1
|
Egunlusi AO, Joubert J. NMDA Receptor Antagonists: Emerging Insights into Molecular Mechanisms and Clinical Applications in Neurological Disorders. Pharmaceuticals (Basel) 2024; 17:639. [PMID: 38794209 PMCID: PMC11124131 DOI: 10.3390/ph17050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Neurodegenerative disorders (NDs) include a range of chronic conditions characterized by progressive neuronal loss, leading to cognitive, motor, and behavioral impairments. Common examples include Alzheimer's disease (AD) and Parkinson's disease (PD). The global prevalence of NDs is on the rise, imposing significant economic and social burdens. Despite extensive research, the mechanisms underlying NDs remain incompletely understood, hampering the development of effective treatments. Excitotoxicity, particularly glutamate-mediated excitotoxicity, is a key pathological process implicated in NDs. Targeting the N-methyl-D-aspartate (NMDA) receptor, which plays a central role in excitotoxicity, holds therapeutic promise. However, challenges, such as blood-brain barrier penetration and adverse effects, such as extrapyramidal effects, have hindered the success of many NMDA receptor antagonists in clinical trials. This review explores the molecular mechanisms of NMDA receptor antagonists, emphasizing their structure, function, types, challenges, and future prospects in treating NDs. Despite extensive research on competitive and noncompetitive NMDA receptor antagonists, the quest for effective treatments still faces significant hurdles. This is partly because the same NMDA receptor that necessitates blockage under pathological conditions is also responsible for the normal physiological function of NMDA receptors. Allosteric modulation of NMDA receptors presents a potential alternative, with the GluN2B subunit emerging as a particularly attractive target due to its enrichment in presynaptic and extrasynaptic NMDA receptors, which are major contributors to excitotoxic-induced neuronal cell death. Despite their low side-effect profiles, selective GluN2B antagonists like ifenprodil and radiprodil have encountered obstacles such as poor bioavailability in clinical trials. Moreover, the selectivity of these antagonists is often relative, as they have been shown to bind to other GluN2 subunits, albeit minimally. Recent advancements in developing phenanthroic and naphthoic acid derivatives offer promise for enhanced GluN2B, GluN2A or GluN2C/GluN2D selectivity and improved pharmacodynamic properties. Additional challenges in NMDA receptor antagonist development include conflicting preclinical and clinical results, as well as the complexity of neurodegenerative disorders and poorly defined NMDA receptor subtypes. Although multifunctional agents targeting multiple degenerative processes are also being explored, clinical data are limited. Designing and developing selective GluN2B antagonists/modulators with polycyclic moieties and multitarget properties would be significant in addressing neurodegenerative disorders. However, advancements in understanding NMDA receptor structure and function, coupled with collaborative efforts in drug design, are imperative for realizing the therapeutic potential of these NMDA receptor antagonists/modulators.
Collapse
Affiliation(s)
- Ayodeji Olatunde Egunlusi
- Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
2
|
Ju J, Liu L, Yang X, Men S, Hou ST. Distinctive effects of NMDA receptor modulators on cerebral microcirculation in a schizophrenia mouse model. Biochem Biophys Res Commun 2023; 653:62-68. [PMID: 36857901 DOI: 10.1016/j.bbrc.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Substantial evidence demonstrates that schizophrenia patients have altered cerebral microcirculation. However, little is known regarding how cerebral microcirculatory blood flow (microCBF) changes in schizophrenia. Here, using time-lapse two-photon imaging of individual capillaries, we demonstrated a substantial decrease in cerebral microcirculation in a mouse model of schizophrenia. The involvement of NMDA receptor (NMDAR) functions was investigated to understand further the mechanism of microcirculation reduction in this animal model. Administration of D-serine, a selective full agonist at the glycine site of NMDAR, significantly increased the microCBF in the schizophrenia mouse. Interestingly, administration of GNE-8324, a GluN2A-selective positive allosteric modulator that selectively enhances NMDAR-mediated synaptic responses in inhibitory but not excitatory neurons, had no effect on the microCBF of the schizophrenia mice. Together, these data indicated that NMDAR participated in the regulation of microcirculation in schizophrenia using a mechanism dependent on the tonic NMDAR signaling and the selective modulation of inhibitory neuron activity. Further studies are warranted to establish NMDAR's role in modulating microcirculation in schizophrenia.
Collapse
Affiliation(s)
- Jun Ju
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Luping Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region of China
| | - Xinyi Yang
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Siqi Men
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Themistoklis KM, Papasilekas TI, Melanis KS, Boviatsis KA, Korfias SI, Vekrellis K, Sakas DE. The transient intraluminal filament Middle Cerebral Artery Occlusion stroke model in rats. A step by step guide and technical considerations. World Neurosurg 2022; 168:43-50. [PMID: 36115569 DOI: 10.1016/j.wneu.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Stroke is a leading cause of disability and mortality worldwide. Related research, although already providing significant insights on the underlying pathophysiology and potential treatment strategies, is far from conclusive. In this respect, stroke models are proving of extreme significance for laboratories around the world. The scope of this article is to present in detail the most popular to date focal stroke model, the tifMCAO model in rats. This model mimics reliably stroke in humans and also approximates endovascular thrombectomy. METHODS The tifMCAO model was performed on Wistar rats with a weight of 300-400 gr. The surgical technique is described in a step-wise manner, while pictures and/or HD video accompany each step. Complete arteriotomy of the ECA stump is introduced during the procedure. RESULTS We performed the tifMCAO in 65 rats (male and female) involved in various experimental protocols. Although that initial mortality was 48%, practice reduced this number to10%. The mean procedural time was 53 min (range, 38 - 85 min). Stroke was confirmed in 87.5% of the cases. CONCLUSIONS The tifMCAO stroke model in rats is the most commonly utilized experimental model of focal ischemia because of its clinical relevance. We revisited the procedure and divided it, for instructional purposes, in 15 consecutive distinct steps.
Collapse
Affiliation(s)
- Konstantinos M Themistoklis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Department of Neurosurgery, "Korgialenio, Benakio, HRC" General Hospital of Athens, Athens, Greece.
| | - Themistoklis I Papasilekas
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Department of Neurosurgery, "Korgialenio, Benakio, HRC" General Hospital of Athens, Athens, Greece
| | - Konstantinos S Melanis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Department of Neurology, "Evaggelismos" General Hospital of Athens, Athens, Greece
| | | | - Stefanos I Korfias
- Department of Neurosurgery, University of Athens, "Evaggelismos" General Hospital of Athens, Athens, Greece
| | - Konstaninos Vekrellis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Damianos E Sakas
- Department of Neurosurgery, University of Athens, "Evaggelismos" General Hospital of Athens, Athens, Greece
| |
Collapse
|
4
|
Zhang H, Lin S, Chen X, Gu L, Zhu X, Zhang Y, Reyes K, Wang B, Jin K. The effect of age, sex and strains on the performance and outcome in animal models of stroke. Neurochem Int 2018; 127:2-11. [PMID: 30291954 DOI: 10.1016/j.neuint.2018.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Stroke is one of the leading causes of death worldwide, and the majority of cerebral stroke is caused by occlusion of cerebral circulation, which eventually leads to brain infarction. Although stroke occurs mainly in the aged population, most animal models for experimental stroke in vivo almost universally rely on young-adult rodents for the evaluation of neuropathological, neurological, or behavioral outcomes after stroke due to their greater availability, lower cost, and fewer health problems. However, it is well established that aged animals differ from young animals in terms of physiology, neurochemistry, and behavior. Stroke-induced changes are more pronounced with advancing age. Therefore, the overlooked role of age in animal models of stroke could have an impact on data quality and hinder the translation of rodent models to humans. In addition to aging, other factors also influence functional performance after ischemic stroke. In this article, we summarize the differences between young and aged animals, the impact of age, sex and animal strains on performance and outcome in animal models of stroke and emphasize age as a key factor in preclinical stroke studies.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Siyang Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xudong Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lei Gu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaohong Zhu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kassandra Reyes
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
5
|
Khanna S, Briggs Z, Rink C. Inducible glutamate oxaloacetate transaminase as a therapeutic target against ischemic stroke. Antioxid Redox Signal 2015; 22:175-86. [PMID: 25343301 PMCID: PMC4281871 DOI: 10.1089/ars.2014.6106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Glutamate serves multi-faceted (patho)physiological functions in the central nervous system as the most abundant excitatory neurotransmitter and under pathological conditions as a potent neurotoxin. Regarding the latter, elevated extracellular glutamate is known to play a central role in ischemic stroke brain injury. RECENT ADVANCES Glutamate oxaloacetate transaminase (GOT) has emerged as a new therapeutic target in protecting against ischemic stroke injury. Oxygen-sensitive induction of GOT expression and activity during ischemic stroke lowers glutamate levels at the stroke site while sustaining adenosine triphosphate levels in brain. The energy demands of the brain are among the highest of all organs underscoring the need to quickly mobilize alternative carbon skeletons for metabolism in the absence of glucose during ischemic stroke. Recent work builds on the important observation of Hans Krebs that GOT-mediated metabolism of glutamate generates tri-carboxylic acid (TCA) cycle intermediates in brain tissue. Taken together, outcomes suggest GOT may enable the transformative switch of otherwise excitotoxic glutamate into life-sustaining TCA cycle intermediates during ischemic stroke. CRITICAL ISSUES Neuroprotective strategies that focus solely on blocking mechanisms of glutamate-mediated excitotoxicity have historically failed in clinical trials. That GOT can enable glutamate to assume the role of a survival factor represents a paradigm shift necessary to develop the overall significance of glutamate in stroke biology. FUTURE DIRECTIONS Ongoing efforts are focused to develop the therapeutic significance of GOT in stroke-affected brain. Small molecules that target induction of GOT expression and activity in the ischemic penumbra are the focus of ongoing studies.
