1
|
Ferhat L, Soussi R, Masse M, Kyriatzis G, Girard S, Gassiot F, Gaudin N, Laurencin M, Bernard A, Bôle A, Ferracci G, Smirnova M, Roman F, Dive V, Cisternino S, Temsamani J, David M, Lécorché P, Jacquot G, Khrestchatisky M. A peptide-neurotensin conjugate that crosses the blood-brain barrier induces pharmacological hypothermia associated with anticonvulsant, neuroprotective, and anti-inflammatory properties following status epilepticus in mice. eLife 2025; 13:RP100527. [PMID: 40152901 PMCID: PMC11952754 DOI: 10.7554/elife.100527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Preclinical and clinical studies show that mild to moderate hypothermia is neuroprotective in sudden cardiac arrest, ischemic stroke, perinatal hypoxia/ischemia, traumatic brain injury, and seizures. Induction of hypothermia largely involves physical cooling therapies, which induce several clinical complications, while some molecules have shown to be efficient in pharmacologically induced hypothermia (PIH). Neurotensin (NT), a 13 amino acid neuropeptide that regulates body temperature, interacts with various receptors to mediate its peripheral and central effects. NT induces PIH when administered intracerebrally. However, these effects are not observed if NT is administered peripherally, due to its rapid degradation and poor passage of the blood-brain barrier (BBB). We conjugated NT to peptides that bind the low-density lipoprotein receptor (LDLR) to generate 'vectorized' forms of NT with enhanced BBB permeability. We evaluated their effects in epileptic conditions following peripheral administration. One of these conjugates, VH-N412, displayed improved stability, binding potential to both the LDLR and NTSR-1, rodent/human cross-reactivity and improved brain distribution. In a mouse model of kainate (KA)-induced status epilepticus (SE), VH-N412 elicited rapid hypothermia associated with anticonvulsant effects, potent neuroprotection, and reduced hippocampal inflammation. VH-N412 also reduced sprouting of the dentate gyrus mossy fibers and preserved learning and memory skills in the treated mice. In cultured hippocampal neurons, VH-N412 displayed temperature-independent neuroprotective properties. To the best of our knowledge, this is the first report describing the successful treatment of SE with PIH. In all, our results show that vectorized NT may elicit different neuroprotection mechanisms mediated by hypothermia and/or by intrinsic neuroprotective properties.
Collapse
Affiliation(s)
- Lotfi Ferhat
- Aix-Marseille Univ, CNRS, INP, Inst NeurophysiopatholMarseilleFrance
| | - Rabia Soussi
- Aix-Marseille Univ, CNRS, INP, Inst NeurophysiopatholMarseilleFrance
| | - Maxime Masse
- VECT-HORUS SAS, Faculté de MédecineMarseilleFrance
| | | | - Stéphane Girard
- Aix-Marseille Univ, CNRS, INP, Inst NeurophysiopatholMarseilleFrance
- VECT-HORUS SAS, Faculté de MédecineMarseilleFrance
| | | | | | | | - Anne Bernard
- Aix-Marseille Univ, CNRS, INP, Inst NeurophysiopatholMarseilleFrance
| | - Angélique Bôle
- Aix-Marseille Univ, CNRS, INP, Inst NeurophysiopatholMarseilleFrance
| | | | - Maria Smirnova
- Université Paris Cité, INSERM UMRS 1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
| | - François Roman
- Aix-Marseille Univ, CNRS, INP, Inst NeurophysiopatholMarseilleFrance
| | | | - Salvatore Cisternino
- Université Paris Cité, INSERM UMRS 1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
- Pharmacie, Hôpital Universitaire Necker – Enfants Malades, AP-HPParisFrance
| | | | - Marion David
- VECT-HORUS SAS, Faculté de MédecineMarseilleFrance
| | | | | | | |
Collapse
|
2
|
Peng X, Zhang T, Liu R, Jin X. Potential in exosome-based targeted nano-drugs and delivery vehicles for posterior ocular disease treatment: from barriers to therapeutic application. Mol Cell Biochem 2024; 479:1319-1333. [PMID: 37402019 DOI: 10.1007/s11010-023-04798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Posterior ocular disease, a disease that accounts for 55% of all ocular diseases, can contribute to permanent vision loss if left without treatment. Due to the special structure of the eye, various obstacles make it difficult for drugs to reach lesions in the posterior ocular segment. Therefore, the development of highly permeable targeted drugs and delivery systems is particularly important. Exosomes are a class of extracellular vesicles at 30-150 nm, which are secreted by various cells, tissues, and body fluids. They carry various signaling molecules, thus endowing them with certain physiological functions. In this review, we describe the ocular barriers and the biogenesis, isolation, and engineering of exosomes, as exosomes not only have pharmacological effects but also are good nanocarriers with targeted properties. Moreover, their biocompatibility and immunogenicity are better than synthetic nanocarriers. Most importantly, they may have the ability to pass through the blood-eye barrier. Thus, they may be developed as both targeted nano-drugs and nano-delivery vehicles for the treatment of posterior ocular diseases. We focus on the current status and potential application of exosomes as targeted nano-drugs and nano-delivery vehicles in posterior ocular diseases.
Collapse
Affiliation(s)
- Xingru Peng
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tingting Zhang
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Liu
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xin Jin
- Department of Health Services, Logistics University of People's Armed Police Force, Tianjin, Chenlin Road, Hedong District, Tianjin, 300162, China.
| |
Collapse
|
3
|
Biali M, Auvity S, Cisternino S, Smirnova M, Hacker M, Zeitlinger M, Mairinger S, Tournier N, Bauer M, Langer O. Dissimilar Effect of P-Glycoprotein and Breast Cancer Resistance Protein Inhibition on the Distribution of Erlotinib to the Retina and Brain in Humans and Mice. Mol Pharm 2023; 20:5877-5887. [PMID: 37883694 PMCID: PMC10630959 DOI: 10.1021/acs.molpharmaceut.3c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two ATP-binding cassette efflux transporters that are coexpressed at the human blood-brain barrier (BBB) and blood-retina barrier (BRB). While pharmacological inhibition of P-gp and/or BCRP results in increased brain distribution of dual P-gp/BCRP substrate drugs, such as the tyrosine kinase inhibitor erlotinib, the effect of P-gp and/or BCRP inhibition on the retinal distribution of such drugs has hardly been investigated. In this study, we used positron emission tomography (PET) imaging to assess the effect of transporter inhibition on the distribution of [11C]erlotinib to the human retina and brain. Twenty two healthy volunteers underwent two PET scans after intravenous (i.v.) injection of a microdose (<5 μg) of [11C]erlotinib, a baseline scan, and a second scan either with concurrent i.v. infusion of tariquidar to inhibit P-gp (n = 5) or after oral intake of single ascending doses of erlotinib (300 mg, 650 mg, or 1000 mg, n = 17) to saturate erlotinib transport. In addition, transport of [3H]erlotinib to the retina and brain was assessed in mice by in situ carotid perfusion under various drug transporter inhibition settings. In comparison to the baseline PET scan, coadministration of tariquidar or erlotinib led to a significant decrease of [11C]erlotinib total volume of distribution (VT) in the human retina by -25 ± 8% (p ≤ 0.05) and -41 ± 16% (p ≤ 0.001), respectively. In contrast, erlotinib intake led to a significant increase in [11C]erlotinib VT in the human brain (+20 ± 16%, p ≤ 0.001), while administration of tariquidar did not result in any significant changes. In situ carotid perfusion experiments showed that both P-gp and BCRP significantly limit the distribution of erlotinib to the mouse retina and brain but revealed a similar discordant effect at the mouse BRB and BBB following co-perfusion with tariquidar and erlotinib as in humans. Co-perfusion with prototypical inhibitors of solute carrier transporters did not reveal a significant contribution of organic cation transporters (e.g., OCTs and OCTNs) and organic anion-transporting polypeptides (e.g., OATP2B1) to the retinal and cerebral distribution of erlotinib. In conclusion, we observed a dissimilar effect after P-gp and/or BCRP inhibition on the retinal and cerebral distribution of [11C]erlotinib. The exact mechanism for this discrepancy remains unclear but may be related to the function of an unidentified erlotinib uptake carrier sensitive to tariquidar inhibition at the BRB. Our study highlights the great potential of PET to study drug distribution to the human retina and to assess the functional impact of membrane transporters on ocular drug distribution.
