1
|
Yun Y, Lv T, Gui Z, Su T, Cao W, Tian X, Chen Y, Wang S, Jia Z, Li G, Ma T. Composition and metabolic flexibility of hydrocarbon-degrading consortia in oil reservoirs. BIORESOURCE TECHNOLOGY 2024; 409:131244. [PMID: 39127363 DOI: 10.1016/j.biortech.2024.131244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Hydrocarbon-degrading consortia (HDC) play an important role in petroleum exploitation. However, the real composition and metabolic mechanism of HDC in the microbial enhanced oil recovery (MEOR) process remain unclear. By combining 13C-DNA stable isotope probing microcosms with metagenomics, some newly reported phyla, including Chloroflexi, Synergistetes, Thermotogae, and Planctomycetes, dominated the HDC in the oil reservoirs. In the field trials, the HDC in the aerobic-facultative-anaerobic stage of oilfields jointly promoted the MEOR process, with monthly oil increments of up to 189 tons. Pseudomonas can improve oil recovery by producing rhamnolipid in the facultative condition. Roseovarius was the novel taxa potentially oxidizing alkane and producing acetate to improve oil porosity and permeability in the aerobic condition. Ca. Bacteroidia were the new members potentially degrading hydrocarbons by fumarate addition in the anaerobic environment. Comprehensive identification of the active HDC in oil reservoirs provides a novel theoretical basis for oilfield regulatory scheme.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Tianhua Lv
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Tianqi Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Weiwei Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Shaojing Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China.
| |
Collapse
|
2
|
Zhou Y, Wang Y, Yao S, Zhao X, Kong Q, Cui L, Zhang H. Driving mechanisms for the adaptation and degradation of petroleum hydrocarbons by native microbiota from seas prone to oil spills. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135060. [PMID: 38943887 DOI: 10.1016/j.jhazmat.2024.135060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Offshore waters have a high incidence of oil pollution, which poses an elevated risk of ecological damage. The microbial community composition and metabolic mechanisms influenced by petroleum hydrocarbons vary across different marine regions. However, research on metabolic strategies for in-situ petroleum degradation and pollution adaptation remains in its nascent stages. This study combines metagenomic techniques with gas chromatography-mass spectrometry (GC-MS) analysis. The data show that the genera Pseudoalteromonas, Hellea, Lentisphaera, and Polaribacter exhibit significant oil-degradation capacity, and that the exertion of their degradation capacity is correlated with nutrient and oil pollution stimuli. Furthermore, tmoA, badA, phdF, nahAc, and fadA were found to be the key genes involved in the degradation of benzene, polycyclic aromatic hydrocarbons, and their intermediates. Key genes (INSR, SLC2A1, and ORC1) regulate microbial adaptation to oil-contaminated seawater, activating oil degradation processes. This process enhances the biological activity of microbial communities and accounts for the geographical variation in their compositional structure. Our results enrich the gene pool for oil pollution adaptation and degradation and provide an application basis for optimizing bioremediation intervention strategies.
Collapse
Affiliation(s)
- Yumiao Zhou
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Shudi Yao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Xinyu Zhao
- Laoshan Laboratory, Qingdao 266237, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Lihua Cui
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
3
|
An L, Liu X, Wang J, Xu J, Chen X, Liu X, Hu B, Nie Y, Wu XL. Global diversity and ecological functions of viruses inhabiting oil reservoirs. Nat Commun 2024; 15:6789. [PMID: 39117673 PMCID: PMC11310422 DOI: 10.1038/s41467-024-51101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Oil reservoirs, being one of the significant subsurface repositories of energy and carbon, host diverse microbial communities affecting energy production and carbon emissions. Viruses play crucial roles in the ecology of microbiomes, however, their distribution and ecological significance in oil reservoirs remain undetermined. Here, we assemble a catalogue encompassing viral and prokaryotic genomes sourced from oil reservoirs. The catalogue comprises 7229 prokaryotic genomes and 3,886 viral Operational Taxonomic Units (vOTUs) from 182 oil reservoir metagenomes. The results show that viruses are widely distributed in oil reservoirs, and 85% vOTUs in oil reservoir are detected in less than 10% of the samples, highlighting the heterogeneous nature of viral communities within oil reservoirs. Through combined microcosm enrichment experiments and bioinformatics analysis, we validate the ecological roles of viruses in regulating the community structure of sulfate reducing microorganisms, primarily through a virulent lifestyle. Taken together, this study uncovers a rich diversity of viruses and their ecological functions within oil reservoirs, offering a comprehensive understanding of the role of viral communities in the biogeochemical cycles of the deep biosphere.
Collapse
Affiliation(s)
- Liyun An
- College of architecture and environment, Sichuan University, Chengdu, 610065, China
| | - Xinwu Liu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Jianwei Wang
- College of Engineering, Peking University, Beijing, 100871, China
| | - Jinbo Xu
- School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Xiaoli Chen
- College of Engineering, Peking University, Beijing, 100871, China
- Institute of Ocean Research, Peking University, Beijing, 100871, China
| | - Xiaonan Liu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Bingxin Hu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, 100871, China.
| | - Xiao-Lei Wu
- College of architecture and environment, Sichuan University, Chengdu, 610065, China.
- College of Engineering, Peking University, Beijing, 100871, China.
- School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
- Institute of Ocean Research, Peking University, Beijing, 100871, China.
- Institute of Ecology, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Kapse N, Dagar SS, Dhakephalkar PK. Appropriate characterization of reservoir properties and investigation of their effect on microbial enhanced oil recovery through simulated laboratory studies. Sci Rep 2024; 14:15401. [PMID: 38965286 PMCID: PMC11224412 DOI: 10.1038/s41598-024-65728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Appropriate characterization of reservoir properties and investigation of the effect of these properties on microbial metabolism and oil recovery under simulated reservoir conditions can aid in development of a sustainable microbial enhanced oil recovery (MEOR) process. Our present study has unveiled the promising potential of the hyperthermophilic archaeon, identified as Thermococcus petroboostus sp. nov. 101C5, to positively influence the microenvironment within simulated oil reservoirs, by producing significant amounts of metabolites, such as biosurfactants, biopolymers, biomass, acids, solvents, gases. These MEOR desired metabolites were found to cause a series of desirable changes in the physicochemical properties of crude oil and reservoir rocks, thereby enhancing oil recovery. Furthermore, our study demonstrated that the microbial activity of 101C5 led to the mobilization of crude oil, consequently resulting in enhanced production rates and increased efficiency in simulated sand pack trials. 101C5 exhibited considerable potential as a versatile microorganism for MEOR applications across diverse reservoir conditions, mediating significant light as well as heavy oil recovery from Berea/carbonaceous nature of rock bearing intergranular/vugular/fracture porosity at extreme reservoir conditions characterized by high temperature (80-101 °C) and high pressure (700-1300 psi). Core flood study, which truly mimicked the reservoir conditions demonstrated 29.5% incremental oil recovery by 101C5 action from Berea sandstone at 900 psi and 96 °C, underscoring the potential of strain 101C5 for application in the depleted high temperature oil wells.
Collapse
Affiliation(s)
- Neelam Kapse
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.
| | - Sumit S Dagar
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - P K Dhakephalkar
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.
- Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India.
| |
Collapse
|
5
|
Stemple B, Gulliver D, Sarkar P, Tinker K, Bibby K. Metagenome-assembled genomes provide insight into the metabolic potential during early production of Hydraulic Fracturing Test Site 2 in the Delaware Basin. Front Microbiol 2024; 15:1376536. [PMID: 38933028 PMCID: PMC11199900 DOI: 10.3389/fmicb.2024.1376536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Demand for natural gas continues to climb in the United States, having reached a record monthly high of 104.9 billion cubic feet per day (Bcf/d) in November 2023. Hydraulic fracturing, a technique used to extract natural gas and oil from deep underground reservoirs, involves injecting large volumes of fluid, proppant, and chemical additives into shale units. This is followed by a "shut-in" period, during which the fracture fluid remains pressurized in the well for several weeks. The microbial processes that occur within the reservoir during this shut-in period are not well understood; yet, these reactions may significantly impact the structural integrity and overall recovery of oil and gas from the well. To shed light on this critical phase, we conducted an analysis of both pre-shut-in material alongside production fluid collected throughout the initial production phase at the Hydraulic Fracturing Test Site 2 (HFTS 2) located in the prolific Wolfcamp formation within the Permian Delaware Basin of west Texas, USA. Specifically, we aimed to assess the microbial ecology and functional potential of the microbial community during this crucial time frame. Prior analysis of 16S rRNA sequencing data through the first 35 days of production revealed a strong selection for a Clostridia species corresponding to a significant decrease in microbial diversity. Here, we performed a metagenomic analysis of produced water sampled on Day 33 of production. This analysis yielded three high-quality metagenome-assembled genomes (MAGs), one of which was a Clostridia draft genome closely related to the recently classified Petromonas tenebris. This draft genome likely represents the dominant Clostridia species observed in our 16S rRNA profile. Annotation of the MAGs revealed the presence of genes involved in critical metabolic processes, including thiosulfate reduction, mixed acid fermentation, and biofilm formation. These findings suggest that this microbial community has the potential to contribute to well souring, biocorrosion, and biofouling within the reservoir. Our research provides unique insights into the early stages of production in one of the most prolific unconventional plays in the United States, with important implications for well management and energy recovery.
Collapse
Affiliation(s)
- Brooke Stemple
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Djuna Gulliver
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | - Preom Sarkar
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | - Kara Tinker
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
- Leidos Research Support Team, Pittsburgh, PA, United States
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| |
Collapse
|
6
|
Mbow FT, Akbari A, Dopffel N, Schneider K, Mukherjee S, Meckenstock RU. Insights into the effects of anthropogenic activities on oil reservoir microbiome and metabolic potential. N Biotechnol 2024; 79:30-38. [PMID: 38040289 DOI: 10.1016/j.nbt.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Microbial communities have long been observed in oil reservoirs, where the subsurface conditions are major drivers shaping their structure and functions. Furthermore, anthropogenic activities such as water flooding during oil production can affect microbial activities and community compositions in oil reservoirs through the injection of recycled produced water, often associated with biocides. However, it is still unclear to what extent the introduced chemicals and microbes influence the metabolic potential of the subsurface microbiome. Here we investigated an onshore oilfield in Germany (Field A) that undergoes secondary oil production along with biocide treatment to prevent souring and microbially induced corrosion (MIC). With the integrated approach of 16 S rRNA gene amplicon and shotgun metagenomic sequencing of water-oil samples from 4 production wells and 1 injection well, we found differences in microbial community structure and metabolic functions. In the injection water samples, amplicon sequence variants (ASVs) belonging to families such as Halanaerobiaceae, Ectothiorhodospiraceae, Hydrogenophilaceae, Halobacteroidaceae, Desulfohalobiaceae, and Methanosarcinaceae were dominant, while in the production water samples, ASVs of families such as Thermotogaceae, Nitrospiraceae, Petrotogaceae, Syntrophaceae, Methanobacteriaceae, and Thermoprotei were also dominant. The metagenomic analysis of the injection water sample revealed the presence of C1-metabolism, namely, genes involved in formaldehyde oxidation. Our analysis revealed that the microbial community structure of the production water samples diverged slightly from that of injection water samples. Additionally, a metabolic potential for oxidizing the applied biocide clearly occurred in the injection water samples indicating an adaptation and buildup of degradation capacity or resistance against the added biocide.