Collapse
Affiliation(s)
- Savita Khanna
- Department of Surgery, The Ohio State University Wexner Medical Center , Columbus, Ohio
| | | | | |
Collapse
|
6
|
Park SY, Marasini S, Kim GH, Ku T, Choi C, Park MY, Kim EH, Lee YD, Suh-Kim H, Kim SS. A method for generating a mouse model of stroke: evaluation of parameters for blood flow, behavior, and survival [corrected]. Exp Neurobiol 2014; 23:104-14. [PMID: 24737945 PMCID: PMC3984953 DOI: 10.5607/en.2014.23.1.104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 12/18/2022] Open
Abstract
Stroke is one of the common causes of death and disability. Despite extensive efforts in stroke research, therapeutic options for improving the functional recovery remain limited in clinical practice. Experimental stroke models using genetically modified mice could aid in unraveling the complex pathophysiology triggered by ischemic brain injury. Here, we optimized the procedure for generating mouse stroke model using an intraluminal suture in the middle cerebral artery and verified the blockage of blood flow using indocyanine green coupled with near infra-red radiation. The first week after the ischemic injury was critical for survivability. The survival rate of 11% in mice without any treatment but increased to 60% on administering prophylactic antibiotics. During this period, mice showed severe functional impairment but recovered spontaneously starting from the second week onward. Among the various behavioral tests, the pole tests and neurological severity score tests remained reliable up to 4 weeks after ischemia, whereas the rotarod and corner tests became less sensitive for assessing the severity of ischemic injury with time. Further, loss of body weight was also observed for up 4 weeks after ischemia induction. In conclusion, we have developed an improved approach which allows us to investigate the role of the cell death-related genes in the disease progression using genetically modified mice and to evaluate the modes of action of candidate drugs.
Collapse
Affiliation(s)
- Sin-Young Park
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-380, Korea. ; Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Subash Marasini
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-380, Korea. ; Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Geu-Hee Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-380, Korea. ; Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Chulhee Choi
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Min-Young Park
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Eun-Hee Kim
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Young-Don Lee
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-380, Korea. ; Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 443-380, Korea. ; Center for Cell Death Regulating Biodrug, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-380, Korea. ; Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-380, Korea. ; Center for Cell Death Regulating Biodrug, Ajou University School of Medicine, Suwon 443-380, Korea
| |
Collapse
|
7
|
Kwiecien TD, Sy C, Ding Y. Rodent models of ischemic stroke lack translational relevance... are baboon models the answer? Neurol Res 2014; 36:417-22. [PMID: 24649811 DOI: 10.1179/1743132814y.0000000358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Rodent models of ischemic stroke are associated with many issues and limitations, which greatly diminish the translational potential of these studies. Recent studies demonstrate that significant differences exist between rodent and human ischemic stroke. These differences include the physical characteristics of the stroke, as well as changes in the subsequent inflammatory and molecular pathways following the acute ischemic insult. Non-human primate (NHP) models of ischemic stroke, however, are much more similar to humans. In addition to evident anatomical similarities, the physiological responses that NHPs experience during ischemic stroke are much more applicable to the human condition and thus make it an attractive model for future research. The baboon ischemic stroke model, in particular, has been studied extensively in comparison to other NHP models. Here we discuss the major shortcomings associated with rodent ischemic stroke models and provide a comparative overview of baboon ischemic stroke models. Studies have shown that baboons, although more difficult to obtain and handle, are more representative of ischemic events in humans and may have greater translational potential that can offset these deficiencies. There remain critical issues within these baboon stroke studies that need to be addressed in future investigations. The most critical issue revolves around the size and the variability of baboon ischemic stroke. Compared to rodent models, however, issues such as these can be addressed in future studies. Importantly, baboon models avoid many drawbacks associated with rodent models including vascular variability and inconsistent inflammatory responses - issues that are inherent to the species and cannot be avoided.
Collapse
|
8
|
Waszkielewicz AM, Gunia A, Szkaradek N, Słoczyńska K, Krupińska S, Marona H. Ion channels as drug targets in central nervous system disorders. Curr Med Chem 2013; 20:1241-85. [PMID: 23409712 PMCID: PMC3706965 DOI: 10.2174/0929867311320100005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/27/2022]
Abstract
Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na(+) channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 - for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca(2+)s channels are not any more divided to T, L, N, P/Q, and R, but they are described as Ca(v)1.1-Ca(v)3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs.
Collapse
Affiliation(s)
- A M Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
9
|
Chueh JY, Kuhn AL, Wakhloo AK, Gounis MJ. Experimental Models of Vascular Occlusions for Evaluation of Thrombectomy Devices. Cardiovasc Eng Technol 2013. [DOI: 10.1007/s13239-013-0143-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Krafft PR, Bailey EL, Lekic T, Rolland WB, Altay O, Tang J, Wardlaw JM, Zhang JH, Sudlow CLM. Etiology of stroke and choice of models. Int J Stroke 2012; 7:398-406. [PMID: 22712741 DOI: 10.1111/j.1747-4949.2012.00838.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Animal models of stroke contribute to the development of better stroke prevention and treatment through studies investigating the pathophysiology of different stroke subtypes and by testing promising treatments before trials in humans. There are two broad types of animal models: those in which stroke is induced through artificial means, modeling the consequences of a vascular insult but not the vascular pathology itself; and those in which strokes occur spontaneously. Most animal models of stroke are in rodents due to cost, ethical considerations, availability of standardized neurobehavioral assessments, and ease of physiological monitoring. While there are similarities in cerebrovascular anatomy and pathophysiology between rodents and humans, there are also important differences, including brain size, length and structure of perforating arteries, and gray to white matter ratio, which is substantially lower in humans. The wide range of rodent models of stroke includes models of global and focal ischemia, and of intracerebral and sub-arachnoid hemorrhage. The most widely studied model of spontaneous stroke is the spontaneously hypertensive stroke-prone rat, in which the predominant lesions are small subcortical infarcts resulting from a vascular pathology similar to human cerebral small vessel disease. Important limitations of animal models of stroke - they generally model only certain aspects of the disease and do not reflect the heterogeneity in severity, pathology and comorbidities of human stroke - and key methodological issues (especially the need for adequate sample size, randomization, and blinding in treatment trials) must be carefully considered for the successful translation of pathophysiological concepts and therapeutics from bench to bedside.
Collapse
Affiliation(s)
- Paul R Krafft
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bråtane BT, Cui H, Cook DJ, Bouley J, Tymianski M, Fisher M. Neuroprotection by Freezing Ischemic Penumbra Evolution Without Cerebral Blood Flow Augmentation With a Postsynaptic Density-95 Protein Inhibitor. Stroke 2011; 42:3265-70. [DOI: 10.1161/strokeaha.111.618801] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
The purpose of this study was to determine whether neuroprotection is feasible without cerebral blood flow augmentation in experimental permanent middle cerebral artery occlusion.
Methods—
Rats were subjected to permanent middle cerebral artery occlusion by the suture occlusion method and were treated 1 hour thereafter with a single 5-minute intravenous infusion of the postsynaptic density-95 protein inhibitor Tat-NR2B9c (7.5 mg/kg) or saline (n=8/group). Arterial spin-labeled perfusion-weighted MRI and diffusion weighted MRI were obtained with a 4.7-T Bruker system at 30, 45, 70, 90, 120, 150, and 180 minutes postmiddle cerebral artery occlusion to determine cerebral blood flow and apparent diffusion coefficient maps, respectively. At 24 hours, animals were neurologically scored (0 to 5), euthanized, and the brains stained with 2–3-5-triphenyl tetrazolium chloride to ascertain infarct volumes corrected for edema. Additionally, the effects of Tat-NR2B9c on adenosine 5′-triphosphate levels were measured in vitro in neurons subjected to oxygen–glucose deprivation.
Results—
Final infarct volume was decreased by 30.3% in the Tat-NR2B9c-treated animals compared with controls (
P
=0.028). There was a significant improvement in 24 hours neurological scores in the Tat-NR2B9c group compared with controls, 1.8±0.5 and 2.8±1.0, respectively (
P
=0.021). Relative to controls, Tat-NR2B9c significantly attenuated diffusion-weighted imaging lesion growth and preserved the diffusion-weighted imaging/perfusion-weighted imaging mismatch (ischemic penumbra) without affecting cerebral blood flow in the ischemic core or penumbra. Tat-NR2B9c treatment of primary neuronal cultures resulted in 26% increase in cell viability and 34% greater adenosine 5′-triphosphate levels after oxygen–glucose deprivation.
Conclusions—
Preservation of adenosine 5′-triphosphate levels in vitro and neuroprotection in permanent middle cerebral artery occlusion in rats is achievable without cerebral blood flow augmentation using a postsynaptic density-95 protein inhibitor.
Collapse
Affiliation(s)
- Bernt T. Bråtane
- From the Department of Neurology (B.T.B., J.B., M.F.), University of Massachusetts Medical School, Worcester, MA; and Toronto Western Research Institute (H.C., D.J.C., M.T.), University Health Network, Toronto, Ontario, Canada
| | - Hong Cui
- From the Department of Neurology (B.T.B., J.B., M.F.), University of Massachusetts Medical School, Worcester, MA; and Toronto Western Research Institute (H.C., D.J.C., M.T.), University Health Network, Toronto, Ontario, Canada
| | - Douglas J. Cook
- From the Department of Neurology (B.T.B., J.B., M.F.), University of Massachusetts Medical School, Worcester, MA; and Toronto Western Research Institute (H.C., D.J.C., M.T.), University Health Network, Toronto, Ontario, Canada
| | - James Bouley
- From the Department of Neurology (B.T.B., J.B., M.F.), University of Massachusetts Medical School, Worcester, MA; and Toronto Western Research Institute (H.C., D.J.C., M.T.), University Health Network, Toronto, Ontario, Canada
| | - Michael Tymianski
- From the Department of Neurology (B.T.B., J.B., M.F.), University of Massachusetts Medical School, Worcester, MA; and Toronto Western Research Institute (H.C., D.J.C., M.T.), University Health Network, Toronto, Ontario, Canada
| | - Marc Fisher
- From the Department of Neurology (B.T.B., J.B., M.F.), University of Massachusetts Medical School, Worcester, MA; and Toronto Western Research Institute (H.C., D.J.C., M.T.), University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Sutherland BA, Papadakis M, Chen RL, Buchan AM. Cerebral blood flow alteration in neuroprotection following cerebral ischaemia. J Physiol 2011; 589:4105-14. [PMID: 21708904 DOI: 10.1113/jphysiol.2011.209601] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The best neuroprotectant for acute ischaemic stroke would always be the rapid return of oxygen and glucose to physiological levels. This is currently provided by thrombolysis which restores blood flow to the ischaemic region. The attempt to confer neuroprotection by targeting the brain parenchyma has shown promise in experimental stroke models, but has unequivocally failed to translate to the clinic. Neuroprotective therapy primarily targets the biochemical cascade that produces cell death following cerebral ischaemia. However, these agents may also alter signal transduction that controls cerebral blood flow, for example glutamate, which may affect the outcome after ischaemia. In these cases, neuroprotection may potentially be due to the improved access to oxygen and glucose rather than biochemical prevention of cell death. Improvement in cerebral blood flow is an important but often overlooked effect of neuroprotective therapy, analogous to the protective effects of drug-induced hypothermia. This short review will discuss cerebral blood flow alteration and protection of the brain in the context of ischaemic preconditioning, oxygen sensing and thrombolysis. Future neuroprotection studies in cerebral ischaemia require stringent monitoring of cerebral blood flow, plus other physiological parameters. This will increase the chances that any protection observed may be able to translate to human therapy.
