1
|
Perchat S, Nevers A, Kranzler M, Ehling-Schulz M, Lereclus D, Gohar M. The megaplasmid pCER270 of Bacillus cereus emetic strain affects the timing of the sporulation process, spore resistance properties, and germination. Appl Environ Microbiol 2024; 90:e0102924. [PMID: 39158315 PMCID: PMC11409700 DOI: 10.1128/aem.01029-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The Bacillus cereus group includes closely related spore-forming Gram-positive bacteria. In this group, plasmids play a crucial role in species differentiation and are essential for pathogenesis and adaptation to ecological niches. The B. cereus emetic strains are characterized by the presence of the pCER270 megaplasmid, which encodes the non-ribosomal peptide synthetase for the production of cereulide, the emetic toxin. This plasmid carries several genes that may be involved in the sporulation process. Furthermore, a transcriptomic analysis has revealed that pCER270 influences the expression of chromosome genes, particularly under sporulation conditions. In this study, we investigated the role of pCER270 on spore properties in different species of the B. cereus group. We showed that pCER270 plays a role in spore wet heat resistance and germination, with varying degrees of impact depending on the genetic background. In addition, pCER270 ensures that sporulation occurs at the appropriate time by delaying the expression of sporulation genes. This regulation of sporulation timing is controlled by the pCER270-borne Rap-Phr system, which likely regulates the phosphorylation state of Spo0A. Acquisition of the pCER270 plasmid by new strains could give them an advantage in adapting to new environments and lead to the emergence of new pathogenic strains. IMPORTANCE The acquisition of new mobile genetic elements, such as plasmids, is essential for the pathogenesis and adaptation of bacteria belonging to the Bacillus cereus group. This can confer new phenotypic traits and beneficial functions that enable bacteria to adapt to changing environments and colonize new ecological niches. Emetic B. cereus strains cause food poisoning linked to the production of cereulide, the emetic toxin whose synthesis is due to the presence of plasmid pCER270. In the environment, cereulide provides a competitive advantage in producing bacteria against various competitors or predators. This study demonstrates that pCER270 also regulates the sporulation process, resulting in spores with improved heat resistance and germination capacity. The transfer of plasmid pCER270 among different strains of the B. cereus group may enhance their adaptation to new environments. This raises the question of the emergence of new pathogenic strains, which could pose a serious threat to human health.
Collapse
Affiliation(s)
- Stéphane Perchat
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Alicia Nevers
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Markus Kranzler
- Department of Biological Sciences and Pathobiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Monika Ehling-Schulz
- Department of Biological Sciences and Pathobiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Didier Lereclus
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Michel Gohar
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
2
|
Heckler C, Vale MG, Canales HDS, Stradiotto GC, Giordano ALPL, Schreiber AZ, Sant'Ana AS. Spore-forming bacteria in gelatin: Characterization, identification by 16S rRNA and MALDI-TOF mass spectrometry (MS), and presence of heat resistance and virulence genes. Int J Food Microbiol 2024; 422:110813. [PMID: 38970997 DOI: 10.1016/j.ijfoodmicro.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Gelatin, a versatile protein derived from collagen, is widely used in the food, pharmaceutical and medical sectors. However, bacterial contamination by spore-forming bacteria during gelatin processing represents a significant concern for product safety and quality. In this study, an investigation was carried out to explore the heat and chemical resistance, as well as the identification and characterization of spore-forming bacteria isolated from gelatin processing. The methodologies involved chemical resistance tests with drastic pH in microplates and thermal resistance tests in capillary tubes of various isolates obtained at different processing stages. In addition, phenotypic and genotypic analyses were carried out to characterize the most resistant isolates of spore-forming bacteria. The findings of this study revealed the presence of several species, including Bacillus cereus, Bacillus licheniformis, Bacillus sonorensis, Bacillus subtilis, Geobacillus stearothermophilus, and Clostridium sporogenes, with some isolates exhibiting remarkable chemical and heat resistances. In addition, a significant proportion of the most resistant isolates showed gelatinase activity (n = 19/21; 90.5 %) and the presence of heat resistance (n = 5/21; 23.8 %), and virulence genes (n = 11/21; 52.4 %). The results of this study suggest that interventions should be done in quality control practices and that process parameter adjustments and effective contamination reduction strategies should be implemented through gelatin processing.
Collapse
Affiliation(s)
- Caroline Heckler
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Matheus G Vale
- Department of Integrated Systems, Faculty of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Héctor D S Canales
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Graziele C Stradiotto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Luisa P L Giordano
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Angelica Z Schreiber
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Singh SK, Ali MM, Mok JH, Korza G, Setlow P, Sastry SK. Mechanistic insight into roles of α/β-type small acid-soluble proteins, RecA, and inner membrane proteins during bacterial spore inactivation by ohmic heating. J Appl Microbiol 2024; 135:lxae151. [PMID: 38906847 DOI: 10.1093/jambio/lxae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
AIM Ohmic heating (OH) (i.e. heating by electric field) more effectively kills bacterial spores than traditional wet heating, yet its mechanism remains poorly understood. This study investigates the accelerated spore inactivation mechanism using genetically modified spores. METHODS AND RESULTS We investigated the effects of OH and conventional heating (CH) on various genetically modified strains of Bacillus subtilis: isogenic PS533 (wild type_1), PS578 [lacking spores' α/β-type small acid-soluble proteins (SASP)], PS2318 (lacking recA, encoding a DNA repair protein), isogenic PS4461 (wild type_2), and PS4462 (having the 2Duf protein in spores, which increases spore wet heat resistance and decreases spore inner membrane fluidity). Removal of SASP brought the inactivation profiles of OH and CH closer, suggesting the interaction of these proteins with the field. However, the reemergence of a difference between CH and OH killing for SASP-deficient spores at the highest tested field strength suggested there is also interaction of the field with another spore core component. Additionally, RecA-deficient spores yielded results like those with the wild-type spores for CH, while the OH resistance of this mutant increased at the lower tested temperatures, implying that RecA or DNA are a possible additional target for the electric field. Addition of the 2Duf protein markedly increased spore resistance both to CH and OH, although some acceleration of killing was observed with OH at 50 V/cm. CONCLUSIONS In summary, both membrane fluidity and interaction of the spore core proteins with electric field are key factors in enhanced spore killing with electric field-heat combinations.
Collapse
Affiliation(s)
- Shyam K Singh
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Mohamed Medhat Ali
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Jin Hong Mok
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| | - George Korza
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030, United States
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030, United States
| | - Sudhir K Sastry
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
4
|
Chincha AAIA, Marone MP, Pia AKR, Freire L, Amorim-Neto DP, Carazzolle MF, Sant'Ana AS. Phenotypic, genotypic, and resistome of mesophilic spore-forming bacteria isolated from pasteurized liquid whole egg. Food Res Int 2024; 184:114215. [PMID: 38609213 DOI: 10.1016/j.foodres.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024]
Abstract
The production of whole-liquid eggs is of significant economic and nutritional importance. This study aimed to assess the phenotypic and genotypic diversity of mesophilic aerobic spore-forming bacteria (n = 200) isolated from pasteurized whole liquid egg and liquid egg yolk. The majority of the isolates were identified as belonging to the genera Bacillus (86 %), followed by Brevibacillus (10 %) and Lysinibacillus (4 %). For the phenotypic characterization, isolates were subjected to various heat shocks, with the most significant reductions observed at 80 °C/30 min and 90 °C/10 min for isolates recovered from raw materials. On the other hand, the decrease was similar for isolates recovered from raw material and final product at 100 °C/5 min and 110 °C/5 min. Genotypic genes related to heat resistance (cdnL, spoVAD, dacB, clpC, dnaK, and yitF/Tn1546) were examined for genotypic characterization. The dnaK gene showed a positive correlation with the highest thermal condition tested (110 °C/5 min), while 100 °C/5 min had the highest number of positively correlated genes (clpC, cdnL, yitF/Tn1546, and spoVAD). Whole Genome Sequencing of four strains revealed genes related to sporulation, structure formation, initiation and regulation, stress response, and DNA repair in vegetative cells. The findings of this study indicate that these mesophilic aerobic spore-forming bacteria may adopt several strategies to persist through the process and reach the final product. As the inactivation of these microorganisms during egg processing is challenging, preventing raw materials contamination and their establishment in processing premises must be reinforced.
Collapse
Affiliation(s)
- Alexandra A I A Chincha
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marina P Marone
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil
| | - Arthur K R Pia
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Luisa Freire
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Campo Grande, Mato Grosso do Sul, Brazil
| | - Dionisio P Amorim-Neto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marcelo F Carazzolle
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil; Center for Computing and Engineering Sciences, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
5
|
Kim HS, Noh MH, White EM, Kandefer MV, Wright AF, Datta D, Lim HG, Smiggs E, Locklin JJ, Rahman MA, Feist AM, Pokorski JK. Biocomposite thermoplastic polyurethanes containing evolved bacterial spores as living fillers to facilitate polymer disintegration. Nat Commun 2024; 15:3338. [PMID: 38688899 PMCID: PMC11061138 DOI: 10.1038/s41467-024-47132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
The field of hybrid engineered living materials seeks to pair living organisms with synthetic materials to generate biocomposite materials with augmented function since living systems can provide highly-programmable and complex behavior. Engineered living materials have typically been fabricated using techniques in benign aqueous environments, limiting their application. In this work, biocomposite fabrication is demonstrated in which spores from polymer-degrading bacteria are incorporated into a thermoplastic polyurethane using high-temperature melt extrusion. Bacteria are engineered using adaptive laboratory evolution to improve their heat tolerance to ensure nearly complete cell survivability during manufacturing at 135 °C. Furthermore, the overall tensile properties of spore-filled thermoplastic polyurethanes are substantially improved, resulting in a significant improvement in toughness. The biocomposites facilitate disintegration in compost in the absence of a microbe-rich environment. Finally, embedded spores demonstrate a rationally programmed function, expressing green fluorescent protein. This research provides a scalable method to fabricate advanced biocomposite materials in industrially-compatible processes.
