1
|
Nakamura E, Aoki T, Endo Y, Kazmi J, Hagiwara J, Kuschner CE, Yin T, Kim J, Becker LB, Hayashida K. Organ-Specific Mitochondrial Alterations Following Ischemia-Reperfusion Injury in Post-Cardiac Arrest Syndrome: A Comprehensive Review. Life (Basel) 2024; 14:477. [PMID: 38672748 PMCID: PMC11050834 DOI: 10.3390/life14040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction, which is triggered by systemic ischemia-reperfusion (IR) injury and affects various organs, is a key factor in the development of post-cardiac arrest syndrome (PCAS). Current research on PCAS primarily addresses generalized mitochondrial responses, resulting in a knowledge gap regarding organ-specific mitochondrial dynamics. This review focuses on the organ-specific mitochondrial responses to IR injury, particularly examining the brain, heart, and kidneys, to highlight potential therapeutic strategies targeting mitochondrial dysfunction to enhance outcomes post-IR injury. METHODS AND RESULTS We conducted a narrative review examining recent advancements in mitochondrial research related to IR injury. Mitochondrial responses to IR injury exhibit considerable variation across different organ systems, influenced by unique mitochondrial structures, bioenergetics, and antioxidative capacities. Each organ demonstrates distinct mitochondrial behaviors that have evolved to fulfill specific metabolic and functional needs. For example, cerebral mitochondria display dynamic responses that can be both protective and detrimental to neuronal activity and function during ischemic events. Cardiac mitochondria show vulnerability to IR-induced oxidative stress, while renal mitochondria exhibit a unique pattern of fission and fusion, closely linked to their susceptibility to acute kidney injury. This organ-specific heterogeneity in mitochondrial responses requires the development of tailored interventions. Progress in mitochondrial medicine, especially in the realms of genomics and metabolomics, is paving the way for innovative strategies to combat mitochondrial dysfunction. Emerging techniques such as mitochondrial transplantation hold the potential to revolutionize the management of IR injury in resuscitation science. CONCLUSIONS The investigation into organ-specific mitochondrial responses to IR injury is pivotal in the realm of resuscitation research, particularly within the context of PCAS. This nuanced understanding holds the promise of revolutionizing PCAS management, addressing the unique mitochondrial dysfunctions observed in critical organs affected by IR injury.
Collapse
Affiliation(s)
- Eriko Nakamura
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Tomoaki Aoki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Yusuke Endo
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Jacob Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Jun Hagiwara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Cyrus E. Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
2
|
Yamashita T, Abe K. Update on Antioxidant Therapy with Edaravone: Expanding Applications in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2945. [PMID: 38474192 PMCID: PMC10932469 DOI: 10.3390/ijms25052945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The brain is susceptible to oxidative stress, which is associated with various neurological diseases. Edaravone (MCI-186, 3-methyl-1 pheny-2-pyrazolin-5-one), a free radical scavenger, has promising effects by quenching hydroxyl radicals (∙OH) and inhibiting both ∙OH-dependent and ∙OH-independent lipid peroxidation. Edaravone was initially developed in Japan as a neuroprotective agent for acute cerebral infarction and was later applied clinically to treat amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. There is accumulating evidence for the therapeutic effects of edaravone in a wide range of diseases related to oxidative stress, including ischemic stroke, ALS, Alzheimer's disease, and placental ischemia. These neuroprotective effects have expanded the potential applications of edaravone. Data from experimental animal models support its safety for long-term use, implying broader applications in various neurodegenerative diseases. In this review, we explain the unique characteristics of edaravone, summarize recent findings for specific diseases, and discuss its prospects for future therapeutic applications.
Collapse
Affiliation(s)
- Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Koji Abe
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| |
Collapse
|
3
|
Schurr A. How the 'Aerobic/Anaerobic Glycolysis' Meme Formed a 'Habit of Mind' Which Impedes Progress in the Field of Brain Energy Metabolism. Int J Mol Sci 2024; 25:1433. [PMID: 38338711 PMCID: PMC10855259 DOI: 10.3390/ijms25031433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The division of glycolysis into two separate pathways, aerobic and anaerobic, depending on the presence or absence of oxygen, respectively, was formulated over eight decades ago. The former ends with pyruvate, while the latter ends with lactate. Today, this division is confusing and misleading as research over the past 35 years clearly has demonstrated that glycolysis ends with lactate not only in cancerous cells but also in healthy tissues and cells. The present essay offers a review of the history of said division and the more recent knowledge that has been gained about glycolysis and its end-product, lactate. Then, it presents arguments in an attempt to explain why separating glycolysis into aerobic and anaerobic pathways persists among scientists, clinicians and teachers alike, despite convincing evidence that such division is not only wrong scientifically but also hinders progress in the field of energy metabolism.
Collapse
Affiliation(s)
- Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
4
|
Schurr A. From rags to riches: Lactate ascension as a pivotal metabolite in neuroenergetics. Front Neurosci 2023; 17:1145358. [PMID: 36937681 PMCID: PMC10019773 DOI: 10.3389/fnins.2023.1145358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
|
5
|
Understanding heterogeneity in mitochondrial injury after cardiac arrest using plasma metabolomics. Resuscitation 2022; 179:83-85. [DOI: 10.1016/j.resuscitation.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022]
|
6
|
Fujikawa DG. Programmed Mechanisms of Status Epilepticus-induced Neuronal Necrosis. Epilepsia Open 2022; 8 Suppl 1:S25-S34. [PMID: 35278284 PMCID: PMC10173844 DOI: 10.1002/epi4.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/05/2022] [Indexed: 11/11/2022] Open
Abstract
Excitotoxicity is the underlying mechanism for all acute neuronal injury, from cerebral ischemia, status epilepticus, traumatic CNS injury and hypoglycemia. It causes morphological neuronal necrosis, and it triggers a programmed cell death program. Excessive calcium entry through the NMDA-receptor-operated cation channel activates two key enzymes-calpain I and neuronal nitric oxide synthase (nNOS). Calpain I, a cytosolic enzyme, translocates to mitochondrial and lysosomal membranes, causing release of cytochrome c, endonuclease G and apoptosis-inducing factor (AIF) from mitochondria and DNase II and cathepsins B and D from lysosomes. These all translocate to neuronal nuclei, creating DNA damage, which activates poly(ADP) ribose polymerase-1 (PARP-1) to form excessive amounts of poly(ADP) ribose (PAR) polymers, which translocate to mitochondrial membranes, causing release of truncated AIF (tAIF). The free radicals that are released from mitochondria and peroxynitrite, formed from nitric oxide (NO) from nNOS catalysis of L-arginine to L-citrulline, damage mitochondrial and lysosomal membranes and DNA. The end result is the necrotic death of neurons. Another programmed necrotic pathway, necroptosis, occurs through a parallel pathway. As investigators of necroptosis do not recognize the excitotoxic pathway, it is unclear to what extent each contributes to programmed neuronal necrosis. We are studying the extent to which each contributes to acute neuronal necrosis and the extent of cross-talk between these pathways.
Collapse
Affiliation(s)
- Denson G Fujikawa
- VA Greater Los Angeles Healthcare System, CA and Department of Neurology and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
7
|
Ransom BR, Goldberg MP, Arai K, Baltan S. White Matter Pathophysiology. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Passarella S, Schurr A, Portincasa P. Mitochondrial Transport in Glycolysis and Gluconeogenesis: Achievements and Perspectives. Int J Mol Sci 2021; 22:ijms222312620. [PMID: 34884425 PMCID: PMC8657705 DOI: 10.3390/ijms222312620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
Some metabolic pathways involve two different cell components, for instance, cytosol and mitochondria, with metabolites traffic occurring from cytosol to mitochondria and vice versa, as seen in both glycolysis and gluconeogenesis. However, the knowledge on the role of mitochondrial transport within these two glucose metabolic pathways remains poorly understood, due to controversial information available in published literature. In what follows, we discuss achievements, knowledge gaps, and perspectives on the role of mitochondrial transport in glycolysis and gluconeogenesis. We firstly describe the experimental approaches for quick and easy investigation of mitochondrial transport, with respect to cell metabolic diversity. In addition, we depict the mitochondrial shuttles by which NADH formed in glycolysis is oxidized, the mitochondrial transport of phosphoenolpyruvate in the light of the occurrence of the mitochondrial pyruvate kinase, and the mitochondrial transport and metabolism of L-lactate due to the L-lactate translocators and to the mitochondrial L-lactate dehydrogenase located in the inner mitochondrial compartment.