Collapse
Affiliation(s)
- Myriam
El Biali
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Sylvain Auvity
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Service
Pharmacie, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire-Necker-Enfants Malades, F-75015 Paris, France
| | - Salvatore Cisternino
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Service
Pharmacie, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire-Necker-Enfants Malades, F-75015 Paris, France
| | - Maria Smirnova
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
| | - Marcus Hacker
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Zeitlinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Severin Mairinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Nicolas Tournier
- Laboratoire
d’Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS,
Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, 91401 Orsay, France
| | - Martin Bauer
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Oliver Langer
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Boulch M, Cazaux M, Cuffel A, Ruggiu M, Allain V, Corre B, Loe-Mie Y, Hosten B, Cisternino S, Auvity S, Thieblemont C, Caillat-Zucman S, Bousso P. A major role for CD4 + T cells in driving cytokine release syndrome during CAR T cell therapy. Cell Rep Med 2023; 4:101161. [PMID: 37595589 PMCID: PMC10518592 DOI: 10.1016/j.xcrm.2023.101161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/21/2023] [Accepted: 07/26/2023] [Indexed: 08/20/2023]
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T cell therapy represents a breakthrough for the treatment of B cell malignancies. Yet, it can lead to severe adverse events, including cytokine release syndrome (CRS), which may require urgent clinical management. Whether interpatient variability in CAR T cell subsets contributes to CRS is unclear. Here, we show that CD4+ CAR T cells are the main drivers of CRS. Using an immunocompetent model of anti-CD19 CAR T cell therapy, we report that CD4+, but not CD8+, CAR T cells elicit physiological CRS-like manifestations associated with the release of inflammatory cytokines. In CAR T cell-treated patients, CRS occurrence and severity are significantly associated with high absolute values of CD4+ CAR T cells in the blood. CRS in mice occurs independently of CAR T cell-derived interferon γ (IFN-γ) but requires elevated tumor burden. Thus, adjusting the CD4:CD8 CAR T cell ratio to patient tumor load may help mitigate CAR T cell-associated toxicities.
Collapse
Affiliation(s)
- Morgane Boulch
- Institut Pasteur, Université Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Équipe Labellisée Ligue Contre le Cancer, 75015 Paris, France
| | - Marine Cazaux
- Institut Pasteur, Université Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Équipe Labellisée Ligue Contre le Cancer, 75015 Paris, France
| | - Alexis Cuffel
- Université Paris Cité, Hôpital Saint-Louis, AP-HP Nord, Laboratoire d'Immunologie, Paris, France; INSERM UMR976, Institut de Recherche St-Louis, Paris, France
| | - Mathilde Ruggiu
- Institut Pasteur, Université Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Équipe Labellisée Ligue Contre le Cancer, 75015 Paris, France
| | - Vincent Allain
- Université Paris Cité, Hôpital Saint-Louis, AP-HP Nord, Laboratoire d'Immunologie, Paris, France; INSERM UMR976, Institut de Recherche St-Louis, Paris, France
| | - Béatrice Corre
- Institut Pasteur, Université Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Équipe Labellisée Ligue Contre le Cancer, 75015 Paris, France
| | - Yann Loe-Mie
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HUB, 75015 Paris, France
| | - Benoit Hosten
- Université Paris Cité, INSERM, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; Service de Pharmacie, Unité Claude Kellershohn - Radiopharmacie R&D, AP-HP, Hôpital Saint-Louis, 75475 Paris, France
| | - Salvatore Cisternino
- Université Paris Cité, INSERM, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; Service de Pharmacie, AP-HP, Hôpital Necker, 75015 Paris, France
| | - Sylvain Auvity
- Université Paris Cité, INSERM, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; Service de Pharmacie, AP-HP, Hôpital Necker, 75015 Paris, France
| | - Catherine Thieblemont
- Hémato-Oncologie, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Inserm U1153, Paris, France
| | - Sophie Caillat-Zucman
- Université Paris Cité, Hôpital Saint-Louis, AP-HP Nord, Laboratoire d'Immunologie, Paris, France; INSERM UMR976, Institut de Recherche St-Louis, Paris, France
| | - Philippe Bousso
- Institut Pasteur, Université Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Équipe Labellisée Ligue Contre le Cancer, 75015 Paris, France.
| |
Collapse
|
5
|
Pan Y, Kagawa Y, Sun J, Turner BJ, Huang C, Shah AD, Schittenhelm RB, Nicolazzo JA. Altered Blood-Brain Barrier Dynamics in the C9orf72 Hexanucleotide Repeat Expansion Mouse Model of Amyotrophic Lateral Sclerosis. Pharmaceutics 2022; 14:pharmaceutics14122803. [PMID: 36559296 PMCID: PMC9783795 DOI: 10.3390/pharmaceutics14122803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For peripherally administered drugs to reach the central nervous system (CNS) and treat amyotrophic lateral sclerosis (ALS), they must cross the blood-brain barrier (BBB). As mounting evidence suggests that the ultrastructure of the BBB is altered in individuals with ALS and in animal models of ALS (e.g., SOD1G93A mice), we characterized BBB transporter expression and function in transgenic C9orf72 BAC (C9-BAC) mice expressing a hexanucleotide repeat expansion, the most common genetic cause of ALS. Using an in situ transcardiac brain perfusion technique, we identified a 1.4-fold increase in 3H-2-deoxy-D-glucose transport across the BBB in C9-BAC transgenic (C9) mice, relative to wild-type (WT) mice, which was associated with a 1.3-fold increase in brain microvascular glucose transporter 1 expression, while other general BBB permeability processes (passive diffusion, efflux transporter function) remained unaffected. We also performed proteomic analysis on isolated brain microvascular endothelial cells, in which we noted a mild (14.3%) reduction in zonula occludens-1 abundance in C9 relative to WT mice. Functional enrichment analysis highlighted trends in changes to various BBB transporters and cellular metabolism. To our knowledge, this is the first study to demonstrate altered BBB function in a C9orf72 repeat expansion model of ALS, which has implications on how therapeutics may access the brain in this mouse model.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai 980-0872, Miyagi, Japan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (Y.P.); (J.A.N.); Tel.: +61-3-8344-4000 (Y.P.); +61-3-9903-9605 (J.A.N.); Fax: +61-3-9903-9583 (J.A.N.)
| | - Yoshiteru Kagawa
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai 980-0872, Miyagi, Japan
| | - Jiaqi Sun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Perron Institute for Neurological and Translational Science, Queen Elizabeth Medical Centre, Nedlands, WA 6009, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anup D. Shah
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Correspondence: (Y.P.); (J.A.N.); Tel.: +61-3-8344-4000 (Y.P.); +61-3-9903-9605 (J.A.N.); Fax: +61-3-9903-9583 (J.A.N.)