Collapse
Affiliation(s)
- Han Sol Kim
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Myung Hyun Noh
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30 Jongga-ro, Ulsan, 44429, Republic of Korea
| | - Evan M White
- New Materials Institute, University of Georgia, Athens, GA, 30602, USA
| | | | - Austin F Wright
- New Materials Institute, University of Georgia, Athens, GA, 30602, USA
| | - Debika Datta
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Hyun Gyu Lim
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Ethan Smiggs
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Jason J Locklin
- New Materials Institute, University of Georgia, Athens, GA, 30602, USA
| | - Md Arifur Rahman
- Thermoplastic Polyurethane Research, BASF Corporation, 1609 Biddle Ave., Wyandotte, MI, 48192, USA.
| | - Adam M Feist
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark.
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Gao Y, Amon JD, Brogan AP, Artzi L, Ramírez-Guadiana FH, Cofsky JC, Kruse AC, Rudner DZ. SpoVAF and FigP assemble into oligomeric ion channels that enhance spore germination. Genes Dev 2024; 38:31-45. [PMID: 38242633 PMCID: PMC10903944 DOI: 10.1101/gad.351353.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Bacterial spores can remain dormant for decades yet rapidly germinate and resume growth in response to nutrients. GerA family receptors that sense and respond to these signals have recently been shown to oligomerize into nutrient-gated ion channels. Ion release initiates exit from dormancy. Here, we report that a distinct ion channel, composed of SpoVAF (5AF) and its newly discovered partner protein, YqhR (FigP), amplifies the response. At high germinant concentrations, 5AF/FigP accelerate germination; at low concentrations, this complex becomes critical for exit from dormancy. 5AF is homologous to the channel-forming subunit of GerA family receptors and is predicted to oligomerize around a central pore. 5AF mutations predicted to widen the channel cause constitutive germination during spore formation and membrane depolarization in vegetative cells. Narrow-channel mutants are impaired in germination. A screen for suppressors of a constitutively germinating 5AF mutant identified FigP as an essential cofactor of 5AF activity. We demonstrate that 5AF and FigP interact and colocalize with GerA family receptors in spores. Finally, we show that 5AF/FigP accelerate germination in B. subtilis spores that have nutrient receptors from another species. Our data support a model in which nutrient-triggered ion release by GerA family receptors activates 5AF/FigP ion release, amplifying the response to germinant signals.
Collapse
Affiliation(s)
- Yongqiang Gao
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jeremy D Amon
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Anna P Brogan
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lior Artzi
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Joshua C Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
7
|
Juneja VK, Osoria M, Altuntas EG, Taneja NK, Thakur S, Kumar GD, Setlow P. Effects of spore purity on the wet heat resistance of Clostridium perfringens, Bacillus cereus and Bacillus subtilis spores. Food Res Int 2024; 177:113904. [PMID: 38225145 DOI: 10.1016/j.foodres.2023.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Heat resistance of spores of Clostridium perfringens 8238 (Hobbs Serotype 2), Bacillus cereus NCTC 11143 (4810/72), and Bacillus subtilis PS533, an isogenic derivative of strain PS832 (a 168 strain) was determined in ground beef at 95 °C. Spore purification was by centrifugation and washing with sterile distilled water (dH2O), followed by sonication and then Histodenz centrifugation for B. subtilis and C. perfringens, and centrifugation and washing with sterile dH2O followed by Histodenz centrifugation for B. cereus. Bags containing inoculated beef samples were submerged in a temperature-controlled water bath and held at 95 °C for predetermined lengths of time. Surviving spore populations were enumerated by plating on mannitol egg yolk polymyxin agar (MYP) agar plates for B. cereus and B. subtilis, and on tryptose-sulfite-cycloserine agar (TSC) agar plates for C. perfringens. Survivor curves were fitted to linear, linear with tail, and Weibull models using the USDA Integrated Pathogen Modeling Program (IPMP) 2013 software. The Weibull model provided a relatively better fit to the data since the root mean square error (RMSE), mean square error (MSE), sum of squared errors (SSE), and Akaike information criterion (AIC) values were lower than the values obtained using the linear or the linear with tail models. Additionally, the Weibull model accurately predicted the observed D-values at 95 °C for the three spore-formers since the accuracy factor (Af) values ranged from 1.03 to 1.08 and the bias factor (Bf) values were either 1.00 or 1.01. Times at 95 °C to achieve a 3-log reduction decreased from 206 min for C. perfringens spores purified with water washes alone to 191 min with water washes followed by sonication and Histodenz centrifugation, from 7.9 min for B. cereus spores purified with water washes alone to 1.4 min with water washes followed by Histodenz centrifugation, and from 20.6 min for B. subtilis spores purified with water washes alone to 6.7 min for water washes followed by sonication and Histodenz centrifugation. Thermal-death-time values reported in this study will assist food processors to design thermal processes to guard against bacterial spores in cooked foods. In addition, clearly spore purity is an additional factor in spore wet heat resistance, although the cause of this effect is not clear.
Collapse
Affiliation(s)
- Vijay K Juneja
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Marangeli Osoria
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | | | - Neetu K Taneja
- Department of Basics and Applied Sciences, NIFTEM, Sonipat 131028, Haryana, India
| | - Sheetal Thakur
- University Centre for Research & Development, UIBT, Chandigarh University, Gharuan-Mohali, Punjab, India
| | - Govindaraj D Kumar
- Center for Food Safety, College of Agriculture and Environmental Sciences, The University of Georgia, Griffin Campus, GA, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| |
Collapse
|
8
|
Freire V, Del Río J, Gómara P, Salvador M, Condón S, Gayán E. Comparative study on the impact of equally stressful environmental sporulation conditions on thermal inactivation kinetics of B. subtilis spores. Int J Food Microbiol 2023; 405:110349. [PMID: 37591013 DOI: 10.1016/j.ijfoodmicro.2023.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/30/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
Control of bacterial spores continues to be one of the main challenges for the food industry due to their wide dissemination and extremely high resistance to processing methods. Furthermore, the large variability in heat resistance in spores that contaminate foods makes it difficult to establish general processing conditions. Such heterogeneity not only derives from inherent differences among species and strains, but also from differences in sporulation environments that are generally ignored in spores encountered in foods. We evaluated heat inactivation kinetics and the thermodependency of resistance parameters in B. subtilis 168 spores sporulated at adverse temperatures, water activity (aw), and pH, applying an experimental approach that allowed us to quantitatively compare the impact of each condition. Reduction of incubation temperature from the optimal temperature dramatically reduced thermal resistance, and it was the most influential factor, especially at the highest treatment temperatures. These spores were also more sensitive to chemicals presumably acting in the inner membrane. Reducing sporulation aw increased heat resistance, although the magnitude of that effect depended on the solute and the treatment temperature. Thus, changes in sporulation environments varied 3D100°C values up to 10.4-fold and z values up to 1.7-fold, highlighting the relevance of taking such a source of variability into account when setting heat processing conditions. UV-C treatment and sodium hypochlorite efficiently inactivated all spore populations, including heat-resistant ones produced at low aw.
Collapse
Affiliation(s)
- Víctor Freire
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Javier Del Río
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Paula Gómara
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Maika Salvador
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Santiago Condón
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Elisa Gayán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
9
|
Soni A, Brightwell G. Effect of novel and conventional food processing technologies on Bacillus cereus spores. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:265-287. [PMID: 38461001 DOI: 10.1016/bs.afnr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
This chapter provides a summary of the effect of thermal and non-thermal processing technologies on Bacillus cereus spores, a well-known pathogenic bacterium associated with foodborne illnesses. B. cereus has been frequently detected in rice, milk products, infant food, liquid eggs products and meat products all over the world. This Gram positive, rod-shaped, facultative anaerobe can produce endospores that can withstand pasteurization, UV radiation, and chemical reagents commonly used for sanitization. B. cereus spores can germinate into vegetative cells that can produce toxins. The conventional regime for eliminating spores from food is retorting which uses the application of high temperature (121 °C). However, at this temperature, there could be a significant amount of loss in the organoleptic and functional qualities of the food components, especially proteins. This leads to the research on the preventive measures against germination and if possible, to reduce the resistance before using a non-thermal technology (temperatures less than retorting-121 °C) for inactivation. This chapter reviews the development and success of several food processing technologies in their ability to inactivate B. cereus spores in food.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.
| | - Gale Brightwell
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea), Palmerston North, New Zealand
| |
Collapse
|
10
|
Moir A, Christie G. A coating of lipoproteins provides a stabilizing environment on the inner membrane of Bacillus subtilis spores. J Bacteriol 2023; 205:e0016723. [PMID: 37730539 PMCID: PMC10601610 DOI: 10.1128/jb.00167-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
A new study by M. J. Flores, K. Duricy, S. Choudhary, M. Laue, and D. L. Popham (J Bacteriol 205:e00142-23, 2023, https://doi.org/10.1128/jb.00142-23) demonstrates a role for the YlaJ/YhcN family of lipoproteins in the immobilization of the spore's inner membrane. In the absence of these lipoproteins, membrane fluidity increases and membrane-associated proteins like the GerA receptor complexes are more exposed to inimical conditions. The role of these proteins in stabilizing the Bacillus spore inner membrane is now being explored.