Collapse
Affiliation(s)
- Salvatore Passarella
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-3293606374
| | - Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
9
|
Wiklund L, Sharma A, Patnaik R, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Sharma HS. Upregulation of hemeoxygenase enzymes HO-1 and HO-2 following ischemia-reperfusion injury in connection with experimental cardiac arrest and cardiopulmonary resuscitation: Neuroprotective effects of methylene blue. PROGRESS IN BRAIN RESEARCH 2021; 265:317-375. [PMID: 34560924 DOI: 10.1016/bs.pbr.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxidative stress plays an important role in neuronal injuries after cardiac arrest. Increased production of carbon monoxide (CO) by the enzyme hemeoxygenase (HO) in the brain is induced by the oxidative stress. HO is present in the CNS in two isoforms, namely the inducible HO-1 and the constitutive HO-2. Elevated levels of serum HO-1 occurs in cardiac arrest patients and upregulation of HO-1 in cardiac arrest is seen in the neurons. However, the role of HO-2 in cardiac arrest is not well known. In this review involvement of HO-1 and HO-2 enzymes in the porcine brain following cardiac arrest and resuscitation is discussed based on our own observations. In addition, neuroprotective role of methylene blue- an antioxidant dye on alterations in HO under in cardiac arrest is also presented. The biochemical findings of HO-1 and HO-2 enzymes using ELISA were further confirmed by immunocytochemical approach to localize selective regional alterations in cardiac arrest. Our observations are the first to show that cardiac arrest followed by successful cardiopulmonary resuscitation results in significant alteration in cerebral concentrations of HO-1 and HO-2 levels indicating a prominent role of CO in brain pathology and methylene blue during CPR followed by induced hypothermia leading to superior neuroprotection after return of spontaneous circulation (ROSC), not reported earlier.
Collapse
Affiliation(s)
- Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Dettori I, Fusco I, Bulli I, Gaviano L, Coppi E, Cherchi F, Venturini M, Di Cesare Mannelli L, Ghelardini C, Nocentini A, Supuran CT, Pugliese AM, Pedata F. Protective effects of carbonic anhydrase inhibition in brain ischaemia in vitro and in vivo models. J Enzyme Inhib Med Chem 2021; 36:964-976. [PMID: 34056989 PMCID: PMC8168743 DOI: 10.1080/14756366.2021.1907575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ischaemic stroke is a leading cause of death and disability. One of the major pathogenic mechanisms after ischaemia includes the switch to the glycolytic pathway, leading to tissue acidification. Carbonic anhydrase (CA) contributes to pH regulation. A new generation of CA inhibitors, AN11-740 and AN6-277 and the reference compound acetazolamide (ACTZ) were investigated in two models of brain ischaemia: in rat hippocampal acute slices exposed to severe oxygen, glucose deprivation (OGD) and in an in vivo model of focal cerebral ischaemia induced by permanent occlusion of the middle cerebral artery (pMCAo) in the rat. In vitro, the application of selective CAIs significantly delayed the appearance of anoxic depolarisation induced by OGD. In vivo, sub-chronic systemic treatment with AN11-740 and ACTZ significantly reduced the neurological deficit and decreased the infarct volume after pMCAo. CAIs counteracted neuronal loss, reduced microglia activation and partially counteracted astrocytes degeneration inducing protection from functional and tissue damage.
Collapse
Affiliation(s)
- Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Irene Fusco
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Gaviano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
11
|
In vivo brain ischemia-reperfusion model induced by hypoxia-reoxygenation using zebrafish larvae. Brain Res Bull 2021; 173:45-52. [PMID: 33989723 DOI: 10.1016/j.brainresbull.2021.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/05/2021] [Accepted: 05/07/2021] [Indexed: 01/14/2023]
Abstract
Cerebral infarct is caused by cerebrovascular occlusion and results in brain damage. Although many rodent models of cerebral infarct exist, there is none based on zebrafish. In this study, we developed a novel ischemia-reperfusion model induced by hypoxic treatment using zebrafish. We first examined the changes in blood flow under hypoxic conditions. Hypoxic treatment interrupted the blood flow in 4 dpf (days post fertilization) zebrafish larvae. To quantify the trunk and cerebral blood flow, we selected the middle mesencephalic central artery (MMCtA) as a cerebral blood vessel and the dorsal aorta (DA) as a blood vessel of the trunk. Interestingly, the interruption of blood flow in MMCtA preceded that in DA. Considering these results, we hypothesized that reoxygenation immediately after hypoxia-induced cerebral ischemia leads to reperfusion. As a result, hypoxia-reoxygenation (H/R) treatment induced ischemia-reperfusion in cerebral vessels. Furthermore, brain cell death was increased 24 h after H/R treatment. Transgenic zebrafish (HuC:kaede), with neuronal cells expressing the kaede fluorescent protein, was used to investigate the effect of H/R on neuronal cells. The H/R treatment reduced the fluorescence intensity of kaede. Besides, glial fibrillary acidic protein immunoreactivity in H/R-treated larvae was significantly increased. In conclusion, H/R-treated zebrafish larvae may provide a novel ischemia-reperfusion model.
Collapse
|
12
|
Bulli I, Dettori I, Coppi E, Cherchi F, Venturini M, Di Cesare Mannelli L, Ghelardini C, Nocentini A, Supuran CT, Pugliese AM, Pedata F. Role of Carbonic Anhydrase in Cerebral Ischemia and Carbonic Anhydrase Inhibitors as Putative Protective Agents. Int J Mol Sci 2021; 22:5029. [PMID: 34068564 PMCID: PMC8126098 DOI: 10.3390/ijms22095029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. The only pharmacological treatment available to date for cerebral ischemia is tissue plasminogen activator (t-PA) and the search for successful therapeutic strategies still remains a major challenge. The loss of cerebral blood flow leads to reduced oxygen and glucose supply and a subsequent switch to the glycolytic pathway, which leads to tissue acidification. Carbonic anhydrase (CA, EC 4.2.1.1) is the enzyme responsible for converting carbon dioxide into a protons and bicarbonate, thus contributing to pH regulation and metabolism, with many CA isoforms present in the brain. Recently, numerous studies have shed light on several classes of carbonic anhydrase inhibitor (CAI) as possible new pharmacological agents for the management of brain ischemia. In the present review we summarized pharmacological, preclinical and clinical findings regarding the role of CAIs in strokes and we discuss their potential protective mechanisms.
Collapse
Affiliation(s)
- Irene Bulli
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Ilaria Dettori
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Elisabetta Coppi
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Federica Cherchi
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Martina Venturini
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Carla Ghelardini
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Alessio Nocentini
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical Sciences, University of Florence, 50019 Florence, Italy;
| | - Claudiu T. Supuran
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical Sciences, University of Florence, 50019 Florence, Italy;
| | - Anna Maria Pugliese
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Felicita Pedata
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| |
Collapse
|
13
|
Choi DW. Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Front Neurosci 2020; 14:579953. [PMID: 33192266 PMCID: PMC7649323 DOI: 10.3389/fnins.2020.579953] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Interest in excitotoxicity expanded following its implication in the pathogenesis of ischemic brain injury in the 1980s, but waned subsequent to the failure of N-methyl-D-aspartate (NMDA) antagonists in high profile clinical stroke trials. Nonetheless there has been steady progress in elucidating underlying mechanisms. This review will outline the historical path to current understandings of excitotoxicity in the ischemic brain, and suggest that this knowledge should be leveraged now to develop neuroprotective treatments for stroke.
Collapse
Affiliation(s)
- Dennis W Choi
- Department of Neurology, SUNY Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
14
|
Hosseini M, Wilson RH, Crouzet C, Amirhekmat A, Wei KS, Akbari Y. Resuscitating the Globally Ischemic Brain: TTM and Beyond. Neurotherapeutics 2020; 17:539-562. [PMID: 32367476 PMCID: PMC7283450 DOI: 10.1007/s13311-020-00856-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrest (CA) afflicts ~ 550,000 people each year in the USA. A small fraction of CA sufferers survive with a majority of these survivors emerging in a comatose state. Many CA survivors suffer devastating global brain injury with some remaining indefinitely in a comatose state. The pathogenesis of global brain injury secondary to CA is complex. Mechanisms of CA-induced brain injury include ischemia, hypoxia, cytotoxicity, inflammation, and ultimately, irreversible neuronal damage. Due to this complexity, it is critical for clinicians to have access as early as possible to quantitative metrics for diagnosing injury severity, accurately predicting outcome, and informing patient care. Current recommendations involve using multiple modalities including clinical exam, electrophysiology, brain imaging, and molecular biomarkers. This multi-faceted approach is designed to improve prognostication to avoid "self-fulfilling" prophecy and early withdrawal of life-sustaining treatments. Incorporation of emerging dynamic monitoring tools such as diffuse optical technologies may provide improved diagnosis and early prognostication to better inform treatment. Currently, targeted temperature management (TTM) is the leading treatment, with the number of patients needed to treat being ~ 6 in order to improve outcome for one patient. Future avenues of treatment, which may potentially be combined with TTM, include pharmacotherapy, perfusion/oxygenation targets, and pre/postconditioning. In this review, we provide a bench to bedside approach to delineate the pathophysiology, prognostication methods, current targeted therapies, and future directions of research surrounding hypoxic-ischemic brain injury (HIBI) secondary to CA.
Collapse
Affiliation(s)
- Melika Hosseini
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Robert H Wilson
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Christian Crouzet
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Arya Amirhekmat
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Kevin S Wei
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Yama Akbari
- Department of Neurology, School of Medicine, University of California, Irvine, USA.