Collapse
Affiliation(s)
- Brad A Sutherland
- Acute Stroke Programme, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
13
|
Bigge CF, Malone TC. Overview: Agonists, Antagonists and Modulators of the N-methyl-D-aspartic acid (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) Subtypes of Glutamate Receptors. ACTA ACUST UNITED AC 2008. [DOI: 10.1517/13543776.3.7.951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
|
15
|
Abstract
OBJECT Selective intraarterial drug delivery is used to achieve enhanced local uptake with reduced systemic side effects. In the present paper the authors describe and characterize a new microcatheter-based model of superselective perfusion of the middle cerebral artery (MCA) in rats combined with blockade of blood flow through the MCA. METHODS Selectivity of administration was shown by infusion of Evans blue which diffusely stained the MCA territory, indicating an increased permeability of the blood-brain barrier during the blockade of blood flow to the MCA. Perfusion of autologous blood through the microcatheter resulted in a flow rate-related increase in the cerebral blood flow measured by laser Doppler flowmetry. Similarly, infusion of an artificial O2 carrier, Oxycyte, was accompanied by an increase in tissue oxygenation as measured using a Licox sensor. Blockade of blood flow to the MCA with the new microcatheter for an extended period of time resulted in the development of ischemia, which was comparable to that induced by intravascular occlusion using a silicone-coated thread. In a 24-hour MCA occlusion model, selective administration of a low dose of MK-801 (0.3 mg/kg body weight) resulted in a significantly smaller infarct volume than systemic application (339 +/- 53 mm(3) compared with 508 +/- 26 mm(3), p < 0.001). CONCLUSIONS This new model of superselective MCA infusion is a valuable tool for investigating the effect of selective delivery and enhanced drug uptake into cerebral ischemic tissue. Without constant blockade of blood flow through the MCA it may also be useful for enhanced drug uptake, gene transfer, or application of stem cells in other neuropathological conditions.
Collapse
Affiliation(s)
- Johannes Woitzik
- Department of Neurosurgery, University Hospital Mannheim, Medical Faculty Mannheim, Ruprecht-Karls- University Heidelberg, Mannheim, Germany.
| | | |
Collapse
|
16
|
Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 2007; 87:179-97. [PMID: 17521716 DOI: 10.1016/j.pbb.2007.04.015] [Citation(s) in RCA: 511] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 04/16/2007] [Accepted: 04/19/2007] [Indexed: 12/22/2022]
Abstract
Ischemic stroke is a devastating disease with a complex pathophysiology. Animal modeling of ischemic stroke serves as an indispensable tool first to investigate mechanisms of ischemic cerebral injury, secondly to develop novel antiischemic regimens. Most of the stroke models are carried on rodents. Each model has its particular strengths and weaknesses. Mimicking all aspects of human stroke in one animal model is not possible since ischemic stroke is itself a very heterogeneous disorder. Experimental ischemic stroke models contribute to our understanding of the events occurring in ischemic and reperfused brain. Major approaches developed to treat acute ischemic stroke fall into two categories, thrombolysis and neuroprotection. Trials aimed to evaluate effectiveness of recombinant tissue-type plasminogen activator in longer time windows with finer selection of patients based on magnetic resonance imaging tools and trials of novel recanalization methods are ongoing. Despite the failure of most neuroprotective drugs during the last two decades, there are good chances to soon have effective neuroprotectives with the help of improved preclinical testing and clinical trial design. In this article, we focus on various rodent animal models, pathogenic mechanisms, and promising therapeutic approaches of ischemic stroke.
Collapse
Affiliation(s)
- Aysan Durukan
- Department of Neurology, Helsinki University Central Hospital, Biomedicum Helsinki, POB 700, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | | |
Collapse
|
17
|
Hoyte LC, Papadakis M, Barber PA, Buchan AM. Improved regional cerebral blood flow is important for the protection seen in a mouse model of late phase ischemic preconditioning. Brain Res 2006; 1121:231-7. [PMID: 17010948 DOI: 10.1016/j.brainres.2006.08.107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/16/2006] [Accepted: 08/28/2006] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Ischemic preconditioning (IPC) induces protection to cerebral ischemia. However, it was previously unclear whether this protection resulted from altered susceptibility to ischemia. The current study examines the effects of late phase ischemic preconditioning in a mouse model of middle cerebral artery occlusion (MCAO). Specific examination of the regional cerebral blood flow (rCBF) was conducted. EXPERIMENTAL PROCEDURE Intra-abdominal radiofrequency probes were implanted in animals and core temperature was regulated. Mice were subjected to MCAO: (1) brief 15 min duration (preconditioning ischemia) and (2) 45 min MCAO (injurious ischemia). Naive (i.e. not preconditioned) animals were compared with preconditioned animals (preconditioning ischemia plus injurious ischemia at 72 h reperfusion). rCBF was measured using laser Doppler flowmetry (LDF) and magnetic resonance cerebral perfusion (MRP) arterial spin labeling. Percentage of brain infarcted was compared between groups. RESULTS rCBF was significantly improved in the preconditioned cohorts of mice. Naive animals showed flow reductions to 16+/-3.59% (MCAO_45; injurious, unpreconditioned) and 17.1+/-8.6% (MCAO_15; preconditioning ischemia alone) of baseline, while preconditioned animals had flows 33.9+/-13.2% (IPC_45; preconditioned animals with injurious ischemia at 72 h reperfusion) of baseline (p=0.001). Percentage of brain infarcted was 17.2+/-6.2% in naive animals, while it was 5.1+/-4.6% in the preconditioned animals (p=0.003). MRP of the perfusion to the ischemic hemisphere, in a striatal coronal slice of the brain was 26.7+/-5.8% of the contralateral hemisphere in naive animals while preconditioned mice had flows of 38.7+/-6.8% of contralateral (p=0.04). CONCLUSIONS Improved rCBF is an important factor in the protection of IPC, during injurious MCAO in the mouse. Stringent monitoring of rCBF is required in future studies of IPC.
Collapse
Affiliation(s)
- Lisa C Hoyte
- Calgary Stroke Program, Hotchkiss Brain Institute, University of Calgary, Canada
| | | | | | | |
Collapse
|
18
|
Shin HK, Dunn AK, Jones PB, Boas DA, Moskowitz MA, Ayata C. Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. J Cereb Blood Flow Metab 2006; 26:1018-30. [PMID: 16340958 DOI: 10.1038/sj.jcbfm.9600252] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ischemic depolarizing events, such as repetitive spontaneous periinfarct spreading depolarizations (PIDs), expand the infarct size after experimental middle cerebral artery (MCA) occlusion. This worsening may result from increased metabolic demand, exacerbating the mismatch between cerebral blood flow (CBF) and metabolism. Here, we present data showing that anoxic depolarization (AD) and PIDs caused vasoconstriction and abruptly reduced CBF in the ischemic cortex in a distal MCA occlusion model in mice. This reduction in CBF during AD increased the area of cortex with 20% or less residual CBF by 140%. With each subsequent PID, this area expanded by an additional 19%. Drugs that are known to inhibit cortical spreading depression (CSD), such as N-methyl-D-aspartate receptor antagonists MK-801 and 7-chlorokynurenic acid, and sigma-1 receptor agonists dextromethorphan and carbetapentane, did not reduce the frequency of PIDs, but did diminish the severity of episodic hypoperfusions, and prevented the expansion of severely hypoperfused cortex, thus improving CBF during 90 mins of acute focal ischemia. In contrast, AMPA receptor antagonist NBQX, which does not inhibit CSD, did not impact the deterioration in CBF. When measured 24 h after distal MCA occlusion, infarct size was reduced by MK-801, but not by NBQX. Our results suggest that AD and PIDs expand the CBF deficit, and by so doing negatively impact lesion development in ischemic mouse brain. Mitigating the vasoconstrictive neurovascular coupling during intense ischemic depolarizations may provide a novel hemodynamic mechanism of neuroprotection by inhibitors of CSD.
Collapse
Affiliation(s)
- Hwa Kyoung Shin
- Stroke and Neurovascular Regulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kamiya T, Jacewicz M, Nowak TS, Pulsinelli WA. Cerebral Blood Flow Thresholds for mRNA Synthesis After Focal Ischemia and the Effect of MK-801. Stroke 2005; 36:2463-7. [PMID: 16224091 DOI: 10.1161/01.str.0000185669.60271.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE MK-801 is a noncompetitive antagonist of N-methyl-d-aspartate subtype glutamate receptors with protective efficacy in experimental stroke. This study examined the impact of MK-801 on cerebral blood flow (CBF) and its relationship to gene expression changes during focal ischemia. METHODS Spontaneously hypertensive rats were subjected to surgical occlusion of the middle cerebral artery and ipsilateral common carotid artery after 30 minutes pretreatment with 5 mg/kg MK-801 or saline vehicle. After 2.5 hours of ischemia, regional CBF was evaluated by [14C]iodoantipyrine autoradiography and compared with distributions of gene expression changes evaluated by in situ hybridization detection of mRNAs encoding several immediate-early genes and the stress protein, hsp72. RESULTS MK-801 increased CBF in contralateral cortex from 93+/-15 to 187+/-37 mL/100 g per minute and produced a significant 25% reduction in the volume of ischemic cortex ipsilateral to occlusion. The extent of cortex failing to express inducible mRNAs correspondingly decreased, but the CBF threshold for mRNA synthesis remained unchanged (25 to 30 mL/100 g per minute). Widespread immediate-early gene expression in the neocortex became restricted to periinfarct regions after MK-801 treatment, and hybridization patterns in the striatum and hippocampus reflected the altered topography of cortical activation after drug treatment. CONCLUSIONS MK-801 alters ischemia-induced gene expression by 2 distinct mechanisms. Generalized increases in CBF reduce the volume of cortex falling below ischemic injury thresholds, protecting tissue and facilitating transcription of inducible genes proximal to the ischemic focus. In addition, MK-801 attenuates the signals that induce expression of immediate-early genes in cortical and subcortical regions remote from the middle cerebral artery territory.