Collapse
Affiliation(s)
- Anne Moir
- School of Biosciences, University of Sheffield, Firth Court, Sheffield, United Kingdom
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Flores MJ, Duricy K, Choudhary S, Laue M, Popham DL. A Family of Spore Lipoproteins Stabilizes the Germination Apparatus by Altering Inner Spore Membrane Fluidity in Bacillus subtilis Spores. J Bacteriol 2023; 205:e0014223. [PMID: 37338384 PMCID: PMC10601750 DOI: 10.1128/jb.00142-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
Dormant bacterial spores undergo the process of germination to return to a vegetative state. In most species, germination involves the sensing of nutrient germinants, the release of various cations and a calcium-dipicolinic acid (DPA) complex, spore cortex degradation, and full rehydration of the spore core. These steps are mediated by membrane-associated proteins, and all these proteins have exposure on the outer surface of the membrane, a hydrated environment where they are potentially subject to damage during dormancy. A family of lipoproteins, including YlaJ, which is expressed from the sleB operon in some species, are present in all sequenced Bacillus and Clostridium genomes that contain sleB. B. subtilis possesses four proteins in this family, and prior studies have demonstrated two of these are required for efficient spore germination and these proteins contain a multimerization domain. Genetic studies of strains lacking all combinations of these four genes now reveal all four play roles in ensuring efficient germination, and affect multiple steps in this process. Electron microscopy does not reveal significant changes in spore morphology in strains lacking lipoproteins. Generalized polarization measurements of a membrane dye probe indicate the lipoproteins decrease spore membrane fluidity. These data suggest a model in which the lipoproteins form a macromolecular structure on the outer surface of the inner spore membrane, where they act to stabilize the membrane and potentially interact with other germination proteins, and thus stabilize the function of multiple components of the germination machinery. IMPORTANCE Bacterial spores exhibit extreme longevity and resistance to many killing agents, and are thus problematic agents of several diseases and of food spoilage. However, to cause disease or spoilage, germination of the spore and return to the vegetative state is necessary. The proteins responsible for initiation and progression of germination are thus potential targets for spore-killing processes. A family of membrane-bound lipoproteins that are conserved across most spore-forming species was studied in the model organism Bacillus subtilis. The results indicate that these proteins reduce the membrane fluidity and increase the stability of other membrane associated proteins that are required for germination. Further understanding of such protein interactions on the spore membrane surface will enhance our understanding of the germination process and its potential as a decontamination method target.
Collapse
Affiliation(s)
- Matthew J. Flores
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Kate Duricy
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Shreya Choudhary
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
12
|
Setlow P, Christie G. New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed. Microbiol Mol Biol Rev 2023; 87:e0008022. [PMID: 36927044 PMCID: PMC10304885 DOI: 10.1128/mmbr.00080-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The quest for bacterial survival is exemplified by spores formed by some Firmicutes members. They turn up everywhere one looks, and their ubiquity reflects adaptations to the stresses bacteria face. Spores are impactful in public health, food safety, and biowarfare. Heat resistance is the hallmark of spores and is countered principally by a mineralized gel-like protoplast, termed the spore core, with reduced water which minimizes macromolecular movement/denaturation/aggregation. Dry heat, however, introduces mutations into spore DNA. Spores have countermeasures to extreme conditions that are multifactorial, but the fact that spore DNA is in a crystalline-like nucleoid in the spore core, likely due to DNA saturation with small acid-soluble spore proteins (SASPs), suggests that reduced macromolecular motion is also critical in spore dry heat resistance. SASPs are also central in the radiation resistance characteristic of spores, where the contributions of four spore features-SASP; Ca2+, with pyridine-2,6-dicarboxylic acid (CaDPA); photoproduct lyase; and low water content-minimize DNA damage. Notably, the spore environment steers UV photochemistry toward a product that germinated spores can repair without significant mutagenesis. This resistance extends to chemicals and macromolecules that could damage spores. Macromolecules are excluded by the spore coat which impedes the passage of moieties of ≥10 kDa. Additionally, damaging chemicals may be degraded or neutralized by coat enzymes/proteins. However, the principal protective mechanism here is the inner membrane, a compressed structure lacking lipid fluidity and presenting a barrier to the diffusion of chemicals into the spore core; SASP saturation of DNA also protects against genotoxic chemicals. Spores are also resistant to other stresses, including high pressure and abrasion. Regardless, overarching mechanisms associated with resistance seem to revolve around reduced molecular motion, a fine balance between rigidity and flexibility, and perhaps efficient repair.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Korza G, DePratti S, Fairchild D, Wicander J, Kanaan J, Shames H, Nichols FC, Cowan A, Brul S, Setlow P. Expression of the 2Duf protein in wild-type Bacillus subtilis spores stabilizes inner membrane proteins and increases spore resistance to wet heat and hydrogen peroxide. J Appl Microbiol 2023; 134:lxad040. [PMID: 36841229 PMCID: PMC10035073 DOI: 10.1093/jambio/lxad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
AIMS This work aimed to characterize spore inner membrane (IM) properties and the mechanism of spore killing by wet heat and H2O2 with spores overexpressing the 2Duf protein, which is naturally encoded from a transposon found only in some Bacillus strains with much higher spore resistance than wild-type spores. METHODS AND RESULTS Killing of Bacillus subtilis spores by wet heat or hydrogen peroxide (H2O2) was slower when 2Duf was present, and Ca-dipicolinic acid release was slower than killing. Viabilities on rich plates of wet heat- or H2O2 -treated spores +/- 2Duf were lower when NaCl was added, but higher with glucose. Addition of glucose but not Casamino acids addition increased treated spores' viability on minimal medium plates. Spores with 2Duf required higher heat activation for germination, and their germination was more wet-heat resistant than that of wild-type spores, processes that involve IM proteins. IM permeability and lipid mobility were lower in spores with 2Duf, although IM phospholipid composition was similar in spores +/- 2Duf. CONCLUSIONS These results and previous work suggests that wet heat and H2O2 kill spores by damaging an IM enzyme or enzymes involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- George Korza
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Sarah DePratti
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Daniel Fairchild
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - James Wicander
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Julia Kanaan
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Hannah Shames
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Frank C Nichols
- Division of Periodontology, UConn Health, Farmington, CT 06030-3305, USA
| | - Ann Cowan
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Science, University of Amsterdam, 1098XH Amsterdam, UK
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| |
Collapse
|
14
|
Bacillus species in food fermentations: an under-appreciated group of organisms for safe use in food fermentations. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
15
|
Romero-Rodríguez A, Ruiz-Villafán B, Martínez-de la Peña CF, Sánchez S. Targeting the Impossible: A Review of New Strategies against Endospores. Antibiotics (Basel) 2023; 12:antibiotics12020248. [PMID: 36830159 PMCID: PMC9951900 DOI: 10.3390/antibiotics12020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Endospore-forming bacteria are ubiquitous, and their endospores can be present in food, in domestic animals, and on contaminated surfaces. Many spore-forming bacteria have been used in biotechnological applications, while others are human pathogens responsible for a wide range of critical clinical infections. Due to their resistant properties, it is challenging to eliminate spores and avoid the reactivation of latent spores that may lead to active infections. Furthermore, endospores play an essential role in the survival, transmission, and pathogenesis of some harmful strains that put human and animal health at risk. Thus, different methods have been applied for their eradication. Nevertheless, natural products are still a significant source for discovering and developing new antibiotics. Moreover, targeting the spore for clinical pathogens such as Clostridioides difficile is essential to disease prevention and therapeutics. These strategies could directly aim at the structural components of the spore or their germination process. This work summarizes the current advances in upcoming strategies and the development of natural products against endospores. This review also intends to highlight future perspectives in research and applications.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| | - Beatriz Ruiz-Villafán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Claudia Fabiola Martínez-de la Peña
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
16
|
Yeak KYC, Boekhorst J, Wels M, Abee T, Wells-Bennik MHJ. Prediction and validation of novel SigB regulon members in Bacillus subtilis and regulon structure comparison to Bacillales members. BMC Microbiol 2023; 23:17. [PMID: 36653740 PMCID: PMC9847131 DOI: 10.1186/s12866-022-02700-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/11/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Sigma factor B (SigB) is the central regulator of the general stress response in Bacillus subtilis and regulates a group of genes in response to various stressors, known as the SigB regulon members. Genes that are directly regulated by SigB contain a promotor binding motif (PBM) with a previously identified consensus sequence. RESULTS In this study, refined SigB PBMs were derived and different spacer compositions and lengths (N12-N17) were taken into account. These were used to identify putative SigB-regulated genes in the B. subtilis genome, revealing 255 genes: 99 had been described in the literature and 156 genes were newly identified, increasing the number of SigB putative regulon members (with and without a SigB PBM) to > 500 in B. subtilis. The 255 genes were assigned to five categories (I-V) based on their similarity to the original SigB consensus sequences. The functionalities of selected representatives per category were assessed using promoter-reporter fusions in wt and ΔsigB mutants upon exposure to heat, ethanol, and salt stress. The activity of the PrsbV (I) positive control was induced upon exposure to all three stressors. PytoQ (II) showed SigB-dependent activity only upon exposure to ethanol, whereas PpucI (II) with a N17 spacer and PylaL (III) with a N16 spacer showed mild induction regardless of heat/ethanol/salt stress. PywzA (III) and PyaaI (IV) displayed ethanol-specific SigB-dependent activities despite a lower-level conserved - 10 binding motif. PgtaB (V) was SigB-induced under ethanol and salt stress while lacking a conserved - 10 binding region. The activities of PygaO and PykaA (III) did not show evident changes under the conditions tested despite having a SigB PBM that highly resembled the consensus. The identified extended SigB regulon candidates in B. subtilis are mainly involved in coping with stress but are also engaged in other cellular processes. Orthologs of SigB regulon candidates with SigB PBMs were identified in other Bacillales genomes, but not all showed a SigB PBM. Additionally, genes involved in the integration of stress signals to activate SigB were predicted in these genomes, indicating that SigB signaling and regulon genes are species-specific. CONCLUSION The entire SigB regulatory network is sophisticated and not yet fully understood even for the well-characterized organism B. subtilis 168. Knowledge and information gained in this study can be used in further SigB studies to uncover a complete picture of the role of SigB in B. subtilis and other species.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- grid.419921.60000 0004 0588 7915NIZO, Ede, The Netherlands ,grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- grid.419921.60000 0004 0588 7915NIZO, Ede, The Netherlands ,grid.4818.50000 0001 0791 5666Host Microbe Interactomics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Michiel Wels
- grid.419921.60000 0004 0588 7915NIZO, Ede, The Netherlands ,grid.426040.4Rijk Zwaan Breeding B.V, Fijnaart, The Netherlands
| | - Tjakko Abee
- grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | | |
Collapse
|
17
|
Yu B, Kanaan J, Shames H, Wicander J, Aryal M, Li Y, Korza G, Brul S, Kramer G, Li YQ, Nichols FC, Hao B, Setlow P. Identification and characterization of new proteins crucial for bacterial spore resistance and germination. Front Microbiol 2023; 14:1161604. [PMID: 37113233 PMCID: PMC10126465 DOI: 10.3389/fmicb.2023.1161604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
2Duf, named after the presence of a transmembrane (TM) Duf421 domain and a small Duf1657 domain in its sequence, is likely located in the inner membrane (IM) of spores in some Bacillus species carrying a transposon with an operon termed spoVA 2mob. These spores are known for their extreme resistance to wet heat, and 2Duf is believed to be the primary contributor to this trait. In this study, we found that the absence of YetF or YdfS, both Duf421 domain-containing proteins and found only in wild-type (wt) B. subtilis spores with YetF more abundant, leads to decreased resistance to wet heat and agents that can damage spore core components. The IM phospholipid compositions and core water and calcium-dipicolinic acid levels of YetF-deficient spores are similar to those of wt spores, but the deficiency could be restored by ectopic insertion of yetF, and overexpression of YetF increased wt spore resistance to wet heat. In addition, yetF and ydfS spores have decreased germination rates as individuals and populations with germinant receptor-dependent germinants and increased sensitivity to wet heat during germination, potentially due to damage to IM proteins. These data are consistent with a model in which YetF, YdfS and their homologs modify IM structure to reduce IM permeability and stabilize IM proteins against wet heat damage. Multiple yetF homologs are also present in other spore forming Bacilli and Clostridia, and even some asporogenous Firmicutes, but fewer in asporogenous species. The crystal structure of a YetF tetramer lacking the TM helices has been reported and features two distinct globular subdomains in each monomer. Sequence alignment and structure prediction suggest this fold is likely shared by other Duf421-containing proteins, including 2Duf. We have also identified naturally occurring 2duf homologs in some Bacilli and Clostridia species and in wt Bacillus cereus spores, but not in wt B. subtilis. Notably, the genomic organization around the 2duf gene in most of these species is similar to that in spoVA 2mob, suggesting that one of these species was the source of the genes on this operon in the extremely wet heat resistant spore formers.