- Beckman Laser Institute, University of California, Irvine, USA.
| |
Collapse
|
15
|
Shah LM, Bisson EF. Susceptibility of Cervical Spinal Stenosis to Hypoxic-Ischemic Cord Injury. World Neurosurg 2020; 133:314-317. [DOI: 10.1016/j.wneu.2019.10.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
|
16
|
Glaser T, Arnaud Sampaio VF, Lameu C, Ulrich H. Calcium signalling: A common target in neurological disorders and neurogenesis. Semin Cell Dev Biol 2019; 95:25-33. [DOI: 10.1016/j.semcdb.2018.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
|
17
|
Foster TC. Senescent neurophysiology: Ca 2+ signaling from the membrane to the nucleus. Neurobiol Learn Mem 2019; 164:107064. [PMID: 31394200 DOI: 10.1016/j.nlm.2019.107064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 12/16/2022]
Abstract
The current review provides a historical perspective on the evolution of hypothesized mechanisms for senescent neurophysiology, focused on the CA1 region of the hippocampus, and the relationship of senescent neurophysiology to impaired hippocampal-dependent memory. Senescent neurophysiology involves processes linked to calcium (Ca2+) signaling including an increase in the Ca2+-dependent afterhyperpolarization (AHP), decreasing pyramidal cell excitability, hyporesponsiveness of N-methyl-D-aspartate (NMDA) receptor function, and a shift in Ca2+-dependent synaptic plasticity. Dysregulation of intracellular Ca2+ and downstream signaling of kinase and phosphatase activity lies at the core of senescent neurophysiology. Ca2+-dysregulation involves a decrease in Ca2+ influx through NMDA receptors and an increase release of Ca2+ from internal Ca2+ stores. Recent work has identified changes in redox signaling, arising in middle-age, as an initiating factor for senescent neurophysiology. The shift in redox state links processes of aging, oxidative stress and inflammation, with functional changes in mechanisms required for episodic memory. The link between age-related changes in Ca2+ signaling, epigenetics and gene expression is an exciting area of research. Pharmacological and behavioral intervention, initiated in middle-age, can promote memory function by initiating transcription of neuroprotective genes and rejuvenating neurophysiology. However, with more advanced age, or under conditions of neurodegenerative disease, epigenetic changes may weaken the link between environmental influences and transcription, decreasing resilience of memory function.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience and Genetics and Genomics Program, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
18
|
Restoration of brain circulation and cellular functions hours post-mortem. Nature 2019; 568:336-343. [PMID: 30996318 DOI: 10.1038/s41586-019-1099-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/01/2019] [Indexed: 11/08/2022]
Abstract
The brains of humans and other mammals are highly vulnerable to interruptions in blood flow and decreases in oxygen levels. Here we describe the restoration and maintenance of microcirculation and molecular and cellular functions of the intact pig brain under ex vivo normothermic conditions up to four hours post-mortem. We have developed an extracorporeal pulsatile-perfusion system and a haemoglobin-based, acellular, non-coagulative, echogenic, and cytoprotective perfusate that promotes recovery from anoxia, reduces reperfusion injury, prevents oedema, and metabolically supports the energy requirements of the brain. With this system, we observed preservation of cytoarchitecture; attenuation of cell death; and restoration of vascular dilatory and glial inflammatory responses, spontaneous synaptic activity, and active cerebral metabolism in the absence of global electrocorticographic activity. These findings demonstrate that under appropriate conditions the isolated, intact large mammalian brain possesses an underappreciated capacity for restoration of microcirculation and molecular and cellular activity after a prolonged post-mortem interval.
Collapse
|
19
|
Kassi AAY, Mahavadi AK, Clavijo A, Caliz D, Lee SW, Ahmed AI, Yokobori S, Hu Z, Spurlock MS, Wasserman JM, Rivera KN, Nodal S, Powell HR, Di L, Torres R, Leung LY, Rubiano AM, Bullock RM, Gajavelli S. Enduring Neuroprotective Effect of Subacute Neural Stem Cell Transplantation After Penetrating TBI. Front Neurol 2019; 9:1097. [PMID: 30719019 PMCID: PMC6348935 DOI: 10.3389/fneur.2018.01097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is the largest cause of death and disability of persons under 45 years old, worldwide. Independent of the distribution, outcomes such as disability are associated with huge societal costs. The heterogeneity of TBI and its complicated biological response have helped clarify the limitations of current pharmacological approaches to TBI management. Five decades of effort have made some strides in reducing TBI mortality but little progress has been made to mitigate TBI-induced disability. Lessons learned from the failure of numerous randomized clinical trials and the inability to scale up results from single center clinical trials with neuroprotective agents led to the formation of organizations such as the Neurological Emergencies Treatment Trials (NETT) Network, and international collaborative comparative effectiveness research (CER) to re-orient TBI clinical research. With initiatives such as TRACK-TBI, generating rich and comprehensive human datasets with demographic, clinical, genomic, proteomic, imaging, and detailed outcome data across multiple time points has become the focus of the field in the United States (US). In addition, government institutions such as the US Department of Defense are investing in groups such as Operation Brain Trauma Therapy (OBTT), a multicenter, pre-clinical drug-screening consortium to address the barriers in translation. The consensus from such efforts including "The Lancet Neurology Commission" and current literature is that unmitigated cell death processes, incomplete debris clearance, aberrant neurotoxic immune, and glia cell response induce progressive tissue loss and spatiotemporal magnification of primary TBI. Our analysis suggests that the focus of neuroprotection research needs to shift from protecting dying and injured neurons at acute time points to modulating the aberrant glial response in sub-acute and chronic time points. One unexpected agent with neuroprotective properties that shows promise is transplantation of neural stem cells. In this review we present (i) a short survey of TBI epidemiology and summary of current care, (ii) findings of past neuroprotective clinical trials and possible reasons for failure based upon insights from human and preclinical TBI pathophysiology studies, including our group's inflammation-centered approach, (iii) the unmet need of TBI and unproven treatments and lastly, (iv) present evidence to support the rationale for sub-acute neural stem cell therapy to mediate enduring neuroprotection.
Collapse
Affiliation(s)
- Anelia A. Y. Kassi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anil K. Mahavadi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Angelica Clavijo
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Daniela Caliz
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Stephanie W. Lee
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aminul I. Ahmed
- Wessex Neurological Centre, University Hospitals Southampton, Southampton, United Kingdom
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Zhen Hu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Markus S. Spurlock
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Joseph M Wasserman
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Karla N. Rivera
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Samuel Nodal
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Henry R. Powell
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Long Di
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rolando Torres
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lai Yee Leung
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andres Mariano Rubiano
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Ross M. Bullock
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shyam Gajavelli
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
20
|
Schurr A. Glycolysis Paradigm Shift Dictates a Reevaluation of Glucose and Oxygen Metabolic Rates of Activated Neural Tissue. Front Neurosci 2018; 12:700. [PMID: 30364172 PMCID: PMC6192285 DOI: 10.3389/fnins.2018.00700] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 01/31/2023] Open
Abstract
In 1988 two seminal studies were published, both instigating controversy. One concluded that “the energy needs of activated neural tissue are minimal, being fulfilled via the glycolytic pathway alone,” a conclusion based on the observation that neural activation increased glucose consumption, which was not accompanied by a corresponding increase in oxygen consumption (Fox et al., 1988). The second demonstrated that neural tissue function can be supported exclusively by lactate as the energy substrate (Schurr et al., 1988). While both studies continue to have their supporters and detractors, the present review attempts to clarify the issues responsible for the persistence of the controversies they have provoked and offer a possible rationalization. The concept that lactate rather than pyruvate, is the glycolytic end-product, both aerobically and anaerobically, and thus the real mitochondrial oxidative substrate, has gained a greater acceptance over the years. The idea of glycolysis as the sole ATP supplier for neural activation (glucose → lactate + 2ATP) continues to be controversial. Lactate oxidative utilization by activated neural tissue could explain the mismatch between glucose and oxygen consumption and resolve the existing disagreements among users of imaging methods to measure the metabolic rates of the two energy metabolic substrates. The postulate that the energy necessary for active neural tissue is supplied by glycolysis alone stems from the original aerobic glycolysis paradigm. Accordingly, glucose consumption is accompanied by oxygen consumption at 1–6 ratio. Since Fox et al. (1988) observed only a minimal if non-existent oxygen consumption compared to glucose consumption, their conclusion make sense. Nevertheless, considering (a) the shift in the paradigm of glycolysis (glucose → lactate; lactate + O2 + mitochondria → pyruvate → TCA cycle → CO2 + H2O + 17ATP); (b) that one mole of lactate oxidation requires only 50% of the amount of oxygen necessary for the oxidation of one mole of glucose; and (c) that lactate, as a mitochondrial substrate, is over eight times more efficient at ATP production than glucose as a glycolytic substrate, suggest that future studies of cerebral metabolic rates of activated neural tissue should include along with the measurements of CMRO2 and CMRglucose the measurement of CMRlactate.
