021; 81:420-422. [PMID: 33545057 DOI: 10.1016/j.molcel.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Shah et al. (2021) uncover phage-encoded protein Aqs1 that tactically blocks Pseudomonas aeruginosa quorum-sensing receptor LasR immediately upon infection to counteract the host's quorum-sensing program, a defense strategy that is likely conserved in other phages.
Collapse
Affiliation(s)
- Julia C van Kessel
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | - Sampriti Mukherjee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
42
|
A Grad-seq View of RNA and Protein Complexes in Pseudomonas aeruginosa under Standard and Bacteriophage Predation Conditions. mBio 2021; 12:mBio.03454-20. [PMID: 33563827 PMCID: PMC8545117 DOI: 10.1128/mbio.03454-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Gram-negative rod-shaped bacterium Pseudomonas aeruginosa is not only a major cause of nosocomial infections but also serves as a model species of bacterial RNA biology. While its transcriptome architecture and posttranscriptional regulation through the RNA-binding proteins Hfq, RsmA, and RsmN have been studied in detail, global information about stable RNA-protein complexes in this human pathogen is currently lacking. Here, we implement gradient profiling by sequencing (Grad-seq) in exponentially growing P. aeruginosa cells to comprehensively predict RNA and protein complexes, based on glycerol gradient sedimentation profiles of >73% of all transcripts and ∼40% of all proteins. As to benchmarking, our global profiles readily reported complexes of stable RNAs of P. aeruginosa, including 6S RNA with RNA polymerase and associated product RNAs (pRNAs). We observe specific clusters of noncoding RNAs, which correlate with Hfq and RsmA/N, and provide a first hint that P. aeruginosa expresses a ProQ-like FinO domain-containing RNA-binding protein. To understand how biological stress may perturb cellular RNA/protein complexes, we performed Grad-seq after infection by the bacteriophage ΦKZ. This model phage, which has a well-defined transcription profile during host takeover, displayed efficient translational utilization of phage mRNAs and tRNAs, as evident from their increased cosedimentation with ribosomal subunits. Additionally, Grad-seq experimentally determines previously overlooked phage-encoded noncoding RNAs. Taken together, the Pseudomonas protein and RNA complex data provided here will pave the way to a better understanding of RNA-protein interactions during viral predation of the bacterial cell.
Collapse
|
43
|
Krylov V, Bourkaltseva M, Pleteneva E, Shaburova O, Krylov S, Karaulov A, Zhavoronok S, Svitich O, Zverev V. Phage phiKZ-The First of Giants. Viruses 2021; 13:149. [PMID: 33498475 PMCID: PMC7909554 DOI: 10.3390/v13020149] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
The paper covers the history of the discovery and description of phiKZ, the first known giant bacteriophage active on Pseudomonas aeruginosa. It also describes its unique features, especially the characteristic manner of DNA packing in the head around a cylinder-shaped structure ("inner body"), which probably governs an ordered and tight packaging of the phage genome. Important properties of phiKZ-like phages include a wide range of lytic activity and the blue opalescence of their negative colonies, and provide a background for the search and discovery of new P. aeruginosa giant phages. The importance of the phiKZ species and of other giant phage species in practical phage therapy is noted given their broad use in commercial phage preparations.