Collapse
Affiliation(s)
- Benjamin Yu
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Julia Kanaan
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Hannah Shames
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - James Wicander
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Makunda Aryal
- Department of Physics, East Carolina University, Greenville, NC, United States
| | - Yunfeng Li
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, Netherlands
| | - Yong-qing Li
- Department of Physics, East Carolina University, Greenville, NC, United States
| | - Frank C. Nichols
- Division of Periodontology, UConn Health, Farmington, CT, United States
| | - Bing Hao
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- Bing Hao,
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- *Correspondence: Peter Setlow,
| |
Collapse
|
18
|
Pacher N, Burtscher J, Johler S, Etter D, Bender D, Fieseler L, Domig KJ. Ropiness in Bread-A Re-Emerging Spoilage Phenomenon. Foods 2022; 11:3021. [PMID: 36230100 PMCID: PMC9564316 DOI: 10.3390/foods11193021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
As bread is a very important staple food, its spoilage threatens global food security. Ropy bread spoilage manifests in sticky and stringy degradation of the crumb, slime formation, discoloration, and an odor reminiscent of rotting fruit. Increasing consumer demand for preservative-free products and global warming may increase the occurrence of ropy spoilage. Bacillus amyloliquefaciens, B. subtilis, B. licheniformis, the B. cereus group, B. pumilus, B. sonorensis, Cytobacillus firmus, Niallia circulans, Paenibacillus polymyxa, and Priestia megaterium were reported to cause ropiness in bread. Process hygiene does not prevent ropy spoilage, as contamination of flour with these Bacillus species is unavoidable due to their occurrence as a part of the endophytic commensal microbiota of wheat and the formation of heat-stable endospores that are not inactivated during processing, baking, or storage. To date, the underlying mechanisms behind ropy bread spoilage remain unclear, high-throughput screening tools to identify rope-forming bacteria are missing, and only a limited number of strategies to reduce rope spoilage were described. This review provides a current overview on (i) routes of entry of Bacillus endospores into bread, (ii) bacterial species implicated in rope spoilage, (iii) factors influencing rope development, and (iv) methods used to assess bacterial rope-forming potential. Finally, we pinpoint key gaps in knowledge and related challenges, as well as future research questions.
Collapse
Affiliation(s)
- Nicola Pacher
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Johanna Burtscher
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, 8057 Zurich, Switzerland
| | - Danai Etter
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, 8057 Zurich, Switzerland
| | - Denisse Bender
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Lars Fieseler
- Institute of Food and Beverage Innovation, ZHAW Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Konrad J. Domig
- Institute of Food Science, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
19
|
Ye F, Hong Y, Wu J, Yi X, Op den Camp HJM, Moore SS, Vamerali T, Wang Y. Succession of soil microbial community in a developing mid-channel bar: The role of environmental disturbance and plant community. Front Microbiol 2022; 13:970529. [PMID: 36060763 PMCID: PMC9428583 DOI: 10.3389/fmicb.2022.970529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Succession of microbial and plant communities is crucial for the development and the stability of soil ecological functions. The relative role of plant communities and environmental disturbance in shaping the microbial community in a newly established habitat remains unclear. In this study, a mid-channel bar (MCB) exposed to an environmental disturbance gradient in the Yangtze River was studied to explore the effects of such disturbance and plant community traits on the succession of the soil microbial community. Bulk and rhizospheric soils were collected from the MCB and classified according to their level of exposure to environmental disturbance: head, central and tail. These subsequently underwent high-throughput sequencing and interdomain ecological network (IDEN) analysis to identify and characterize the predominant microbial groups present in the soils at each disturbance level. Furthermore, at each site, the presence and distribution of the plant community was also noted. The present study demonstrated that both bulk soil nutrients and plant community exhibited significant spatial distribution dependent on the level of disturbance and this influenced the composition of the microbial community. In less eroded parts of the MCB, i.e., the central, nutrients accumulated, promoting growths of plants. This in turn encouraged a more diverse microbial community, dominated by the bacterial genus Pseudarthrobacter. Plant showed a stronger association with bulk soil microbial communities compared to rhizosphere soil microbial communities. Particularly, Triarrhena sacchariflora and Hemarthria altissima, present in sites of low disturbance, exhibiting a more extensive plant-microbe association. They thus played a key role in shaping the soil microbial community. In general, however, plant species did not directly determine the composition of the bacterial community, but instead altered the nutritive state of the soil to promote microbial growth. Such findings are of significant value for conservation practices of newly formed ecosystems, which requires an integrated understanding of the role of environmental disturbance and plants on soil microbial community assemblage.
Collapse
Affiliation(s)
- Fei Ye
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| | - Yiguo Hong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| | - Jiapeng Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| | - Xuemei Yi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Huub J. M. Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University Nijmegen, Nijmegen, Netherlands
| | - Selina Sterup Moore
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Yu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| |
Collapse
|
20
|
Abstract
Clostridioides difficile spores are the infective form for this endospore-forming organism. The vegetative cells are intolerant to oxygen and poor competitors with a healthy gut microbiota. Therefore, in order for C. difficile to establish infection, the spores have to germinate in an environment that supports vegetative growth. To initiate germination, C. difficile uses Csp-type germinant receptors that consist of the CspC and CspA pseudoproteases as the bile acid and cogerminant receptors, respectively. CspB is a subtilisin-like protease that cleaves the inhibitory propeptide from the pro-SleC cortex lytic enzyme, thereby activating it and initiating cortex degradation. Though several locations have been proposed for where these proteins reside within the spore (i.e., spore coat, outer spore membrane, cortex, and inner spore membrane), these have been based, mostly, on hypotheses or prior data in Clostridium perfringens. In this study, we visualized the germination and outgrowth process using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and used immunogold labeling to visualize key germination regulators. These analyses localize these key regulators to the spore cortex region for the first time. IMPORTANCE Germination by C. difficile spores is the first step in the establishment of potentially life-threatening C. difficile infection (CDI). A deeper understanding of the mechanism by which spores germinate may provide insight for how to either prevent spore germination into a disease-causing vegetative form or trigger germination prematurely when the spore is either in the outside environment or in a host environment that does not support the establishment of colonization/disease.
Collapse
|
21
|
Lamba S, Mundanda Muthappa D, Fanning S, Scannell AGM. Sporulation and Biofilms as Survival Mechanisms of Bacillus Species in Low-Moisture Food Production Environments. Foodborne Pathog Dis 2022; 19:448-462. [PMID: 35819266 DOI: 10.1089/fpd.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Low-moisture foods (LMF) have clear advantages with respect to limiting the growth of foodborne pathogens. However, the incidences of Bacillus species in LMF reported in recent years raise concerns about food quality and safety, particularly when these foods are used as ingredients in more complex higher moisture products. This literature review describes the interlinked pathways of sporulation and biofilm formation by Bacillus species and their underlying molecular mechanisms that contribute to the bacteriums' persistence in LMF production environments. The long-standing challenges of food safety and quality in the LMF industry are also discussed with a focus on the bakery industry.