| |
Collapse
|
6
|
Taccola C, Barneoud P, Cartot-Cotton S, Valente D, Schussler N, Saubaméa B, Chasseigneaux S, Cochois V, Mignon V, Curis E, Lochus M, Nicolic S, Dodacki A, Cisternino S, Declèves X, Bourasset F. Modifications of physical and functional integrity of the blood-brain barrier in an inducible mouse model of neurodegeneration. Neuropharmacology 2021; 191:108588. [PMID: 33940010 DOI: 10.1016/j.neuropharm.2021.108588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
The inducible p25 overexpression mouse model recapitulate many hallmark features of Alzheimer's disase including progressive neuronal loss, elevated Aβ, tau pathology, cognitive dysfunction, and impaired synaptic plasticity. We chose p25 mice to evaluate the physical and functional integrity of the blood-brain barrier (BBB) in a context of Tau pathology (pTau) and severe neurodegeneration, at an early (3 weeks ON) and a late (6 weeks ON) stage of the pathology. Using in situ brain perfusion and confocal imaging, we found that the brain vascular surface area and the physical integrity of the BBB were unaltered in p25 mice. However, there was a significant 14% decrease in cerebrovascular volume in 6 weeks ON mice, possibly explained by a significant 27% increase of collagen IV in the basement membrane of brain capillaries. The function of the BBB transporters GLUT1 and LAT1 was evaluated by measuring brain uptake of d-glucose and phenylalanine, respectively. In 6 weeks ON p25 mice, d-glucose brain uptake was significantly reduced by about 17% compared with WT, without any change in the levels of GLUT1 protein or mRNA in brain capillaries. The brain uptake of phenylalanine was not significantly reduced in p25 mice compared with WT. Lack of BBB integrity, impaired BBB d-glucose transport have been observed in several mouse models of AD. In contrast, reduced cerebrovascular volume and an increased basement membrane thickness may be more specifically associated with pTau in mouse models of neurodegeneration.
Collapse
Affiliation(s)
- Camille Taccola
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine & Early Development, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France; INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Pascal Barneoud
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 1 Avenue Pierre Brossolette, 91380, Chilly-Mazarin, France
| | - Sylvaine Cartot-Cotton
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine & Early Development, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France
| | - Delphine Valente
- Drug Metabolism & Pharmacokinetics, Research platform, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France
| | - Nathalie Schussler
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 1 Avenue Pierre Brossolette, 91380, Chilly-Mazarin, France
| | - Bruno Saubaméa
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Stéphanie Chasseigneaux
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Véronique Cochois
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Virginie Mignon
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Emmanuel Curis
- Laboratoire de biomathématiques, plateau iB(2), EA 7537 « BioSTM », UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France; Service de bioinformatique et statistique médicale, hôpital Saint-Louis, APHP, 1, avenue Claude Vellefaux, 75010, Paris, France
| | - Murielle Lochus
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Sophie Nicolic
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Agnès Dodacki
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Salvatore Cisternino
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Xavier Declèves
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Fanchon Bourasset
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France.
| |
Collapse
|
7
|
Characterization of the Blood-Brain Barrier Integrity and the Brain Transport of SN-38 in an Orthotopic Xenograft Rat Model of Diffuse Intrinsic Pontine Glioma. Pharmaceutics 2020; 12:pharmaceutics12050399. [PMID: 32349240 PMCID: PMC7284501 DOI: 10.3390/pharmaceutics12050399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 11/17/2022] Open
Abstract
The blood-brain barrier (BBB) hinders the brain delivery of many anticancer drugs. In pediatric patients, diffuse intrinsic pontine glioma (DIPG) represents the main cause of brain cancer mortality lacking effective drug therapy. Using sham and DIPG-bearing rats, we analyzed 1) the brain distribution of 3-kDa-Texas red-dextran (TRD) or [14C]-sucrose as measures of BBB integrity, and 2) the role of major ATP-binding cassette (ABC) transporters at the BBB on the efflux of the irinotecan metabolite [3H]-SN-38. The unaffected [14C]-sucrose or TRD distribution in the cerebrum, cerebellum, and brainstem regions in DIPG-bearing animals suggests an intact BBB. Targeted proteomics retrieved no change in P-glycoprotein (P-gp), BCRP, MRP1, and MRP4 levels in the analyzed regions of DIPG rats. In vitro, DIPG cells express BCRP but not P-gp, MRP1, or MRP4. Dual inhibition of P-gp/Bcrp, or Mrp showed a significant increase on SN-38 BBB transport: Cerebrum (8.3-fold and 3-fold, respectively), cerebellum (4.2-fold and 2.8-fold), and brainstem (2.6-fold and 2.2-fold). Elacridar increased [3H]-SN-38 brain delivery beyond a P-gp/Bcrp inhibitor effect alone, emphasizing the role of another unidentified transporter in BBB efflux of SN-38. These results confirm a well-preserved BBB in DIPG-bearing rats, along with functional ABC-transporter expression. The development of chemotherapeutic strategies to circumvent ABC-mediated BBB efflux are needed to improve anticancer drug delivery against DIPG.
Collapse
|
8
|
Chaves C, Campanelli F, Chapy H, Gomez-Zepeda D, Glacial F, Smirnova M, Taghi M, Pallud J, Perrière N, Declèves X, Menet MC, Cisternino S. An Interspecies Molecular and Functional Study of Organic Cation Transporters at the Blood-Brain Barrier: From Rodents to Humans. Pharmaceutics 2020; 12:pharmaceutics12040308. [PMID: 32231079 PMCID: PMC7238036 DOI: 10.3390/pharmaceutics12040308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 01/11/2023] Open
Abstract
Organic cation transporters (OCTs) participate in the handling of compounds in kidneys and at the synaptic cleft. Their role at the blood-brain barrier (BBB) in brain drug delivery is still unclear. The presence of OCT1,2,3 (SLC22A1-3) in mouse, rat and human isolated brain microvessels was investigated by either qRT-PCR, quantitative proteomics and/or functional studies. BBB transport of the prototypical substrate [3H]-1-methyl-4-phenylpyridinium ([3H]-MPP+) was measured by in situ brain perfusion in six mouse strains and in Sprague Dawley rats, in primary human brain microvascular endothelial cells seeded on inserts, in the presence or absence of OCTs and a MATE1 (SLC49A1) inhibitor. The results show negligible OCT1 (SLC22A1) and OCT2 (SLC22A2) expression in either mice, rat or human brain microvessels, while OCT3 expression was identified in rat microvessels by qRT-PCR. The in vitro human cellular uptake of [3H]-MPP+ was not modified by OCTs/MATE-inhibitor. Brain transport of [3H]-MPP+ remains unchanged between 2- and 6-month old mice, and no alteration was observed in mice and rats with inhibitors. In conclusion, the evidenced lack of expression and/or functional OCTs and MATE at the BBB allows the maintenance of the brain homeostasis and function as it prevents an easy access of their neurotoxicant substrates to the brain parenchyma.