Collapse
Affiliation(s)
- Victor Krylov
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Maria Bourkaltseva
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Elena Pleteneva
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Olga Shaburova
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Sergey Krylov
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119146 Moscow, Russia;
| | - Sergey Zhavoronok
- Department of Infectious Diseases, Belarusian State Medical University, 220116 Minsk, Belarus;
| | - Oxana Svitich
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
- Faculty of Preventive Medicine, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119146 Moscow, Russia
| | - Vitaly Zverev
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
- Faculty of Preventive Medicine, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119146 Moscow, Russia
| |
Collapse
|
44
|
Shah M, Taylor VL, Bona D, Tsao Y, Stanley SY, Pimentel-Elardo SM, McCallum M, Bondy-Denomy J, Howell PL, Nodwell JR, Davidson AR, Moraes TF, Maxwell KL. A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. Mol Cell 2021; 81:571-583.e6. [PMID: 33412111 DOI: 10.1016/j.molcel.2020.12.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022]
Abstract
The arms race between bacteria and phages has led to the evolution of diverse anti-phage defenses, several of which are controlled by quorum-sensing pathways. In this work, we characterize a quorum-sensing anti-activator protein, Aqs1, found in Pseudomonas phage DMS3. We show that Aqs1 inhibits LasR, the master regulator of quorum sensing, and present the crystal structure of the Aqs1-LasR complex. The 69-residue Aqs1 protein also inhibits PilB, the type IV pilus assembly ATPase protein, which blocks superinfection by phages that require the pilus for infection. This study highlights the remarkable ability of small phage proteins to bind multiple host proteins and disrupt key biological pathways. As quorum sensing influences various anti-phage defenses, Aqs1 provides a mechanism by which infecting phages might simultaneously dampen multiple defenses. Because quorum-sensing systems are broadly distributed across bacteria, this mechanism of phage counter-defense may play an important role in phage-host evolutionary dynamics.
Collapse
Affiliation(s)
- Megha Shah
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Véronique L Taylor
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Diane Bona
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Yvonne Tsao
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Sabrina Y Stanley
- Department of Molecular Genetics, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Sheila M Pimentel-Elardo
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Matthew McCallum
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Program in Molecular Structure & Function, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - P Lynne Howell
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Program in Molecular Structure & Function, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Alan R Davidson
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Department of Molecular Genetics, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
45
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
46
|
Wicke L, Ponath F, Coppens L, Gerovac M, Lavigne R, Vogel J. Introducing differential RNA-seq mapping to track the early infection phase for Pseudomonas phage ɸKZ. RNA Biol 2020; 18:1099-1110. [PMID: 33103565 PMCID: PMC8244752 DOI: 10.1080/15476286.2020.1827785] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As part of the ongoing renaissance of phage biology, more phage genomes are becoming available through DNA sequencing. However, our understanding of the transcriptome architecture that allows these genomes to be expressed during host infection is generally poor. Transcription start sites (TSSs) and operons have been mapped for very few phages, and an annotated global RNA map of a phage – alone or together with its infected host – is not available at all. Here, we applied differential RNA-seq (dRNA-seq) to study the early, host takeover phase of infection by assessing the transcriptome structure of Pseudomonas aeruginosa jumbo phage ɸKZ, a model phage for viral genetics and structural research. This map substantially expands the number of early expressed viral genes, defining TSSs that are active ten minutes after ɸKZ infection. Simultaneously, we record gene expression changes in the host transcriptome during this critical metabolism conversion. In addition to previously reported upregulation of genes associated with amino acid metabolism, we observe strong activation of genes with functions in biofilm formation (cdrAB) and iron storage (bfrB), as well as an activation of the antitoxin ParD. Conversely, ɸKZ infection rapidly down-regulates complexes IV and V of oxidative phosphorylation (atpCDGHF and cyoABCDE). Taken together, our data provide new insights into the transcriptional organization and infection process of the giant bacteriophage ɸKZ and adds a framework for the genome-wide transcriptomic analysis of phage–host interactions.
Collapse
Affiliation(s)
- Laura Wicke
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany.,Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Lucas Coppens
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| |
Collapse
|
47
|
Maturation of Pseudo-Nucleus Compartment in P. aeruginosa, Infected with Giant phiKZ Phage. Viruses 2020; 12:v12101197. [PMID: 33096802 PMCID: PMC7589130 DOI: 10.3390/v12101197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022] Open
Abstract
The giant phiKZ phage infection induces the appearance of a pseudo-nucleus inside the bacterial cytoplasm. Here, we used RT-PCR, fluorescent in situ hybridization (FISH), electron tomography, and analytical electron microscopy to study the morphology of this unique nucleus-like shell and to demonstrate the distribution of phiKZ and bacterial DNA in infected Pseudomonas aeruginosa cells. The maturation of the pseudo-nucleus was traced in short intervals for 40 min after infection and revealed the continuous spatial separation of the phage and host DNA. Immediately after ejection, phage DNA was located inside the newly-identified round compartments; at a later infection stage, it was replicated inside the pseudo-nucleus; in the mature pseudo-nucleus, a saturated internal network of filaments was observed. This network consisted of DNA bundles in complex with DNA-binding proteins. On the other hand, the bacterial nucleoid underwent significant rearrangements during phage infection, yet the host DNA did not completely degrade until at least 40 min after phage application. Energy dispersive x-ray spectroscopy (EDX) analysis revealed that, during the infection, the sulfur content in the bacterial cytoplasm increased, which suggests an increase of methionine-rich DNA-binding protein synthesis, whose role is to protect the bacterial DNA from stress caused by infection.