Collapse
Affiliation(s)
- Sakshi Lamba
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Dechamma Mundanda Muthappa
- UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Amalia G M Scannell
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
van den Brule T, Punt M, Seekles SJ, Segers FJ, Houbraken J, Hazeleger WC, Ram AF, Wösten HA, Zwietering MH, Dijksterhuis J, den Besten HM. Intraspecific variability in heat resistance of fungal conidia. Food Res Int 2022; 156:111302. [DOI: 10.1016/j.foodres.2022.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
|
23
|
Gao Y, Barajas-Ornelas RDC, Amon JD, Ramírez-Guadiana FH, Alon A, Brock KP, Marks DS, Kruse AC, Rudner DZ. The SpoVA membrane complex is required for dipicolinic acid import during sporulation and export during germination. Genes Dev 2022; 36:634-646. [PMID: 35654455 PMCID: PMC9186386 DOI: 10.1101/gad.349488.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
In response to starvation, endospore-forming bacteria differentiate into stress-resistant spores that can remain dormant for years yet rapidly germinate and resume growth in response to nutrients. The small molecule dipicolinic acid (DPA) plays a central role in both the stress resistance of the dormant spore and its exit from dormancy during germination. The spoVA locus is required for DPA import during sporulation and has been implicated in its export during germination, but the molecular bases are unclear. Here, we define the minimal set of proteins encoded in the Bacillus subtilis spoVA operon required for DPA import and demonstrate that these proteins form a membrane complex. Structural modeling of these components combined with mutagenesis and in vivo analysis reveal that the C and Eb subunits form a membrane channel, while the D subunit functions as a cytoplasmic plug. We show that point mutations that impair the interactions between D and the C-Eb membrane complex reduce the efficiency of DPA import during sporulation and reciprocally accelerate DPA release during germination. Our data support a model in which DPA transport into spores involves cycles of unplugging and then replugging the C-Eb membrane channel, while nutrient detection during germination triggers DPA release by unplugging it.
Collapse
Affiliation(s)
- Yongqiang Gao
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Jeremy D Amon
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kelly P Brock
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine. Int J Mol Sci 2022; 23:ijms23063405. [PMID: 35328823 PMCID: PMC8953710 DOI: 10.3390/ijms23063405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have suggested a major role for endospore forming bacteria within the gut microbiota, not only as pathogens but also as commensal and beneficial members contributing to gut homeostasis. In this review the sporulation processes, spore properties, and germination processes will be explained within the scope of the human gut. Within the gut, spore-forming bacteria are known to interact with the host’s immune system, both in vegetative cell and spore form. Together with the resistant nature of the spore, these characteristics offer potential for spores’ use as delivery vehicles for therapeutics. In the last part of the review, the therapeutic potential of spores as probiotics, vaccine vehicles, and drug delivery systems will be discussed.
Collapse
|
25
|
Yeak KYC, Perko M, Staring G, Fernandez-Ciruelos BM, Wells JM, Abee T, Wells-Bennik MHJ. Lichenysin Production by Bacillus licheniformis Food Isolates and Toxicity to Human Cells. Front Microbiol 2022; 13:831033. [PMID: 35197958 PMCID: PMC8859269 DOI: 10.3389/fmicb.2022.831033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022] Open
Abstract
Bacillus licheniformis can cause foodborne intoxication due to the production of the surfactant lichenysin. The aim of this study was to measure the production of lichenysin by food isolates of B. licheniformis in LB medium and skimmed milk and its cytotoxicity for intestinal cells. Out of 11 B. licheniformis isolates tested, most showed robust growth in high salt (1M NaCl), 4% ethanol, at 37 or 55°C, and aerobic and anaerobic conditions. All strains produced lichenysin (in varying amounts), but not all strains were hemolytic. Production of this stable compound by selected strains (high producers B4094 and B4123, and type strain DSM13T) was subsequently determined using LB medium and milk, at 37 and 55°C. Lichenysin production in LB broth and milk was not detected at cell densities < 5 log10 CFU/ml. The highest concentrations were found in the stationary phase of growth. Total production of lichenysin was 4–20 times lower in milk than in LB broth (maximum 36 μg/ml), and ∼10 times lower in the biomass obtained from milk agar than LB agar. Under all conditions tested, strain B4094 consistently yielded the highest amounts. Besides strain variation and medium composition, temperature also had an effect on lichenysin production, with twofold lower amounts of lichenysin produced at 55°C than at 37°C. All three strains produced lichenysin A with varying acyl chain lengths (C11–C18). The relative abundance of the C14 variant was highest in milk and the C15 variant highest in LB. The concentration of lichenysin needed to reduce cell viability by 50% (IC50) was 16.6 μg/ml for Caco-2 human intestinal epithelial cells and 16.8 μg/ml for pig ileum organoids. Taken together, the presence of low levels (<5 log10 CFU/ml) of B. licheniformis in foods is unlikely to pose a foodborne hazard related to lichenysin production. However, depending on the strain present, the composition, and storage condition of the food, a risk of foodborne intoxication may arise if growth to high levels is supported and such product is ingested.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- NIZO, Ede, Netherlands.,Food Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | | | | | | - Jerry M Wells
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
26
|
Baloh M, Sorg JA. Clostridioides difficile spore germination: initiation to DPA release. Curr Opin Microbiol 2022; 65:101-107. [PMID: 34808546 PMCID: PMC8792321 DOI: 10.1016/j.mib.2021.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Germination by Clostridioides difficile spores is an essential step in pathogenesis. Spores are metabolically dormant forms of bacteria that resist severe conditions. Work over the last 10 years has elucidated that C. difficile spores germinate thorough a novel pathway. This review summarizes our understanding of C. difficile spore germination and the factors involved in germinant recognition, cortex degradation and DPA release.
Collapse
Affiliation(s)
- Marko Baloh
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX 77843,Corresponding author: ph: 979-845-6299,
| |
Collapse
|
27
|
Kanaan J, Murray J, Higgins R, Nana M, DeMarco AM, Korza G, Setlow P. Resistance properties and the role of the inner membrane and coat of Bacillus subtilis spores with extreme wet heat resistance. J Appl Microbiol 2021; 132:2157-2166. [PMID: 34724311 DOI: 10.1111/jam.15345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
AIMS A protein termed 2Duf greatly increases wet heat resistance of Bacillus subtilis spores. The current work examines the effects of 2Duf on spore resistance to other sporicides, including chemicals that act on or must cross spores' inner membrane (IM), where 2Duf is likely present. The overall aim was to gain a deeper understanding of how 2Duf affects spore resistance, and of spore resistance itself. METHODS AND RESULTS 2Duf's presence increased spore resistance to chemicals that damage or must cross the IM to kill spores. Spore coat removal decreased 2Duf-spore resistance to chemicals and wet heat, and 2Duf-spores made at higher temperatures were more resistant to wet heat and chemicals. 2Duf-less spores lacking coats and Ca-dipicolinic acid were also extremely sensitive to wet heat and chemicals that transit the IM to kill spores. CONCLUSIONS The new work plus previous results lead to a number of important conclusions as follows. (1) 2Duf may influence spore resistance by decreasing the permeability of and lipid mobility in spores' IM. (2) Since wet heat-killed spores that germinate do not accumulate ATP, wet heat may inactivate some spore IM protein essential in ATP production which is stabilized in a more rigid IM. (3) Both Ca-dipicolinic acid and the spore coat play an important role in the permeability of the spore IM, and thus in many spore resistance properties. SIGNIFICANCE AND IMPACT OF THE STUDY The work in this manuscript gives a new insight into mechanisms of spore resistance to chemicals and wet heat, to the understanding of spore wet heat killing, and the role of Ca-dipicolinic acid and the coat in spore resistance.
Collapse
Affiliation(s)
- Julia Kanaan
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Jillian Murray
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Ryan Higgins
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Mishil Nana
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Angela M DeMarco
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
28
|
|
29
|
Kamal SM, Simpson DJ, Wang Z, Gänzle M, Römling U. Horizontal Transmission of Stress Resistance Genes Shape the Ecology of Beta- and Gamma-Proteobacteria. Front Microbiol 2021; 12:696522. [PMID: 34295324 PMCID: PMC8290217 DOI: 10.3389/fmicb.2021.696522] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 01/25/2023] Open
Abstract
The transmissible locus of stress tolerance (tLST) is found mainly in beta- and gamma-Proteobacteria and confers tolerance to elevated temperature, pressure, and chlorine. This genomic island, previously referred to as transmissible locus of protein quality control or locus of heat resistance likely originates from an environmental bacterium thriving in extreme habitats, but has been widely transmitted by lateral gene transfer. Although highly conserved, the gene content on the island is subject to evolution and gene products such as small heat shock proteins are present in several functionally distinct sequence variants. A number of these genes are xenologs of core genome genes with the gene products to widen the substrate spectrum and to be highly (complementary) expressed thus their functionality to become dominant over core genome genes. In this review, we will present current knowledge of the function of core tLST genes and discuss current knowledge on selection and counter-selection processes that favor maintenance of the tLST island, with frequent acquisition of gene products involved in cyclic di-GMP signaling, in different habitats from the environment to animals and plants, processed animal and plant products, man-made environments, and subsequently humans.
Collapse
Affiliation(s)
- Shady Mansour Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - David J Simpson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Zhiying Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
30
|
Delbrück AI, Zhang Y, Heydenreich R, Mathys A. Bacillus spore germination at moderate high pressure: A review on underlying mechanisms, influencing factors, and its comparison with nutrient germination. Compr Rev Food Sci Food Saf 2021; 20:4159-4181. [PMID: 34147040 DOI: 10.1111/1541-4337.12789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
Spore-forming bacteria are resistant to stress conditions owing to their ability to form highly resistant dormant spores. These spores can survive adverse environmental conditions in nature, as well as decontamination processes in the food and related industries. Bacterial spores may return to their vegetative state through a process called germination. As spore germination is critical for the loss of resistance, outgrowth, and development of pathogenicity and spoilage potential, the germination pathway has piqued the interest of the scientific community. The inhibition and induction of germination have critical applications in the food industry. Targeted germination can aid in decreasing the resistance of spores and allow the application of milder inactivation procedures. This germination-inactivation strategy allows better maintenance of important food quality attributes. Different stimuli are reported to trigger germination. Among those, isostatic high pressure (HP) has gained increasing attention due to its potential applications in industrial processes. However, pressure-mediated spore germination is extremely heterogeneous as some spores germinate rapidly, while others exhibit slow germination or do not undergo germination at all. The successful and safe implementation of the germination-inactivation strategy, however, depends on the germination of all spores. Therefore, there is a need to elucidate the mechanisms of HP-mediated germination. This work aimed to critically review the current state of knowledge on Bacillus spore germination at a moderate HP of 50-300 MPa. In this review, the germination mechanism, heterogeneity, and influencing factors have been outlined along with knowledge gaps.