Collapse
Affiliation(s)
- Fatou T Mbow
- University of Duisburg-Essen - Environmental Microbiology and Biotechnology - Aquatic Microbiology, Universitätsstraße 5, 45141 Essen, Germany
| | - Ali Akbari
- University of Duisburg-Essen - Environmental Microbiology and Biotechnology - Aquatic Microbiology, Universitätsstraße 5, 45141 Essen, Germany
| | - Nicole Dopffel
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | | | | | - Rainer U Meckenstock
- University of Duisburg-Essen - Environmental Microbiology and Biotechnology - Aquatic Microbiology, Universitätsstraße 5, 45141 Essen, Germany.
| |
Collapse
|
7
|
Li S, Mosier D, Kouris A, Humez P, Mayer B, Strous M, Diao M. High diversity, abundance, and expression of hydrogenases in groundwater. ISME COMMUNICATIONS 2024; 4:ycae023. [PMID: 38500700 PMCID: PMC10945355 DOI: 10.1093/ismeco/ycae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Hydrogen may be the most important electron donor available in the subsurface. Here we analyse the diversity, abundance and expression of hydrogenases in 5 proteomes, 25 metagenomes, and 265 amplicon datasets of groundwaters with diverse geochemistry. A total of 1545 new [NiFe]-hydrogenase gene sequences were recovered, which considerably increased the number of sequences (1999) in a widely used database. [NiFe]-hydrogenases were highly abundant, as abundant as the DNA-directed RNA polymerase. The abundance of hydrogenase genes increased with depth from 0 to 129 m. Hydrogenases were present in 481 out of 1245 metagenome-assembled genomes. The relative abundance of microbes with hydrogenases accounted for ~50% of the entire community. Hydrogenases were actively expressed, making up as much as 5.9% of methanogen proteomes. Most of the newly discovered diversity of hydrogenases was in "Group 3b", which has been associated with sulfur metabolism. "Group 3d", facilitating the interconversion of electrons between hydrogen and NAD, was the most abundant and mainly observed in methanotrophs and chemoautotrophs. "Group 3a", associated with methanogenesis, was the most abundant in proteomes. Two newly discovered groups of [NiFe]-hydrogenases, observed in Methanobacteriaceae and Anaerolineaceae, further expanded diversity. Our results highlight the vast diversity, abundance and expression of hydrogenases in groundwaters, suggesting a high potential for hydrogen oxidation in subsurface habitats.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Earth, Energy and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Damon Mosier
- Department of Earth, Energy and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Angela Kouris
- Department of Earth, Energy and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Pauline Humez
- Department of Earth, Energy and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Bernhard Mayer
- Department of Earth, Energy and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Marc Strous
- Department of Earth, Energy and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Muhe Diao
- Department of Earth, Energy and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
8
|
Xu J, Wang L, Lv W, Song X, Nie Y, Wu XL. Metabolic profiling of petroleum-degrading microbial communities incubated under high-pressure conditions. Front Microbiol 2023; 14:1305731. [PMID: 38188585 PMCID: PMC10766756 DOI: 10.3389/fmicb.2023.1305731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
While pressure is a significant characteristic of petroleum reservoirs, it is often overlooked in laboratory studies. To clarify the composition and metabolic properties of microbial communities under high-pressure conditions, we established methanogenic and sulfate-reducing enrichment cultures under high-pressure conditions using production water from the Jilin Oilfield in China. We utilized a metagenomics approach to analyze the microbial community after a 90-day incubation period. Under methanogenic conditions, Firmicutes, Deferribacteres, Ignavibacteriae, Thermotogae, and Nitrospirae, in association with the hydrogenotrophic methanogen Archaeoglobaceae and acetoclastic Methanosaeta, were highly represented. Genomes for Ca. Odinarchaeota and the hydrogen-dependent methylotrophic Ca. Methanosuratus were also recovered from the methanogenic culture. The sulfate-reducing community was dominated by Firmicutes, Thermotogae, Nitrospirae, Archaeoglobus, and several candidate taxa including Ca. Bipolaricaulota, Ca. Aminicenantes, and Candidate division WOR-3. These candidate taxa were key pantothenate producers for other community members. The study expands present knowledge of the metabolic roles of petroleum-degrading microbial communities under high-pressure conditions. Our results also indicate that microbial community interactions were shaped by syntrophic metabolism and the exchange of amino acids and cofactors among members. Furthermore, incubation under in situ pressure conditions has the potential to reveal the roles of microbial dark matter.
Collapse
Affiliation(s)
- Jinbo Xu
- School of Earth and Space Sciences, Peking University, Beijing, China
- State Key Laboratory of Enhanced Oil and Gas Recovery, Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Lu Wang
- State Key Laboratory of Enhanced Oil and Gas Recovery, Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Weifeng Lv
- State Key Laboratory of Enhanced Oil and Gas Recovery, Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Xinmin Song
- State Key Laboratory of Enhanced Oil and Gas Recovery, Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, China
- Institute of Ecology, Peking University, Beijing, China
| |
Collapse
|
9
|
Hanišáková N, Vítězová M, Vítěz T, Kushkevych I, Kotrlová E, Novák D, Lochman J, Zavada R. Microbiological insight into various underground gas storages in Vienna Basin focusing on methanogenic Archaea. Front Microbiol 2023; 14:1293506. [PMID: 38188570 PMCID: PMC10771303 DOI: 10.3389/fmicb.2023.1293506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
In recent years, there has been a growing interest in extending the potential of underground gas storage (UGS) facilities to hydrogen and carbon dioxide storage. However, this transition to hydrogen storage raises concerns regarding potential microbial reactions, which could convert hydrogen into methane. It is crucial to gain a comprehensive understanding of the microbial communities within any UGS facilities designated for hydrogen storage. In this study, underground water samples and water samples from surface technologies from 7 different UGS objects located in the Vienna Basin were studied using both molecular biology methods and cultivation methods. Results from 16S rRNA sequencing revealed that the proportion of archaea in the groundwater samples ranged from 20 to 58%, with methanogens being the predominant. Some water samples collected from surface technologies contained up to 87% of methanogens. Various species of methanogens were isolated from individual wells, including Methanobacterium sp., Methanocalculus sp., Methanolobus sp. or Methanosarcina sp. We also examined water samples for the presence of sulfate-reducing bacteria known to be involved in microbially induced corrosion and identified species of the genus Desulfovibrio in the samples. In the second part of our study, we contextualized our data by comparing it to available sequencing data from terrestrial subsurface environments worldwide. This allowed us to discern patterns and correlations between different types of underground samples based on environmental conditions. Our findings reveal presence of methanogens in all analyzed groups of underground samples, which suggests the possibility of unintended microbial hydrogen-to-methane conversion and the associated financial losses. Nevertheless, the prevalence of methanogens in our results also highlights the potential of the UGS environment, which can be effectively leveraged as a bioreactor for the conversion of hydrogen into methane, particularly in the context of Power-to-Methane technology.
Collapse
Affiliation(s)
- Nikola Hanišáková
- Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Monika Vítězová
- Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomáš Vítěz
- Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Ivan Kushkevych
- Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Eva Kotrlová
- Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - David Novák
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Roman Zavada
- Innovation Unit, NAFTA a.s., Bratislava, Slovakia
| |
Collapse
|
10
|
Kadnikov VV, Ravin NV, Sokolova DS, Semenova EM, Bidzhieva SK, Beletsky AV, Ershov AP, Babich TL, Khisametdinov MR, Mardanov AV, Nazina TN. Metagenomic and Culture-Based Analyses of Microbial Communities from Petroleum Reservoirs with High-Salinity Formation Water, and Their Biotechnological Potential. BIOLOGY 2023; 12:1300. [PMID: 37887010 PMCID: PMC10604348 DOI: 10.3390/biology12101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
The reserves of light conditional oil in reservoirs with low-salinity formation water are decreasing worldwide, necessitating the extraction of heavy oil from petroleum reservoirs with high-salinity formation water. As the first stage of defining the microbial-enhanced oil recovery (MEOR) strategies for depleted petroleum reservoirs, microbial community composition was studied for petroleum reservoirs with high-salinity formation water located in Tatarstan (Russia) using metagenomic and culture-based approaches. Bacteria of the phyla Desulfobacterota, Halanaerobiaeota, Sinergistota, Pseudomonadota, and Bacillota were revealed using 16S rRNA-based high-throughput sequencing in halophilic microbial communities. Sulfidogenic bacteria predominated in the studied oil fields. The 75 metagenome-assembled genomes (MAGs) of prokaryotes reconstructed from water samples were assigned to 16 bacterial phyla, including Desulfobacterota, Bacillota, Pseudomonadota, Thermotogota, Actinobacteriota, Spirochaetota, and Patescibacteria, and to archaea of the phylum Halobacteriota (genus Methanohalophilus). Results of metagenomic analyses were supported by the isolation of 20 pure cultures of the genera Desulfoplanes, Halanaerobium, Geotoga, Sphaerochaeta, Tangfeifania, and Bacillus. The isolated halophilic fermentative bacteria produced oil-displacing metabolites (lower fatty acids, alcohols, and gases) from sugar-containing and proteinaceous substrates, which testify their potential for MEOR. However, organic substrates stimulated the growth of sulfidogenic bacteria, in addition to fermenters. Methods for enhanced oil recovery should therefore be developed, combining the production of oil-displacing compounds with fermentative bacteria and the suppression of sulfidogenesis.
Collapse
Affiliation(s)
- Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (N.V.R.); (A.V.B.); (A.V.M.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (N.V.R.); (A.V.B.); (A.V.M.)
| | - Diyana S. Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (A.P.E.); (T.L.B.)
| | - Ekaterina M. Semenova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (A.P.E.); (T.L.B.)
| | - Salimat K. Bidzhieva
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (A.P.E.); (T.L.B.)
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (N.V.R.); (A.V.B.); (A.V.M.)
| | - Alexey P. Ershov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (A.P.E.); (T.L.B.)
| | - Tamara L. Babich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (A.P.E.); (T.L.B.)
| | - Marat R. Khisametdinov
- Tatar Scientific Research and Design Institute of Oil “Tatneft”, 423236 Bugulma, Russia;
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (N.V.R.); (A.V.B.); (A.V.M.)
| | - Tamara N. Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (A.P.E.); (T.L.B.)
| |
Collapse
|
11
|
Alibrandi A, di Primio R, Bartholomäus A, Kallmeyer J. A modified isooctane-based DNA extraction method from crude oil. MLIFE 2023; 2:328-338. [PMID: 38817811 PMCID: PMC10989908 DOI: 10.1002/mlf2.12081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 07/29/2023] [Indexed: 06/01/2024]
Abstract
Microbes from oil reservoirs shape petroleum composition through processes such as biodegradation or souring. Such processes are considered economically detrimental and might pose health and safety hazards. It is therefore crucial to understand the composition of a reservoir's microbial community and its metabolic capabilities. However, such analyses are hindered by difficulties in extracting DNA from such complex fluids as crude oil. Here, we present a novel DNA extraction method from oils with a wide American Petroleum Institute (API) gravity (density) range. We investigated the ability to extract cells from oils with different solvents and surfactants, the latter both nonionic and ionic. Furthermore, we evaluated three DNA extraction methods. Overall, the best DNA yields and the highest number of 16S rRNA reads were achieved with isooctane as a solvent, followed by an ionic surfactant treatment using sodium dodecyl sulfate and DNA extraction using the PowerSoil Pro Kit (Qiagen). The final method was then applied to various oils from oil reservoirs collected in aseptic conditions. Despite the expected low cell density of 101-103 cells/ml, the new method yielded reliable results, with average 16S rRNA sequencing reads in the order of 41431 (±8860) per sample. Thermophilic, halophilic, and anaerobic taxa, which are most likely to be indigenous to the oil reservoir, were found in all samples. API gravity and DNA yield, despite the sufficient DNA obtained, did not show a correlation.
Collapse
Affiliation(s)
- Armando Alibrandi
- GFZ German Research Centre for Geoscience, Section GeomicrobiologyPotsdamGermany
| | | | | | - Jens Kallmeyer
- GFZ German Research Centre for Geoscience, Section GeomicrobiologyPotsdamGermany
| |
Collapse
|
12
|
When nitrate treatment wins the battle against microbial reservoir souring but loses the war. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
13
|
Zhu H, Fu Y, Yu J, Jing W, Zhou M. Metagenomic insight on consortium degradation of soil weathered petroleum and its supplement based on gene abundance change. Enzyme Microb Technol 2023; 169:110285. [PMID: 37413912 DOI: 10.1016/j.enzmictec.2023.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Petroleum biodegradation is of importance for the mitigation of secondary pollutants from soil chemical remediation. Describing the gene abundance change of the petroleum degradation emerged as an important practice for success. In this study, an indigenous consortium with targeting-enzyme was utilized to develop a degradative system that was later subjected to metagenomic analysis on the soil microbial community. Centering on ko00625 pathway, abundance change of dehydrogenase gene was firstly found increasing from groups D, DS to DC in turn, just in an opposite direction with that of oxygenase. In addition, gene abundance of responsive mechanism went rising with degradative process as well. This finding sufficiently promoted that equal attention should be paid to both degradative and responsive processes. Hydrogen donor system was innovatively built on the consortium-used soil to satisfy the demand of dehydrogenase gene tendency and to sustain further petroleum degradation. Anaerobic pine-needle soil was supplemented to this system, bi-functionally serving as dehydrogenase substrate with nutrients and hydrogen donor. In doing so, two successive degradations optimally achieved the total removal rate 75.6-78.7% for petroleum hydrocarbon. The conception on the gene abundance changes and its corresponding supplement helps industries of concern to develop geno-tag guided framework.