Collapse
Affiliation(s)
- Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
21
|
Tucker D, Lu Y, Zhang Q. From Mitochondrial Function to Neuroprotection-an Emerging Role for Methylene Blue. Mol Neurobiol 2018; 55:5137-5153. [PMID: 28840449 PMCID: PMC5826781 DOI: 10.1007/s12035-017-0712-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022]
Abstract
Methylene blue (MB) is a well-established drug with a long history of use, owing to its diverse range of use and its minimal side effect profile. MB has been used classically for the treatment of malaria, methemoglobinemia, and carbon monoxide poisoning, as well as a histological dye. Its role in the mitochondria, however, has elicited much of its renewed interest in recent years. MB can reroute electrons in the mitochondrial electron transfer chain directly from NADH to cytochrome c, increasing the activity of complex IV and effectively promoting mitochondrial activity while mitigating oxidative stress. In addition to its beneficial effect on mitochondrial protection, MB is also known to have robust effects in mitigating neuroinflammation. Mitochondrial dysfunction has been identified as a seemingly unifying pathological phenomenon across a wide range of neurodegenerative disorders, which thus positions methylene blue as a promising therapeutic. In both in vitro and in vivo studies, MB has shown impressive efficacy in mitigating neurodegeneration and the accompanying behavioral phenotypes in animal models for such conditions as stroke, global cerebral ischemia, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. This review summarizes recent work establishing MB as a promising candidate for neuroprotection, with particular emphasis on the contribution of mitochondrial function to neural health. Furthermore, this review will briefly examine the link between MB, neurogenesis, and improved cognition in respect to age-related cognitive decline.
Collapse
Affiliation(s)
- Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
22
|
Shimizu EN, Seifert JL, Johnson KJ, Romero-Ortega MI. Prophylactic Riluzole Attenuates Oxidative Stress Damage in Spinal Cord Distraction. J Neurotrauma 2018; 35:1319-1328. [PMID: 29295647 DOI: 10.1089/neu.2017.5494] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spinal cord injury (SCI) without radiographical abnormalities (SCIWORA) presents a significant challenge because of the loss of function despite an apparent normal anatomy. The cause of dysfunction is not understood, and specific treatment options are lacking. Some scoliosis corrective surgeries result in SCIWORA, where stretching of the spinal cord can lead to vascular compromise and hypoxia. The iatrogenic nature of this injury allows for the implantation of neuroprotective strategies that are designed to prevent damage. We utilized a model of atraumatic SCI to evaluate the efficacy of the sodium-channel blocker, riluzole, as a prophylactic neuroprotectant. As expected, the stretch injury caused a significant reduction in intraparenchymal oxygen in distraction (-53.09 ± 22.23%) and riluzole pre-treated distraction animals (-43.04 ± 22.86%). However, in contrast to the oxidative stress and metabolic impairments observed in vehicle-treated distraction animals, in which protein carbonylation increased significantly (5.88 ± 1.3 nmol/mL), riluzole kept these levels within the normal range (1.8 ± 1.0 nmol/mL). This neurprotection also prevented ventral motor neuron hypoplasia and pyknosis, characteristic features of this atraumatic SCI model, and maintained normal gait function (e.g., stride length and stance time). This study provides evidence for the use of prophylactic neuroprotective strategies in which thoracic or spine surgeries present the risk of causing atraumatic SCI.
Collapse
Affiliation(s)
- Eileen N Shimizu
- 1 Bioengineering Department, University of Texas at Dallas , Richardson, Texas
| | - Jennifer L Seifert
- 1 Bioengineering Department, University of Texas at Dallas , Richardson, Texas
| | - Kevin J Johnson
- 1 Bioengineering Department, University of Texas at Dallas , Richardson, Texas
| | - Mario I Romero-Ortega
- 1 Bioengineering Department, University of Texas at Dallas , Richardson, Texas.,2 Surgery Department, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
23
|
Effect of in vitro storage duration on measured mechanical properties of brain tissue. Sci Rep 2018; 8:1247. [PMID: 29352260 PMCID: PMC5775329 DOI: 10.1038/s41598-018-19687-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/08/2018] [Indexed: 01/26/2023] Open
Abstract
Accurate characterization of the mechanical properties of brain tissue is essential for understanding the mechanisms of traumatic brain injuries and developing protective gears or facilities. However, how storage conditions might affect the mechanical properties of brain tissue remains unclear. The objective of this study is to investigate the effect of in vitro storage duration on the mechanical performance of brain tissue since measurements are usually carried out in vitro. Differential Scanning Calorimetry (DSC) measurements and uniaxial compression mechanical experiments are carried out. The results indicate that, for brain tissue stored at 1 °C without any liquid medium, the bio-molecular interactions and the mechanical strength of both white and grey matter deteriorate with prolonged storage duration. Transmission Electron Microscopy (TEM) results reveal the degeneration of myelin sheaths and the vacuolization of cristae with prolonged storage duration, suggesting that the in vitro storage duration should be carefully controlled. The findings from this study might facilitate the development of guidelines and standards for the in vitro storage of brain tissue.
Collapse
|
24
|
Xu Y, Ringgaard S, Mariager CØ, Bertelsen LB, Schroeder M, Qi H, Laustsen C, Stødkilde-Jørgensen H. Hyperpolarized 13C Magnetic Resonance Imaging Can Detect Metabolic Changes Characteristic of Penumbra in Ischemic Stroke. ACTA ACUST UNITED AC 2017; 3:67-73. [PMID: 30042973 PMCID: PMC6024450 DOI: 10.18383/j.tom.2017.00106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Magnetic resonance imaging (MRI) is increasingly the method of choice for rapid stroke assessment in patients and for guiding patient selection in clinical trials. The underlying metabolic status during stroke and following treatment is recognized as an important prognostic factor; thus, new methods are required to monitor local biochemistry following cerebral infarction, rapidly and in vivo. Hyperpolarized MRI with the tracer [1-13C]pyruvate enables rapid detection of localized [1-13C]lactate production, which has recently been shown in patients, supporting its translation to assess clinical stroke. Here we show the ability of hyperpolarized 13C MRI to detect the metabolic alterations characteristic of endothelin-1-induced ischemic stroke in rodents. In the region of penumbra, determined via T2-weighted 1H MRI, both [1-13C]pyruvate delivery and [1-13C]pyruvate cellular uptake independently increased. Furthermore, we observed a 33% increase in absolute [1-13C]lactate signal in the penumbra, and we determined that half of this increase was due to increased intracellular [1-13C]pyruvate supply and half was mediated by enhanced lactate dehydrogenase-mediated [1-13C]lactate production. Future work to characterize the kinetics of delivery, uptake, and enzymatic conversions of hyperpolarized tracers following ischemic stroke could position hyperpolarized 13C MRI as an ideal technology for rapid assessment of the penumbra during the critical time window following ischemic stroke in patients.
Collapse
Affiliation(s)
- Yafang Xu
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | | | - Lotte Bonde Bertelsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Marie Schroeder
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Haiyun Qi
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
25
|
Hartings JA, Shuttleworth CW, Kirov SA, Ayata C, Hinzman JM, Foreman B, Andrew RD, Boutelle MG, Brennan KC, Carlson AP, Dahlem MA, Drenckhahn C, Dohmen C, Fabricius M, Farkas E, Feuerstein D, Graf R, Helbok R, Lauritzen M, Major S, Oliveira-Ferreira AI, Richter F, Rosenthal ES, Sakowitz OW, Sánchez-Porras R, Santos E, Schöll M, Strong AJ, Urbach A, Westover MB, Winkler MK, Witte OW, Woitzik J, Dreier JP. The continuum of spreading depolarizations in acute cortical lesion development: Examining Leão's legacy. J Cereb Blood Flow Metab 2017; 37:1571-1594. [PMID: 27328690 PMCID: PMC5435288 DOI: 10.1177/0271678x16654495] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage.