Collapse
Affiliation(s)
- Alessia I Delbrück
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Yifan Zhang
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Rosa Heydenreich
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
31
|
Luo Y, Korza G, DeMarco AM, Kuipers OP, Li YQ, Setlow P. Properties of spores of Bacillus subtilis with or without a transposon that decreases spore germination and increases spore wet heat resistance. J Appl Microbiol 2021; 131:2918-2928. [PMID: 34042237 DOI: 10.1111/jam.15163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023]
Abstract
AIMS This work aimed to determine how genes on transposon Tn1546 slow Bacillus subtilis spore germination and increase wet heat resistance, and to clarify the transposon's 3 gene spoVA operon's role in spore properties, since the seven wild-type SpoVA proteins form a channel transporting Ca2+ -dipicolinic acid (DPA) in spore formation and germination. METHODS AND RESULTS Deletion of the wild-type spoVA operon from a strain with Tn1546 gave spores with slightly reduced wet heat resistance but some large decreases in germination rate. Spore water content and CaDPA analyses found no significant differences in contents of either component in spores with different Tn1546 components or lacking the wild-type spoVA operon. CONCLUSIONS This work indicates that the SpoVA channel encoded by Tn1546 functions like the wild-type SpoVA channel in CaDPA uptake into developing spores, but not as well in germination. The essentially identical CaDPA and water contents of spores with and without Tn1546 indicate that low core water content does not cause elevated wet heat resistance of spores with Tn1546. SIGNIFICANCE AND IMPACT OF THE STUDY Since wet heat resistance of spores of Bacillus species poses problems in the food industry, understanding mechanisms of spores' wet heat resistance is of significant applied interest.
Collapse
Affiliation(s)
- Y Luo
- Department of Physics, East Carolina University, Greenville, NC, USA.,Laboratory for Biomedical Photonics & Engineering, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - G Korza
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - A M DeMarco
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - O P Kuipers
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - Y-Q Li
- Department of Physics, East Carolina University, Greenville, NC, USA.,School of Electronic Engineering, Dongguan University of Technology, Dongguan, Guangdong, P.R. China
| | - P Setlow
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Kumar M, Flint S, Palmer J, Plieger P. A comparison of the spore heat resistance of dairy isolates of Geobacillus stearothermophilus obtained using a CDC biofilm reactor and a sporulating medium. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Tu Z, Setlow P, Brul S, Kramer G. Molecular Physiological Characterization of a High Heat Resistant Spore Forming Bacillus subtilis Food Isolate. Microorganisms 2021; 9:667. [PMID: 33807113 PMCID: PMC8005191 DOI: 10.3390/microorganisms9030667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial endospores (spores) are among the most resistant living forms on earth. Spores of Bacillus subtilis A163 show extremely high resistance to wet heat compared to spores of laboratory strains. In this study, we found that spores of B. subtilis A163 were indeed very wet heat resistant and released dipicolinic acid (DPA) very slowly during heat treatment. We also determined the proteome of vegetative cells and spores of B. subtilis A163 and the differences in these proteomes from those of the laboratory strain PY79, spores of which are much less heat resistant. This proteomic characterization identified 2011 proteins in spores and 1901 proteins in vegetative cells of B. subtilis A163. Surprisingly, spore morphogenic protein SpoVM had no homologs in B. subtilis A163. Comparing protein expression between these two strains uncovered 108 proteins that were differentially present in spores and 93 proteins differentially present in cells. In addition, five of the seven proteins on an operon in strain A163, which is thought to be primarily responsible for this strain's spores high heat resistance, were also identified. These findings reveal proteomic differences of the two strains exhibiting different resistance to heat and form a basis for further mechanistic analysis of the high heat resistance of B. subtilis A163 spores.
Collapse
Affiliation(s)
- Zhiwei Tu
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030-3303, USA;
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| |
Collapse
|
34
|
Taxonomic Evaluation of the Heyndrickxia (Basonym Bacillus) sporothermodurans Group ( H. sporothermodurans, H. vini, H. oleronia) Based on Whole Genome Sequences. Microorganisms 2021; 9:microorganisms9020246. [PMID: 33530338 PMCID: PMC7911792 DOI: 10.3390/microorganisms9020246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 11/17/2022] Open
Abstract
The genetic heterogeneity of Heyndrickxia sporothermodurans (formerly Bacillussporothermodurans) was evaluated using whole genome sequencing. The genomes of 29 previously identified Heyndrickxiasporothermodurans and two Heyndrickxia vini strains isolated from ultra-high-temperature (UHT)-treated milk were sequenced by short-read (Illumina) sequencing. After sequence analysis, the two H. vini strains could be reclassified as H. sporothermodurans. In addition, the genomes of the H.sporothermodurans type strain (DSM 10599T) and the closest phylogenetic neighbors Heyndrickxiaoleronia (DSM 9356T) and Heyndrickxia vini (JCM 19841T) were also sequenced using both long (MinION) and short-read (Illumina) sequencing. By hybrid sequence assembly, the genome of the H. sporothermodurans type strain was enlarged by 15% relative to the short-read assembly. This noticeable increase was probably due to numerous mobile elements in the genome that are presumptively related to spore heat tolerance. Phylogenetic studies based on 16S rDNA gene sequence, core genome, single-nucleotide polymorphisms and ANI/dDDH, showed that H. vini is highly related to H. sporothermodurans. When examining the genome sequences of all H.sporothermodurans strains from this study, together with 4 H. sporothermodurans genomes available in the GenBank database, the majority of the 36 strains examined occurred in a clonal lineage with less than 100 SNPs. These data substantiate previous reports on the existence and spread of a genetically highly homogenous and heat resistant spore clone, i.e., the HRS-clone.
Collapse
|
35
|
Li Y, Huang J, Zhou Y, Wu T, Ma P, Yuan C, Chen S, Hu Y. Structure-related differential proteins identification for sous-vide cooking hairtail ( Trichiurus lepturus) product. Food Funct 2020; 11:9960-9972. [PMID: 33112346 DOI: 10.1039/d0fo00866d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optimal heating parameters for sous-vide cooking hairtail (Trichiurus lepturus) were selected and the differential proteins related to texture change were clarified using proteomics. Heating under 68 °C for 20 min was chosen to be the desirable heating parameter. Texture profile analysis (TPA) showed the texture of hairtail changed more severely during heat-up process than heating preservation process. Most of the high-content proteins did not change much during heating preservation. 169 kinds of proteins were identified as differential expressed proteins. Actin cytoplasmic 1, myosin heavy chain 1 and myosin heavy chain were the most variable structural proteins during heat-up process, with the change fold of 32.4, 29.1 and 18.8, respectively, while the highest structure proteins changing fold during heat preservation process were 16.7, 4.7 and 3.9, respectively, much lower than that of heat-up process. The partial deformation of structure-related proteins under sous-vide cooking was a vital factor in reserving the texture of hairtail.
Collapse
Affiliation(s)
- Yuan Li
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Njage PMK, Leekitcharoenphon P, Hansen LT, Hendriksen RS, Faes C, Aerts M, Hald T. Quantitative Microbial Risk Assessment Based on Whole Genome Sequencing Data: Case of Listeria monocytogenes. Microorganisms 2020; 8:microorganisms8111772. [PMID: 33187247 PMCID: PMC7698238 DOI: 10.3390/microorganisms8111772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
The application of high-throughput DNA sequencing technologies (WGS) data remain an increasingly discussed but vastly unexplored resource in the public health domain of quantitative microbial risk assessment (QMRA). This is due to challenges including high dimensionality of WGS data and heterogeneity of microbial growth phenotype data. This study provides an innovative approach for modeling the impact of population heterogeneity in microbial phenotypic stress response and integrates this into predictive models inputting a high-dimensional WGS data for increased precision exposure assessment using an example of Listeria monocytogenes. Finite mixture models were used to distinguish the number of sub-populations for each of the stress phenotypes, acid, cold, salt and desiccation. Machine learning predictive models were selected from six algorithms by inputting WGS data to predict the sub-population membership of new strains with unknown stress response data. An example QMRA was conducted for cultured milk products using the strains of unknown stress phenotype to illustrate the significance of the findings of this study. Increased resistance to stress conditions leads to increased growth, the likelihood of higher exposure and probability of illness. Neglecting within-species genetic and phenotypic heterogeneity in microbial stress response may over or underestimate microbial exposure and eventual risk during QMRA.
Collapse
Affiliation(s)
- Patrick Murigu Kamau Njage
- Research Group for Genomic Epidemiology, Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark; (P.L.); (R.S.H.); (T.H.)