Collapse
Affiliation(s)
- Hongfei Zhu
- College of Environmental Science and Engineering of Liaoning Technical University, No. 47 Zhonghua Road, Fuxin, Liaoning 123000, China.
| | - Yuting Fu
- College of Environmental Science and Engineering of Liaoning Technical University, No. 47 Zhonghua Road, Fuxin, Liaoning 123000, China
| | - Jiashuai Yu
- College of Environmental Science and Engineering of Liaoning Technical University, No. 47 Zhonghua Road, Fuxin, Liaoning 123000, China
| | - Wenjie Jing
- College of Environmental Science and Engineering of Liaoning Technical University, No. 47 Zhonghua Road, Fuxin, Liaoning 123000, China
| | - Mengting Zhou
- College of Environmental Science and Engineering of Liaoning Technical University, No. 47 Zhonghua Road, Fuxin, Liaoning 123000, China
| |
Collapse
|
14
|
Yao S, Jin T, Zhang L, Zhang Y, Chen R, Wang Q, Lv M, Hu C, Ma T, Xia W. N/S element transformation modulating lithospheric microbial communities by single-species manipulation. MICROBIOME 2023; 11:107. [PMID: 37194043 DOI: 10.1186/s40168-023-01553-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND The lithospheric microbiome plays a vital role in global biogeochemical cycling, yet their mutual modulation mechanisms remain largely uncharted. Petroleum reservoirs are important lithosphere ecosystems that provide desirable resources for understanding microbial roles in element cycling. However, the strategy and mechanism of modulating indigenous microbial communities for the optimization of community structures and functions are underexplored, despite its significance in energy recovery and environmental remediation. RESULTS Here we proposed a novel selective stimulation of indigenous functional microbes by driving nitrogen and sulfur cycling in petroleum reservoirs using injections of an exogenous heterocycle-degrading strain of Pseudomonas. We defined such bacteria capable of removing and releasing organically bound sulfur and nitrogen from heterocycles as "bioredox triggers". High-throughput 16S rRNA amplicon sequencing, metagenomic, and gene transcription-level analyses of extensive production water and sandstone core samples spanning the whole oil production process clarified the microbiome dynamics following the intervention. These efforts demonstrated the feasibility of in situ N/S element release and electron acceptor generation during heterocycle degradation, shifting microbiome structures and functions and increasing phylogenetic diversity and genera engaged in sulfur and nitrogen cycling, such as Desulfovibrio, Shewanella, and Sulfurospirillum. The metabolic potentials of sulfur- and nitrogen-cycling processes, particularly dissimilatory sulfate reduction and dissimilatory nitrate reduction, were elevated in reservoir microbiomes. The relative expression of genes involved in sulfate reduction (dsrA, dsrB) and nitrate reduction (napA) was upregulated by 85, 28, and 22 folds, respectively. Field trials showed significant improvements in oil properties, with a decline in asphaltenes and aromatics, hetero-element contents, and viscosity, hence facilitating the effective exploitation of heavy oil. CONCLUSIONS The interactions between microbiomes and element cycling elucidated in this study will contribute to a better understanding of microbial metabolic involvement in, and response to, biogeochemical processes in the lithosphere. The presented findings demonstrated the immense potential of our microbial modulation strategy for green and enhanced heavy oil recovery. Video Abstract.
Collapse
Affiliation(s)
- Shun Yao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Tianzhi Jin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yong Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Qian Wang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Mingjie Lv
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Chuxiao Hu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Wenjie Xia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
15
|
Diaz-Mateus MA, Salgar-Chaparro SJ, Machuca LL, Farhat H. Effect of deposit chemistry on microbial community structure and activity: Implications for under-deposit microbial corrosion. Front Microbiol 2023; 14:1089649. [PMID: 36846765 PMCID: PMC9947782 DOI: 10.3389/fmicb.2023.1089649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The deposition of solid particles carried by production fluids from oil and gas companies in horizontal surfaces of different assets has shown to cause severe localised corrosion. Sand, one of the most common deposits in the energy sector pipelines, is frequently mixed with crude, oil, asphaltenes, corrosion inhibitors, and other organic compounds. For this reason, they might favour the metabolic activity of native microbial communities. This study aimed to determine the impact of sand-deposit chemical composition on the microbial community structure and functional attributes of a multispecies consortium recovered from an oilfield and the resulting risk of under-deposit microbial corrosion of carbon steel. Methods Sand deposits recovered from an oil pipeline were used in their raw form and compared against the same deposits exposed to heat treatment to remove organic compounds. A four-week immersion test in a bioreactor filled with synthetic produced water and a two-centimeter layer of sand was set up to assess corrosion and microbial community changes. Results The raw untreated deposit from the field containing hydrocarbons and treatment chemicals resulted in a more diverse microbial community than its treated counterpart. Moreover, biofilms developed in the raw sand deposit exhibited higher metabolic rates, with functional profile analysis indicating a predominance of genes associated with xenobiotics degradation. Uniform and localized corrosion were more severe in the raw sand deposit compared to the treated sand. Discussion The complex chemical composition of the untreated sand might have represented an additional source of energy and nutrients to the microbial consortium, favoring the development of different microbial genera and species. The higher corrosion rate obtained under the untreated sand suggests that MIC occurred due to syntrophic relationships between sulphate reducers or thiosulphate reducers and fermenters identified in the consortium.
Collapse
Affiliation(s)
- Maria A. Diaz-Mateus
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy, and Chemical Engineering, Curtin University, Bentley, WA, Australia
| | - Silvia J. Salgar-Chaparro
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy, and Chemical Engineering, Curtin University, Bentley, WA, Australia,*Correspondence: Silvia J. Salgar-Chaparro, ✉
| | - Laura L. Machuca
- WA School of Mines: Minerals, Energy, and Chemical Engineering, Curtin University, Bentley, WA, Australia
| | - Hanan Farhat
- Qatar Environment and Energy Research Institute (QEERI), Doha, Qatar
| |
Collapse
|
16
|
pH and Nitrate Drive Bacterial Diversity in Oil Reservoirs at a Localized Geographic Scale. Microorganisms 2023; 11:microorganisms11010151. [PMID: 36677443 PMCID: PMC9865607 DOI: 10.3390/microorganisms11010151] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Oil reservoirs are one of the most important deep subsurface biospheres. They are inhabited by diverse microorganisms including bacteria and archaea with diverse metabolic activities. Although recent studies have investigated the microbial communities in oil reservoirs at large geographic scales, it is still not clear how the microbial communities assemble, as the variation in the environment may be confounded with geographic distance. In this work, the microbial communities in oil reservoirs from the same oil field were identified at a localized geographic scale. We found that although the injected water contained diverse exogenous microorganisms, this had little effect on the microbial composition of the produced water. The Neutral Community Model analysis showed that both bacterial and archaeal communities are dispersal limited even at a localized scale. Further analysis showed that both pH and nitrate concentrations drive the assembly of bacterial communities, of which nitrate negatively correlated with bacterial alpha diversity and pH differences positively correlated with the dissimilarity of bacterial communities. In contrast, the physiochemical parameters had little effect on archaeal communities at the localized scale. Our results suggest that the assembly of microbial communities in oil reservoirs is scale- and taxonomy-dependent. Our work provides a comprehensive analysis of microbial communities in oil reservoirs at a localized geographic scale, which improves the understanding of the assembly of the microbial communities in oil reservoirs.
Collapse
|
17
|
Gao P, Li Y, Tian H, Li G, Zhao F, Xia W, Pan X, Gu JD, Le J, Jia C, Ma T. Bacterial and Archaeal Community Distribution in Oilfield Water Re-injection Facilities and the Influences from Microorganisms in Injected Water. MICROBIAL ECOLOGY 2022; 84:1011-1028. [PMID: 34845558 DOI: 10.1007/s00248-021-01933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Water flooding is widely employed for oil production worldwide. However, there has never been a systematic investigation of the microbial communities occurring in oilfield water re-injection facilities. Here, we investigated the distribution of bacterial and archaeal communities in water re-injection facilities of an oilfield, and illustrated the combined influences of environmental variation and the microorganisms in injected water on the microbial communities. Bacterial communities from the surface injection facilities were dominated by aerobic or facultative anaerobic Betaproteobacteria, Alphaproteobacteria, and Flavobacteria, whereas Clostridia, Deltaproteobacteria, Anaerolineae, and Synergistia predominated in downhole of the injection wells, and Gammaproteobacteria, Betaproteobacteria, and Epsilonproteobacteria predominated in the production wells. Methanosaeta, Methanobacterium, and Methanolinea were dominant archaea in the injection facilities, while Methanosaeta, Methanomethylovorans, and Methanoculleus predominated in the production wells. This study also demonstrated that the microorganisms in injected water could be easily transferred from injection station to wellheads and downhole of injection wells, and environmental variation and diffusion-limited microbial transfer resulted from formation filtration were the main factors determining microbial community assembly in oil-bearing strata. The results provide novel information on the bacterial and archaeal communities and the underlying mechanisms occurring in oilfield water re-injection facilities, and benefit the development of effective microbiologically enhanced oil recovery and microbiologically prevented reservoir souring programs.
Collapse
Affiliation(s)
- Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Yu Li
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Huimei Tian
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guoqiang Li
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Feng Zhao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Wenjie Xia
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xunli Pan
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, Guangdong, China
| | - Jianjun Le
- Daqing Oilfield Company Ltd Exploration and Development Research Institute, Daqing, 163000, Heilongjiang, China
| | - Chuanxing Jia
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ting Ma
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
18
|
Gittins DA, Desiage PA, Morrison N, Rattray JE, Bhatnagar S, Chakraborty A, Zorz J, Li C, Horanszky O, Cramm MA, Bisiach F, Bennett R, Webb J, MacDonald A, Fowler M, Campbell DC, Hubert CRJ. Geological processes mediate a microbial dispersal loop in the deep biosphere. SCIENCE ADVANCES 2022; 8:eabn3485. [PMID: 36026445 PMCID: PMC9417182 DOI: 10.1126/sciadv.abn3485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The deep biosphere is the largest microbial habitat on Earth and features abundant bacterial endospores. Whereas dormancy and survival at theoretical energy minima are hallmarks of microbial physiology in the subsurface, ecological processes such as dispersal and selection in the deep biosphere remain poorly understood. We investigated the biogeography of dispersing bacteria in the deep sea where upward hydrocarbon seepage was confirmed by acoustic imagery and geochemistry. Thermophilic endospores in the permanently cold seabed correlated with underlying seep conduits reveal geofluid-facilitated cell migration pathways originating in deep petroleum-bearing sediments. Endospore genomes highlight adaptations to life in anoxic petroleum systems and bear close resemblance to oil reservoir microbiomes globally. Upon transport out of the subsurface, viable thermophilic endospores reenter the geosphere by sediment burial, enabling germination and environmental selection at depth where new petroleum systems establish. This microbial dispersal loop circulates living biomass in and out of the deep biosphere.