Collapse
Affiliation(s)
- Catarina Chaves
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Federica Campanelli
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Hélène Chapy
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - David Gomez-Zepeda
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Fabienne Glacial
- BrainPlotting SAS, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; (F.G.); (N.P.)
| | - Maria Smirnova
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Meryam Taghi
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Johan Pallud
- Department of Neurosurgery, Sainte Anne Hospital, 75014 Paris, France;
- Inserm, U894, IMA-Brain, Centre de Psychiatrie et Neurosciences, 75013 Paris, France
| | - Nicolas Perrière
- BrainPlotting SAS, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; (F.G.); (N.P.)
| | - Xavier Declèves
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, AP-HP, Hôpital Universitaire Cochin, Biologie du médicament et toxicologie, 75006 Paris, France
| | - Marie-Claude Menet
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, AP-HP, Hôpital Universitaire Cochin, Hormonologie adulte, 75006 Paris, France
| | - Salvatore Cisternino
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, AP-HP, Hôpital Universitaire Necker-Enfants Malades, Service de pharmacie, 75015 Paris, France
- Correspondence: ; Tel.: +33-1-444-951-91
| |
Collapse
|
9
|
Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics 2019; 12:pharmaceutics12010020. [PMID: 31878061 PMCID: PMC7022905 DOI: 10.3390/pharmaceutics12010020] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
Drug delivery into the brain is regulated by the blood-brain interfaces. The blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the blood-arachnoid barrier (BAB) regulate the exchange of substances between the blood and brain parenchyma. These selective barriers present a high impermeability to most substances, with the selective transport of nutrients and transporters preventing the entry and accumulation of possibly toxic molecules, comprising many therapeutic drugs. Transporters of the ATP-binding cassette (ABC) superfamily have an important role in drug delivery, because they extrude a broad molecular diversity of xenobiotics, including several anticancer drugs, preventing their entry into the brain. Gliomas are the most common primary tumors diagnosed in adults, which are often characterized by a poor prognosis, notably in the case of high-grade gliomas. Therapeutic treatments frequently fail due to the difficulty of delivering drugs through the brain barriers, adding to diverse mechanisms developed by the cancer, including the overexpression or expression de novo of ABC transporters in tumoral cells and/or in the endothelial cells forming the blood-brain tumor barrier (BBTB). Many models have been developed to study the phenotype, molecular characteristics, and function of the blood-brain interfaces as well as to evaluate drug permeability into the brain. These include in vitro, in vivo, and in silico models, which together can help us to better understand their implication in drug resistance and to develop new therapeutics or delivery strategies to improve the treatment of pathologies of the central nervous system (CNS). In this review, we present the principal characteristics of the blood-brain interfaces; then, we focus on the ABC transporters present on them and their implication in drug delivery; next, we present some of the most important models used for the study of drug transport; finally, we summarize the implication of ABC transporters in glioma and the BBTB in drug resistance and the strategies to improve the delivery of CNS anticancer drugs.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| | - Méryam Taghi
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Jean-Michel Scherrmann
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Xavier Decleves
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Biologie du médicament et toxicologie, Hôpital Cochin, AP HP, 75006 Paris, France
| | - Marie-Claude Menet
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Hormonologie adulte, Hôpital Cochin, AP HP, 75006 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| |
Collapse
|
10
|
Nakagawa S, Aruga J. Sphingosine 1-Phosphate Signaling Is Involved in Impaired Blood-Brain Barrier Function in Ischemia-Reperfusion Injury. Mol Neurobiol 2019; 57:1594-1606. [PMID: 31802363 DOI: 10.1007/s12035-019-01844-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a major bioactive lipid mediator in the vascular and immune system. Here, we have shown that inhibition of S1P signaling prevents blood-brain barrier (BBB) dysfunction after ischemia both in vitro and in vivo. In the in vitro BBB models, oxygen-glucose deprivation and reoxygenation (OGD/R) enhanced the expression of an S1P synthesizing enzyme (Sphk1) and S1P transporters (Abca1, Spns2), increasing S1P in culture media. Inhibitors of Sphk1 (SKI-II) or Abca1 (probucol) attenuated the decrease in transendothelial electrical resistance and the increase in permeability caused by OGD/R. In the middle cerebral artery occlusion and reperfusion (MCAO/R) model of mice, probucol administration after MCAO operation reduced the infarction area and vascular leakage, preserving the integrity of tight junction proteins. Furthermore, MCAO/R caused activation of STAT3, a downstream mediator of S1P signaling, which was suppressed by postoperative probucol administration. Accordingly, S1P activated STAT3, both in cultured vascular endothelial cells and pericytes, and STAT3 signaling inhibitor (Stattic) protected BBB dysfunction in OGD/R-treated in vitro BBB models. These results suggest that inhibition of S1P signaling is a strategy to treat BBB impairment after cerebral ischemia and highlight the potential alternative use of probucol, a classical anti-hyperlipidemic drug, for emergency treatment of stroke.
Collapse
Affiliation(s)
- Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Jun Aruga
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
11
|
Mihajlica N, Betsholtz C, Hammarlund-Udenaes M. Rate of small-molecular drug transport across the blood-brain barrier in a pericyte-deficient state. Eur J Pharm Sci 2018; 124:182-187. [DOI: 10.1016/j.ejps.2018.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/23/2023]
|
12
|
Villalba H, Shah K, Albekairi TH, Sifat AE, Vaidya B, Abbruscato TJ. Potential role of myo-inositol to improve ischemic stroke outcome in diabetic mouse. Brain Res 2018; 1699:166-176. [PMID: 30165043 DOI: 10.1016/j.brainres.2018.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
Abstract
Brain edema is one of the critical factors causing hightened disability and mortality in stroke patients, which is exaggerated further in diabetic patients. Organic osmolytes could play a critical role in the maintenance of cytotoxic edema. The present study was aimed to assess the role of myo-inositol, an organic osmolyte, on stroke outcome in diabetic and non-diabetic animals. In situ brain perfusion and acute brain slice methods were used to assess transport of myo-inositol across the blood-brain barrier and uptake by brain cells using non-diabetic (C57BL/6) and diabetic (streptozotocin-induced) mice, respectively. In vitro studies were conducted to assess the role of myo-inositol during and after ischemia utilizing oxygen glucose deprivation (OGD) and reperfusion. Further, the expression of transporters, such as SGLT6, SMIT1 and AQP4 were measured using immunofluorescence. Therapeutic efficacy of myo-inositol was evaluated in a transient middle cerebral artery occlusion (tMCAO) mouse model using non-diabetic (C57BL/6) and diabetic (db/db) mice. Myo-inositol release from and uptake in astrocytes and altered expression of myo-inositol transporters at different OGD timepoints revealed the role of myo-inositol and myo-inositol transporters during ischemia reperfusion. Further, hyperglycemic conditions reduced myo-inositol uptake in astrocytes. Interestingly, in in-vivo tMCAO, infarct and edema ratios following 24 h reperfusion decreased in myo-inositol treated mice. These results were supported by improvement in behavioral outcomes in open-field test, corner test and neurological score in both non-diabetic and db/db animals. Our data suggest that myo-inositol and myo-inositol transporters may provide neuroprotection during/following stroke both in non-diabetic and diabetic conditions.