- Correspondence: ; Tel.: +45-35-88-75-31
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark; (P.L.); (R.S.H.); (T.H.)
| | - Lisbeth Truelstrup Hansen
- Research Group for Microbiology and Hygiene, National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Rene S. Hendriksen
- Research Group for Genomic Epidemiology, Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark; (P.L.); (R.S.H.); (T.H.)
| | - Christel Faes
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University Katholieke Universiteit Leuven, 3590 Diepenbeek, Belgium; (C.F.); (M.A.)
| | - Marc Aerts
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University Katholieke Universiteit Leuven, 3590 Diepenbeek, Belgium; (C.F.); (M.A.)
| | - Tine Hald
- Research Group for Genomic Epidemiology, Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark; (P.L.); (R.S.H.); (T.H.)
| |
Collapse
|
37
|
Ly V, Parreira VR, Sanchez-Maldonado AF, Farber JM. Survival and Virulence of Listeria monocytogenes during Storage on Chocolate Liquor, Corn Flakes, and Dry-Roasted Shelled Pistachios at 4 and 23°C. J Food Prot 2020; 83:1852-1862. [PMID: 32556209 DOI: 10.4315/jfp-20-129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022]
Abstract
ABSTRACT The survival and virulence of Listeria monocytogenes was assessed during storage on three low-moisture foods (LMFs): chocolate liquor, corn flakes, and shelled, dry-roasted pistachios (water activity [aw] of 0.18, 0.27, and 0.20, respectively). The LMFs were inoculated with a four-strain cocktail of L. monocytogenes at 8 log CFU/g, dried, held until the aw stabilized, and then stored at 4°C and 25 to 81% relative humidity (RH) and at 23°C and 30 to 35% RH for at least 336 days. At 4°C, L. monocytogenes remained stable on the LMFs for at least 336 days. At 23°C, L. monocytogenes levels declined on the chocolate liquor, corn flakes, and pistachios at initial rates of 0.84, 0.88, and 0.32 log CFU/g/month, respectively. After 8 months at 23°C, L. monocytogenes levels on the chocolate liquor and corn flakes decreased to below the limit of detection (i.e., 0.48 log CFU/g). Relative populations of each strain were assessed before storage (i.e., day 0) and after 6 and 12 months of storage at 23 and 4°C, respectively. Generally, a decline in the relative level of the serotype 1/2a strain was observed during storage, coupled with the relative increase in other strains, depending on the LMF and storage temperature. The total viable populations of L. monocytogenes determined by the PMAxx quantitative PCR method after >12 months of storage at 4°C were significantly (1.8- to 3.7-log) higher than those obtained by plating on tryptic soy agar with yeast extract. Decreases in the culturable population of L. monocytogenes during storage on the LMFs were the result of both cellular inactivation and transition to a viable-but-nonculturable state. The surviving cells, specifically after long-term storage at 4°C on the chocolate liquor and pistachios, remained infectious and capable of intracellular replication in Caco-2 enterocytes. These results are relevant for predictive modeling used in microbial health risk assessments and support the addition of LMFs to food safety questionnaires conducted during listeriosis outbreaks. HIGHLIGHTS
Collapse
Affiliation(s)
- Vivian Ly
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.,(ORCID: https://orcid.org/0000-0002-7073-1955 [V.R.P.])
| | - Alma Fernanda Sanchez-Maldonado
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
38
|
Effect of copy number of the spoVA2mob operon, sourdough and reutericyclin on ropy bread spoilage caused by Bacillus spp. Food Microbiol 2020; 91:103507. [DOI: 10.1016/j.fm.2020.103507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 11/30/2022]
|
39
|
Brunt J, van Vliet AHM, Carter AT, Stringer SC, Amar C, Grant KA, Godbole G, Peck MW. Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins (Basel) 2020; 12:toxins12090586. [PMID: 32932818 PMCID: PMC7551954 DOI: 10.3390/toxins12090586] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Clostridium botulinum Group I and Clostridium sporogenes are closely related bacteria responsible for foodborne, infant and wound botulism. A comparative genomic study with 556 highly diverse strains of C. botulinum Group I and C. sporogenes (including 417 newly sequenced strains) has been carried out to characterise the genetic diversity and spread of these bacteria and their neurotoxin genes. Core genome single-nucleotide polymorphism (SNP) analysis revealed two major lineages; C. botulinum Group I (most strains possessed botulinum neurotoxin gene(s) of types A, B and/or F) and C. sporogenes (some strains possessed a type B botulinum neurotoxin gene). Both lineages contained strains responsible for foodborne, infant and wound botulism. A new C. sporogenes cluster was identified that included five strains with a gene encoding botulinum neurotoxin sub-type B1. There was significant evidence of horizontal transfer of botulinum neurotoxin genes between distantly related bacteria. Population structure/diversity have been characterised, and novel associations discovered between whole genome lineage, botulinum neurotoxin sub-type variant, epidemiological links to foodborne, infant and wound botulism, and geographic origin. The impact of genomic and physiological variability on the botulism risk has been assessed. The genome sequences are a valuable resource for future research (e.g., pathogen biology, evolution of C. botulinum and its neurotoxin genes, improved pathogen detection and discrimination), and support enhanced risk assessments and the prevention of botulism.
Collapse
Affiliation(s)
- Jason Brunt
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
- Correspondence: (J.B.); (M.W.P.)
| | - Arnoud H. M. van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK;
| | - Andrew T. Carter
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
| | - Sandra C. Stringer
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
| | - Corinne Amar
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London NW9 5EQ, UK; (C.A.); (K.A.G.); (G.G.)
| | - Kathie A. Grant
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London NW9 5EQ, UK; (C.A.); (K.A.G.); (G.G.)
| | - Gauri Godbole
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London NW9 5EQ, UK; (C.A.); (K.A.G.); (G.G.)
| | - Michael W. Peck
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
- Correspondence: (J.B.); (M.W.P.)
| |
Collapse
|
40
|
Eijlander RT, Breitenwieser F, de Groot R, Hoornstra E, Kamphuis H, Kokken M, Kuijpers A, de Mello IIG, de Rijdt GV, Vadier CÉ, Wells-Bennik MHJ. Enumeration and Identification of Bacterial Spores in Cocoa Powders. J Food Prot 2020; 83:1530-1539. [PMID: 32338739 DOI: 10.4315/jfp-20-071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/25/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The presence of bacterial spores in cocoa powders is inevitable due to the cocoa bean fermentation process, during which members of the genera Bacillus and Geobacillus are typically present. Spores are a concern in heat-treated foods when they survive heat treatments and the finished product supports germination, growth, and potentially toxin production. In this study, available methods for the enumeration of total mesophilic and thermophilic spores (TMS and TTS, respectively) were evaluated, leading to the recommendation of one global method specifically for cocoa powders. The proposed method was validated during a ring test on seven selected cocoa powders and applied during routine analyses on commercial powders. The method includes dilution of cocoa powder using buffered peptone water, heating at 80°C for 10 min for TMS and TTS counts, and heating at 100°C for 30 min for a heat-resistant (HR) spore count. Tryptic soy agar is used as a recovery medium with a maximal concentration of cocoa powder of 2.5 mg/mL (to prevent growth inhibition) and a nonnutrient agar overlay to prevent swarming of bacteria. Plates are incubated for at least 72 h at 30°C for recovery of mesophilic bacteria and 55°C for thermophilic bacteria. Suitable alternatives to specific method parameters are provided. Median values of total spore concentrations are low (<400 CFU/g for TMS and <75 CFU/g for TTS), and concentrations of HR spores are very low (<5 CFU/g). Importantly, the relation between concentrations of HR spores in cocoa powder and incidence of spoilage of heat-treated beverages containing cocoa is currently unclear. In the powders included in this study, Bacillus subtilis and Bacillus licheniformis were the predominant spore-forming species identified (49 and 39%, respectively). Both species are known for high variability in spore heat resistance. The development of reliable and sensitive molecular methods is therefore required to assess the risk of spoilage caused by spores present in cocoa powders. HIGHLIGHTS
Collapse
Affiliation(s)
- Robyn T Eijlander
- NIZO Food Research, Kernhemseweg 2, 6718 ZB Ede, The Netherlands.,(ORCID: https://orcid.org/0000-0002-4408-6526 [R.T.E.])
| | | | - Rosanne de Groot
- Olam Cocoa BV, Stationsstraat 76, 1541 LJ Koog aan de Zaan, The Netherlands
| | - Erik Hoornstra
- FrieslandCampina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands
| | - Henri Kamphuis
- Cargill Cocoa and Chocolate, Eenhoornweg 12, 1531 ME Wormer, The Netherlands
| | - Michiel Kokken
- Olam Cocoa BV, Stationsstraat 76, 1541 LJ Koog aan de Zaan, The Netherlands
| | | | | | | | - CÉcile Vadier
- Barry Callebaut France, rue de la mécanique, 27400 Louviers, France
| | | |
Collapse
|
41
|
Reineke K, Mathys A. Endospore Inactivation by Emerging Technologies: A Review of Target Structures and Inactivation Mechanisms. Annu Rev Food Sci Technol 2020; 11:255-274. [DOI: 10.1146/annurev-food-032519-051632] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent developments in preservation technologies allow for the delivery of food with nutritional value and superior taste. Of special interest are low-acid, shelf-stable foods in which the complete control or inactivation of bacterial endospores is the crucial step to ensure consumer safety. Relevant preservation methods can be classified into physicochemical or physical hurdles, and the latter can be subclassified into thermal and nonthermal processes. The underlying inactivation mechanisms for each of these physicochemical or physical processes impact different morphological or molecular structures essential for spore germination and integrity in the dormant state. This review provides an overview of distinct endospore defense mechanisms that affect emerging physical hurdles as well as which technologies address these mechanisms. The physical spore-inactivation technologies considered include thermal, dynamic, and isostatic high pressure and electromagnetic technologies, such as pulsed electric fields, UV light, cold atmospheric pressure plasma, and high- or low-energy electron beam.
Collapse
Affiliation(s)
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Department of Health Science and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
42
|
Comprehensive analysis of chromosomal mobile genetic elements in the gut microbiome reveals phylum-level niche-adaptive gene pools. PLoS One 2019; 14:e0223680. [PMID: 31830054 PMCID: PMC6907783 DOI: 10.1371/journal.pone.0223680] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Mobile genetic elements (MGEs) drive extensive horizontal transfer in the gut microbiome. This transfer could benefit human health by conferring new metabolic capabilities to commensal microbes, or it could threaten human health by spreading antibiotic resistance genes to pathogens. Despite their biological importance and medical relevance, MGEs from the gut microbiome have not been systematically characterized. Here, we present a comprehensive analysis of chromosomal MGEs in the gut microbiome using a method that enables the identification of the mobilizable unit of MGEs. We curated a database of 5,219 putative MGEs encompassing seven MGE classes called ImmeDB. We observed that many MGEs carry genes that could confer an adaptive advantage to the gut environment including gene families involved in antibiotic resistance, bile salt detoxification, mucus degradation, capsular polysaccharide biosynthesis, polysaccharide utilization, and sporulation. We find that antibiotic resistance genes are more likely to be spread by conjugation via integrative conjugative elements or integrative mobilizable elements than transduction via prophages. Horizontal transfer of MGEs is extensive within phyla but rare across phyla, supporting phylum level niche-adaptive gene pools in the gut microbiome. ImmeDB will be a valuable resource for future studies on the gut microbiome and MGE communities.