Collapse
Affiliation(s)
- Jed A Hartings
- 1 Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,2 Mayfield Clinic, Cincinnati, OH, USA
| | - C William Shuttleworth
- 3 Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sergei A Kirov
- 4 Department of Neurosurgery and Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Cenk Ayata
- 5 Neurovascular Research Unit, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason M Hinzman
- 1 Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brandon Foreman
- 6 Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - R David Andrew
- 7 Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Martyn G Boutelle
- 8 Department of Bioengineering, Imperial College London, London, United Kingdom
| | - K C Brennan
- 9 Department of Neurology, University of Utah, Salt Lake City, UT, USA.,10 Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Andrew P Carlson
- 11 Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Markus A Dahlem
- 12 Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | | | - Christian Dohmen
- 14 Department of Neurology, University of Cologne, Cologne, Germany
| | - Martin Fabricius
- 15 Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | - Eszter Farkas
- 16 Department of Medical Physics and Informatics, Faculty of Medicine, and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Delphine Feuerstein
- 17 Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Rudolf Graf
- 17 Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Raimund Helbok
- 18 Medical University of Innsbruck, Department of Neurology, Neurocritical Care Unit, Innsbruck, Austria
| | - Martin Lauritzen
- 15 Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.,19 Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Major
- 13 Department of Neurology, Charité University Medicine, Berlin, Germany.,20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,21 Department of Experimental Neurology, Charité University Medicine, Berlin, Germany
| | - Ana I Oliveira-Ferreira
- 20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,21 Department of Experimental Neurology, Charité University Medicine, Berlin, Germany
| | - Frank Richter
- 22 Institute of Physiology/Neurophysiology, Jena University Hospital, Jena, Germany
| | - Eric S Rosenthal
- 5 Neurovascular Research Unit, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliver W Sakowitz
- 23 Department of Neurosurgery, Klinikum Ludwigsburg, Ludwigsburg, Germany.,24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Renán Sánchez-Porras
- 24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Edgar Santos
- 24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Schöll
- 24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Anthony J Strong
- 25 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London
| | - Anja Urbach
- 26 Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - M Brandon Westover
- 5 Neurovascular Research Unit, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maren Kl Winkler
- 20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany
| | - Otto W Witte
- 26 Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,27 Brain Imaging Center, Jena University Hospital, Jena, Germany
| | - Johannes Woitzik
- 20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,28 Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Jens P Dreier
- 13 Department of Neurology, Charité University Medicine, Berlin, Germany.,20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,21 Department of Experimental Neurology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
26
|
Sarkar S, Mukherjee A, Das N, Swarnakar S. Protective roles of nanomelatonin in cerebral ischemia-reperfusion of aged brain: Matrixmetalloproteinases as regulators. Exp Gerontol 2017; 92:13-22. [PMID: 28285147 DOI: 10.1016/j.exger.2017.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 11/19/2022]
Abstract
Cerebral ischemia-reperfusion (CIR) injury occurs as a result of oxygen occlusion in the carotid artery through embolus or thrombus formation or cerebrovascular hemorrhage. The oxygen thrust during reperfusion causes the generation of reactive oxidative species (ROS) which exert a potential threat to neuronal survival. ROS may possibly be arrested by antioxidants. After CIR, extracellular matrix remodeling takes place, which is governed by matrix metalloproteinases (MMPs). Augmentation of lipid per oxidation, perturbation of antioxidant enzyme activities and the loss of pyramidal neuronal cells in rat brain were attributed to CIR injury. Melatonin can readily cross the blood-brain barrier (BBB) to exert protective effects as an antioxidant but it is quickly cleared by the circulating blood. Also melatonin is easily degraded by light and hence is found to be ineffective during daytime. Results of the present study showed that unlike free melatonin (FM), the application of nanocapsulated melatonin (NM) exhibited significantly higher potential even at much lower concentrations to rescue neuronal cells and mitochondria during CIR insult and also restored the activities of antioxidative enzymes and MMPs to their normal levels. Hence, nanoencapsulated melatonin may be considered as a suitable drug delivery system for brain to exert protection against CIR injury.
Collapse
Affiliation(s)
- Sibani Sarkar
- Drug Development Diagnotics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Mukherjee
- Drug Development Diagnotics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nirmalendu Das
- Drug Development Diagnotics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Snehasikta Swarnakar
- Drug Development Diagnotics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
27
|
Abstract
The heart and brain are constantly interacting under normal physiological conditions. This interaction is under the control of the autonomic nervous system with parasympathetic and sympathetic nerve fibers including the participating brain structures. Pathological conditions, such as epilepsy and ischemic cerebral stroke influence heart function, especially the frequency and may result in severe arrhythmia. An asymmetric influence of the left and right brain hemispheres on the heart rate is still under debate. Conversely, the influence of the heart in cases of acute cardiac arrest on brain function is equally relevant and a common clinical problem after resuscitation. We review the damaging cascade of global cerebral hypoxia and the value of different diagnostic procedures as well as the ethical problem of the point in time of termination of consciousness and the instruments for estimating the prognosis.
Collapse
|
28
|
Evlice A, Ulusu NN. Glucose-6-phosphate dehydrogenase a novel hope on a blood-based diagnosis of Alzheimer's disease. Acta Neurol Belg 2017; 117:229-234. [PMID: 27378307 DOI: 10.1007/s13760-016-0666-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 06/24/2016] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a multi-factorial neurodegenerative disorder that numerous factors have key properties in the development of this proteopathy. Glucose-6-phosphate dehydrogenase (G6PD) is the most common form of enzymopathy. We have examined G6PD enzyme activity levels in the serum of newly diagnosed AD patients compared with control subjects without dementia from the both sexes. Serum G6PD levels were found to be significantly higher (approximately two times) in AD patients compared to control geriatric subjects in both sexes. We have concluded that G6PD seems to play an integral role in the progress and/or prevention of AD.
Collapse
Affiliation(s)
- Ahmet Evlice
- Department of Neurology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Nuriye Nuray Ulusu
- Department of Biochemistry, School of Medicine, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkey.
| |
Collapse
|
29
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
30
|
Sanganalmath SK, Gopal P, Parker JR, Downs RK, Parker JC, Dawn B. Global cerebral ischemia due to circulatory arrest: insights into cellular pathophysiology and diagnostic modalities. Mol Cell Biochem 2016; 426:111-127. [PMID: 27896594 DOI: 10.1007/s11010-016-2885-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023]
Abstract
Circulatory arrest (CA) remains a major unresolved public health problem in the United States; the annual incidence of which is ~0.50 to 0.55 per 1000 population. Despite seminal advances in therapeutic approaches over the past several decades, brain injury continues to be the leading cause of morbidity and mortality after CA. In brief, CA typically results in global cerebral ischemia leading to delayed neuronal death in the hippocampal pyramidal cells as well as in the cortical layers. The dynamic changes occurring in neurons after CA are still unclear, and predicting these neurological changes in the brain still remains a difficult issue. It is hypothesized that the "no-flow" period produces a cytotoxic cascade of membrane depolarization, Ca2+ ion influx, glutamate release, acidosis, and resultant activation of lipases, nucleases, and proteases. Furthermore, during reperfusion injury, neuronal death occurs due to the generation of free radicals by interfering with the mitochondrial respiratory chain. The efficacy of many pharmacological agents for CA patients has often been disappointing, reflecting our incomplete understanding of this enigmatic disease. The primary obstacles to the development of a neuroprotective therapy in CA include uncertainties with regard to the precise cause(s) of neuronal dysfunction and what to target. In this review, we summarize our knowledge of the pathophysiology as well as specific cellular changes in brain after CA and revisit the most important neurofunctional, neuroimaging techniques, and serum biomarkers as potent predictors of neurologic outcome in CA patients.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Division of Cardiovascular Diseases, Department of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Purva Gopal
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - John R Parker
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Richard K Downs
- Division of Neuroradiology, Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Joseph C Parker
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Department of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| |
Collapse
|
31
|
Khokhlova ON, Tukhovskaya EA, Kravchenko IN, Sadovnikova ES, Pakhomova IA, Kalabina EA, Lobanov AV, Shaykhutdinova ER, Ismailova AM, Murashev AN. Using Tiletamine-Zolazepam-Xylazine Anesthesia Compared to CO 2-inhalation for Terminal Clinical Chemistry, Hematology, and Coagulation Analysis in Mice. J Pharmacol Toxicol Methods 2016; 84:11-19. [PMID: 27773843 DOI: 10.1016/j.vascn.2016.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/13/2016] [Accepted: 10/18/2016] [Indexed: 01/04/2023]
Abstract
INTRODUCTION It is important that the method of anesthesia of mice does not considerably alter the animal's physiological and metabolic status before terminal blood sampling taken in order to analyze clinical pathology parameters. METHODS Hematology, hemostasis, and clinical chemistry parameters were compared in male and female BALB/c mice exposed to either tiletamine-zolazepam-xylazine (TZX) anesthesia or euthanasia in carbon dioxide (CO2) chamber to reveal an alternative method of anesthesia vs. the recommended CO2 inhalation. Blood samples were taken from the inferior vena cava. RESULTS Clinical blood parameters in mice exposed to CO2 inhalation or TZX anesthesia proved to be substantially different. The TZX group had lower activated partial thromboplastin time (APTT) and fibrinogen (statistically in males and tending in females) and lower platelets (PLT), red blood cells (RBC), hemoglobin (HGB), and white blood cells (WBC) in both sexes. TZX anesthesia resulted in lower blood serum concentrations of total protein, albumin and globulins, creatinine in males (higher in females); cholesterol, triglycerides, alanine aminotransferase (АLT) and alkaline phosphatase (AP) in both sexes, and bilirubin in males. The calcium level decreased in TZX-anesthetized males and females while the phosphates decreased only in females. The volume of serum obtained from females of TZX group was approximately two times higher than in the CO2-anesthetized group, with the degree of hemolysis tending to decrease. DISCUSSION The studied method of mouse anesthesia, followed by terminal blood sampling and analysis of clinical pathology parameters, suggests that TZX is a good alternative to CO2 inhalation in toxicological and other nonclinical studies. The differences in hemostasis, hematology, and clinical chemistry parameters between these groups are supposedly associated with alterations in physiological and metabolic status of mice under conditions of increasing hypoxia, respiratory standstill, and circulatory arrest after CO2 inhalation.