Collapse
Affiliation(s)
- Tatsushi Kamiya
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Ion channels are membrane proteins that flicker open and shut to regulate the flow of ions down their electrochemical gradient across the membrane and consequently regulate cellular excitability. Every living cell expresses ion channels, as they are critical life-sustaining proteins. Ion channels are generally either activated by voltage or by ligand interaction. For each group of ion channels the channels' molecular biology and biophysics will be introduced and the pharmacology of that group of channels will be reviewed. The in vitro and in vivo literature will be reviewed and, for ion channel groups in which clinical trials have been conducted, the efficacy and therapeutic potential of the neuroprotective compounds will be reviewed. A large part of this article will deal with glutamate receptors, focusing specifically on N-methyl-D-aspartate (NMDA) receptors. Although the outcome of clinical trials for NMDA receptor antagonists as therapeutics for acute stroke is disappointing, the culmination of these failed trials was preceded by a decade of efforts to develop these agents. Sodium and calcium channel antagonists will be reviewed and the newly emerging efforts to develop therapeutics targeting potassium channels will be discussed. The future development of stroke therapeutics targeting ion channels will be discussed in the context of the failures of the last decade in hopes that this decade will yield successful stroke therapeutics.
Collapse
Affiliation(s)
- D L Small
- Institute or Biological Sciences, National Research Council of Canada, Building M-54, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6.
| |
Collapse
|
21
|
Abstract
Activation of N-methyl-D-aspartate (NMDA) glutamatergic receptors elicits cerebrovascular dilation, may couple local cerebral metabolism to blood flow but contribute to excitotoxic neuronal cell death. While cerebral hemodynamics following traumatic brain injury may correlate with neurologic status, the role of NMDA vascular activity is uncertain in the sequelae of brain injury. NMDA dilation was impaired following fluid percussion brain injury (FPI) in an age dependent manner in the pig and the newly described opioid nociceptin/orphanin FQ (NOC/ oFQ) contributes to such impairment via the cyclooxygenase dependent generation of superoxide. Further, hypotensive pial artery dilation (PAD) was blunted after FPI but partially protected by pretreatment with the NMDA antagonist MK801. Cerebral blood flow (CBF) was reduced during normotension by FPI, further reduced by hypotension, but both were partially protected by MK801 in the newborn. In contrast, blunted hypotensive PAD was protected significantly less by MK801 in the juvenile pig. Similarly, MK801 had less protective effect on normotensive and hypotensive CBF values post FPI in the juvenile. These data indicate that NMDA receptor activation contributes to impaired hypotensive cerebral hemodynamics following FPI in an age dependent manner. Further, these data suggest that NMDA receptor activation, NOC/oFQ, and prostaglandins dynamically interact to impair cerebral hemodynamics following FPI.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesia and Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Sas K, Csete K, Vécsei L, Papp JG. Effect of systemic administration of L-kynurenine on corticocerebral blood flow under normal and ischemic conditions of the brain in conscious rabbits. J Cardiovasc Pharmacol 2003; 42:403-9. [PMID: 12960686 DOI: 10.1097/00005344-200309000-00012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Kynurenic acid, the only known endogenous antagonist of the excitatory amino acid receptors, exerts neuroprotective effect in focal cerebral ischemia. Kynurenic acid poorly while its bioprecursor, l-kynurenine (L-KYN) completely crosses the blood-brain barrier. The aim of our study was to investigate the effect of intravenous l-KYN (0.3, 1, and 3 mg/kg) on the normal and the unilateral carotid artery occlusion induced ischemic corticocerebral blood flow (cCBF) measured by hydrogen polarography in conscious rabbits. Administration of l-KYN produced a significant increase in the normal cCBF; the peak values were recorded at the dose of 1 mg/kg (187% at 120 and 150 mins. respectively). The cCBF-improving effect of l-KYN was immediate and highly pronounced also in rabbits with carotid occlusion (peak value was 192% at 120 mins. at the dose of 1 mg/kg). Pretreatment with either atropine or Nomega-nitro-L-arginine-methyl-ester (L-NAME) prevented the l-KYN induced enhancement of the normal and the ischemic cCBF alike. It is suggested that the cCBF-increasing effect of l-KYN might be mediated by activation of cholinergic and nitric oxide pathways.
Collapse
Affiliation(s)
- Katalin Sas
- Department of Neurology, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary.
| | | | | | | |
Collapse
|
23
|
Abstract
Extracellular concentrations of excitatory amino acids increase substantially within cerebral tissue beds exposed to ischaemic conditions. This leads to excessive stimulation of N-methyl-D-aspartate (NMDA) receptors, a major cerebral excitatory neurotransmitter receptor that likely plays a critical role in the propagation of ischaemic injury in neurons. Pharmacological blockade of these receptors has proven to be an effective neuroprotective therapy by a number of animal models of central nervous system ischaemia. Clinical trials of these drugs were begun with high expectations for successful therapy of human stroke. These putative neuroprotective drugs included competitive or non-competitive inhibitors of the NMDA receptor itself, as well as inhibitors of a co-modulatory glycine site. Thus far, all clinical trials of NMDA antagonists have been unsuccessful in establishing benefit for human stroke.
Collapse
Affiliation(s)
- Ken Madden
- Department of Neurosciences, Marshfield Clinic, Wisconsin, USA
| |
Collapse
|
24
|
Davis SM, Lees KR, Albers GW, Diener HC, Markabi S, Karlsson G, Norris J. Selfotel in acute ischemic stroke : possible neurotoxic effects of an NMDA antagonist. Stroke 2000; 31:347-54. [PMID: 10657404 DOI: 10.1161/01.str.31.2.347] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Based on neuroprotective efficacy in animal models, we evaluated the N-methyl D-aspartate antagonist Selfotel in patients with ischemic stroke, after doses up to 1.5 mg/kg were shown to be safe in phase 1 and phase 2a studies. METHODS Two pivotal phase 3 ischemic stroke trials tested the hypothesis, by double-blind, randomized, placebo-controlled parallel design, that a single intravenous 1.5 mg/kg dose of Selfotel, administered within 6 hours of stroke onset, would improve functional outcome at 90 days, defined as the proportion of patients achieving a Barthel Index score of >/=60. The trials were performed in patients aged 40 to 85 years with acute ischemic hemispheric stroke and a motor deficit. RESULTS The 2 trials were suspended on advice of the independent Data Safety Monitoring Board because of an imbalance in mortality after a total enrollment of 567 patients. The groups were well matched for initial stroke severity and time from stroke onset to therapy. There was no difference in the 90-day mortality rate, with 62 deaths (22%) in the Selfotel group and 49 (17%) in the placebo-treated group (RR=1.3; 95% CI 0.92 to 1.83; P=0.15). However, early mortality was higher in the Selfotel-treated patients (day 30: 54 of 280 versus 37 of 286; P=0.05). In patients with severe stroke, mortality imbalance was significant throughout the trial (P=0.05). CONCLUSIONS Selfotel was not an effective treatment for acute ischemic stroke. Furthermore, a trend toward increased mortality, particularly within the first 30 days and in patients with severe stroke, suggests that the drug might have a neurotoxic effect in brain ischemia.
Collapse
Affiliation(s)
- S M Davis
- Departments of Neurology, Royal Melbourne Hospital and University of Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Morris GF, Bullock R, Marshall SB, Marmarou A, Maas A, Marshall LF. Failure of the competitive N-methyl-D-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The Selfotel Investigators. J Neurosurg 1999; 91:737-43. [PMID: 10541229 DOI: 10.3171/jns.1999.91.5.0737] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Excessive activity of excitatory amino acids released after head trauma has been demonstrated to contribute to progressive injury in animal models and human studies. Several pharmacological agents that act as antagonists to the glutamate receptor have shown promise in limiting this progression. The efficacy of the N-methyl-D-aspartate receptor antagonist Selfotel (CGS 19755) was evaluated in two parallel studies of severely head injured patients, defined as patients with post resuscitation Glasgow Coma Scale scores of 4 to 8. METHODS A total of 693 patients were prospectively enrolled in two multicenter double-blind studies. Comparison between the treatment groups showed no significant difference with regard to demographic data, previous incidence of hypotension, and severity of injury. As the study progressed, the Safety and Monitoring Committee became concerned about possible increased deaths and serious brain-related adverse events in the treatment arm of the two head injury trials, as well as deaths in the two stroke trials being monitored concurrently. The Selfotel trials were stopped prematurely because of this concern and because an interim efficacy analysis indicated that the likelihood of demonstrating success with the agent if the studies had been completed was almost nil. CONCLUSIONS Subsequently, more complete data analysis revealed no statistically significant difference in mortality rates in all cases between the two treatment groups in the head injury trials. In this report the authors examine the studies in detail and discuss the potential application of the data to future trial designs.
Collapse
Affiliation(s)
- G F Morris
- Division of Neurological Surgery, University of California, San Diego, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
This review is directed at understanding how neuronal death occurs in two distinct insults, global ischemia and focal ischemia. These are the two principal rodent models for human disease. Cell death occurs by a necrotic pathway characterized by either ischemic/homogenizing cell change or edematous cell change. Death also occurs via an apoptotic-like pathway that is characterized, minimally, by DNA laddering and a dependence on caspase activity and, optimally, by those properties, additional characteristic protein and phospholipid changes, and morphological attributes of apoptosis. Death may also occur by autophagocytosis. The cell death process has four major stages. The first, the induction stage, includes several changes initiated by ischemia and reperfusion that are very likely to play major roles in cell death. These include inhibition (and subsequent reactivation) of electron transport, decreased ATP, decreased pH, increased cell Ca(2+), release of glutamate, increased arachidonic acid, and also gene activation leading to cytokine synthesis, synthesis of enzymes involved in free radical production, and accumulation of leukocytes. These changes lead to the activation of five damaging events, termed perpetrators. These are the damaging actions of free radicals and their product peroxynitrite, the actions of the Ca(2+)-dependent protease calpain, the activity of phospholipases, the activity of poly-ADPribose polymerase (PARP), and the activation of the apoptotic pathway. The second stage of cell death involves the long-term changes in macromolecules or key metabolites that are caused by the perpetrators. The third stage of cell death involves long-term damaging effects of these macromolecular and metabolite changes, and of some of the induction processes, on critical cell functions and structures that lead to the defined end stages of cell damage. These targeted functions and structures include the plasmalemma, the mitochondria, the cytoskeleton, protein synthesis, and kinase activities. The fourth stage is the progression to the morphological and biochemical end stages of cell death. Of these four stages, the last two are the least well understood. Quite little is known of how the perpetrators affect the structures and functions and whether and how each of these changes contribute to cell death. According to this description, the key step in ischemic cell death is adequate activation of the perpetrators, and thus a major unifying thread of the review is a consideration of how the changes occurring during and after ischemia, including gene activation and synthesis of new proteins, conspire to produce damaging levels of free radicals and peroxynitrite, to activate calpain and other Ca(2+)-driven processes that are damaging, and to initiate the apoptotic process. Although it is not fully established for all cases, the major driving force for the necrotic cell death process, and very possibly the other processes, appears to be the generation of free radicals and peroxynitrite. Effects of a large number of damaging changes can be explained on the basis of their ability to generate free radicals in early or late stages of damage. Several important issues are defined for future study. These include determining the triggers for apoptosis and autophagocytosis and establishing greater confidence in most of the cellular changes that are hypothesized to be involved in cell death. A very important outstanding issue is identifying the critical functional and structural changes caused by the perpetrators of cell death. These changes are responsible for cell death, and their identity and mechanisms of action are almost completely unknown.