Collapse
Affiliation(s)
- Daniel A. Gittins
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
- Corresponding author.
| | | | - Natasha Morrison
- Department of Natural Resources and Renewables, Government of Nova Scotia, Halifax, Canada
| | - Jayne E. Rattray
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Srijak Bhatnagar
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | - Jackie Zorz
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Carmen Li
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Oliver Horanszky
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Margaret A. Cramm
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Francesco Bisiach
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Robbie Bennett
- Natural Resources Canada, Geological Survey of Canada-Atlantic, Dartmouth, Canada
| | - Jamie Webb
- Applied Petroleum Technology, Calgary, Canada
| | - Adam MacDonald
- Department of Natural Resources and Renewables, Government of Nova Scotia, Halifax, Canada
| | | | - D. Calvin Campbell
- Natural Resources Canada, Geological Survey of Canada-Atlantic, Dartmouth, Canada
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
19
|
Wang Z, Li Y, Ren J, Xu W, Yang L. Investigating the effects of environment, corrosion degree, and distribution of corrosive microbial communities on service-life of refined oil pipelines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52204-52219. [PMID: 35260983 DOI: 10.1007/s11356-022-19556-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Although the potential corrosive microbial communities of the refined oil pipelines can cause pipeline failure which directly threatens on soil and water environment, few studies have been published in this field. Therefore, the long-distance on-site internal corrosion detection and high-throughput sequencing techniques were employed in this study to investigate the distribution shifts of the corrosive microbial communities on the inner wall of a refined oil pipeline and its impact on the internal corrosion. The microorganisms colonizing on the inner wall of the pipeline showed significant distribution differences between the axial direction of the relative elevation and radial direction of the cross-section. On the inner wall, the high diversity and the abundance of the corrosive microbial communities induced serious microbiologically influenced corrosion (MIC), while the chemical corrosion and the synergy of the corrosive microbial communities accelerated the internal corrosion of the refined oil pipeline. A corrosion zone model has been proposed, which divides the pipeline cross-section into the sediment, the water-oil interface, the gas-oil interface, and the oil fully immersed zones. Therefore, the relationships between the environment, corrosion degree, and distribution characteristics of the corrosive microbial communities in the pipeline were analyzed. This research exhibited the importance of the distribution characteristics of the corrosive microorganisms on the inner wall of the refined oil pipelines. Its internal corrosion behavior was accurately explored, while providing a basis for controlling the corrosive microbial communities.
Collapse
Affiliation(s)
- Zhengquan Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Yantao Li
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Jie Ren
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Weichen Xu
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Lihui Yang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| |
Collapse
|
20
|
Lu M, Schneider D, Daniel R. Metagenomic Screening for Lipolytic Genes Reveals an Ecology-Clustered Distribution Pattern. Front Microbiol 2022; 13:851969. [PMID: 35756004 PMCID: PMC9226776 DOI: 10.3389/fmicb.2022.851969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lipolytic enzymes are one of the most important enzyme types for application in various industrial processes. Despite the continuously increasing demand, only a small portion of the so far encountered lipolytic enzymes exhibit adequate stability and activities for biotechnological applications. To explore novel and/or extremophilic lipolytic enzymes, microbial consortia in two composts at thermophilic stage were analyzed using function-driven and sequence-based metagenomic approaches. Analysis of community composition by amplicon-based 16S rRNA genes and transcripts, and direct metagenome sequencing revealed that the communities of the compost samples were dominated by members of the phyla Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Chloroflexi. Function-driven screening of the metagenomic libraries constructed from the two samples yielded 115 unique lipolytic enzymes. The family assignment of these enzymes was conducted by analyzing the phylogenetic relationship and generation of a protein sequence similarity network according to an integrated classification system. The sequence-based screening was performed by using a newly developed database, containing a set of profile Hidden Markov models, highly sensitive and specific for detection of lipolytic enzymes. By comparing the lipolytic enzymes identified through both approaches, we demonstrated that the activity-directed complements sequence-based detection, and vice versa. The sequence-based comparative analysis of lipolytic genes regarding diversity, function and taxonomic origin derived from 175 metagenomes indicated significant differences between habitats. Analysis of the prevalent and distinct microbial groups providing the lipolytic genes revealed characteristic patterns and groups driven by ecological factors. The here presented data suggests that the diversity and distribution of lipolytic genes in metagenomes of various habitats are largely constrained by ecological factors.
Collapse
Affiliation(s)
| | | | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Bell E, Lamminmäki T, Alneberg J, Qian C, Xiong W, Hettich RL, Frutschi M, Bernier-Latmani R. Active anaerobic methane oxidation and sulfur disproportionation in the deep terrestrial subsurface. THE ISME JOURNAL 2022; 16:1583-1593. [PMID: 35173296 PMCID: PMC9123182 DOI: 10.1038/s41396-022-01207-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Microbial life is widespread in the terrestrial subsurface and present down to several kilometers depth, but the energy sources that fuel metabolism in deep oligotrophic and anoxic environments remain unclear. In the deep crystalline bedrock of the Fennoscandian Shield at Olkiluoto, Finland, opposing gradients of abiotic methane and ancient seawater-derived sulfate create a terrestrial sulfate-methane transition zone (SMTZ). We used chemical and isotopic data coupled to genome-resolved metaproteogenomics to demonstrate active life and, for the first time, provide direct evidence of active anaerobic oxidation of methane (AOM) in a deep terrestrial bedrock. Proteins from Methanoperedens (formerly ANME-2d) are readily identifiable despite the low abundance (≤1%) of this genus and confirm the occurrence of AOM. This finding is supported by 13C-depleted dissolved inorganic carbon. Proteins from Desulfocapsaceae and Desulfurivibrionaceae, in addition to 34S-enriched sulfate, suggest that these organisms use inorganic sulfur compounds as both electron donor and acceptor. Zerovalent sulfur in the groundwater may derive from abiotic rock interactions, or from a non-obligate syntrophy with Methanoperedens, potentially linking methane and sulfur cycles in Olkiluoto groundwater. Finally, putative episymbionts from the candidate phyla radiation (CPR) and DPANN archaea represented a significant diversity in the groundwater (26/84 genomes) with roles in sulfur and carbon cycling. Our results highlight AOM and sulfur disproportionation as active metabolisms and show that methane and sulfur fuel microbial activity in the deep terrestrial subsurface.
Collapse
Affiliation(s)
- Emma Bell
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | | | - Johannes Alneberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Chen Qian
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Weili Xiong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Manon Frutschi
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
22
|
Yun Y, Gui Z, Su T, Tian X, Wang S, Chen Y, Su Z, Fan H, Xie J, Li G, Xia W, Ma T. Deep mining decreases the microbial taxonomic and functional diversity of subsurface oil reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153564. [PMID: 35101516 DOI: 10.1016/j.scitotenv.2022.153564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Microbes in subsurface oil reservoirs play important roles in elemental cycles and biogeochemical processes. However, the community assembly pattern of indigenous microbiome and their succession under long-term human activity remain poorly understood. Here we studied the microbial community assembly in underground sandstone cores from 190 to 2050 m in northeast China and their response to long-term oil recovery (10-50 years). Indigenous microbiome in subsurface petroleum reservoirs were dominated by Gammaproteobacteria, Firmicutes, Alphaproteobacteria, Bacteroidetes, and Actinobacteria, which exhibited a higher contribution of homogenizing dispersal assembly and different taxonomy distinct ecological modules when compared with perturbed samples. Specifically, the long-term oil recovery reduced the bacterial taxonomic- and functional-diversity, and increased the community co-occurrence associations in subsurface oil reservoirs. Moreover, distinguished from the perturbed samples, both variation partition analysis and structural equation model revealed that the contents of quartz, NO3- and Cl- significantly structured the α- and β-diversity in indigenous subsurface bacterial communities. These findings first provide the holistic picture of microbiome in the deep oil reservoirs, which demonstrate the significant impact of human activity on microbiome in deep continental subsurface.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tianqi Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shaojing Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhaoying Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Huiqiang Fan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinxia Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjie Xia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
23
|
Assessing Microbial Corrosion Risk on Offshore Crude Oil Production Topsides under Conditions of Nitrate and Nitrite Treatment for Souring. Microorganisms 2022; 10:microorganisms10050932. [PMID: 35630376 PMCID: PMC9145487 DOI: 10.3390/microorganisms10050932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 01/06/2023] Open
Abstract
Oilfield souring is a detrimental effect caused by sulfate-reducing microorganisms that reduce sulfate to sulfide during their respiration process. Nitrate or nitrite can be used to mitigate souring, but may also impart a corrosion risk. Produced fluids sampled from the topside infrastructure of two floating, production, storage, and offloading (FPSO) vessels (Platform A and Platform B) were assessed for microbial corrosion under nitrate and nitrite breakthrough conditions using microcosm tests incubated at 54 °C. Microbial community compositions on each individual FPSO were similar, while those between the two FPSO vessels differed. Platform B microbial communities responded as expected to nitrate breakthrough conditions, where nitrate-reducing activity was enhanced and sulfate reduction was inhibited. In contrast, nitrate treatments of Platform A microbial communities were not as effective in preventing sulfide production. Nitrite breakthrough conditions had the strongest sulfate reduction inhibition in samples from both platforms, but exhibited the highest pitting density. Live experimental replicates with no nitrate or nitrite additive yielded the highest general corrosion rates in the study (up to 0.48 mm/year), while nitrate- or nitrite-treated fluids revealed general corrosion rates that are considered low or moderate (<0.12 mm/year). Overall, the results of this study provide a description of nitrogen- and sulfur-based microbial activities under thermophilic conditions, and their risk for MIC that can occur along fluid processing lines on FPSO topsides that process fluids during offshore oil production operations.
Collapse
|
24
|
Liu H, Hu Z, Zhou M, Zhang H, Zhang X, Yue Y, Yao X, Wang J, Xi C, Zheng P, Xu X, Hu B. PM 2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the atmosphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118715. [PMID: 34933062 DOI: 10.1016/j.envpol.2021.118715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Airborne bacteria may absorb the substance from the atmospheric particles and play a role in biogeochemical cycling. However, these studies focused on a few culturable bacteria and the samples were usually collected from one site. The metabolic potential of a majority of airborne bacteria on a regional scale and their driving factors remain unknown. In this study, we collected particulates with aerodynamic diameter ≤2.5 μm (PM2.5) from 8 cities that represent different regions across China and analyzed the samples via high-throughput sequencing of 16S rRNA genes, quantitative polymerase chain reaction (qPCR) analysis, and functional database prediction. Based on the FAPROTAX database, 326 (80.69%), 191 (47.28%) and 45 (11.14%) bacterial genera are possible to conduct the pathways of carbon, nitrogen, and sulfur cycles, respectively. The pathway analysis indicated that airborne bacteria may lead to the decrease in organic carbon while the increase in ammonium and sulfate in PM2.5 samples, all of which are the important components of PM2.5. Among the 19 environmental factors studied including air pollutants, meteorological factors, and geographical conditions, PM2.5 concentration manifested the strongest correlations with the functional genes for the transformation of ammonium and sulfate. Moreover, the PM2.5 concentration rather than the sampling site will drive the distribution of functional genera. Thus, a bi-directional relationship between PM2.5 and bacterial metabolism is suggested. Our findings shed light on the potential bacterial pathway for the biogeochemical cycling in the atmosphere and the important role of PM2.5, offering a new perspective for atmospheric ecology and pollution control.
Collapse
Affiliation(s)
- Huan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; School of Civil Engineering, Chongqing University, Chongqing, 400044, China
| | - Zhichao Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaole Zhang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Yang Yue
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Ping Zheng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyang Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Vigneron A, Cruaud P, Lovejoy C, Vincent WF. Genomic evidence of functional diversity in DPANN archaea, from oxic species to anoxic vampiristic consortia. ISME COMMUNICATIONS 2022; 2:4. [PMID: 37938653 PMCID: PMC9723730 DOI: 10.1038/s43705-022-00088-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 04/26/2023]
Abstract
DPANN archaea account for half of the archaeal diversity of the biosphere, but with few cultivated representatives, their metabolic potential and environmental functions are poorly understood. The extreme geochemical and environmental conditions in meromictic ice-capped Lake A, in the Canadian High Arctic, provided an isolated, stratified model ecosystem to resolve the distribution and metabolism of uncultured aquatic DPANN archaea living across extreme redox and salinity gradients, from freshwater oxygenated conditions, to saline, anoxic, sulfidic waters. We recovered 28 metagenome-assembled genomes (MAGs) of DPANN archaea that provided genetic insights into their ecological function. Thiosulfate oxidation potential was detected in aerobic Woesearchaeota, whereas diverse metabolic functions were identified in anaerobic DPANN archaea, including degradation and fermentation of cellular compounds, and sulfide and polysulfide reduction. We also found evidence for "vampiristic" metabolism in several MAGs, with genes coding for pore-forming toxins, peptidoglycan degradation, and RNA scavenging. The vampiristic MAGs co-occurred with other DPANNs having complementary metabolic capacities, leading to the possibility that DPANN form interspecific consortia that recycle microbial carbon, nutrients and complex molecules through a DPANN archaeal shunt, adding hidden novel complexity to anaerobic microbial food webs.