Collapse
Affiliation(s)
- Oksana N Khokhlova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Elena A Tukhovskaya
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Irina N Kravchenko
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Elena S Sadovnikova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Irina A Pakhomova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Elena A Kalabina
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Alexander V Lobanov
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Elvira R Shaykhutdinova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Alina M Ismailova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Arkady N Murashev
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| |
Collapse
|
32
|
MARES J, NOHEJLOVA K, STOPKA P, ROKYTA R. Direct Measurement of Free Radical Levels in the Brain After Cortical Ischemia Induced by Photothrombosis. Physiol Res 2016; 65:853-860. [DOI: 10.33549/physiolres.933124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tissue ischemia is connected with the production of free radicals (FR). This study was designed to directly measure of the amount of FR in rat brains related to a photothrombotic ischemic event shortly after establishing the lesion. A model of left hemisphere photothrombosis ischemia was used in the experiment. Brains of animals from the experimental group were removed and placed in liquid N2 for 60 min after the green laser exposure, the control group brains, exposed to the photosensitive dye Rose Bengal (RB), were placed in liquid N2 for 80 min after RB application, naïve control brains were also briefly stored in liquid N2. Spectroscopy of electron paramagnetic (spin) resonance was used to directly measure FR (hydroxyl (OH●) and nitroxyl (NO●). Compared to naïve controls, both the ischemia and RB groups had significantly higher levels of OH●, however, there were no differences between them. Comparison of hemispheres, i.e. with and without ischemia, in the experimental group did not show any significant difference in OH●. NO● were elevated in the ischemia and RB groups compare to naïve controls. Higher levels of NO● were found in hemispheres with ischemia compared to unexposed hemispheres. Increases in OH● were probably associated with the action of RB itself in this model of ischemia. Increases in NO● were closely related to the pathogenesis of photothrombotic ischemia and could be related to the activity of nitric oxide synthases.
Collapse
Affiliation(s)
| | - K. NOHEJLOVA
- Department of Normal Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Czech Republic
| | | | | |
Collapse
|
33
|
Stridbeck H, Holmin T, Hägerstrand I. Effect of Repeated Normothermic Ischaemia on Normal Liver Parenchyma. Acta Radiol 2016. [DOI: 10.1177/028418518702800217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatic ischaemia was induced in 8 mesenterico-cavally shunted pigs. The hepatic artery was occluded with biodegradable starch microspheres and the portal vein with a balloon catheter. The liver was kept ischaemic for 90 minutes at the beginning, and 90 minutes at the end, of a 24-hour period. At histopathologic examination 6 of the livers had multiple, small areas of necrosis. The total volume of these necroses accounted for no more than 10 to 15 per cent of each liver. No necrosis was evident in 2 livers. Thus normothermic Ischaemia for 2 periods of 90 minutes each within a 24-hour period caused minimal damage to the liver. An alternative treatment in patients with liver tumours could therefore be simultaneous occlusion of the hepatic artery and the portal vein.
Collapse
|
34
|
Boscia F, Begum G, Pignataro G, Sirabella R, Cuomo O, Casamassa A, Sun D, Annunziato L. Glial Na(+) -dependent ion transporters in pathophysiological conditions. Glia 2016; 64:1677-97. [PMID: 27458821 DOI: 10.1002/glia.23030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh Medical School
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical School.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania, 15213
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
35
|
Tegeler C, Sherman D. Analytic Review: Ischemic Cerebrovascular Disease: Diagnosis and Management. J Intensive Care Med 2016. [DOI: 10.1177/088506668600100404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ischemic stroke is the most common cause of neurologic morbidity and mortality. The proper management of a stroke patient is dictated by the underlying pathophysiology. An ischemic stroke may occur as a result of restricted flow or thrombosis from atherosclerosis, artery-to-artery embolization, cardiac-to-brain embolization, or disorders of coagulation, to mention a few of the most common causes. Determining the relevant cause of stroke is made more difficult by the coexistence of many possible factors such as hypertension, atherosclerosis, and cardiac disease. Nevertheless, judgments are based on the clinical presentation, computed tomographic scans, cerebral angiograms, and results of echocardiography and electrocardiographic monitoring. Therapy of the ischemic stroke patient is aimed primarily at preserving areas of potentially recoverable ischemic brain. This is accomplished by correcting or avoiding circumstances that can promote further impairment of ischemic brain. These include proper management of blood pressure, cardiac function, oxygenation, and fluid balance. The role of anticoagulation, hemodilution therapy, and other proposed forms of therapy is often unclear.
Collapse
Affiliation(s)
- Charles Tegeler
- Department of Medicine, Division of Neurology, University of Texas Health Science Center, San Antonio, Texas
| | - David Sherman
- Department of Medicine, Division of Neurology, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
36
|
Solovieva EY, Farrahova KI, Karneev AN, Chipova DT. [Phospholipids metabolism disorders in acute stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:104-112. [PMID: 27045147 DOI: 10.17116/jnevro201611611104-112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The disturbances of cerebral circulation results in the violation of phospholipid metabolism. Activation of lipid peroxidation and protein kinase C and release of intracellular calcium leads to disruption of the homeostasis of phosphatidylcholine. The use of cytidine-5-diphosphocholine, which is used as an intermediate compound in the biosynthesis of phospholipids of the cell membrane, helps to stabilize cell membranes, and reduce the formation of free radicals.
Collapse
Affiliation(s)
| | - K I Farrahova
- Rossijskij natsional'nyj issledovatel'skij meditsinskij universitet im. N.I. Pirogova', Moskva
| | | | - D T Chipova
- Rossijskij natsional'nyj issledovatel'skij meditsinskij universitet im. N.I. Pirogova', Moskva
| |
Collapse
|
37
|
Lee DS, Ko W, Song BK, Son I, Kim DW, Kang DG, Lee HS, Oh H, Jang JH, Kim YC, Kim S. The herbal extract KCHO-1 exerts a neuroprotective effect by ameliorating oxidative stress via heme oxygenase-1 upregulation. Mol Med Rep 2016; 13:4911-9. [PMID: 27082826 DOI: 10.3892/mmr.2016.5129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 03/18/2016] [Indexed: 11/06/2022] Open
Abstract
KCHO-1 is a novel product comprised of 30% ethanol extracts obtained from nine medical herbs, which are commonly used in traditional Korean and Chinese medicine. The nine herbs include Curcuma longa, Salvia miltiorrhiza, Gastrodia elata, Chaenomeles sinensis, Polygala tenuifolia, Paeonia japonica, Glycyrrhiza uralensis, Atractylodes japonica and processed Aconitum carmichaeli. Recent studies have reported the beneficial effects of these herbs. The present study aimed to investigate the direct neuroprotective effects of KCHO‑1 on HT22 mouse hippocampal cells, and to determine the possible underlying mechanisms. KCHO‑1 significantly suppressed glutamate‑ and hydrogen peroxide (H2O2)‑induced cell damage, and reactive oxygen species generation. In addition, KCHO‑1 increased the mRNA and protein expression levels of heme oxygenase (HO)‑1. Tin protoporphyrin, which is an inhibitor of HO activity, partially suppressed the effects of KCHO‑1. Furthermore, KCHO‑1 significantly upregulated nuclear factor erythroid‑derived 2‑related factor‑2 (Nrf2) nuclear translocation. Extracellular signal‑regulated kinase (ERK) activation also appeared to be associated with KCHO‑1‑induced HO‑1 expression, since the ERK inhibitor PD98059 suppressed HO‑1 expression and prevented KCHO‑1‑induced cytoprotection. The results of the present study suggested that KCHO‑1 may effectively prevent glutamate‑ or H2O2‑induced oxidative damage via Nrf2/ERK mitogen‑activated protein kinase‑dependent HO‑1 expression. These data suggest that KCHO‑1 may be useful for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong-Sung Lee
- Department of Pharmacy, Chosun University, Dong‑gu, Gwangju 61452, Republic of Korea
| | - Wonmin Ko
- Department of Pharmacy, Wonkwang University, Jeollabuk‑do 54538, Republic of Korea
| | - Bong-Keun Song
- Department of Internal Medicine, School of Oriental Medicine, Wonkwang University, Iksan, Jeollabuk‑do 54538, Republic of Korea
| | - Ilhong Son
- Department of Neurology, Inam Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Iksan, Jeollabuk‑do 54538, Republic of Korea
| | - Dong-Woung Kim
- Center of Integrative Medicine, Department of Internal Medicine, Wonkwang University Gwangju Hospital, Gwangju 61729, Republic of Korea
| | - Dae-Gil Kang
- Hanbang Body‑Fluid Research Center, Wonkwang University, Iksan, Jeollabuk‑do 54538, Republic of Korea
| | - Ho-Sub Lee
- Hanbang Body‑Fluid Research Center, Wonkwang University, Iksan, Jeollabuk‑do 54538, Republic of Korea
| | - Hyuncheol Oh
- Department of Pharmacy, Wonkwang University, Jeollabuk‑do 54538, Republic of Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon 22212, Republic of Korea
| | - Youn-Chul Kim
- Department of Pharmacy, Wonkwang University, Jeollabuk‑do 54538, Republic of Korea
| | - Sungchul Kim
- ALS/MND Center of Wonkwang University Korean Medical Hospital, Gwangju 61729, Republic of Korea
| |
Collapse
|
38
|
Matic I, Cocco S, Ferraina C, Martin-Jimenez R, Florenzano F, Crosby J, Lupi R, Amadoro G, Russell C, Pignataro G, Annunziato L, Abramov AY, Campanella M. Neuroprotective coordination of cell mitophagy by the ATPase Inhibitory Factor 1. Pharmacol Res 2016; 103:56-68. [PMID: 26484591 DOI: 10.1016/j.phrs.2015.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 01/03/2023]
Abstract
The mitochondrial ATPase Inhibitory Factor 1 (hereafter referred to as IF1) blocks the reversal of the F1Fo-ATPsynthase to prevent detrimental consumption of cellular ATP and associated demise. Herein, we infer further its molecular physiology by assessing its protective function in neurons during conditions of challenged homeostatic respiration. By adopting in vitro and in vivo protocols of hypoxia/ischemia and re-oxygenation, we show that a shift in the IF1:F1Fo-ATPsynthase expression ratio occurs in neurons. This increased IF1 level is essential to induce accumulation of the PTEN-induced putative kinase 1 (PINK-1) and recruitment of the mitophagic ubiquitin ligase PARK-2 to promote autophagic "control" of the mitochondrial population. In IF1 overexpressing neurons ATP depletion is reduced during hypoxia/ischemia and the mitochondrial membrane potential (ΔYm) resilient to re-oxygenation as well as resistant to electrogenic, Ca(2+) dependent depolarization. These data suggest that in mammalian neurons mitochondria adapt to respiratory stress by upregulating IF1, which exerts a protective role by coordinating pro-survival cell mitophagy and bioenergetics resilience.