Collapse
Affiliation(s)
- Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Kaushik Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
13
|
Taccola C, Cartot-Cotton S, Valente D, Barneoud P, Aubert C, Boutet V, Gallen F, Lochus M, Nicolic S, Dodacki A, Smirnova M, Cisternino S, Declèves X, Bourasset F. High brain distribution of a new central nervous system drug candidate despite its P-glycoprotein-mediated efflux at the mouse blood-brain barrier. Eur J Pharm Sci 2018; 117:68-79. [DOI: 10.1016/j.ejps.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 11/28/2022]
|
14
|
Kerdiles O, Layé S, Calon F. Omega-3 polyunsaturated fatty acids and brain health: Preclinical evidence for the prevention of neurodegenerative diseases. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Whitson JA, Sell DR, Goodman MC, Monnier VM, Fan X. Evidence of Dual Mechanisms of Glutathione Uptake in the Rodent Lens: A Novel Role for Vitreous Humor in Lens Glutathione Homeostasis. Invest Ophthalmol Vis Sci 2017; 57:3914-25. [PMID: 27472077 PMCID: PMC4998144 DOI: 10.1167/iovs.16-19592] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose Lens glutathione synthesis knockout (LEGSKO) mouse lenses lack de novo glutathione (GSH) synthesis but still maintain >1 mM GSH. We sought to determine the source of this residual GSH and the mechanism by which it accumulates in the lens. Methods Levels of GSH, glutathione disulfide (GSSG), and GSH-related compounds were measured in vitro and in vivo using isotope standards and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results Wild-type (WT) lenses could accumulate GSH from γ-glutamylcysteine and glycine or from intact GSH, but LEGSKO lenses could only accumulate GSH from intact GSH, indicating that LEGSKO lens GSH content is not due to synthesis by a salvage pathway. Uptake of GSH in cultured lenses occurred at the same rate for LEGSKO and WT lenses, could not be inhibited, and occurred primarily through cortical fiber cells. In contrast, uptake of GSH from aqueous humor could be competitively inhibited and showed an enhanced Km in LEGSKO lenses. Mouse vitreous had >1 mM GSH, whereas aqueous had <20 μM GSH. Testing physiologically relevant GSH concentrations for uptake in vivo, we found that both LEGSKO and WT lenses could obtain GSH from the vitreous but not from the aqueous. Vitreous rapidly accumulated GSH from the circulation, and depletion of circulating GSH reduced vitreous but not aqueous GSH. Conclusions The above data provide, for the first time, evidence for the existence of dual mechanisms of GSH uptake into the lens, one mechanism being a passive, high-flux transport through the vitreous exposed side of the lens versus an active, carrier-mediated uptake mechanism at the anterior of the lens.
Collapse
Affiliation(s)
- Jeremy A Whitson
- Department of Pathology Case Western Reserve University, Cleveland, Ohio, United States
| | - David R Sell
- Department of Pathology Case Western Reserve University, Cleveland, Ohio, United States
| | - Michael C Goodman
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Vincent M Monnier
- Department of Pathology Case Western Reserve University, Cleveland, Ohio, United States 3Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States
| | - Xingjun Fan
- Department of Pathology Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
16
|
Chapy H, Saubaméa B, Tournier N, Bourasset F, Behar-Cohen F, Declèves X, Scherrmann JM, Cisternino S. Blood-brain and retinal barriers show dissimilar ABC transporter impacts and concealed effect of P-glycoprotein on a novel verapamil influx carrier. Br J Pharmacol 2016; 173:497-510. [PMID: 26507673 DOI: 10.1111/bph.13376] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The respective impact and interplay between ABC (P-glycoprotein/P-gp/Abcb1a, BCRP/ABCG2, MRP/ABCC) and SLC transporter functions at the blood-brain barrier (BBB) and blood-retinal barriers (BRB) are incompletely understood. EXPERIMENTAL APPROACH We measured the initial cerebral and retinal distribution of selected ABC substrates by in situ carotid perfusion using P-gp/Bcrp knockout mice and chemical ABC/SLC modulation strategies. P-gp, Bcrp, Mrp1 and Mrp4 were studied by confocal retina imaging. KEY RESULTS Chemical or physical disruption of P-gp increased [(3) H]-verapamil transport by ~10-fold at the BBB and ~1.5-fold at the BRB. [(3) H]-Verapamil transport involved influx-mediated by an organic cation clonidine-sensitive/diphenhydramine-sensitive proton antiporter at both barriers; this effect was unmasked when P-gp was partially or fully inhibited/disrupted at the BBB. Studies of [(3) H]-mitoxantrone and [(3) H]-zidovudine transport suggested, respectively, that Bcrp efflux was less involved at the BRB than BBB, whereas Mrps were significantly and similarly involved at both barriers. Confocal imaging showed that P-gp and Bcrp were expressed in intra-retinal vessels (inner BRB/iBRB) but absent from the blood/basal membrane of cells of the retinal pigment epithelium (outer BRB/oBRB/RPE) where, in contrast, Mrp1 and Mrp4 were localized. CONCLUSIONS AND IMPLICATIONS P-gp, Bcrp, Mrp1 and Mrp4 are differentially expressed at the outer and inner BRB, resulting in an altered ability to limit substrate distribution at the retina as compared with the BBB. [(3) H]-Verapamil distribution is not P-gp-specific and involves a proton antiporter at both the BBB and BRB. However, this transport is concealed by P-gp at the BBB, but not at the BRB, where P-gp activity is reduced.
Collapse
Affiliation(s)
- Hélène Chapy
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France
| | - Bruno Saubaméa
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France
| | - Nicolas Tournier
- INSERM, CEA, Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France
| | - Fanchon Bourasset
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France
| | - Francine Behar-Cohen
- Université Paris Descartes, UMR-S 1138, Paris, France.,Physiopathologies des Maladies Oculaires, INSERM U1138, Paris, France
| | - Xavier Declèves
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France.,Assistance Publique des Hôpitaux de Paris - AP-HP, Paris, France
| | - Jean-Michel Scherrmann
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France.,Assistance Publique des Hôpitaux de Paris - AP-HP, Paris, France
| | - Salvatore Cisternino
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France.,Assistance Publique des Hôpitaux de Paris - AP-HP, Paris, France
| |
Collapse
|
17
|
Pan Y, Scanlon MJ, Owada Y, Yamamoto Y, Porter CJH, Nicolazzo JA. Fatty Acid-Binding Protein 5 Facilitates the Blood–Brain Barrier Transport of Docosahexaenoic Acid. Mol Pharm 2015; 12:4375-85. [DOI: 10.1021/acs.molpharmaceut.5b00580] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Yuji Owada
- Department
of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Minami-kogushi
1-1-1, Ube 755-8505, Japan
- Department
of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo-machi
2-1, Aoba-ku, Sendai 980-8575, Japan
| | - Yui Yamamoto
- Department
of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Minami-kogushi
1-1-1, Ube 755-8505, Japan
| | | | | |
Collapse
|
18
|
Chapy H, André P, Declèves X, Scherrmann JM, Cisternino S. A polyspecific drug/proton antiporter mediates diphenhydramine and clonidine transport at the mouse blood-retinal barrier. Br J Pharmacol 2015; 172:4714-25. [PMID: 26177775 DOI: 10.1111/bph.13246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/11/2015] [Accepted: 07/03/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Transporters at the blood-retinal barrier (BRB), as at the blood-brain barrier (BBB), regulate the distribution of compounds into the neural parenchyma. However, the expression of BRB transporters and their quantitative impact in vivo are still poorly understood. EXPERIMENTAL APPROACH Clonidine and diphenhydramine are substrates of a novel BBB drug/proton-antiporter. We evaluated their transport at the BRB by in situ carotid perfusion in wild-type or knocked-out mice for Oct1-3 (Slc22a1-3). KEY RESULTS At pharmacological exposure levels, carrier-mediated BRB influx was 2 and 12 times greater than the passive diffusion rate for clonidine and diphenhydramine, respectively. Functional identification demonstrated the involvement of a high-capacity potassium- and sodium-independent proton-antiporter that shared the features of the previously characterized clonidine, diphenhydramine and cocaine BBB transporter. The functional characterization suggests that SLC transporters Oct1-3, Mate1 (Slc47a1) and Octn1-2 (Slc22a4-5) are not involved. Melanin/retinal toxic drugs like antimalarials (amodiaquine, quinine), quinidine and tricyclic antidepressants (imipramine) acted as inhibitors of this proton-antiporter. The endogenous indole derivative tryptamine inhibited the transporter, unlike 5-HT (serotonin), dopamine or L-DOPA. Trans-stimulation experiments with [(3) H]-clonidine at the BRB indicated that diphenhydramine, nicotine, oxycodone, naloxone, tramadol, 3,4-methylenedioxyamphetamine (MDMA, ecstasy), heroin, methadone and verapamil are common substrates. CONCLUSIONS AND IMPLICATIONS A proton-antiporter is physiologically involved in the transport of clonidine and diphenhydramine and is quantitatively more important than their passive diffusion flux at the mouse BRB. The features of this molecularly unidentified transporter highlight its importance in regulating drug delivery at the retina and suggest that it has the capacity to handle several drugs.