Collapse
Affiliation(s)
- Adrien Vigneron
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.
| | - Perrine Cruaud
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
- Québec Océan, Université Laval, Québec, QC, Canada
| | - Warwick F Vincent
- Département de Biologie, Université Laval, Québec, QC, Canada
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
| |
Collapse
|
26
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
27
|
Voskuhl L, Akbari A, Müller H, Pannekens M, Brusilova D, Dyksma S, Haque S, Graupner N, Dunthorn M, Meckenstock RU, Brauer VS. Indigenous microbial communities in heavy oil show a threshold response to salinity. FEMS Microbiol Ecol 2021; 97:6447536. [PMID: 34864985 PMCID: PMC8684454 DOI: 10.1093/femsec/fiab157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/14/2022] Open
Abstract
Microbial degradation influences the quality of oil resources. The environmental factors that shape the composition of oil microbial communities are largely unknown because most samples from oil fields are impacted by anthropogenic oil production, perturbing the native ecosystem with exogenous fluids and microorganisms. We investigated the relationship between formation water geochemistry and microbial community composition in undisturbed oil samples. We isolated 43 microliter-sized water droplets naturally enclosed in the heavy oil of the Pitch Lake, Trinidad and Tobago. The water chemistry and microbial community composition within the same water droplet were determined by ion chromatography and 16S rRNA gene amplicon sequencing, respectively. The results revealed a high variability in ion concentrations and community composition between water droplets. Microbial community composition was mostly affected by the chloride concentration, which ranged from freshwater to brackish-sea water. Remarkably, microbial communities did not respond gradually to increasing chloride concentration but showed a sudden change to less diverse and uneven communities when exceeding a chloride concentration of 57.3 mM. The results reveal a threshold-regulated response of microbial communities to salinity, offering new insights into the microbial ecology of oil reservoirs.
Collapse
Affiliation(s)
- Lisa Voskuhl
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Ali Akbari
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Hubert Müller
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Mark Pannekens
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Darya Brusilova
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Stefan Dyksma
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany.,German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Shirin Haque
- Faculty of Science and Technology, Department of Physics, The University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Nadine Graupner
- Eukaryotic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Micah Dunthorn
- Eukaryotic Microbiology, Natural History Museum of Oslo, P.O. Box 1172, Blindern, Oslo 0318, Norway
| | - Rainer U Meckenstock
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Verena S Brauer
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
28
|
Pereira GF, Pilz-Junior HL, Corção G. The impact of bacterial diversity on resistance to biocides in oilfields. Sci Rep 2021; 11:23027. [PMID: 34845279 PMCID: PMC8630110 DOI: 10.1038/s41598-021-02494-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Extreme conditions and the availability of determinate substrates in oil fields promote the growth of a specific microbiome. Sulfate-reducing bacteria (SRB) and acid-producing bacteria (APB) are usually found in these places and can harm important processes due to increases in corrosion rates, biofouling and reservoir biosouring. Biocides such as glutaraldehyde, dibromo-nitrilopropionamide (DBNPA), tetrakis (hydroxymethyl) phosphonium sulfate (THPS) and alkyl dimethyl benzyl ammonium chloride (ADBAC) are commonly used in oil fields to mitigate uncontrolled microbial growth. The aim of this work was to evaluate the differences among microbiome compositions and their resistance to standard biocides in four different Brazilian produced water samples, two from a Southeast Brazil offshore oil field and two from different Northeast Brazil onshore oil fields. Microbiome evaluations were carried out through 16S rRNA amplicon sequencing. To evaluate the biocidal resistance, the Minimum Inhibitory Concentration (MIC) of the standard biocides were analyzed using enriched consortia of SRB and APB from the produced water samples. The data showed important differences in terms of taxonomy but similar functional characterization, indicating the high diversity of the microbiomes. The APB and SRB consortia demonstrated varying resistance levels against the biocides. These results will help to customize biocidal treatments in oil fields.
Collapse
Affiliation(s)
- Gabriela Feix Pereira
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil.,Dorf Ketal Research and Development Center, Rua da Pedreira 559, Nova Santa Rita, RS, 92480-000, Brazil
| | - Harry Luiz Pilz-Junior
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil
| | - Gertrudes Corção
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
29
|
Bedoya K, Niño J, Acero J, Jaimes-Prada R, Cabarcas F, Alzate JF. Metagenomic Analysis of Biocide-Treated Neotropical Oil Reservoir Water Unveils Microdiversity of Thermophile Tepidiphilus. Front Microbiol 2021; 12:741555. [PMID: 34790180 PMCID: PMC8591294 DOI: 10.3389/fmicb.2021.741555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are capable of colonizing extreme environments like deep biosphere and oil reservoirs. The prokaryotes diversity in exploited oil reservoirs is composed of indigenous microbial communities and artificially introduced microbes. In the present work, high throughput sequencing techniques were applied to analyze the microbial community from the injected and produced water in a neotropical hyper-thermophile oil reservoir located in the Orinoquia region of Colombia, South America. Tepidiphilus is the dominant bacteria found in both injection and produced waters. The produced water has a higher microbial richness and exhibits a Tepidiphilus microdiversity. The reservoir injected water is recycled and treated with the biocides glutaraldehyde and tetrakis-hydroxymethyl-phosphonium sulfate (THPS) to reduce microbial load. This process reduces microbial richness and selects a single Tepidiphilus genome (T. sp. UDEAICP_D1) as the dominant isolate. Thermus and Hydrogenobacter were subdominants in both water systems. Phylogenomic analysis of the injection water dominant Tepidiphilus positioned it as an independent branch outside T. succinatimandens and T. thermophilus lineage. Comparative analysis of the Tepidiphilus genomes revealed several genes that might be related to the biocide-resistant phenotype and the tolerance to the stress conditions imposed inside the oil well, like RND efflux pumps and type II toxin-antitoxin systems. Comparing the abundance of Tepidiphilus protein-coding genes in both water systems shows that the biocide selected Tepidiphilus sp. UDEAICP_D1 genome has enriched genes annotated as ABC-2 type transporter, ABC transporter, Methionine biosynthesis protein MetW, Glycosyltransferases, and two-component system NarL.
Collapse
Affiliation(s)
- Katherine Bedoya
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria - SIU, Universidad de Antioquia -UdeA, Medellín, Colombia
| | - Jhorman Niño
- Centro de Innovación y Tecnología ICP, Ecopetrol S.A, Gerencia de Operaciones, Bucaramanga, Colombia
| | - Julia Acero
- Centro de Innovación y Tecnología ICP, Ecopetrol S.A, Gerencia de Operaciones, Bucaramanga, Colombia
| | - Ronald Jaimes-Prada
- Centro de Innovación y Tecnología ICP, Ecopetrol S.A, Gerencia de Operaciones, Bucaramanga, Colombia
| | - Felipe Cabarcas
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria - SIU, Universidad de Antioquia -UdeA, Medellín, Colombia.,Grupo SISTEMIC, Ingeniería Electrónica, Facultad de Ingeniería, Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Juan F Alzate
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria - SIU, Universidad de Antioquia -UdeA, Medellín, Colombia
| |
Collapse
|
30
|
Veshareh MJ, Dolfing J, Nick HM. Importance of thermodynamics dependent kinetic parameters in nitrate-based souring mitigation studies. WATER RESEARCH 2021; 206:117673. [PMID: 34624655 DOI: 10.1016/j.watres.2021.117673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Souring is the unwanted formation of hydrogen sulfide (H2S) by sulfate-reducing microorganisms (SRM) in sewer systems and seawater flooded oil reservoirs. Nitrate treatment (NT) is one of the major methods to alleviate souring: The mechanism of souring remediation by NT is stimulation of nitrate reducing microorganisms (NRM) that depending on the nitrate reduction pathway can outcompete SRM for common electron donors, or oxidize sulfide to sulfate. However, some nitrate reduction pathways may challenge the efficacy of NT. Therefore, a precise understanding of souring rate, nitrate reduction rate and pathways is crucial for efficient souring management. Here, we investigate the necessity of incorporating two thermodynamic dependent kinetic parameters, namely, the growth yield (Y), and FT, a parameter related to the minimum catabolic energy production required by cells to utilize a given catabolic reaction. We first show that depending on physiochemical conditions, Y and FT for SRM change significantly in the range of [0-0.4] mole biomass per mole electron donor and [0.0006-0.5], respectively, suggesting that these parameters should not be considered constant and that it is important to couple souring models with thermodynamic models. Then, we highlight this further by showing an experimental dataset that can be modeled very well by considering variable FT. Next, we show that nitrate based lithotrophic sulfide oxidation to sulfate (lNRM3) is the dominant nitrate reduction pathway. Then, arguing that thermodynamics would suggest that S° consumption should proceed faster than S0 production, we infer that the reason for frequently observed S0 accumulation is its low solubility. Last, we suggest that nitrate based souring treatment will suffer less from S0 accumulation if we (i) act early, (ii) increase temperature and (iii) supplement stoichiometrically sufficient nitrate.
Collapse
Affiliation(s)
- Moein Jahanbani Veshareh
- Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, Lyngby, Denmark.
| | - Jan Dolfing
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, UK
| | - Hamidreza M Nick
- Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
31
|
Yun Y, Gui Z, Xie J, Chen Y, Tian X, Li G, Gu JD, Ma T. Stochastic assembly process dominates bacterial succession during a long-term microbial enhanced oil recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148203. [PMID: 34380257 DOI: 10.1016/j.scitotenv.2021.148203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
Microbial enhanced oil recovery (MEOR) has been successfully used in oil exploitation to increase oil production. However, the mechanisms of microbial interactions and community assembly related to oil production performance along MEOR process are poorly understood. Here, we investigated the microbiome of an oil reservoir for a period of 5 years under three phases of different treatments with the injection of a mixture of microbes, nutrients, and air at different intensity. During the MEOR process, amplification of functional genes revealed an increase of genes related to hydrocarbon degradation linked to methanogenesis, supported by stable isotope analysis for confirmation of the methanogenesis activity. Meanwhile, a lower contribution of the ubiquitous/common taxa, closer and more positive associations, and lower modularity were observed in bacterial co-occurrence networks, with the rare taxa being the keystone taxa. The null model analysis and structural equation modeling revealed that the contribution of stochastic processes affected by functional groups and co-occurrence patterns to bacterial community increased significantly with the increase of oil production. This provides new insight that stochastic assembly in bacterial community increased along with MEOR process, and it is worthwhile paying attention to the uncertain consequences caused by random evolution since the treatment effect of MEOR is closely related to the in-situ community in oil reservoir.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Jinxia Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, The People's Republic of China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China.