Collapse
Affiliation(s)
- P Lipton
- Department of Physiology, University of Wisconsin School of Medicine, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Stewart L, Bullock R, Teasdale GM, Wagstaff A. First observations of the safety and tolerability of a competitive antagonist to the glutamate NMDA receptor (CGS 19755) in patients with severe head injury. J Neurotrauma 1999; 16:843-50. [PMID: 10521143 DOI: 10.1089/neu.1999.16.843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A dose escalation, safety, and tolerability study of a competitive antagonist to the N-methyl-D-aspartate (NMDA) glutamate receptor (CGS 19755, Selfotel) in patients with severe head injury is reported. The drug was administered i.v. on two separate occasions, 24 h apart, to 31 patients. The dosage was escalated during the study from 1 mg/kg to 6 mg/kg. Continuous monitoring of mean arterial pressure (MABP), intracranial pressure (ICP), cerebral pressure (CPP), arterial oxygen saturation (SaO2), jugular bulb oxygen saturation (SjO2), and temperature was performed. Intermittent measurements of middle cerebral artery (MCA) velocity via transcranial Doppler ultrasound were also made 2 h before drug administration and continued for 24 h after dosing. The patients were ventilated and sedated with morphine and either midazolam or propofol. There were no behavioral changes during or after administration of the drug, and disorders of perception were reported by only three subjects, several days after relatively low doses; these were transient and were not recalled at later follow-up. We did not detect consistent changes in any of the hemodynamic parameters monitored, up to dosages of 3 mg/kg. After higher doses, some patients showed changes in MABP, ICP, and temperature during the 4 to 8-h period following the first bolus of the drug, with a return toward baseline afterwards. No consistent, serious, adverse events were considered to be due to drug effects, and death, in the one patient who died, was due to the effects of the injury. Our results indicate that CGS 19755 may be given at dosages < or = 3-5 mg/kg with acceptable safety and tolerability in stable, ventilated, and carefully monitored severe head-injured patients.
Collapse
Affiliation(s)
- L Stewart
- Department of Neuroanaesthesia, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | | | | | | |
Collapse
|
28
|
Berg-Johnsen J, Haugstad TS, Langmoen IA. Glutamate in the human brain: possible roles in synaptic transmission and ischemia. PROGRESS IN BRAIN RESEARCH 1999; 116:287-302. [PMID: 9932384 DOI: 10.1016/s0079-6123(08)60444-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- J Berg-Johnsen
- Department of Neurosurgery, National Hospital, Rikshospitalet, University of Oslo, Norway
| | | | | |
Collapse
|
29
|
Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, Marmarou A, Young HF. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 1998; 89:507-18. [PMID: 9761042 DOI: 10.3171/jns.1998.89.4.0507] [Citation(s) in RCA: 410] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Recent animal studies demonstrate that excitatory amino acids (EAAs) play a major role in neuronal damage after brain trauma and ischemia. However, the role of EAAs in patients who have suffered severe head injury is not understood. Excess quantities of glutamate in the extracellular space may lead to uncontrolled shifts of sodium, potassium, and calcium, disrupting ionic homeostasis, which may lead to severe cell swelling and cell death. The authors evaluated the role of EEAs in human traumatic brain injury. METHODS In 80 consecutive severely head injured patients, a microdialysis probe was placed into the gray matter along with a ventriculostomy catheter or an intracranial pressure (ICP) monitor for 4 days. Levels of EAAs and structural amino acids were analyzed using high-performance liquid chromatography. Multifactorial analysis of the amino acid pattern was performed and its correlations with clinical parameters and outcome were tested. The levels of EAAs were increased up to 50 times normal in 30% of the patients and were significantly correlated to levels of structural amino acids both in each patient and across the whole group (p < 0.01). Secondary ischemic brain injury and focal contusions were most strongly associated with high EAA levels (27+/-22 micromol/L). Sustained high ICP and poor outcome were significantly correlated to high levels of EAAs (glutamate > 20 micromol/L; p < 0.01). CONCLUSIONS The release of EAAs is closely linked to the release of structural amino acids and may thus reflect nonspecific development of membrane micropores, rather than presynaptic neuronal vesicular exocytosis. The magnitude of EAA release in patients with focal contusions and ischemic events may be sufficient to exacerbate neuronal damage, and these patients may be the best candidates for treatment with glutamate antagonists in the future.
Collapse
Affiliation(s)
- R Bullock
- Department of Pharmacology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, Marmarou A, Young HF. Factors affecting excitatory amino acid release following severe human head injury. Neurosurg Focus 1998. [DOI: 10.3171/foc.1998.5.2.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent animal studies demonstrate that excitatory amino acids (EAAs) play a major role in neuronal damage after brain trauma and ischemia. However, the role of EAAs in patients who have suffered severe head injury is not understood. Excess quantities of glutamate in the extracellular space may lead to uncontrolled shifts of sodium, potassium, and calcium, disrupting ionic homeostasis, which may lead to severe cell swelling and cell death. The authors evaluated the role of EEAs in human traumatic brain injury.
In 80 consecutive severely head injured patients, a microdialysis probe was placed into the gray matter along with a ventriculostomy catheter or an intracranial pressure (ICP) monitor for 4 days. Levels of EAAs and structural amino acids were analyzed using high-performance liquid chromatography. Multifactorial analysis of the amino acid pattern was performed and its correlations with clinical parameters and outcome were tested. The levels of EAAs were increased up to 50 times normal in 30% of the patients and were significantly correlated to levels of structural amino acids both in each patient and across the whole group (p < 0.01). Secondary ischemic brain injury and focal contusions were most strongly associated with high EAA levels (27 ± 22 μmol/L). Sustained high ICP and poor outcome were significantly correlated to high levels of EAAs (glutamate > 20 μmol/L; p < 0.01).
The release of EAAs is closely linked to the release of structural amino acids and may thus reflect nonspecific development of membrane micropores, rather than presynaptic neuronal vesicular exocytosis. The magnitude of EAA release in patients with focal contusions and ischemic events may be sufficient to exacerbate neuronal damage, and these patients may be the best candidates for treatment with glutamate antagonists in the future.
Collapse
|
31
|
Robinson ES, Nutt DJ, Jackson HC, Hudson AL. Antisense oligonucleotides in psychopharmacology and behaviour: promises and pitfalls. J Psychopharmacol 1997; 11:259-69. [PMID: 9305419 DOI: 10.1177/026988119701100310] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antisense oligonucleotides are used to study the expression and function of a diverse range of proteins. Areas for which antisense has been used for pharmacological investigation include receptors, neuropeptides and immediate early genes, particularly when specific ligands or markers are not yet available. Antisense oligonucleotides target a specific mRNA and block the expression of the protein by sequence specific hybridization. This technique has not only been shown to be a valuable pharmacological tool but also to have potential therapeutic applications. In this review we discuss the technology behind the technique including developments in methodology employed in antisense experiments. Although antisense provides a novel and highly specific tool, the reliability of the technique and many of the problems associated with antisense experiments are discussed. The main focus of this article is the use of antisense in psychopharmacology to investigate behavioural changes following antisense-mediated inhibition of the expression of specific brain proteins and receptors.
Collapse
Affiliation(s)
- E S Robinson
- Psychopharmacology Unit, School of Medical Sciences, Bristol, UK
| | | | | | | |
Collapse
|
32
|
Qiu H, Hedlund LW, Gewalt SL, Benveniste H, Bare TM, Johnson GA. Progression of a focal ischemic lesion in rat brain during treatment with a novel glycine/NMDA antagonist: an in vivo three-dimensional diffusion-weighted MR microscopy study. J Magn Reson Imaging 1997; 7:739-44. [PMID: 9243396 DOI: 10.1002/jmri.1880070421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stroke was induced in two groups of anesthetized rats by occlusion of the middle cerebral artery (MCA) and ipsilateral common carotid artery. Group 1 (control) received vehicle and group 2 received the glycine N-methyl-D-aspartate (NMDA) antagonist ZD9379. Stroke volume was assessed by three-dimensional diffusion-weighted MR microscopy at 2.5 and 6 hours of MCA occlusion. At 2.5 hours, stroke volumes were identical in the two groups. At 6 hours, stroke volumes had increased by 15% in the control group; in contrast, the treated group showed a 40% reduced stroke volume. Conclusions from this in vivo study were as follows: (a) our technique allows more efficient and accurate measurement of stroke volume with an improvement in resolution over a previous method; (b) the ability to measure stroke volume at multiple time points shows volume change and assessment of time dependency of drug treatment; (c) at 6 hours, the glycine antagonist ZD9379 reduced stroke volume by 40%.