Collapse
Affiliation(s)
- Hélène Chapy
- Variabilité de réponse aux psychotropes, INSERM U1144, Paris, France.,UMR-S 1144, Université Paris Descartes, Paris, France.,UMR-S 1144, Université Paris Diderot, Paris, France
| | - Pascal André
- Variabilité de réponse aux psychotropes, INSERM U1144, Paris, France.,UMR-S 1144, Université Paris Descartes, Paris, France.,UMR-S 1144, Université Paris Diderot, Paris, France
| | - Xavier Declèves
- Variabilité de réponse aux psychotropes, INSERM U1144, Paris, France.,UMR-S 1144, Université Paris Descartes, Paris, France.,UMR-S 1144, Université Paris Diderot, Paris, France.,Pharmacokinetics, Assistance Publique des Hôpitaux de Paris - AP-HP, Paris, France
| | - Jean-Michel Scherrmann
- Variabilité de réponse aux psychotropes, INSERM U1144, Paris, France.,UMR-S 1144, Université Paris Descartes, Paris, France.,UMR-S 1144, Université Paris Diderot, Paris, France.,Pharmacokinetics, Assistance Publique des Hôpitaux de Paris - AP-HP, Paris, France
| | - Salvatore Cisternino
- Variabilité de réponse aux psychotropes, INSERM U1144, Paris, France.,UMR-S 1144, Université Paris Descartes, Paris, France.,UMR-S 1144, Université Paris Diderot, Paris, France.,Pharmacokinetics, Assistance Publique des Hôpitaux de Paris - AP-HP, Paris, France
| |
Collapse
|
19
|
Shah KK, Boreddy PR, Abbruscato TJ. Nicotine pre-exposure reduces stroke-induced glucose transporter-1 activity at the blood-brain barrier in mice. Fluids Barriers CNS 2015; 12:10. [PMID: 25925411 PMCID: PMC4425877 DOI: 10.1186/s12987-015-0005-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/02/2015] [Indexed: 01/07/2023] Open
Abstract
Background With growing electronic cigarette usage in both the smoking and nonsmoking population, rigorous studies are needed to investigate the effects of nicotine on biological systems to determine long-term health consequences. We have previously shown that nicotine exerts specific neurovascular effects that influence blood brain barrier (BBB) function in response to stroke. In this study, we investigated the effects of nicotine on carrier-mediated glucose transport into ischemic brain. Specifically, the present study investigates glucose transporter-1 (GLUT1) function and expression at the BBB in a focal brain ischemia model of mice pre-exposed to nicotine. Methods Nicotine was administrated subcutaneously by osmotic pump at the dose of 4.5 mg/kg/day for 1, 7, or 14 days to reflect the plasma levels seen in smokers. Ischemic-reperfusion (IR) injury was induced by 1 h transient middle cerebral artery occlusion (tMCAO) and 24 h reperfusion. Glucose transport was estimated using an in situ brain perfusion technique with radiolabeled glucose and brain vascular GLUT1 expression was detected with immunofluorescence. Results The nicotine pre-exposure (1, 7 & 14 day) resulted in significant reduction in D-glucose influx rate (Kin) across the BBB, with a 49% reduction in 14 day nicotine-infused animals. We observed a 41% increase in carrier-mediated glucose transport across the BBB in saline-infused tMCAO animals compared to saline-infused sham animals. Interestingly, in the tMCAO group of animals pre-exposed to nicotine for 14 days had significantly attenuated increased glucose transport by 80% and 38% compared to saline-infused tMCAO and sham animals respectively. Furthermore, immunofluorescence studies of GLUT1 protein expression in the brain microvascular endothelium confirmed that GLUT1 was also induced in saline-infused tMCAO animals and this protein expression induction was reduced significantly (P < 0.01) with 14 day nicotine pre-exposure in tMCAO animals. Conclusions Nicotine pre-exposure reduced the IR-enhanced GLUT1 transporter function and expression at the BBB in a focal brain ischemia mouse model. These studies suggest that nicotine exposure prior to stroke could create an enhanced glucose deprived state at the neurovascular unit (NVU) and could provide an additional vulnerability to enhanced stroke injury.
Collapse
Affiliation(s)
- Kaushik K Shah
- Texas Tech University Health Sciences Center, 1300S Coulter, School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, TX, 79106, USA.
| | - Purushotham Reddy Boreddy
- Texas Tech University Health Sciences Center, 1300S Coulter, School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, TX, 79106, USA. .,National Center for Cell Science (NCCS), Cancer Biology, Laboratory No. 6, Pune, 411007, Maharashtra, India.
| | - Thomas J Abbruscato
- Texas Tech University Health Sciences Center, 1300S Coulter, School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, TX, 79106, USA.
| |
Collapse
|
20
|
Tournier N, Saba W, Goutal S, Gervais P, Valette H, Scherrmann JM, Bottlaender M, Cisternino S. Influence of P-Glycoprotein Inhibition or Deficiency at the Blood-Brain Barrier on (18)F-2-Fluoro-2-Deoxy-D-glucose ( (18)F-FDG) Brain Kinetics. AAPS JOURNAL 2015; 17:652-9. [PMID: 25716150 DOI: 10.1208/s12248-015-9739-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/10/2015] [Indexed: 01/31/2023]
Abstract
The fluorinated D-glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) is the most prevalent radiopharmaceutical for positron emission tomography (PET) imaging. P-Glycoprotein's (P-gp, MDR1, and ABCB1) function in various cancer cell lines and tumors was shown to impact (18)F-FDG incorporation, suggesting that P-gp function at the blood-brain barrier may also modulate (18)F-FDG brain kinetics. We tested the influence of P-gp inhibition using the cyclosporine analog valspodar (PSC833; 5 μM) on the uptake of (18)F-FDG in standardized human P-gp-overexpressing cells (MDCKII-MDR1). Consequences for (18)F-FDG brain kinetics were then assessed using (i) (18)F-FDG PET imaging and suitable kinetic modelling in baboons without or with P-gp inhibition by intravenous cyclosporine infusion (15 mg kg(-1) h(-1)) and (ii) in situ brain perfusion in wild-type and P-gp/Bcrp (breast cancer resistance protein) knockout mice and controlled D-glucose exposure to the brain. In vitro, the time course of (18)F-FDG uptake in MDR1 cells was influenced by the presence of valspodar in the absence of D-glucose but not in the presence of high D-glucose concentration. PET analysis revealed that P-gp inhibition had no significant impact on estimated brain kinetics parameters K 1, k 2, k 3, V T , and CMRGlc. The lack of P-gp effect on in vivo (18)F-FDG brain distribution was confirmed in P-gp/Bcrp-deficient mice. P-gp inhibition indirectly modulates (18)F-FDG uptake into P-gp-overexpressing cells, possibly through differences in the energetic cell level state. (18)F-FDG is not a P-gp substrate at the BBB and (18)F-FDG brain kinetics as well as estimated brain glucose metabolism are influenced by neither P-gp inhibition nor P-gp/Bcrp deficiencies in baboon and mice, respectively.