Collapse
Affiliation(s)
- Ivana Matic
- Department of Biology, University of Rome "TorVergata", 00133 Rome, Italy
| | - Stefania Cocco
- EBRI-European Brain Research Institute, 00143 Rome, Italy
| | - Caterina Ferraina
- Department of Biology, University of Rome "TorVergata", 00133 Rome, Italy; Regina Elena-National Cancer Institute, 00144 Rome, Italy
| | - Rebeca Martin-Jimenez
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, United Kingdom
| | | | - James Crosby
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, United Kingdom
| | - Ramona Lupi
- EBRI-European Brain Research Institute, 00143 Rome, Italy
| | - Giusy Amadoro
- EBRI-European Brain Research Institute, 00143 Rome, Italy
| | - Claire Russell
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, United Kingdom
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, Federico II University of Naples, Italy; Department of Molecular Neuroscience, Institute of Neurology, University College London, United Kingdom
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, School of Medicine, Federico II University of Naples, Italy; Department of Molecular Neuroscience, Institute of Neurology, University College London, United Kingdom
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, Institute of Neurology, University College London, United Kingdom
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, United Kingdom; UCL Consortium for Mitochondrial Research, Royal College Street, University of London, United Kingdom; Department of Biology, University of Rome "TorVergata", 00133 Rome, Italy; Regina Elena-National Cancer Institute, 00144 Rome, Italy.
| |
Collapse
|
39
|
Ransom BR, Goldberg MP, Arai K, Baltan S. White Matter Pathophysiology. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism. Int J Mol Sci 2015; 16:25959-81. [PMID: 26528968 PMCID: PMC4661798 DOI: 10.3390/ijms161125939] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/27/2015] [Accepted: 10/16/2015] [Indexed: 01/15/2023] Open
Abstract
Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation.
Collapse
Affiliation(s)
- Anna Falkowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Przemysław Nowacki
- Department of Neurology, Pomeranian Medical University, Unii Lubelskiej 1, 71-225 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
41
|
Magnetic Resonance Imaging and 31P Magnetic Resonance Spectroscopy Study of the Effect of Temperature on Ischemic Brain Injury. Can J Neurol Sci 2015. [DOI: 10.1017/s0317167100041937] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ABSTRACT:Transient forebrain ischemia was induced in rats whose brain temperature was 31, 33, 35, 38, or 40°C. The development of regional injury was followed using magnetic resonance (MR) imaging, with the ultimate extent of neuronal injury quantified histopathologically. Animals in the hypothermic groups showed minimal changes in MR images over 4 days; normothermic animals snowed intensity enhancement attributed to progressive edema developing in the striatum and, later, in the hippocampus. Ischemia at 40°C resulted in widespread edema formation by I day post-ischemia; animals in this group did not survive beyond 30 hours. Histopathological analysis at 4 days (1 day for the hyperthermic group) post-ischemia showed that neuronal damage in the normothermic group was confined to the hippocampus and striatum. Minimal damage was found in the hypothermic groups; damage in the hyperthermic group was severe throughout the forebrain. There were no differences in the pre-ischemia 31P MR spectra for the different groups. During ischemia, the increase in intensity of the Pi peak and the fall in tissue pH increased with temperature in the order hypothermic < normothermic < hyperthermic group of animals. Post-ischemia energy recovery was similar in all groups, while pH recovered more rapidly in hypothermic animals.
Collapse
|
42
|
Dong T, Zhang Q, Hamblin MR, Wu MX. Low-level light in combination with metabolic modulators for effective therapy of injured brain. J Cereb Blood Flow Metab 2015; 35:1435-44. [PMID: 25966949 PMCID: PMC4640344 DOI: 10.1038/jcbfm.2015.87] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/19/2015] [Accepted: 03/29/2015] [Indexed: 12/20/2022]
Abstract
Vascular damage occurs frequently at the injured brain causing hypoxia and is associated with poor outcomes in the clinics. We found high levels of glycolysis, reduced adenosine triphosphate generation, and increased formation of reactive oxygen species and apoptosis in neurons under hypoxia. Strikingly, these adverse events were reversed significantly by noninvasive exposure of injured brain to low-level light (LLL). Low-level light illumination sustained the mitochondrial membrane potential, constrained cytochrome c leakage in hypoxic cells, and protected them from apoptosis, underscoring a unique property of LLL. The effect of LLL was further bolstered by combination with metabolic substrates such as pyruvate or lactate both in vivo and in vitro. The combinational treatment retained memory and learning activities of injured mice to a normal level, whereas other treatment displayed partial or severe deficiency in these cognitive functions. In accordance with well-protected learning and memory function, the hippocampal region primarily responsible for learning and memory was completely protected by combination treatment, in marked contrast to the severe loss of hippocampal tissue because of secondary damage in control mice. These data clearly suggest that energy metabolic modulators can additively or synergistically enhance the therapeutic effect of LLL in energy-producing insufficient tissue-like injured brain.
Collapse
Affiliation(s)
- Tingting Dong
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Qi Zhang
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael R Hamblin
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mei X Wu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Liu H, Xia Y. Beneficial and detrimental role of adenosine signaling in diseases and therapy. J Appl Physiol (1985) 2015; 119:1173-82. [PMID: 26316513 DOI: 10.1152/japplphysiol.00350.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
Adenosine is a major signaling nucleoside that orchestrates cellular and tissue adaptation under energy depletion and ischemic/hypoxic conditions by activation of four G protein-coupled receptors (GPCR). The regulation and generation of extracellular adenosine in response to stress are critical in tissue protection. Both mouse and human studies reported that extracellular adenosine signaling plays a beneficial role during acute states. However, prolonged excess extracellular adenosine is detrimental and contributes to the development and progression of various chronic diseases. In recent years, substantial progress has been made to understand the role of adenosine signaling in different conditions and to clarify its significance during the course of disease progression in various organs. These efforts have and will identify potential therapeutic possibilities for protection of tissue injury at acute stage by upregulation of adenosine signaling or attenuation of chronic disease progression by downregulation of adenosine signaling. This review is to summarize current progress and the importance of adenosine signaling in different disease stages and its potential therapeutic effects.
Collapse
Affiliation(s)
- Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas; Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, Texas; Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas; Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, Texas; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
44
|
Abstract
Stroke is a leading cause of death, long-term disability, and socioeconomic costs, highlighting the urgent need for more effective treatments. Intravenous administration of tissue plasminogen activator (t-PA) is the only FDA-approved therapy to re-establish cerebral blood flow. However, because of increased risk of hemorrhage beyond 3 h post stroke, few stroke patients (1-2%) benefit from t-PA; t-PA, which has neurotoxic effects, can also aggravate the extent of reperfusion injury by increasing blood-brain barrier permeability. An alternative strategy is needed to extend the window of intervention, minimize damage from reperfusion injury, and promote brain repair leading to neurological recovery. Reactive oxygen species (ROS), generated soon after ischemia and during reperfusion and thereafter, are considered the main mediators of ischemic injury. Antioxidant enzymes such as catalase, superoxide dismutase, etc. can neutralize ROS-mediated injury but their effective delivery to the brain remains a challenge. In this article, we review various therapeutic approaches including surgical interventions, and discuss the potential of nanoparticle-mediated delivery of antioxidants for stroke therapy.