| |
Collapse
|
32
|
Yun Y, Gui Z, Chen Y, Tian X, Gao P, Li G, Ma T. Disentangling the distinct mechanisms shaping the subsurface oil reservoir bacterial and archaeal communities across northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148074. [PMID: 34323826 DOI: 10.1016/j.scitotenv.2021.148074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Microbes in surface ecosystem exhibit strong biogeographic patterns, and are less apparent after human management. However, in contrast with the considerable knowledge on the surface ecosystem, the microbial biogeographic patterns in deep subsurface ecosystem under artificial disturbance is poorly understood. Here, we explored the spatial scale-dependence patterns of bacterial and archaeal communities in oil reservoirs under different artificial flooding duration and environmental conditions across northern China. Bacterial and archaeal communities of oil reservoirs exhibited distinct assembly patterns with a stronger distance-decay relationship in archaeal communities than bacterial communities, as different environmental factors linked to the diversity of bacteria and archaea. Specifically, bacterial and archaeal network properties revealed a significant correlation with spatial reservoir isolation by distinct co-occurrence patterns. The co-occurrences of bacterial communities were more complex in high temperature and alkaline pH, while archaeal co-occurrences were more frequent in low temperature and neutral pH. Potential functions in bacterial communities were more connected with chemoheterotrophy, whereas methanogenesis was abundant in archaeal communities, as confirmed by both keystone taxa and main ecological clusters in networks. This revealed that different mechanisms underlain geography and co-occurrence patterns of bacteria and archaea in oil reservoirs, providing a new insight for understanding biogeography and coexistence theory in deep subsurface ecosystem.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
33
|
Hu B, Zhao JY, Nie Y, Qin XY, Zhang KD, Xing JM, Wu XL. Bioemulsification and Microbial Community Reconstruction in Thermally Processed Crude Oil. Microorganisms 2021; 9:microorganisms9102054. [PMID: 34683375 PMCID: PMC8539444 DOI: 10.3390/microorganisms9102054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
Utilization of low-cost, environmental-friendly microbial enhanced oil recovery (MEOR) techniques in thermal recovery-processed oil reservoirs is potentially feasible. However, how exogenous microbes facilitate crude oil recovery in this deep biosphere, especially under mesophilic conditions, is scarcely investigated. In this study, a thermal treatment and a thermal recurrence were processed on crude oil collected from Daqing Oilfield, and then a 30-day incubation of the pretreated crude oil at 37 °C was operated with the addition of two locally isolated hydrocarbon-degrading bacteria, Amycolicicoccus subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b, respectively. The pH, surface tension, hydrocarbon profiles, culture-dependent cell densities and taxonomies, and whole and active microbial community compositions were determined. It was found that both A. subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b successfully induced culture acidification, crude oil bioemulsification, and residual oil sub-fraction alteration, no matter whether the crude oil was thermally pretreated or not. Endogenous bacteria which could proliferate on double heated crude oil were very few. Compared with A. subflavus, Dietzia sp. was substantially more effective at inducing the proliferation of varied species in one-time heated crude oil. Meanwhile, the effects of Dietzia sp. on crude oil bioemulsification and hydrocarbon profile alteration were not significantly influenced by the ploidy increasing of NaCl contents (from 5 g/L to 50 g/L), but the reconstructed bacterial communities became very simple, in which the Dietzia genus was predominant. Our study provides useful information to understand MEOR trials on thermally processed oil reservoirs, and proves that this strategy could be operated by using the locally available hydrocarbon-degrading microbes in mesophilic conditions with different salinity degrees.
Collapse
Affiliation(s)
- Bing Hu
- Group of Biochemical Engineering, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102401, China;
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology of China, Beijing 102401, China
| | - Jie-Yu Zhao
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
- Correspondence: (Y.N.); (X.-L.W.)
| | - Xiao-Yu Qin
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Kai-Duan Zhang
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Jian-Min Xing
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
- Institute of Ecology, Peking University, Beijing 100871, China
- Correspondence: (Y.N.); (X.-L.W.)
| |
Collapse
|
34
|
Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide. Microorganisms 2021; 9:microorganisms9091812. [PMID: 34576708 PMCID: PMC8465018 DOI: 10.3390/microorganisms9091812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Microorganisms inhabiting subsurface petroleum reservoirs are key players in biochemical transformations. The interactions of microbial communities in these environments are highly complex and still poorly understood. This work aimed to assess publicly available metagenomes from oil reservoirs and implement a robust pipeline of genome-resolved metagenomics to decipher metabolic and taxonomic profiles of petroleum reservoirs worldwide. Analysis of 301.2 Gb of metagenomic information derived from heavily flooded petroleum reservoirs in China and Alaska to non-flooded petroleum reservoirs in Brazil enabled us to reconstruct 148 metagenome-assembled genomes (MAGs) of high and medium quality. At the phylum level, 74% of MAGs belonged to bacteria and 26% to archaea. The profiles of these MAGs were related to the physicochemical parameters and recovery management applied. The analysis of the potential functional core in the reservoirs showed that the microbiota was specialized for each site, with 31.7% of the total KEGG orthologies annotated as functions (1690 genes) common to all oil fields, while 18% of the functions were site-specific, i.e., present only in one of the oil fields. The oil reservoirs with a lower level of intervention were the most similar to the potential functional core, while the oil fields with a long history of water injection had greater variation in functional profile. These results show how key microorganisms and their functions respond to the distinct physicochemical parameters and interventions of the oil field operations such as water injection and expand the knowledge of biogeochemical transformations in these ecosystems.
Collapse
|
35
|
Veshareh MJ, Nick HM. A novel relationship for the maximum specific growth rate of a microbial guild. FEMS Microbiol Lett 2021; 368:6293845. [PMID: 34089333 DOI: 10.1093/femsle/fnab064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
One of the major parameters that characterizes the kinetics of microbial processes is the maximum specific growth rate. The maximum specific growth rate for a single microorganism (${\mu _{max}}$) is fairly constant. However, a certain microbial process is typically catalyzed by a group of microorganisms (guild) that have various ${\mu _{max}}$ values. In many occasions, it is not feasible to breakdown a guild into its constituent microorganisms. Therefore, it is a common practice to assume a constant maximum specific growth rate for the guild ($\acute{\mu}_{max}$) and determine its value by fitting experimental data. This assumption is valid for natural environments, where microbial guilds are stabilized and dominated by microorganisms that grow optimally in those environments' conditions. However, a change in an environment's conditions will trigger a community shift by favoring some of the microorganisms. This shift leads to a variable ${\acute{\mu}_{max}}$ as long as substrate availability is significantly higher than substrate affinity constant. In this work, it is illustrated that the assumption of constant ${\acute{\mu}_{max}}$ may underestimate or overestimate microbial growth. To circumvent this, a novel relationship that characterizes changes in ${\acute{\mu}_{max}}$ under abundant nutrient availability is proposed. The proposed relationship is evaluated for various random microbial guilds in batch experiments.
Collapse
Affiliation(s)
- Moein Jahanbani Veshareh
- Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, 375 Elektrovej, DK-2800 kgs Lyngby, Denmark
| | - Hamidreza M Nick
- Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, 375 Elektrovej, DK-2800 kgs Lyngby, Denmark
| |
Collapse
|
36
|
Li M, Fang A, Yu X, Zhang K, He Z, Wang C, Peng Y, Xiao F, Yang T, Zhang W, Zheng X, Zhong Q, Liu X, Yan Q. Microbially-driven sulfur cycling microbial communities in different mangrove sediments. CHEMOSPHERE 2021; 273:128597. [PMID: 33077194 DOI: 10.1016/j.chemosphere.2020.128597] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 05/13/2023]
Abstract
Microbially-driven sulfur cycling is a vital biogeochemical process in the sulfur-rich mangrove ecosystem. It is critical to evaluate the potential impact of sulfur transformation in mangrove ecosystems. To reveal the diversity, composition, and structure of sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) and underlying mechanisms, we analyzed the physicochemical properties and sediment microbial communities from an introduced mangrove species (Sonneratia apetala), a native mangrove species (Kandelia obovata) and the mudflat in Hanjiang River Estuary in Guangdong (23.27°N, 116.52°E), China. The results indicated that SOB was dominated by autotrophic Thiohalophilus and chemoautotrophy Chromatium in S. apetala and K. obovata, respectively, while Desulfatibacillum was the dominant genus of SRB in K. obovata sediments. Also, the redundancy analysis indicated that temperature, redox potential (ORP), and SO42- were the significant factors influencing the sulfur cycling microbial communities with elemental sulfur (ES) as the key factor driver for SOB and total carbon (TC) for SRB in mangrove sediments. Additionally, the morphological transformation of ES, acid volatile sulfide (AVS) and SO42- explained the variation of sulfur cycling microbial communities under sulfur-rich conditions, and we found mangrove species-specific dominant Thiohalobacter, Chromatium and Desulfatibacillum, which could well use ES and SO42-, thus promoting the sulfur cycling in mangrove sediments. Meanwhile, the change of nutrient substances (TN, TC) explained why SOB were more susceptible to environmental changes than SRB. Sulfate reducing bacteria produces sulfide in anoxic sediments at depth that then migrate upward, toward fewer reducing conditions, where it's oxidized by sulfur oxidizing bacteria. This study indicates the high ability of SOB and SRB in ES, SO42-,S2- and S2- generation and transformation in sulfur-rich mangrove ecosystems, and provides novel insights into sulfur cycling in other wetland ecosystems from a microbial perspective.
Collapse
Affiliation(s)
- Mingyue Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Anqi Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Keke Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China; College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Yisheng Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China.
| | - Tony Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Wei Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiafei Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiuping Zhong
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Xingyu Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
37
|
Procópio L. The oil spill and the use of chemical surfactant reduce microbial corrosion on API 5L steel buried in saline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26975-26989. [PMID: 33496949 DOI: 10.1007/s11356-021-12544-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
In order to evaluate the biocorrosion of API 5L metal buried in saline soils, three different conditions in microcosms were evaluated. The control microcosm contained only saline soil, the second had the addition of petroleum, and the third contained the addition of both petroleum and surfactant. The corrosion rate of the metals was measured by loss of mass after 30 days, and the microbial communities were delineated using 16S rRNA gene sequencing techniques. The species were dominated by halophiles in all samples analyzed. Among the bacteria, the predominant group was Proteobacteria, with emphasis on the Alphaproteobacteria and Gammaproteobacteria. Betaproteobacteria and Deltaproteobacteria members were also identified in a smaller number in all conditions. Firmicutes were especially abundant in the control system, although it was persistently present in other conditions evaluated. Bacteroidetes and Actinobacteria were also present in a considerable number of OTUs in the three microcosms. Halobacteria were predominant among archaea and were present in all conditions. The analysis pointed to a conclusion that in the control microcosm, the corrosion rate was higher, while the microcosm containing only oil had the lowest corrosion rate. These results suggest that, under these conditions, the entry of other carbon sources favors the presence of petroleum degraders, rather than samples involved in the corrosion of metals.
Collapse
Affiliation(s)
- Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
38
|
Marietou A. Sulfate reducing microorganisms in high temperature oil reservoirs. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:99-131. [PMID: 34353505 DOI: 10.1016/bs.aambs.2021.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High temperature reservoirs offer a window into the microbial life of the deep biosphere. Sulfate reducing microorganisms have been recovered from high temperature oil reservoirs around the globe and characterized using culture-dependent and culture-independent approaches. The activities of sulfate reducers contribute to reservoir souring and hydrocarbon degradation among other attracting considerable interest from the oil industry for the last 100 years. The extremes of temperature and pressure shape the activities and distribution of sulfate reducing bacteria and archaea in high temperature reservoirs. This chapter will attempt to summarize the key findings on the diversity and activities of sulfate reducing microorganisms in high temperature reservoirs.
Collapse
Affiliation(s)
- Angeliki Marietou
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
39
|
Shlimon A, Mansurbeg H, Othman R, Head I, Kjeldsen KU, Finster K. Identity and hydrocarbon degradation activity of enriched microorganisms from natural oil and asphalt seeps in the Kurdistan Region of Iraq (KRI). Biodegradation 2021; 32:251-271. [PMID: 33782778 DOI: 10.1007/s10532-021-09931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
A previous cultivation-independent investigation of the microbial community structure of natural oil and asphalt seeps in the Kurdistan Region of Iraq (KRI) revealed the dominance of uncultured bacterial taxa belonging to the phyla Deferribacterota and Coprothermobacterota and the orders Thermodesulfobacteriales, Thermales, and Burkholderiales. Here we report on a cultivation-dependent approach to identify members of these groups involved in hydrocarbon degradation in the KRI oil and asphalt seeps. For this purpose, we set up anoxic crude oil-degrading enrichment cultures based on cultivation media known to support the growth of members of the above-mentioned taxonomic groups. During 100-200 days incubation periods, nitrate-reducing and fermentative enrichments showed up to 90% degradation of C8-C17 alkanes and up to 28% degradation of C18-C33 alkanes along with aromatic hydrocarbons. Community profiling of the enrichment cultures showed that they were dominated by diverse bacterial taxa, which were rare in situ community members in the investigated seeps. Groups initially targeted by our approach were not enriched, possibly because their members are slow-growing and involved in the degradation of recalcitrant hydrocarbons. Nevertheless, the enriched taxa were taxonomically related to phylotypes recovered from hydrocarbon-impacted environments as well as to characterized bacterial isolates not previously known to be involved in hydrocarbon degradation. Marker genes (assA and bssA), diagnostic for fumarate addition-based anaerobic hydrocarbon degradation, were not detectable in the enrichment cultures by PCR. We conclude that hydrocarbon biodegradation in our enrichments occurred via unknown pathways and synergistic interactions among the enriched taxa. We suggest, that although not representing abundant populations in situ, studies of the cultured close relatives of these taxa will reveal an unrecognized potential for anaerobic hydrocarbon degradation, possibly involving poorly characterized mechanisms.