Collapse
|
43
|
The Copy Number of the spoVA 2mob Operon Determines Pressure Resistance of Bacillus Endospores. Appl Environ Microbiol 2019; 85:AEM.01596-19. [PMID: 31375487 DOI: 10.1128/aem.01596-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/27/2019] [Indexed: 12/27/2022] Open
Abstract
The spoVA 2mob operon confers heat resistance to Bacillus spp., and the resistance correlates to the copy number of the operon. Bacillus endospores also exhibit a strong variation in resistance to pressure, but the underlying mechanisms of endospore resistance to pressure are not fully understood. We determined the effects of multiple spoVA 2mob operons on high-pressure resistance in Bacillus endospores. The copy numbers of the spoVA 2mob operon in 17 strains of Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus cereus, Bacillus velezensis, and Bacillus pumilus were determined via droplet digital PCR (ddPCR) and genome sequencing. These strains contained between 0 and 3 copies of the spoVA 2mob operon; the quantification of the gene copy number by ddPCR was as accurate as whole-genome sequencing. We further tested the pressure resistance of 17 Bacillus endospores at 600 MPa and 80°C. Strains with one or no spoVA 2mob operon had significantly lower pressure resistance than strains with two or three copies of the operons (P < 0.001), indicating that redundant spoVA 2mob operons in Bacillus contributed to higher pressure resistance of endospores. The copy number of the spoVA 2mob operon was not related to the dipicolinic acid (DPA) content of endospores. Overall, the copy number of the spoVA 2mob operon contributes to pressure resistance of Bacillus endospores. This improves our understanding of the pressure resistance mechanisms in Bacillus spp. and may inform the development of high-pressure sterilization in food processing.IMPORTANCE Bacillus spp. are considered pressure-resistant microorganisms, but the resistance mechanisms remain unknown. The spoVA 2mob operon is a mobile genetic element, and it can transfer to pathogenic or spoilage organisms by horizontal gene transfer. Results in this study indicate that multiple copies of the spoVA 2mob operon mediate high-pressure resistance of Bacillus endospores, and it might contribute to the identification of the source of pressure-resistant pathogens and spoilage organisms that may contaminate the food supply. The droplet digital PCR (ddPCR) system is well suited for analysis in some human diseases due to its high efficiency and capability to provide high precision; however, no relevant studies in food microbiology have been reported so far. This study demonstrates a novel application of ddPCR in food microbiology.
Collapse
|
44
|
Pickering DS, Vernon JJ, Freeman J, Wilcox MH, Chilton CH. Investigating the transient and persistent effects of heat on Clostridium difficile spores. J Med Microbiol 2019; 68:1445-1454. [PMID: 31429817 DOI: 10.1099/jmm.0.001048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose. Clostridium difficile spores are extremely resilient to high temperatures. Sublethal temperatures are associated with the 'reactivation' of dormant spores, and are utilized to maximize C. difficile spore recovery. Spore eradication is of vital importance to the food industry. The current study seeks to elucidate the transient and persisting effects of heating C. difficile spores at various temperatures.Methods. Spores of five C. difficile strains of different ribotypes (001, 015, 020, 027 and 078) were heated at 50, 60 and 70-80 °C for 60 min in phosphate-buffered saline (PBS) and enumerated at 0, 15, 30, 45 and 60 min. GInaFiT was used to model the kinetics of spore inactivation. In subsequent experiments, spores were transferred to enriched brain heart infusion (BHI) broths after 10 min of 80 °C heat treatment in PBS; samples were enumerated at 90 min and 24 h.Results. The spores of all strains demonstrated log-linear inactivation with tailing when heated for 60 min at 80 °C [(x̄=7.54±0.04 log10 vs 4.72±0.09 log10 colony-forming units (c.f.u.) ml- 1; P<0.001]. At 70 °C, all strains except 078 exhibited substantial decline in recovery over 60 min. Interestingly, 50 °C heat treatment had an inhibitory effect on 078 spore recovery at 0 vs 60 min (7.61±0.06 log10 c.f.u. ml- 1 vs 6.13±0.05 log10 c.f.u. ml- 1; P<0.001). Heating at 70/80 °C inhibited the initial germination and outgrowth of both newly produced and aged spores in enriched broths. This inhibition appeared to be transient; after 24 h vegetative counts were higher in heat-treated vs non-heat-treated spores (x̄=7.65±0.04 log10 c.f.u. ml- 1 vs 6.79±0.06 log10 c.f.u. ml- 1; P<0.001).Conclusions. The 078 spores were more resistant to the inhibitory effects of higher temperatures. Heat initially inhibits spore germination, but the subsequent outgrowth of vegetative populations accelerates after the initial inhibitory period.
Collapse
Affiliation(s)
- D S Pickering
- Healthcare Associated Infections Research Group, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, West Yorkshire, UK
| | - J J Vernon
- Healthcare Associated Infections Research Group, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, West Yorkshire, UK
| | - J Freeman
- Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
| | - M H Wilcox
- Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK.,Healthcare Associated Infections Research Group, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, West Yorkshire, UK
| | - C H Chilton
- Healthcare Associated Infections Research Group, Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, West Yorkshire, UK
| |
Collapse
|
45
|
van den Bogert B, Boekhorst J, Pirovano W, May A. On the Role of Bioinformatics and Data Science in Industrial Microbiome Applications. Front Genet 2019; 10:721. [PMID: 31447883 PMCID: PMC6696986 DOI: 10.3389/fgene.2019.00721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023] Open
Abstract
Advances in sequencing and computational biology have drastically increased our capability to explore the taxonomic and functional compositions of microbial communities that play crucial roles in industrial processes. Correspondingly, commercial interest has risen for applications where microbial communities make important contributions. These include food production, probiotics, cosmetics, and enzyme discovery. Other commercial applications include software that takes the user's gut microbiome data as one of its inputs and outputs evidence-based, automated, and personalized diet recommendations for balanced blood sugar levels. These applications pose several bioinformatic and data science challenges that range from requiring strain-level resolution in community profiles to the integration of large datasets for predictive machine learning purposes. In this perspective, we provide our insights on such challenges by touching upon several industrial areas, and briefly discuss advances and future directions of bioinformatics and data science in microbiome research.
Collapse
Affiliation(s)
| | | | | | - Ali May
- Research and Development Dept., BaseClear, Leiden, Netherlands
| |
Collapse
|
46
|
|
47
|
Eijlander RT, van Hekezen R, Bienvenue A, Girard V, Hoornstra E, Johnson NB, Meyer R, Wagendorp A, Walker DC, Wells‐Bennik MHJ. Spores in dairy – new insights in detection, enumeration and risk assessment. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12586] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Erik Hoornstra
- Laboratory & Quality Services FrieslandCampina Leeuwarden The Netherlands
| | | | - Rolf Meyer
- Nestec Ltd. Nestlé Research & Development Konolfingen 3510 Switzerland
| | | | | | | |
Collapse
|
48
|
Heat resistance of spores of 18 strains of Geobacillus stearothermophilus and impact of culturing conditions. Int J Food Microbiol 2019; 291:161-172. [DOI: 10.1016/j.ijfoodmicro.2018.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/14/2018] [Accepted: 11/06/2018] [Indexed: 11/24/2022]
|
49
|
Daqu Fermentation Selects for Heat-Resistant Enterobacteriaceae and Bacilli. Appl Environ Microbiol 2018; 84:AEM.01483-18. [PMID: 30120119 DOI: 10.1128/aem.01483-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
Daqu is a spontaneous solid-state cereal fermentation used as saccharification and starter culture in Chinese vinegar and liquor production. The evolution of microbiota in this spontaneous fermentation is controlled by the temperature profile, which reaches temperatures from 50 to 65°C for several days. Despite these high temperatures, mesophilic Enterobacteriaceae (including Cronobacter) and bacilli are present throughout Daqu fermentation. This study aimed to determine whether Daqu spontaneous solid-state fermentation selects for heat-resistant variants of these organisms. Heat resistance in Enterobacteriaceae is mediated by the locus of heat resistance (LHR). One LHR-positive strain of Kosakonia cowanii was identified in Daqu, and it exhibited higher heat resistance than the LHR-negative K. cowanii isolated from malted oats. Heat resistance in Bacillus endospores is mediated by the spoVA 2mob operon. Out of 10 Daqu isolates of the species Bacillus licheniformis, Brevibacillus parabrevis, Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus velezensis, 5 did not contain spoVA 2mob, 3 contained one copy, and 2 contained two copies. The presence and copy number of the spoVA 2mob operon increased the resistance of spores to treatment with 110°C. To confirm the selection of LHR- and spoVA 2mob-positive strains during Daqu fermentation, the copy numbers of these genetic elements in Daqu samples were quantified by quantitative PCR (qPCR). The abundance of LHR and the spoVA 2mob operon in community DNA relative to that of total bacterial 16S rRNA genes increased 3-fold and 5-fold, respectively, during processing. In conclusion, culture-dependent and culture-independent analyses suggest that Daqu fermentation selects for heat-resistant Enterobacteriaceae and bacilli.IMPORTANCE Daqu fermentations select for mobile genetic elements conferring heat resistance in Enterobacteriaceae and bacilli. The locus of heat resistance (LHR), a genomic island conferring heat resistance in Enterobacteriaceae, and the spoVA 2mob operon, conferring heat resistance on bacterial endospores, were enriched 3- to 5-fold during Daqu fermentation and maturation. It is therefore remarkable that the LHR and the spoVA 2mob operon are accumulated in the same food fermentation. The presence of heat-resistant Kosakonia spp. and Bacillus spp. in Daqu is not of concern for food safety; however, both genomic islands are mobile and transferable to pathogenic bacteria or toxin-producing bacteria by horizontal gene transfer. The identification of the LHR and the spoVA 2mob operon as indicators of fitness of Enterobacteriaceae and bacilli in Daqu fermentation provides insights into environmental sources of heat-resistant organisms that may contaminate the food supply.
Collapse
|
50
|
Microbiota of milk powders and the heat resistance and spoilage potential of aerobic spore-forming bacteria. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|