Collapse
Affiliation(s)
- Hayder Jaffer
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | | | | | | |
Collapse
|
45
|
Mirzapour S, Rafieirad M, Rouhi L. Hydroalcoholic Extract of Ferulago angulata Improves Memory and Pain in Brain Hypoperfusion Ischemia in Rats. Jundishapur J Nat Pharm Prod 2015; 10:e17451. [PMID: 25866714 PMCID: PMC4386316 DOI: 10.17795/jjnpp-17451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/08/2014] [Accepted: 05/21/2014] [Indexed: 11/25/2022] Open
Abstract
Background: Objectives: Materials and Methods: Results: Conclusions:
Collapse
|
46
|
Schurr A. Cerebral glycolysis: a century of persistent misunderstanding and misconception. Front Neurosci 2014; 8:360. [PMID: 25477776 PMCID: PMC4237041 DOI: 10.3389/fnins.2014.00360] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022] Open
Abstract
Since its discovery in 1780, lactate (lactic acid) has been blamed for almost any illness outcome in which its levels are elevated. Beginning in the mid-1980s, studies on both muscle and brain tissues, have suggested that lactate plays a role in bioenergetics. However, great skepticism and, at times, outright antagonism has been exhibited by many to any perceived role for this monocarboxylate in energy metabolism. The present review attempts to trace the negative attitudes about lactate to the first four or five decades of research on carbohydrate metabolism and its dogma according to which lactate is a useless anaerobic end-product of glycolysis. The main thrust here is the review of dozens of scientific publications, many by the leading scientists of their times, through the first half of the twentieth century. Consequently, it is concluded that there exists a barrier, described by Howard Margolis as “habit of mind,” that many scientists find impossible to cross. The term suggests “entrenched responses that ordinarily occur without conscious attention and that, even if noticed, are hard to change.” Habit of mind has undoubtedly played a major role in the above mentioned negative attitudes toward lactate. As early as the 1920s, scientists investigating brain carbohydrate metabolism had discovered that lactate can be oxidized by brain tissue preparations, yet their own habit of mind redirected them to believe that such an oxidation is simply a disposal mechanism of this “poisonous” compound. The last section of the review invites the reader to consider a postulated alternative glycolytic pathway in cerebral and, possibly, in most other tissues, where no distinction is being made between aerobic and anaerobic glycolysis; lactate is always the glycolytic end product. Aerobically, lactate is readily shuttled and transported into the mitochondrion, where it is converted to pyruvate via a mitochondrial lactate dehydrogenase (mLDH) and then is entered the tricarboxylic acid (TCA) cycle.
Collapse
Affiliation(s)
- Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine Louisville, KY, USA
| |
Collapse
|
47
|
Kim J, Yin T, Yin M, Zhang W, Shinozaki K, Selak MA, Pappan KL, Lampe JW, Becker LB. Examination of physiological function and biochemical disorders in a rat model of prolonged asphyxia-induced cardiac arrest followed by cardio pulmonary bypass resuscitation. PLoS One 2014; 9:e112012. [PMID: 25383962 PMCID: PMC4226499 DOI: 10.1371/journal.pone.0112012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/11/2014] [Indexed: 11/18/2022] Open
Abstract
Background Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. Method A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. Results After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. Conclusion The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage.
Collapse
Affiliation(s)
- Junhwan Kim
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Tai Yin
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ming Yin
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wei Zhang
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichiro Shinozaki
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary A. Selak
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kirk L. Pappan
- Metabolon Inc., Durham, North Carolina, United States of America
| | - Joshua W. Lampe
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lance B. Becker
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
48
|
DeGracia DJ, Tri Anggraini F, Taha DTM, Huang ZF. Inductive and Deductive Approaches to Acute Cell Injury. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:859341. [PMID: 27437490 PMCID: PMC4897055 DOI: 10.1155/2014/859341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/25/2014] [Indexed: 11/28/2022]
Abstract
Many clinically relevant forms of acute injury, such as stroke, traumatic brain injury, and myocardial infarction, have resisted treatments to prevent cell death following injury. The clinical failures can be linked to the currently used inductive models based on biological specifics of the injury system. Here we contrast the application of inductive and deductive models of acute cell injury. Using brain ischemia as a case study, we discuss limitations in inductive inferences, including the inability to unambiguously assign cell death causality and the lack of a systematic quantitative framework. These limitations follow from an overemphasis on qualitative molecular pathways specific to the injured system. Our recently developed nonlinear dynamical theory of cell injury provides a generic, systematic approach to cell injury in which attractor states and system parameters are used to quantitatively characterize acute injury systems. The theoretical, empirical, and therapeutic implications of shifting to a deductive framework are discussed. We illustrate how a deductive mathematical framework offers tangible advantages over qualitative inductive models for the development of therapeutics of acutely injured biological systems.
Collapse
Affiliation(s)
- Donald J. DeGracia
- Department of Physiology, Wayne State University, 4116 Scott Hall, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | - Fika Tri Anggraini
- Department of Physiology, Wayne State University, 4116 Scott Hall, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | | - Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
49
|
Chiu BY, Chang CP, Lin JW, Yu JS, Liu WP, Hsu YC, Lin MT. Beneficial effect of astragalosides on stroke condition using PC12 cells under oxygen glucose deprivation and reperfusion. Cell Mol Neurobiol 2014; 34:825-37. [PMID: 24807460 DOI: 10.1007/s10571-014-0059-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/02/2014] [Indexed: 02/02/2023]
Abstract
Astragalosides (AST) are reported to be neuroprotective in focal cerebral ischemic models in vivo. In this study, the direct effect of AST against oxygen and glucose deprivation (OGD) including neuronal injury and the underlying mechanisms in vitro were investigated. 5 h OGD followed by 24 h of reperfusion [adding back oxygen and glucose (OGD-R)] was used to induce in vitro ischemia reperfusion injury in differentiated rat pheochromocytoma PC12 cells. AST (1, 100, and 200 µg/mL) were added to the culture after 5 h of the OGD ischemic insult and was present during the reoxygenation phases. A key finding was that OGD-R decreased cell viability, increased lactate dehydrogenase, increased reactive oxygen species, apoptosis, autophagy, functional impairment of mitochondria, and endoplasmic reticulum stress in PC12 cells, all of which AST treatment significantly reduced. In addition, AST attenuated OGD-R-induced cell loss through P38 MAPK activation a neuroprotective effect blunted by SB203580, a specific inhibitor of P38 MAPK. Our data suggest that both apoptosis and autophagy are important characteristics of OGD-R-induced PC12 death and that treating PC12 cells with AST blocked OGD-R-induced apoptosis and autophagy by suppressing intracellular oxidative stress, functional impairment of mitochondria, and endoplasmic reticulum stress. Our data provide identification of AST that can concomitantly inhibit multiple cells death pathways following OGD injuries in neural cells.
Collapse
Affiliation(s)
- Bi-Ying Chiu
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Lee DS, Ko W, Kim DC, Kim YC, Jeong GS. Cudarflavone B provides neuroprotection against glutamate-induced mouse hippocampal HT22 cell damage through the Nrf2 and PI3K/Akt signaling pathways. Molecules 2014; 19:10818-31. [PMID: 25061726 PMCID: PMC6271666 DOI: 10.3390/molecules190810818] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022] Open
Abstract
Oxidative cell damage contributes to neuronal degeneration in many central nervous system (CNS) diseases such as Alzheimer's disease, Parkinson's disease, and ischemia. Nrf2 signaling-mediated heme oxygenase (HO)-1 expression acts against oxidants that are thought to play a key role in the pathogenesis of neuronal diseases. Cudraflavone B is a prenylated flavone isolated from C. tricuspidata which has shown anti-proliferative activity, mouse brain monoamine oxidase (MAO) inhibitory effects, apoptotic actions in human gastric carcinoma cells and mouse melanoma cells, and hepatoprotective activity. In this study, cudraflavone B showed neuroprotective effects and reactive oxygen species (ROS) inhibition against glutamate-induced neurotoxicity by inducing the expression of HO-1 in mouse hippocampal HT22 cells. Furthermore, cudraflavone B caused the nuclear accumulation of nuclear factor-E2-related factor 2 (Nrf2) and increased the promoter activity of antioxidant response elements (ARE) in mouse hippocampal HT22 cells. In addition, we found that the Nrf2-midiated HO-1 expression by cudraflavone B is involved in the cell protective response and ROS reductions, and cudraflavone B-induced expression of HO-1 was mediated through the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in HT22 cells. Our results demonstrated the potential application of naturally occurring cudraflavone B as a therapeutic agent from neurodegenerative disease.
Collapse
Affiliation(s)
- Dong-Sung Lee
- Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Korea.
| | - Wonmin Ko
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Dong-Cheol Kim
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu 704-701, Korea.
| |
Collapse
|