Collapse
Affiliation(s)
- Nicolas Tournier
- CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, 91406, France,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chapy H, Smirnova M, André P, Schlatter J, Chiadmi F, Couraud PO, Scherrmann JM, Declèves X, Cisternino S. Carrier-mediated cocaine transport at the blood-brain barrier as a putative mechanism in addiction liability. Int J Neuropsychopharmacol 2014; 18:pyu001. [PMID: 25539501 PMCID: PMC4368859 DOI: 10.1093/ijnp/pyu001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The rate of entry of cocaine into the brain is a critical factor that influences neuronal plasticity and the development of cocaine addiction. Until now, passive diffusion has been considered the unique mechanism known by which cocaine crosses the blood-brain barrier. METHODS We reassessed mechanisms of transport of cocaine at the blood-brain barrier using a human cerebral capillary endothelial cell line (hCMEC/D3) and in situ mouse carotid perfusion. RESULTS Both in vivo and in vitro cocaine transport studies demonstrated the coexistence of a carrier-mediated process with passive diffusion. At pharmacological exposure level, passive diffusion of cocaine accounted for only 22.5% of the total cocaine influx in mice and 5.9% in hCMEC/D3 cells, whereas the carrier-mediated influx rate was 3.4 times greater than its passive diffusion rate in vivo. The functional identification of this carrier-mediated transport demonstrated the involvement of a proton antiporter that shared the properties of the previously characterized clonidine and nicotine transporter. The functionnal characterization suggests that the solute carrier (SLC) transporters Oct (Slc22a1-3), Mate (Slc47a1) and Octn (Slc22a4-5) are not involved in the cocaine transport in vivo and in vitro. Diphenhydramine, heroin, tramadol, cocaethylene, and norcocaine all strongly inhibited cocaine transport, unlike benzoylecgonine. Trans-stimulation studies indicated that diphenhydramine, nicotine, 3,4-methylenedioxyamphetamine (ecstasy) and the cathinone compound 3,4-methylenedioxypyrovalerone (MDPV) were also substrates of the cocaine transporter. CONCLUSIONS Cocaine transport at the BBB involves a proton-antiporter flux that is quantitatively much more important than its passive diffusion. The molecular identification and characterization of this transporter will provide new tools to understand its role in addictive mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Salvatore Cisternino
- Variabilité de réponse aux psychotropes, INSERM, U1144, 75006 Paris, France (Drs. Chapy, Smirnova, André, Scherrmann, Declèves, Cisternino); Université Paris Descartes, UMR-S 1144, Paris, F-75006, France (Drs. Chapy, Smirnova, André, Scherrmann, Declèves, Cisternino); Université Paris Diderot, UMR-S 1144, Paris, F-75013, France (Drs. Chapy, Smirnova, André, Scherrmann, Declèves, Cisternino); Assistance publique hôpitaux de Paris, AP-HP, Jean Verdier, Bondy, F-93140, France (Drs. Schlatter, Chiadmi, Cisternino); INSERM, U1016, Institut Cochin, 75014, Paris, France (Dr. Couraud); CNRS, UMR8104, Paris, France (Dr. Couraud); Université Paris Descartes, Sorbonne Paris Cité, Paris, France (Dr. Couraud).
| |
Collapse
|
22
|
Drug Access to the Central Nervous System in Alzheimer’s Disease: Preclinical and Clinical Insights. Pharm Res 2014; 32:819-39. [DOI: 10.1007/s11095-014-1522-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022]
|
23
|
Impact of P-glycoprotein at the blood-brain barrier on the uptake of heroin and its main metabolites: behavioral effects and consequences on the transcriptional responses and reinforcing properties. Psychopharmacology (Berl) 2014; 231:3139-49. [PMID: 24705903 DOI: 10.1007/s00213-014-3490-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/05/2014] [Indexed: 12/28/2022]
Abstract
RATIONALE Transport across the BBB is a determinant of the rate and extent of drug distribution in the brain. Heroin exerts its effects through its principal metabolites 6-monoacetyl-morphine (6-MAM) and morphine. Morphine is a known substrate of P-glycoprotein (P-gp) at the blood-brain-barrier (BBB) however, little is known about the interaction of heroin and 6-MAM with P-gp. OBJECTIVE The objective of this paper is to study the role of the P-gp-mediated efflux at the BBB in the behavioral and molecular effects of heroin and morphine. METHODS The transport rates of heroin and its main metabolites, at the BBB, were measured in mice by in situ brain perfusion. We then examined the effect of inhibition of P-gp on the acute nociception, locomotor activity, and gene expression modulations induced by heroin and morphine. The effect of P-gp inhibition during the acquisition of morphine-induced place preference was also studied. RESULTS Inhibition of P-gp significantly increased the uptake of morphine but not that of heroin nor 6-MAM. Inhibition of P-gp significantly increased morphine-induced acute analgesia and locomotor activity but did not affect the behavioral effects of heroin; in addition, acute transcriptional responses to morphine were selectively modulated in the nucleus accumbens. Increasing morphine uptake by the brain significantly increased its reinforcing properties in the place preference paradigm. CONCLUSIONS The present study demonstrated that acute inhibition of P-gp not only modulates morphine-induced behavioral effects but also its transcriptional effects and reinforcing properties. This suggests that, in the case of morphine, transport across the BBB is critical for the development of dependence.
Collapse
|
24
|
Alata W, Paris-Robidas S, Emond V, Bourasset F, Calon F. Brain uptake of a fluorescent vector targeting the transferrin receptor: a novel application of in situ brain perfusion. Mol Pharm 2013; 11:243-53. [PMID: 24215184 DOI: 10.1021/mp400421a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Monoclonal antibodies (mAbs) targeting blood-brain barrier (BBB) transporters are being developed for brain drug targeting. However, brain uptake quantification remains a challenge, particularly for large compounds, and often requires the use of radioactivity. In this work, we adapted an in situ brain perfusion technique for a fluorescent mAb raised against the mouse transferrin receptor (TfR) (clone Ri7). We first confirmed in vitro that the internalization of fluorolabeled Ri7 mAbs is saturable and dependent on the TfR in N2A and bEnd5 cells. We next showed that the brain uptake coefficient (Clup) of 100 μg (∼220 nM) of Ri7 mAbs fluorolabeled with Alexa Fluor 750 (AF750) was 0.27 ± 0.05 μL g(-1) s(-1) after subtraction of values obtained with a control IgG. A linear relationship was observed between the distribution volume VD (μL g(-1)) and the perfusion time (s) over 30-120 s (r(2) = 0.997), confirming the metabolic stability of the AF750-Ri7 mAbs during perfusion. Co-perfusion of increasing quantities of unlabeled Ri7 decreased the AF750-Ri7 Clup down to control IgG levels over 500 nM, consistent with a saturable mechanism. Fluorescence microscopy analysis showed a vascular distribution of perfused AF750-Ri7 in the brain and colocalization with a marker of basal lamina. To our knowledge, this is the first reported use of the in situ brain perfusion technique combined with quantification of compounds labeled with near-infrared fluorophores. Furthermore, this study confirms the accumulation of the antitransferrin receptor Ri7 mAb in the brain of mice through a saturable uptake mechanism.