Collapse
Affiliation(s)
- H Qiu
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
33
|
Experimental neuronal protection in cerebral ischaemia Part II: Potential neuroprotective drugs. J Clin Neurosci 1997; 4:290-310. [DOI: 10.1016/s0967-5868(97)90096-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/1996] [Accepted: 06/04/1996] [Indexed: 01/01/2023]
|
34
|
Miyabe M, Kirsch JR, Nishikawa T, Koehler RC, Traystman RJ. Comparative analysis of brain protection by N-methyl-D-aspartate receptor antagonists after transient focal ischemia in cats. Crit Care Med 1997; 25:1037-43. [PMID: 9201058 DOI: 10.1097/00003246-199706000-00022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE We tested the hypothesis that the administration of the competitive N-methyl-D-aspartate (NMDA) receptor antagonist 2R,4R,5S-(2-amino-4,5-(1,2-cyclohexyl)-7-phosphonoheptanoic acid) (NPC 17742) or cis-4-(phosphonomethyl) piperidine-2-carboxylic acid (CGS 19755) or the noncompetitive NMDA receptor antagonist dizocilpine (MK-801), at the appropriate doses, would all have efficacy in decreasing early postischemic brain injury in a feline model of transient focal ischemia. DESIGN Prospective, randomized, controlled animal trial. SETTING University research laboratory. SUBJECTS Forty mixed-breed cats. INTERVENTIONS Halothane-anesthetized cats underwent 90 mins of left middle cerebral artery occlusion plus 4 hrs of reperfusion. At 75 mins of ischemia, control cats received intravenous saline (n = 10). Experimental cats (n = 10 in each group) were treated with NPC 17742 (5 mg/kg bolus and 2.5 mg/kg/hr throughout reperfusion), MK-801 (5 mg/kg intravenous bolus), or CGS 19755 (40 mg/kg intravenous bolus) in a randomized fashion. MEASUREMENTS AND MAIN RESULTS Microsphere-determined blood flow to the ipsilateral inferior temporal cortex and caudate nucleus decreased to the same extent during ischemia, and recovered to the same extent during early reperfusion, in the four groups. Triphenyltetrazolium-determined injury volume of the ipsilateral caudate nucleus in cats treated with NPC 17742 (105 +/- 25 [SEM] mm3), MK-801 (97 +/- 22 mm3), and CGS 19755 (97 +/- 13 mm3) was less than in control cats (198 +/- 21 mm3). Hemisphere injury volumes with NPC 17742 (1209 +/- 405 mm3) and MK-801 (1338 +/- 395 mm3) were less than that value in controls (2193 +/- 372 mm3), whereas injury volume with CGS 19755 (1553 +/- 519 mm3) treatment did not attain significance (p < .09). CONCLUSIONS NMDA receptor activation during reperfusion may contribute to the progression of injury in ischemic border regions after 90 mins of transient focal ischemia in the cat. At the doses chosen, there appear to be no major differences in therapeutic efficacy for competitive and noncompetitive NMDA receptor antagonists.
Collapse
Affiliation(s)
- M Miyabe
- Department of Anesthesiology and Critical Care Medicino, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
35
|
Pérez-Pinzón MA, Steinberg GK. CGS 19755 (Selfotel): A Novel Neuroprotective Agent Against CNS Injury. CNS DRUG REVIEWS 1996; 2:257-268. [PMID: 23766625 PMCID: PMC3678965 DOI: 10.1111/j.1527-3458.1996.tb00301.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hypothesis that excitoxicity is a mechanism of damage following different types of cerebral injury including global and focal ischemia (34), and head and spinal cord trauma (6,7,9,25) has been supported by numerous findings. During ischemia for example, glutamate neurotoxicity is mediated in part through N-methyl-D-aspartate (NMDA) receptors, since selective antagonists to this receptor protect against hypoxic-ischemic injury (10,35,41). In the last few years, different NMDA antagonists have been developed and tested; they can be divided into competitive and noncompetitive antagonists. Noncompetitive NMDA antagonists are extremely lipophilic and reach high levels in the brain after systemic administration. Various studies have demonstrated that these agents provide neuroprotection against hypoxic-ischemic injury (for review see ref. 29). Many competitive NMDA antagonists are hydrophilic and require direct cerebral administration to obtain high brain levels. Newer competitive NMDA blockers, such as cis-4-phosphonomethyl-2-piperidine carboxylic acid (CGS 19755, selfotel), provide neuroprotection against global ischemia, focal ischemia, and trauma when given systemically (2,3,32,33). Selfotel is currently being studied in multicenter safety and efficacy trials for stroke (17) and head trauma (6).
Collapse
Affiliation(s)
- Miguel A Pérez-Pinzón
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33101, and Department of Neurosurgery and Stanford Stroke Center, Stanford University Medical Center, Stanford CA 94305
| | | |
Collapse
|
36
|
Omae T, Hasegawa Y, Ogata J, Tamaki K, Minematsu K, Yamaguchi T. The competitive NMDA antagonist, CGS-19755, improves postischemic hypoperfusion in selectively vulnerable regions in gerbils. J Neurol Sci 1996; 138:105-13. [PMID: 8791247 DOI: 10.1016/0022-510x(96)00004-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We attempted to clarify the effects of an NMDA antagonist on postischemic hypoperfusion in gerbils with 10 min forebrain ischemia and to relate it to postischemic metabolic recovery. We administered 10 mg/kg of CGS-19755, a competitive NMDA antagonist, or the same volume of saline intraperitoneally 30 min before the vascular occlusion. In 26 gerbils, we measured local cerebral blood flow (LCBF) 60 min after the reperfusion using [14C]iodoantipyrine autoradiography. In 20 gerbils, the effects on metabolic recovery were determined by serial measurements of intracellular pH, adenosine triphosphate (ATP) and the ratio between phosphocreatine and inorganic phosphate (PCr/Pi) until 60 min after reperfusion using 31P-magnetic resonance spectroscopy. In another group of 24 gerbils, we determined histopathological damage 24 h after the ischemia. The LCBF autoradiograms in the control group consistently demonstrated a typical postischemic hypoperfusion, i.e. homogeneous 50-75% reduction of blood flow in all forebrain structures. In contrast, CGS-19755 pretreatment animals showed highly heterogeneous LCBF declines, and significantly higher LCBF values were observed in the frontoparietal cortex and thalamus both of which were the most vulnerable area in this model. No significant LCBF change was observed in sham operated animals with or without CGS-19755 pretreatment. The postischemic recovery of PCr/Pi in gerbils pretreated with CGS-19755 was significantly better than that in the control animals. No significant differences in the recovery of ATP and intracellular pH were observed. The histological damage in the CGS-19755-treated group was less extensive than those in the saline-treated group. CGS-19755 pretreatment improved postischemic hypoperfusion and PCr/Pi recovery in the 10-min forebrain ischemia model in gerbils. The improvement of postischemic hypoperfusion in selectively vulnerable regions suggests that the activation of NMDA receptors may be related to the mechanism of developing postischemic hypoperfusion.
Collapse
Affiliation(s)
- T Omae
- Department of Medicine, National Cardiovascular Center, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Malhotra BK, Lemaire M, Brouillard JF, Sawchuk RJ. High-performance liquid chromatographic analysis of (S)-alpha-amino-5-phosphonomethyl[1,1'-biphenyl]-3-propanoic acid (EAB 515) in brain and blood microdialysate (on-line) and in plasma ultrafiltrate of freely moving rats. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 679:167-76. [PMID: 8998557 DOI: 10.1016/0378-4347(96)00020-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
(S)-alpha-Amino-5-phosphonomethyl[1,1'-biphenyl]-3-propanoic acid (EAB 515, I), a competitive antagonist of the N-methyl-D-aspartate receptor, has significant pharmacological activity in the central nervous system (CNS). An extremely sensitive and selective analytical method was developed for the simultaneous analysis of I and its hydroxylated analog (RDC, II) in the microdialysate (MD) and plasma ultrafiltrate (UF) of rats. Microdialysis was used for in vivo sampling of unbound drug in the CSF, cortical extracellular fluid and in the blood of freely moving rats. Compound II was used for retrodialysis-based in vivo calibration of microdialysis probes to estimate the recovery of I. Compound I, being extremely hydrophilic with a high degree of ionization at the physiological pH of 7.4, has limited access to the brain regions. This, combined with its low microdialysis recovery, made the estimation of low brain concentrations of I a challenge. The analytes in MD and UF were separated (within 5 min) by reversed-phase HPLC on a 250 x 4.6 mm I.D. Maxsil 5 microns RP-2 column, and fluorescence of the eluent was monitored at 255 nm (lambda ex) and 320 nm (lambda em). A 0.09% (v/v) aqueous solution of trifluoroacetic acid (1 ml/min) was used as the mobile phase. The response for I in MD and UF samples was linear from 5 to 2000 ng/ml and from 20 to 10,000 ng/ml, respectively. The between-run (n = 6) and within-run (n = 3) variability of the assay was < 15%. Plasma-protein binding of I (fu = 0.68) was determined to be linear from 0.1 to 10 micrograms/ml. The analytical sensitivity, precision and accuracy of this method was suitable for the characterization of the pharmacokinetics and the CNS distribution of I, following administration of intravenous (i.v.) infusion, single i.v. bolus and multiple i.v. bolus doses of I to freely moving rats, with continuous microdialysate sampling of multiple tissues and simultaneous on-line HPLC analysis. Pharmacokinetic parameters for I, as determined from concentrations in blood MD samples with on-line analysis, were in good agreement with those estimated from concentrations in the UF of plasma samples obtained by conventional sampling.
Collapse
Affiliation(s)
- B K Malhotra
- Department of Pharmaceutics, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
38
|
Small DL, Buchan AM. NMDA antagonists: their role in neuroprotection. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 40:137-71. [PMID: 8989620 DOI: 10.1016/s0074-7742(08)60719-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- D L Small
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada
| | | |
Collapse
|
39
|
Myseros JS, Bullock R. The rationale for glutamate antagonists in the treatment of traumatic brain injury. Ann N Y Acad Sci 1995; 765:262-71; discussion 298. [PMID: 7486612 DOI: 10.1111/j.1749-6632.1995.tb16583.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The recent development of potent antagonists for the most widespread neurotransmitter in the mammalian brain has opened up possibilities for many forms of therapy. The excitotoxic hypothesis implicates excessive release of excitatory amino acids (EAAs) as an important cause of brain damage, especially in acute ischemia, and chronic neurodegeneration. Focal ischemic damage and diffuse axonal injury are the major causes of brain damage after traumatic human brain injury. Evidence from animal models has shown that excitatory amino acid-induced events maybe responsible for a proportion of the posttraumatic sequelae and that these effects can be blocked by EAA antagonists. This evidence is reviewed, and the implications for human pathophysiology and treatment are discussed.