Collapse
|
48
|
Lammens EM, Nikel PI, Lavigne R. Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nat Commun 2020; 11:5294. [PMID: 33082347 PMCID: PMC7576135 DOI: 10.1038/s41467-020-19124-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022] Open
Abstract
Non-model bacteria like Pseudomonas putida, Lactococcus lactis and other species have unique and versatile metabolisms, offering unique opportunities for Synthetic Biology (SynBio). However, key genome editing and recombineering tools require optimization and large-scale multiplexing to unlock the full SynBio potential of these bacteria. In addition, the limited availability of a set of characterized, species-specific biological parts hampers the construction of reliable genetic circuitry. Mining of currently available, diverse bacteriophages could complete the SynBio toolbox, as they constitute an unexplored treasure trove for fully adapted metabolic modulators and orthogonally-functioning parts, driven by the longstanding co-evolution between phage and host.
Collapse
Affiliation(s)
- Eveline-Marie Lammens
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, DK, Denmark
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium.
| |
Collapse
|
49
|
Tuttle MJ, Buchan A. Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence. Environ Microbiol 2020; 22:4919-4933. [PMID: 32935433 DOI: 10.1111/1462-2920.15233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
In the oceans, viruses that infect bacteria (phages) influence a variety of microbially mediated processes that drive global biogeochemical cycles. The nature of their influence is dependent upon infection mode, be it lytic or lysogenic. Temperate phages are predicted to be prevalent in marine systems where they are expected to execute both types of infection modes. Understanding the range and outcomes of temperate phage-host interactions is fundamental for evaluating their ecological impact. Here, we (i) review phage-mediated rewiring of host metabolism, with a focus on marine systems, (ii) consider the range and nature of temperate phage-host interactions, and (iii) draw on studies of cultivated model systems to examine the consequences of lysogeny among several dominant marine bacterial lineages. We also readdress the prevalence of lysogeny among marine bacteria by probing a collection of 1239 publicly available bacterial genomes, representing cultured and uncultivated strains, for evidence of complete prophages. Our conservative analysis, anticipated to underestimate true prevalence, predicts 18% of the genomes examined contain at least one prophage, the majority (97%) were found within genomes of cultured isolates. These results highlight the need for cultivation of additional model systems to better capture the diversity of temperate phage-host interactions in the oceans.
Collapse
Affiliation(s)
- Matthew J Tuttle
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
50
|
Hernández S, Vives MJ. Phages in Anaerobic Systems. Viruses 2020; 12:E1091. [PMID: 32993161 PMCID: PMC7599459 DOI: 10.3390/v12101091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of phages in 1915, these viruses have been studied mostly in aerobic systems, or without considering the availability of oxygen as a variable that may affect the interaction between the virus and its host. However, with such great abundance of anaerobic environments on the planet, the effect that a lack of oxygen can have on the phage-bacteria relationship is an important consideration. There are few studies on obligate anaerobes that investigate the role of anoxia in causing infection. In the case of facultative anaerobes, it is a well-known fact that their shifting from an aerobic environment to an anaerobic one involves metabolic changes in the bacteria. As the phage infection process depends on the metabolic state of the host bacteria, these changes are also expected to affect the phage infection cycle. This review summarizes the available information on phages active on facultative and obligate anaerobes and discusses how anaerobiosis can be an important parameter in phage infection, especially among facultative anaerobes.
Collapse
Affiliation(s)
- Santiago Hernández
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Martha J. Vives
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia;
- School of Sciences, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|