Collapse
Affiliation(s)
- Adris Shlimon
- Department of Biology, Soran University, Soran, Iraq. .,Section of Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark.
| | - Howri Mansurbeg
- Department of Petroleum Geoscience, Soran University, Soran, Iraq.,Department of Earth and Environmental Sciences, University of Windsor, Windsor, ON, Canada
| | - Rushdy Othman
- Department of Petroleum Geoscience, Soran University, Soran, Iraq
| | - Ian Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Kasper U Kjeldsen
- Section of Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark
| | - Kai Finster
- Section of Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark
| |
Collapse
|
40
|
Vigneron A, Cruaud P, Culley AI, Couture RM, Lovejoy C, Vincent WF. Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem. MICROBIOME 2021; 9:46. [PMID: 33593438 PMCID: PMC7887784 DOI: 10.1186/s40168-021-00999-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND The sulfur cycle encompasses a series of complex aerobic and anaerobic transformations of S-containing molecules and plays a fundamental role in cellular and ecosystem-level processes, influencing biological carbon transfers and other biogeochemical cycles. Despite their importance, the microbial communities and metabolic pathways involved in these transformations remain poorly understood, especially for inorganic sulfur compounds of intermediate oxidation states (thiosulfate, tetrathionate, sulfite, polysulfides). Isolated and highly stratified, the extreme geochemical and environmental features of meromictic ice-capped Lake A, in the Canadian High Arctic, provided an ideal model ecosystem to resolve the distribution and metabolism of aquatic sulfur cycling microorganisms along redox and salinity gradients. RESULTS Applying complementary molecular approaches, we identified sharply contrasting microbial communities and metabolic potentials among the markedly distinct water layers of Lake A, with similarities to diverse fresh, brackish and saline water microbiomes. Sulfur cycling genes were abundant at all depths and covaried with bacterial abundance. Genes for oxidative processes occurred in samples from the oxic freshwater layers, reductive reactions in the anoxic and sulfidic bottom waters and genes for both transformations at the chemocline. Up to 154 different genomic bins with potential for sulfur transformation were recovered, revealing a panoply of taxonomically diverse microorganisms with complex metabolic pathways for biogeochemical sulfur reactions. Genes for the utilization of sulfur cycle intermediates were widespread throughout the water column, co-occurring with sulfate reduction or sulfide oxidation pathways. The genomic bin composition suggested that in addition to chemical oxidation, these intermediate sulfur compounds were likely produced by the predominant sulfur chemo- and photo-oxidisers at the chemocline and by diverse microbial degraders of organic sulfur molecules. CONCLUSIONS The Lake A microbial ecosystem provided an ideal opportunity to identify new features of the biogeochemical sulfur cycle. Our detailed metagenomic analyses across the broad physico-chemical gradients of this permanently stratified lake extend the known diversity of microorganisms involved in sulfur transformations over a wide range of environmental conditions. The results indicate that sulfur cycle intermediates and organic sulfur molecules are major sources of electron donors and acceptors for aquatic and sedimentary microbial communities in association with the classical sulfur cycle. Video abstract.
Collapse
Affiliation(s)
- Adrien Vigneron
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Centre d'études nordiques (CEN), Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
| | - Perrine Cruaud
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC, Canada
| | - Alexander I Culley
- Centre d'études nordiques (CEN), Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Raoul-Marie Couture
- Centre d'études nordiques (CEN), Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
- Département de Chimie, Université Laval, Québec, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Québec Océan, Université Laval, Québec, QC, Canada.
| | - Warwick F Vincent
- Département de Biologie, Université Laval, Québec, QC, Canada
- Centre d'études nordiques (CEN), Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
| |
Collapse
|
41
|
Syntrophic Hydrocarbon Degradation in a Decommissioned Off-Shore Subsea Oil Storage Structure. Microorganisms 2021; 9:microorganisms9020356. [PMID: 33670234 PMCID: PMC7916938 DOI: 10.3390/microorganisms9020356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/02/2022] Open
Abstract
Over the last decade, metagenomic studies have revealed the impact of oil production on the microbial ecology of petroleum reservoirs. However, despite their fundamental roles in bioremediation of hydrocarbons, biocorrosion, biofouling and hydrogen sulfide production, oil field and oil production infrastructure microbiomes are poorly explored. Understanding of microbial activities within oil production facilities is therefore crucial for environmental risk mitigation, most notably during decommissioning. The analysis of the planktonic microbial community from the aqueous phase of a subsea oil-storage structure was conducted. This concrete structure was part of the production platform of the Brent oil field (North Sea), which is currently undergoing decommissioning. Quantification and sequencing of microbial 16S rRNA genes, metagenomic analysis and reconstruction of metagenome assembled genomes (MAGs) revealed a unique microbiome, strongly dominated by organisms related to Dethiosulfatibacter and Cloacimonadetes. Consistent with the hydrocarbon content in the aqueous phase of the structure, a strong potential for degradation of low molecular weight aromatic hydrocarbons was apparent in the microbial community. These degradation pathways were associated with taxonomically diverse microorganisms, including the predominant Dethiosulfatibacter and Cloacimonadetes lineages, expanding the list of potential hydrocarbon degraders. Genes associated with direct and indirect interspecies exchanges (multiheme type-C cytochromes, hydrogenases and formate/acetate metabolism) were widespread in the community, suggesting potential syntrophic hydrocarbon degradation processes in the system. Our results illustrate the importance of genomic data for informing decommissioning strategies in marine environments and reveal that hydrocarbon-degrading community composition and metabolisms in man-made marine structures might differ markedly from natural hydrocarbon-rich marine environments.
Collapse
|
42
|
Mand J, Enning D. Oil field microorganisms cause highly localized corrosion on chemically inhibited carbon steel. Microb Biotechnol 2021; 14:171-185. [PMID: 32940951 PMCID: PMC7888452 DOI: 10.1111/1751-7915.13644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 11/29/2022] Open
Abstract
Carbon steel pipelines, a means for crude oil transportation, occasionally experience highly localized perforation caused by microorganisms. While microorganisms grown in laboratory culture tend to corrode steel specimens unevenly, they rarely inflict a corrosion morphology consistent with that of pipelines, where centimetre-sized corrosion features are randomly distributed within vast stretches of otherwise pristine metal surface. In this study, we observed that corrosion inhibitors (CIs), widely used for the control of acid gas (H2 S, CO2 ) corrosion in oil fields, also affect microbial growth and activity. Inhibited carbon steel resisted biofilm formation and underwent negligible corrosion (< 0.002 mm Fe0 year-1 ), despite 15 months of exposure to oil field waters harbouring a diverse microbiome. In contrast, physical scavenging of CI in these waters led to severe and highly localized corrosion (up to 0.93 mm Fe0 year-1 ) underneath biofilms dominated by methanogenic archaea and sulfate-reducing bacteria. A sharp decline in CI concentration, as well as its active components, quaternary ammonium compounds (QACs), correlated with microbial sulfidogenesis. CIs are ubiquitously present in oil field waters and play an underappreciated role in microbial corrosion mitigation. Physical and biological scavenging of CIs may create local differences in steel inhibition effectiveness and thus result in highly localized corrosion.
Collapse
Affiliation(s)
- Jaspreet Mand
- Research & Technology DevelopmentUpstream Integrated SolutionsExxonMobil Upstream Research CompanySpringTXUSA
| | - Dennis Enning
- Research & Technology DevelopmentUpstream Integrated SolutionsExxonMobil Upstream Research CompanySpringTXUSA
| |
Collapse
|
43
|
Roumagnac M, Pradel N, Bartoli M, Garel M, Jones AA, Armougom F, Fenouil R, Tamburini C, Ollivier B, Summers ZM, Dolla A. Responses to the Hydrostatic Pressure of Surface and Subsurface Strains of Pseudothermotoga elfii Revealing the Piezophilic Nature of the Strain Originating From an Oil-Producing Well. Front Microbiol 2020; 11:588771. [PMID: 33343528 PMCID: PMC7746679 DOI: 10.3389/fmicb.2020.588771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Microorganisms living in deep-oil reservoirs face extreme conditions of elevated temperature and hydrostatic pressure. Within these microbial communities, members of the order Thermotogales are predominant. Among them, the genus Pseudothermotoga is widespread in oilfield-produced waters. The growth and cell phenotypes under hydrostatic pressures ranging from 0.1 to 50 MPa of two strains from the same species originating from subsurface, Pseudothermotoga elfii DSM9442 isolated from a deep African oil-producing well, and surface, P. elfii subsp. lettingae isolated from a thermophilic sulfate-reducing bioreactor, environments are reported for the first time. The data support evidence for the piezophilic nature of P. elfii DSM9442, with an optimal hydrostatic pressure for growth of 20 MPa and an upper limit of 40 MPa, and the piezotolerance of P. elfii subsp. lettingae with growth occurring up to 20 MPa only. Under the experimental conditions, both strains produce mostly acetate and propionate as volatile fatty acids with slight variations with respect to the hydrostatic pressure for P. elfii DSM9442. The data show that the metabolism of P. elfii DSM9442 is optimized when grown at 20 MPa, in agreement with its piezophilic nature. Both Pseudothermotoga strains form chained cells when the hydrostatic pressure increases, especially P. elfii DSM9442 for which 44% of cells is chained when grown at 40 MPa. The viability of the chained cells increases with the increase in the hydrostatic pressure, indicating that chain formation is a protective mechanism for P. elfii DSM9442.
Collapse
Affiliation(s)
- Marie Roumagnac
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Nathalie Pradel
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Manon Bartoli
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Marc Garel
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Aaron A Jones
- ExxonMobil Research and Engineering Company, Annandale, NJ, United States
| | - Fabrice Armougom
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Romain Fenouil
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Christian Tamburini
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Bernard Ollivier
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Zarath M Summers
- ExxonMobil Research and Engineering Company, Annandale, NJ, United States
| | - Alain Dolla
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
44
|
Liu JF, Lu YW, Zhou L, Li W, Hou ZW, Yang SZ, Wu XL, Gu JD, Mu BZ. Simultaneous detection of transcribed functional assA gene and the corresponding metabolites of linear alkanes (C 4, C 5, and C 7) in production water of a low-temperature oil reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141290. [PMID: 32745846 DOI: 10.1016/j.scitotenv.2020.141290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Methanogenic hydrocarbon degradation is an important biogeochemical process in oil reservoirs; however, genomic DNA-based analysis of microorganisms and metabolite detection are not conclusive for identification of the ongoing nature of this bioprocess. In this study, a suite of analyses, involving the study of microbial community and selective gene quantification of both genomic DNA and RNA together with signature metabolites, were performed to comprehensively advance the understanding of the methanogenic biodegradation of hydrocarbons in a low-temperature oilfield. The fumarate addition products for alkanes-C4, C5, and C7-alkylsuccinates-and transcribed assA and mcrA genes were simultaneously detected in the production water sample, providing robust and convincing evidence for both the initial activation of n-alkanes and methane metabolism in this oilfield. The clone library of assA gene transcripts showed that Smithella was active and most likely responsible for the addition of fumarate to n-alkanes, whereas Methanoculleus and Methanothrix were the dominant and active methane-producers via CO2 reduction and acetoclastic pathways, respectively. Additionally, qPCR results of assA and mcrA genes and their transcribed gene copy numbers revealed a roughly similar transcriptional activity in both n-alkanes-degraders and methane producers, implying that they were the major participants in the methanogenic degradation of n-alkanes in this oilfield. To the best of our knowledge, this is the first report presenting sufficient speculation, through detection of signature intermediates, corresponding gene quantification at transcriptional levels, and microbial community analysis, of methanogenic degradation of n-alkanes in production water of an oil reservoir.