Collapse
Affiliation(s)
- J S Myseros
- Division of Neurosurgery, MCV Station, Richmond, Virginia 23298-0631, USA
| | | |
Collapse
|
40
|
Pérez-Pinzón MA, Maier CM, Yoon EJ, Sun GH, Giffard RG, Steinberg GK. Correlation of CGS 19755 neuroprotection against in vitro excitotoxicity and focal cerebral ischemia. J Cereb Blood Flow Metab 1995; 15:865-76. [PMID: 7673380 DOI: 10.1038/jcbfm.1995.108] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The in vivo neuroprotective effect and brain levels of cis-4-phosphonomethyl-2-piperidine carboxylic acid (CGS 19755), a competitive N-methyl-D-aspartate (NMDA) antagonist, were compared with its in vitro neuroprotective effects. The dose-response for in vitro neuroprotection against both NMDA toxicity and combined oxygen-glucose deprivation (OGD) was determined in murine neocortical cultures. Primary cultures of neocortical cells from feta mice were injured by exposure to 500 microM NMDA for 10 min or to OGD for 45 min. The effect of CGS 19755 in both injury paradigms was assessed morphologically and quantitated by determination of lactate dehydrogenase release. Near complete neuroprotection was found at high doses of CGS 19755. The ED50 for protection against NMDA toxicity was 25.4 micro M, and against OGD the ED50 was 15.2 microM. For the in vivo paradigm rabbits underwent 2 h of left internal carotid, anterior cerebral, and middle cerebral artery occlusion followed by 4 h reperfusion; ischemic injury was assessed by magnetic resonance imaging and histopathology. The rabbits were treated with 40 mg/kg i.v. CGS 19755 or saline 10 min after arterial occlusion. CSF and brain levels of CGS 19755 were 12 microM and 5 microM, respectively, at 1 h, 6 microM and 5 microM at 2 h, and 13 microM and 7 microM at 4 h. These levels were neuroprotective in this model, reducing cortical ischemic edema by 48% and ischemic neuronal damage by 76%. These results suggest that a single i.v. dose penetrates the blood-brain barrier, attaining sustained neuroprotective levels that are in the range for in vitro neuroprotection.
Collapse
Affiliation(s)
- M A Pérez-Pinzón
- Department of Neurosurgery, Stanford University Medical Center, California, USA
| | | | | | | | | | | |
Collapse
|
41
|
Takizawa S, Matsushima K, Fujita H, Nanri K, Ogawa S, Shinohara Y. A selective N-type calcium channel antagonist reduces extracellular glutamate release and infarct volume in focal cerebral ischemia. J Cereb Blood Flow Metab 1995; 15:611-8. [PMID: 7790409 DOI: 10.1038/jcbfm.1995.75] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although a number of studies have demonstrated the neuroprotective effects of antagonists of postsynaptic N-methyl-D-aspartate (NMDA) and non-NMDA receptors in cerebral ischemia, little is known about the treatment of cerebral infarction through presynaptic blocking of extracellular glutamate release. We evaluated the effects of a presynaptic selective N-type calcium channel antagonist (SNX-111, given intravenously by continuous infusion at 5 mg/kg/h from 20 min prior to occlusion until 2 h postocclusion) on blood flow, extracellular glutamate, and infarct volume in rats with permanent occlusions of the right middle cerebral and right common carotid arteries plus 1-h transient occlusion of the left common carotid artery. There was no significant difference in CBF in the occluded cortex during the experiment between the treated and vehicle groups. SNX-111 significantly reduced total amount of extracellular glutamate during the experiment and the peak value of the glutamate after occlusion from 44.2 +/- 15.8 microM (mean +/- SD) to 21.4 +/- 11.4 microM (p < 0.01). Infusion of SNX-111 also significantly reduced the cortical volume of infarction from 47.2 +/- 5.8 to 19.9 +/- 7.3% (p < 0.0001). These results suggest that SNX-111 has a protective effect against focal ischemia through the inhibition of glutamate release from presynaptic sites, although SNX-111 may also affect the release of other neurotransmitters.
Collapse
Affiliation(s)
- S Takizawa
- Department of Neurology, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Grotta J, Clark W, Coull B, Pettigrew LC, Mackay B, Goldstein LB, Meissner I, Murphy D, LaRue L. Safety and tolerability of the glutamate antagonist CGS 19755 (Selfotel) in patients with acute ischemic stroke. Results of a phase IIa randomized trial. Stroke 1995; 26:602-5. [PMID: 7709405 DOI: 10.1161/01.str.26.4.602] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE CGS 19755 is a competitive N-methyl-D-aspartate (NMDA) receptor antagonist that limits neuronal damage in animal stroke models. The objectives of this multicenter (7 centers), randomized, double-blind, placebo-controlled, ascending-dose phase IIa study were to evaluate the safety and tolerability of CGS 19755 and obtain pharmacokinetic and preliminary data on its efficacious dose range in patients treated within 12 hours of hemispheric ischemic stroke. METHODS At each dose level, 6 patients were randomized to one or two intravenous bolus doses of CGS 19755, and 2 patients were randomized to placebo. An unblinded safety and monitoring committee-evaluated results at each dose before ascending to the next level. All patients at the first level (1 mg/kg) received two doses separated by 12 hours. The first 2 patients at 2 mg/kg received two doses, but adverse experiences occurred in both; subsequent patient groups received single doses of 2.0, 1.75, or 1.5 mg/kg. RESULTS Adverse experiences (agitation, hallucinations, confusion, paranoia, and delirium) occurred in all 6 patients treated with 2 mg/kg, and in 3 of 5 at 1.75 mg/kg. Similar but milder adverse experiences were noted in 4 of 7 patients at 1.5 mg/kg and 1 of 6 patients at 1.0 mg/kg. Adverse experiences began between 20 minutes and 22 hours (mean, 8 hours) after treatment and lasted 2 to 60 hours (mean, 24 hours). Mortality was 1 of 8 in patients receiving placebo and 3 of 24 in treated patients. In treated survivors, median and mean percent improvement in National Institutes of Health Stroke Scale scores from baseline to terminal visit (mean, 86 days) was comparable at all doses, and 95% of treated patients had Barthel Index scores of > or = 70 at the terminal visit. CONCLUSIONS We conclude that a single intravenous dose of 1.5 mg/kg CGS 19755 is safe and tolerable in patients with acute ischemic stroke. An efficacy trial is indicated.
Collapse
Affiliation(s)
- J Grotta
- Department of Neurology, University of Texas Health Science Center, Houston 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Golding EM, Vink R. Efficacy of competitive vs noncompetitive blockade of the NMDA channel following traumatic brain injury. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1995; 24:137-50. [PMID: 7632318 DOI: 10.1007/bf02962139] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists have been demonstrated widely to be neuroprotective in cerebral ischemia, hypoxia, and traumatic brain injury. However, although noncompetitive NMDA antagonists have typically proven efficacious under all of these conditions, competitive antagonists have not been shown to be beneficial following moderate traumatic brain injury. The present study has used phosphorus magnetic resonance spectroscopy ([31P]MRS) to examine the effects of the competitive antagonist cis-4-(phosphonomethyl) piperidine-2-carboxylic acid (CGS-19755) and the noncompetitive antagonist dextromethorphan on biochemical outcome following fluid percussion-induced traumatic brain injury in rats. Five minutes prior to induction of moderate (2.8 +/- 0.2 atm) fluid percussion brain injury, animals received either CGS-19755 (10 mg/kg iv), dextromethorphan (10 mg/kg iv), or equal volume saline vehicle. [31P]MRS spectra were then acquired for 4 h post-trauma and intracellular pH, free magnesium concentration, cytosolic phosphorylation potential, and oxidative capacity determined. Both CGS-19755-treated animals and saline treated controls demonstrated significant and sustained declines in intracellular free magnesium concentration and bioenergetic status following trauma. In contrast, administration of dextromethorphan significantly attenuated free magnesium decline and improved bioenergetic state during the post-traumatic monitoring period. These results suggest that the neuroprotective actions of NMDA antagonists following traumatic brain injury are associated with attenuation of free magnesium decline and that such actions seem to be preferentially mediated by noncompetitive blockers.
Collapse
Affiliation(s)
- E M Golding
- Division of Biochemistry and Human Physiology, James Cook University of North Queensland, Townville, Australia
| | | |
Collapse
|
44
|
Nishikawa T, Kirsch JR, Koehler RC, Miyabe M, Traystman RJ. Competitive N-methyl-D-aspartate receptor blockade reduces brain injury following transient focal ischemia in cats. Stroke 1994; 25:2258-64. [PMID: 7526489 DOI: 10.1161/01.str.25.11.2258] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE We tested the hypothesis that administration of the competitive N-methyl-D-aspartate (NMDA) receptor antagonist NPC 17742 (2R,4R,5S-[2-amino-4,5-(1,2-cyclohexyl)-7-phosphonoheptanoic acid]) during transient focal ischemia affects early postischemic brain injury. METHODS Halothane-anesthetized cats underwent 1 hour of left middle cerebral artery occlusion plus 4 hours of reperfusion. Control cats received saline (n = 7). Experimental cats were treated with NPC 17742 at a dose of 5 mg/kg IV from 45 minutes of ischemia to 15 minutes of reperfusion and 2.5 mg/kg per hour for 4 hours of reperfusion (NPC-5; n = 7) or 50 mg/kg from 45 minutes of ischemia to 15 minutes of reperfusion and 25 mg/kg per hour for 4 hours of reperfusion (NPC-50; n = 5). RESULTS Microsphere-determined blood flow to the ipsilateral inferior temporal cortex and caudate nucleus decreased to the same extent during ischemia and recovered to the same extent during reperfusion in the three groups. Triphenyltetrazolium-determined injury volume of ipsilateral cerebral hemisphere (saline, 24 +/- 8%; NPC-5, 4 +/- 2%; NPC-50, 5 +/- 2% of hemisphere; mean +/- SE) and caudate nucleus (saline, 72 +/- 6%; NPC-5, 37 +/- 10%; NPC-50, 26 +/- 4%) was less in cats treated with both doses of drug compared with cats treated with saline. Recovery of somatosensory evoked potential amplitude was incomplete and similar in all groups (saline, 36 +/- 14%; NPC-5, 58 +/- 8%; NPC-50, 51 +/- 15% of baseline). CONCLUSIONS These data indicate that activation of NMDA receptors plays an important role in the mechanism of acute injury in both cortex and caudate after 1 hour of transient focal ischemia in the cat. Because NPC 17742 afforded protection when administered at the end of ischemia and during reperfusion, NMDA receptor activation during reperfusion may contribute to the progression of injury in ischemic border regions.
Collapse
Affiliation(s)
- T Nishikawa
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Md
| | | | | | | | | |
Collapse
|
45
|
Park CK, McCulloch J, Kang JK, Choi CR. Pretreatment with a competitive NMDA antagonist D-CPPene attenuates focal cerebral infarction and brain swelling in awake rats. Acta Neurochir (Wien) 1994; 127:220-6. [PMID: 7942207 DOI: 10.1007/bf01808770] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of the study was to assess effects of the competitive N-methyl-D-aspartate (NMDA) receptor antagonist D-(E)-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylic acid (D-CPPene) upon focal cerebral infarction and brain oedema in the rat. Focal cerebral ischaemia was produced by permanent occlusion of the middle cerebral artery under halothane anaesthesia. The anaesthetic gas was discontinued immediately after the occlusion and the rats were killed 24 hours later. Cerebral infarction and brain swelling were each assessed on the frozen brain sections at 8 predetermined coronal planes. Pretreatment with D-CPPene (4.5 mg/kg i.v. followed by continuous infusion at 3 mg/kg/h until sacrifice) 15 minutes prior to MCA occlusion, significantly reduced the volume of infarction in the cerebral hemisphere by 29% (p < 0.05). Brain swelling, obtained by subtracting the nonischaemic hemispheric volume from the ischaemic hemispheric volume, was significantly reduced with D-CPPene treatment and the mean reduction in swelling (34% less than the controls: p < 0.001) proportionately similar to the decrease in infarct volume in the same animals. These data indicate that systemic administration of the competitive NMDA receptor antagonist D-CPPene has neuroprotective effects against ischaemic brain damage, and the reduction in brain swelling occurs in parallel with the reduction in ischaemic damage.
Collapse
Affiliation(s)
- C K Park
- Department of Neurosurgery, Catholic University Medical College, Seoul, Korea
| | | | | | | |
Collapse
|
46
|
Sharkey J, Ritchie IM, Butcher SP, Kelly JS. Differential effects of competitive (CGS19755) and non-competitive (MK 801) NMDA receptor antagonists upon local cerebral blood flow and local cerebral glucose utilisation in the rat. Brain Res 1994; 651:27-36. [PMID: 7922575 DOI: 10.1016/0006-8993(94)90677-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of the selective non-competitive NMDA receptor antagonist dizocilpine (MK801) and the competitive NMDA receptor antagonist CGS19755 upon local blood flow (lCBF) and local glucose utilisation (lCGU) were examined in 81 neuroanatomically discrete regions of the conscious rat brain using the [14C]iodoantipyrine and [14C]2-deoxyglucose quantitative autoradiographic techniques, respectively. Animals received dizocilpine (0.3 mg/kg), CGS19755 (30 mg/kg) or saline vehicle (2 ml/kg) 10 min prior to the initiation of lCGU studies while blood flow determinations were performed in parallel groups of animals 20 min after drug administration. Dizocilpine significantly increased lCGU in 33 of the 81 regions measured (most notably in cortical and subcortical limbic structures and in the basal ganglia) while reducing glucose use in seven brain areas (frontoparietal and somatosensory cortex, and in areas subserving auditory function). In contrast, CGS19755 significantly reduced lCGU use in 39 of the 81 areas examined while increases were observed in only three areas (anterior piriform cortex, substantia nigra pars reticulata, and posterior thalamic nucleus). Following Dizocilpine administration, there was evidence of widespread (64 of the 81 areas studied) increases in lCBF, while blood flow was reduced in the inferior colliculus. Significant increases in lCBF were also noted in 26 brain areas of CGS19755-treated rats while in one area (flocculus) blood flow was reduced. In saline-treated rats there was a close correlation between lCBF and lCGU. Dizocilpine administration was associated with an increase in the overall lCBF:lCGU ratio from 1.56 ml/mumol (in saline-treated rats) to 2.34 ml/mumol. In some brain areas (CA1 subfield of the dorsal hippocampus, somatosensory cortex and nucleus accumbens) there was evidence of focal disturbances in flow-metabolism relationship. While a similar increase in the overall lCBF-lCGU use ratio was evident in CGS19755 treated animals, there was no evidence of focal uncoupling of the flow metabolism relationship in any of the 81 brain areas examined. These data show that whilst both competitive and non-competitive NMDA receptor antagonists increased cerebral tissue perfusion beyond that required to meet underlying metabolic demand, focal disturbances in the flow metabolism relationship were observed only in dizocilpine-treated rats.
Collapse
Affiliation(s)
- J Sharkey
- Fujisawa Institute of Neuroscience in Edinburgh, Department of Pharmacology, University of Edinburgh, UK
| | | | | | | |
Collapse
|
47
|
Xue D, Huang ZG, Barnes K, Lesiuk HJ, Smith KE, Buchan AM. Delayed treatment with AMPA, but not NMDA, antagonists reduces neocortical infarction. J Cereb Blood Flow Metab 1994; 14:251-61. [PMID: 7509339 DOI: 10.1038/jcbfm.1994.32] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We tested the abilities of two potent non-N-methyl-D-aspartate (non-NMDA) glutamate antagonists [2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline (NBQX)] and [1-(4-aminophenyl)-4-methyl-7,8-methylene-dioxy-5H-2,3-benzodiazep ine hydrochloride (GYKI 52466)] to reduce neocortical infarction following 2 h of transient middle cerebral artery occlusion in a hypertensive stroke model in the rat and compared these effects against, and in combination with, a potent NMDA antagonist [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-amine maleate (MK-801)]. In Expt. 1, an already established cytoprotective dose of Na(+)-NBQX (30 mg/kg i.p. x 3) was compared with saline (1 ml), the NMDA antagonist MK-801 (1 mg/kg i.p. x 3), and a combination of the same doses of both NBQX and MK-801. Initial doses were delayed to 90 min following occlusion with subsequent injections at the time of reperfusion and 30 min following reperfusion. Saline-treated rats sustained 181 +/- 32 mm3 (n = 15) of neocortical infarction (mean +/- SD). This was significantly reduced by NBQX to 137 +/- 25 mm3 (n = 15, p < 0.05) of damage. Neither MK-801 (170 +/- 33 mm3; n = 11) nor the combination of MK-801 and NBQX (169 +/- 20 mm3; n = 6) proved to be cytoprotective when given with a 90-min delay. In Expt. 2, NBQX (30 mg/kg) was dissolved (6 mg/ml) in 5% dextrose and compared with both saline and dextrose (1.2 ml) i.v. infusions given over a 4-h period starting 1 h after occlusion. Saline-treated rats had a mean infarct of 183 +/- 27 mm3 (n = 6), dextrose-treated had 200 +/- 30 mm3 (n = 9), while for NBQX-treated rats it was reduced to 129 +/- 60 mm3 (n = 10, p < 0.05). Intravenous NBQX precipitated into the renal tubules, causing nephrotoxicity. In Expt. 3, rats were given either saline (1 ml i.p.) or GYKI 52466 (10 mg/kg i.p.) at 30 and 90 min following occlusion and at 30, 90, and 150 min following reperfusion. Saline-treated rats sustained 187 +/- 27 mm3 of neocortical infarction (n = 7), while those treated with GYKI 52466 were protected, with 139 +/- 38 mm3 of infarction (n = 7, p < 0.05). A clinically useful role for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate antagonists in embolic stroke is envisaged if nontoxic drugs can be developed, since cerebroprotection was achieved with delayed treatment with both of these lead compounds.
Collapse
Affiliation(s)
- D Xue
- Ottawa Civic Hospital, University of Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Reduction of Vasogenic Edema and Infarction by MK-801 in Rats after Temporary Focal Cerebral Ischemia. Neurosurgery 1994. [DOI: 10.1097/00006123-199402000-00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
49
|
Yang G, Chan PH, Chen SF, Babuna OA, Simon RP, Weinstein PR. Reduction of vasogenic edema and infarction by MK-801 in rats after temporary focal cerebral ischemia. Neurosurgery 1994; 34:339-45; discussion 345. [PMID: 8177396 DOI: 10.1227/00006123-199402000-00018] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Blood-brain barrier permeability alteration, vasogenic brain edema, and infarction, which are more extensive after 3 hours of temporary middle cerebral artery occlusion (MCAO) and 3 hours of reperfusion than after 6 hours of permanent MCAO, develop in rats after prolonged focal cerebral ischemia. Protective effects of excitatory amino acid receptor antagonists have been previously demonstrated after temporary global ischemia and permanent focal ischemia in rats. The purpose of this study was to evaluate the effectiveness of MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, in temporary middle cerebral artery occlusion in rats maintained at physiological levels of brain temperature. Rats were anesthetized with chloral hydrate (350 mg/kg, intraperitoneally). The MCAO of rats was occluded by cannulation with a nylon suture for 3 hours, followed by 3 hours of reperfusion accomplished by withdrawing the suture. MK-801 (1 mg/kg, intravenously) or saline (S) was injected immediately before the onset of MCAO. Water content (MK-801, n = 6; S, n = 6), Evans blue dye extravasation (MK-801, n = 6; S, n = 6), infarct volume (MK-801, n = 10; S, n = 10), histology (MK-801, n = 6; S, n = 6), and neurological deficit (MK-801, n = 15; S, n = 18) were measured at the end of 3 hours of reperfusion. Brain temperature was monitored during the experiment. The infarction area (measured by 2, 3, 5-triphenyltetrazolium chloride staining) was reduced (P < 0.001) in the MK-801-treated rats, as was the infarct volume and the severity of neuronal damage (P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Yang
- Department of Neurosurgery, School of Medicine, University of California, San Francisco
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Neuronal injury following focal cerebral ischemia is widely attributed to the excitotoxic effects of glutamate. However, critical analysis of published data on glutamate toxicity in vitro and the comparison of these data with in vivo release of glutamate and the therapeutic effect of glutamate antagonists raises doubts about a neurotoxic mechanism. An alternative explanation for glutamate-mediated injury is hypoxia due to peri-infarct spreading depression-like depolarizations. These depolarizations are triggered in the core of the ischemic infarct and spread at irregular intervals into the peri-infarct surrounding. In ischemically uncompromised tissue, the metabolic workload associated with spreading depression is coupled to an increase in blood flow and oxygen supply, assuring maintenance of oxidative respiration. In the penumbra region of focal ischemia, the hemodynamic constraints of collateral blood circulation prevail the adequate adjustment of oxygen delivery, leading to transient episodes of relative tissue hypoxia. The hypoxic episodes cause a suppression of protein synthesis, a gradual deterioration of energy metabolism and a progression of irreversibly damaged tissue into the penumbra zone. The generation of peri-infarct spreading depressions and the associated metabolic workload can be suppressed by NMDA and non-NMDA antagonists. As a result, the penumbral inhibition of protein synthesis and the progressing energy failure is also prevented, and the volume of ischemic infarct decreases. Interventions to improve ischemic resistance should therefore aim at improving the oxygen supply or reducing the metabolic workload in the penumbra region.
Collapse
Affiliation(s)
- K A Hossmann
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Colgne, Germany
| |
Collapse
|