Collapse
Affiliation(s)
- Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yu-Wei Lu
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wei Li
- Exploration and Development Research Institute of Daqing Oilfield Company Limited, PetroChina, Daqing, Heilongjiang 163712, PR China
| | - Zhao-Wei Hou
- Exploration and Development Research Institute of Daqing Oilfield Company Limited, PetroChina, Daqing, Heilongjiang 163712, PR China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xiao-Lin Wu
- Exploration and Development Research Institute of Daqing Oilfield Company Limited, PetroChina, Daqing, Heilongjiang 163712, PR China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, PR China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
45
|
Michas A, Harir M, Lucio M, Vestergaard G, Himmelberg A, Schmitt-Kopplin P, Lueders T, Hatzinikolaou DG, Schöler A, Rabus R, Schloter M. Sulfate Alters the Competition Among Microbiome Members of Sediments Chronically Exposed to Asphalt. Front Microbiol 2020; 11:556793. [PMID: 33133031 PMCID: PMC7550536 DOI: 10.3389/fmicb.2020.556793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/09/2020] [Indexed: 01/23/2023] Open
Abstract
Sulfate-reducing microorganisms (SRMs) often compete with methanogens for common substrates. Due to thermodynamic reasons, SRMs should outcompete methanogens in the presence of sulfate. However, many studies have documented coexistence of these microbial groups in natural environments, suggesting that thermodynamics alone cannot explain the interactions among them. In this study, we investigated how SRMs compete with the established methanogenic communities in sediment from a long-term, electron acceptor-depleted, asphalt-exposed ecosystem and how they affect the composition of the organic material. We hypothesized that, upon addition of sulfate, SRMs (i) outcompete the methanogenic communities and (ii) markedly contribute to transformations of the organic material. We sampled sediments from the test and proximate control sites under anoxic conditions and incubated them in seawater medium with or without sulfate. Abundance and activity pattern of SRMs and methanogens, as well as the total prokaryotic community, were followed for 6 weeks by using qPCR targeting selected marker genes. Some of these genes were also subjected to amplicon sequencing to assess potential shifts in diversity patterns. Alterations of the organic material in the microcosms were determined by mass spectrometry. Our results indicate that the competition of SRMs with methanogens upon sulfate addition strongly depends on the environment studied and the starting microbiome composition. In the asphalt-free sediments (control), the availability of easily degradable organic material (mainly plant-derived) allows SRMs to use a larger variety of substrates, reducing interspecies competition with methanogens. In contrast, the abundant presence of recalcitrant compounds in the asphalt-exposed sediment was associated with a strong competition between SRMs and methanogens, ultimately detrimental for the latter. Our data underpin the importance of the quality of bioavailable organic materials in anoxic environments as a driver for microbial community structure and function.
Collapse
Affiliation(s)
- Antonios Michas
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany.,Chair of Soil Science, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany.,Chair of Analytical Food Chemistry, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Marianna Lucio
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany
| | - Gisle Vestergaard
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Anne Himmelberg
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany.,Chair of Analytical Food Chemistry, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Tillmann Lueders
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Dimitris G Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Attica, Greece
| | - Anne Schöler
- Institute for Neuropathology, Charité University Hospital Berlin, Berlin, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany.,Chair of Soil Science, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|
46
|
Christman GD, León-Zayas RI, Summers ZM, Biddle JF. Methanogens Within a High Salinity Oil Reservoir From the Gulf of Mexico. Front Microbiol 2020; 11:570714. [PMID: 33042074 PMCID: PMC7530209 DOI: 10.3389/fmicb.2020.570714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/26/2020] [Indexed: 11/18/2022] Open
Abstract
Oil reservoirs contain microbial populations that are both autochthonously and allochthonously introduced by industrial development. These microbial populations are greatly influenced by external factors including, but not limited to, salinity and temperature. In this study, we used metagenomics to examine the microbial populations within five wells of the same hydrocarbon reservoir system in the Gulf of Mexico. These elevated salinity (149–181 ppt salinity, 4–5× salinity of seawater) reservoirs have limited taxonomic and functional microbial diversity dominated by methanogens, Halanaerobium and other Firmicutes lineages, and contained less abundant lineages such as Deltaproteobacteria. Metagenome assembled genomes (MAGs) were generated and analyzed from the various wells. Methanogen MAGs were closely related to Methanohalophilus euhalobius, a known methylotrophic methanogen from a high salinity oil environment. Based on metabolic reconstruction of genomes, the Halanaerobium perform glycine betaine fermentation, potentially produced by the methanogens. Industrial introduction of methanol to prevent methane hydrate formation to this environment is likely to be consumed by these methanogens. As such, this subsurface oil population may represent influences from industrial processes.
Collapse
Affiliation(s)
- Glenn D Christman
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Rosa I León-Zayas
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States.,Department of Biology, Willamette University, Salem, OR, United States
| | - Zarath M Summers
- ExxonMobil Research & Engineering Company, Annandale, NJ, United States
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| |
Collapse
|
47
|
Physicochemical and biological controls of sulfide accumulation in a high temperature oil reservoir. Appl Microbiol Biotechnol 2020; 104:8467-8478. [DOI: 10.1007/s00253-020-10828-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 08/11/2020] [Indexed: 01/04/2023]
|
48
|
Tinker K, Gardiner J, Lipus D, Sarkar P, Stuckman M, Gulliver D. Geochemistry and Microbiology Predict Environmental Niches With Conditions Favoring Potential Microbial Activity in the Bakken Shale. Front Microbiol 2020; 11:1781. [PMID: 32849400 PMCID: PMC7406717 DOI: 10.3389/fmicb.2020.01781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
The Bakken Shale and underlying Three Forks Formation is an important oil and gas reservoir in the United States. The hydrocarbon resources in this region are accessible using unconventional oil and gas extraction methods, including horizontal drilling and hydraulic fracturing. However, the geochemistry and microbiology of this region are not well understood, although they are known to have major implications for productivity and water management. In this study, we analyzed the produced water from 14 unconventional wells in the Bakken Shale using geochemical measurements, quantitative PCR (qPCR), and 16S rRNA gene sequencing with the overall goal of understanding the complex dynamics present in hydraulically fractured wells. Bakken Shale produced waters from this study exhibit high measurements of total dissolved solids (TDS). These conditions inhibit microbial growth, such that all samples had low microbial loads except for one sample (well 11), which had lower TDS concentrations and higher 16S rRNA gene copies. Our produced water samples had elevated chloride concentrations typical of other Bakken waters. However, they also contained a sulfate concentration trend that suggested higher occurrence of sulfate reduction, especially in wells 11 and 18. The unique geochemistry and microbial loads recorded for wells 11 and 18 suggest that the heterogeneous nature of the producing formation can provide environmental niches with conditions conducive for microbial growth. This was supported by strong correlations between the produced water microbial community and the associated geochemical parameters including sodium, chloride, and sulfate concentrations. The produced water microbial community was dominated by 19 bacterial families, all of which have previously been associated with hydrocarbon-reservoirs. These families include Halanaerobiaceae, Pseudomonadaceae, and Desulfohalobiaceae which are often associated with thiosulfate reduction, biofilm production, and sulfate reduction, respectively. Notably, well 11 was dominated by sulfate reducers. Our findings expand the current understanding of microbial life in the Bakken region and provide new insights into how the unique produced water conditions shape microbial communities. Finally, our analysis suggests that produced water chemistry is tightly linked with microbiota in the Bakken Shale and shows that additional research efforts that incorporate coupled microbial and geochemical datasets are necessary to understand this ecosystem.
Collapse
Affiliation(s)
- Kara Tinker
- National Energy Technology Laboratory, Pittsburgh, PA, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - James Gardiner
- National Energy Technology Laboratory, Pittsburgh, PA, United States.,Leidos Research Support Team, National Energy Technology Laboratory, Pittsburgh, PA, United States
| | - Daniel Lipus
- National Energy Technology Laboratory, Pittsburgh, PA, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States.,Section of Geomicrobiology, GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Preom Sarkar
- National Energy Technology Laboratory, Pittsburgh, PA, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Mengling Stuckman
- National Energy Technology Laboratory, Pittsburgh, PA, United States.,Leidos Research Support Team, National Energy Technology Laboratory, Pittsburgh, PA, United States
| | - Djuna Gulliver
- National Energy Technology Laboratory, Pittsburgh, PA, United States
| |
Collapse
|
49
|
Capão A, Moreira-Filho P, Garcia M, Bitati S, Procópio L. Marine bacterial community analysis on 316L stainless steel coupons by Illumina MiSeq sequencing. Biotechnol Lett 2020; 42:1431-1448. [PMID: 32472186 DOI: 10.1007/s10529-020-02927-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022]
Abstract
In order to evaluate the corrosive action of microorganisms on 316L metal exposed directly to a marine environment, a system was designed to immerse coupons in seawater. After periods of 30, 60 and 90 days, the coupons were recovered, the corrosion rates evaluated and the biofilm samples on their surface were analyzed by 16S rRNA gene sequencing. The results of the corrosion rate showed an acceleration over the entire experimental period. Alpha diversity measurements showed higher rates after 60 days of the experiment, while abundance measurements showed higher rates after 90 days of exposure to the marine environment. The beta-diversity results showed a clear separation between the three conditions and proximity in the indices between replicates of the same experimental condition. The results of 16S rRNA gene sequencing showed that after 30 days of exposure to seawater, there was massive representativeness of the pioneer bacteria, Gamma and Alphaproteobacteria, with emphasis on the genera Alcanivorax, Oceanospirillum and Shewanella. At the 60-day analysis, the Gammaproteobacteria class remained dominant, followed by Alphaproteobacteria and Flavobacteria, and the main representatives were Flexibacter and Pseudoalteromonas. In the last analysis, after 90 days, a change in the described bacterial community profile was observed. The Gammaproteobacteria class was still the largest in diversity and OTUs. The most predominant genera in number of OTUs were Alteromonas, Bacteriovorax and, Nautella. Our results describe a change in the microbial community over coupons directly exposed to the marine environment, suggesting a redirection to the formation of a mature biofilm. The conditions created by the biofilm structure suggest said condition favor biocorrosion on the analyzed coupons.
Collapse
Affiliation(s)
- Artur Capão
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room, AG405, Rio de Janeiro, Rio de Janeiro, ZIP Code 20261-063, Brazil
| | - Paulo Moreira-Filho
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room, AG405, Rio de Janeiro, Rio de Janeiro, ZIP Code 20261-063, Brazil
| | - Maurício Garcia
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room, AG405, Rio de Janeiro, Rio de Janeiro, ZIP Code 20261-063, Brazil
| | - Suleima Bitati
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room, AG405, Rio de Janeiro, Rio de Janeiro, ZIP Code 20261-063, Brazil
| | - Luciano Procópio
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room, AG405, Rio de Janeiro, Rio de Janeiro, ZIP Code 20261-063, Brazil. .,Industrial Microbiology and Bioremediation Department, Federal University of Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
50
|
Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm. Appl Microbiol Biotechnol 2020; 104:6397-6411. [PMID: 32458139 DOI: 10.1007/s00253-020-10688-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 02/02/2023]
Abstract
The influence of crude oil and chemical dispersant was evaluated over planktonic bacteria and biofilms grown on API 5L steel surfaces in microcosm systems. Three conditions were simulated, an untreated marine environment and a marine environment with the presence of crude oil and a containing crude oil and chemical dispersant. The results of coupon corrosion rates indicated that in the oil microcosm, there was a high corrosion rate when compared with the other two systems. Analysis of bacterial communities by 16S rRNA gene sequencing described a clear difference between the different treatments. In plankton communities, the Bacilli and Gammaproteobacteria classes were the most present in numbers of operational taxonomic unit (OTUs). The Vibrionales, Oceanospirillales, and Alteromonadales orders were predominant in the treatment with crude oil, whereas in the microcosm containing oil and chemical dispersant, mainly members of Bacillales order were detected. In the communities analyzed from biofilms attached to the coupons, the most preponderant class was Alphaproteobacteria, followed by Gammaproteobacteria. In the control microcosm, there was a prevalence of the orders Rhodobacterales, Aeromonadales, and Alteromonadales, whereas in the dispersed oil and oil systems, the members of the order Rhodobacterales were present in a larger number of OTUs. These results demonstrate how the presence of a chemical dispersant and oil influence the corrosion rate and bacterial community structures present in the water column and biofilms grown on API 5L steel surfaces in a marine environment. KEY POINTS: • Evaluation of the effects of oil and chemical surfactants on the corrosion of API 5L. • Changes in microbial communities do not present corrosive biofilm on API 5L coupons.
Collapse
|