Collapse
Affiliation(s)
- Wael Alata
- Faculty of Pharmacy, Université Laval , Québec, QC G1V 0A6, Canada
| | | | | | | | | |
Collapse
|
25
|
Mehta DC, Short JL, Nicolazzo JA. Reduced CNS exposure of memantine in a triple transgenic mouse model of Alzheimer's disease assessed using a novel LC–MS technique. J Pharm Biomed Anal 2013; 85:198-206. [DOI: 10.1016/j.jpba.2013.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 02/02/2023]
|
26
|
Tournier N, Saba W, Cisternino S, Peyronneau MA, Damont A, Goutal S, Dubois A, Dollé F, Scherrmann JM, Valette H, Kuhnast B, Bottlaender M. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide. AAPS JOURNAL 2013; 15:1082-90. [PMID: 23907487 DOI: 10.1208/s12248-013-9514-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/15/2013] [Indexed: 12/21/2022]
Abstract
Glyburide (glibenclamide, GLB) is a widely prescribed antidiabetic with potential beneficial effects in central nervous system injury and diseases. In vitro studies show that GLB is a substrate of organic anion transporting polypeptide (OATP) and ATP-binding cassette (ABC) transporter families, which may influence GLB distribution and pharmacokinetics in vivo. In the present study, we used [(11)C]GLB positron emission tomography (PET) imaging to non-invasively observe the distribution of GLB at a non-saturating tracer dose in baboons. The role of OATP and P-glycoprotein (P-gp) in [(11)C]GLB whole-body distribution, plasma kinetics, and metabolism was assessed using the OATP inhibitor rifampicin and the dual OATP/P-gp inhibitor cyclosporine. Finally, we used in situ brain perfusion in mice to pinpoint the effect of ABC transporters on GLB transport at the blood-brain barrier (BBB). PET revealed the critical role of OATP on liver [(11)C]GLB uptake and its subsequent impact on [(11)C]GLB metabolism and plasma clearance. OATP-mediated uptake also occurred in the myocardium and kidney parenchyma but not the brain. The inhibition of P-gp in addition to OATP did not further influence [(11)C]GLB tissue and plasma kinetics. At the BBB, the inhibition of both P-gp and breast cancer resistance protein (BCRP) was necessary to demonstrate the role of ABC transporters in limiting GLB brain uptake. This study demonstrates that GLB distribution, metabolism, and elimination are greatly dependent on OATP activity, the first step in GLB hepatic clearance. Conversely, P-gp, BCRP, and probably multidrug resistance protein 4 work in synergy to limit GLB brain uptake.
Collapse
Affiliation(s)
- Nicolas Tournier
- CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, 91401, France,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Altered brain uptake of therapeutics in a triple transgenic mouse model of Alzheimer's disease. Pharm Res 2013; 30:2868-79. [PMID: 23794039 DOI: 10.1007/s11095-013-1116-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 06/04/2013] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this study was to systematically assess the impact of Alzheimer's disease (AD)-associated blood-brain barrier (BBB) alterations on the uptake of therapeutics into the brain. METHODS The brain uptake of probe compounds was measured in 18-20 month old wild type (WT) and triple transgenic (3×TG) AD mice using an in situ transcardiac perfusion technique. These results were mechanistically correlated with immunohistochemical and molecular studies. RESULTS The brain uptake of the paracellular marker, [(14)C] sucrose, did not differ between WT and 3×TG mice. The brain uptake of passively diffusing markers, [(3)H] diazepam and [(3)H] propranolol, decreased 54-60% in 3×TG mice, consistent with a 33.5% increase in the thickness of the cerebrovascular basement membrane in 3×TG mice. Despite a 42.4% reduction in P-gp expression in isolated brain microvessels from a sub-population of 3×TG mice (relative to WT mice), the brain uptake of P-gp substrates ([(3)H] digoxin, [(3)H] loperamide and [(3)H] verapamil) was not different between genotypes, likely due to a compensatory thickening in the cerebrovascular basement membrane counteracting any reduced efflux of these lipophilic substrates. CONCLUSION These studies systematically assessed the impact of AD on BBB drug transport in a relevant animal model, and have demonstrated a reduction in the brain uptake of passively-absorbed molecules in this mouse model of AD.
Collapse
|
28
|
Gender and strain contributions to the variability of buprenorphine-related respiratory toxicity in mice. Toxicology 2013; 305:99-108. [DOI: 10.1016/j.tox.2013.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/14/2013] [Accepted: 01/23/2013] [Indexed: 11/21/2022]
|
29
|
Respiratory toxicity of buprenorphine results from the blockage of P-glycoprotein-mediated efflux of norbuprenorphine at the blood-brain barrier in mice. Crit Care Med 2013; 40:3215-23. [PMID: 22975888 DOI: 10.1097/ccm.0b013e318265680a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Deaths due to asphyxia as well as following acute poisoning with severe respiratory depression have been attributed to buprenorphine in opioid abusers. However, in human and animal studies, buprenorphine exhibited ceiling respiratory effects, whereas its metabolite, norbuprenorphine, was assessed as being a potent respiratory depressor in rodents. Recently, norbuprenorphine, in contrast to buprenorphine, was shown in vitro to be a substrate of human P-glycoprotein, a drug-transporter involved in all steps of pharmacokinetics including transport at the blood-brain barrier. Our objectives were to assess P-glycoprotein involvement in norbuprenorphine transport in vivo and study its role in the modulation of buprenorphine-related respiratory effects in mice. SETTING University-affiliated research laboratory, INSERM U705, Paris, France. SUBJECTS Wild-type and P-glycoprotein knockout female Friend virus B-type mice. INTERVENTIONS Respiratory effects were studied using plethysmography and the P-glycoprotein role at the blood-brain barrier using in situ brain perfusion. MEASUREMENTS AND MAIN RESULTS Norbuprenorphine(≥ 1 mg/kg) and to a lesser extent buprenorphine (≥ 10 mg/kg) were responsible for dose-dependent respiratory depression combining increased inspiratory (TI) and expiratory times (TE). PSC833, a powerful P-glycoprotein inhibitor, significantly enhanced buprenorphine-related effects on TI (p < .01) and TE (p < .05) and norbuprenorphine-related effects on minute volume (VE, p < .05), TI, and TE (p < .001). In P-glycoprotein-knockout mice, buprenorphine-related effects on VE (p < .01), TE (p < .001), and TI (p < .05) and norbuprenorphine-related effects on VE (p < .05) and TI (p < .001) were significantly enhanced. Plasma norbuprenorphine concentrations were significantly increased in PSC833-treated mice (p < .001), supporting a P-glycoprotein role in norbuprenorphine pharmacokinetics. Brain norbuprenorphine efflux was significantly reduced in PSC833-treated and P-glycoprotein-knockout mice (p < .001), supporting P-glycoprotein-mediated norbuprenorphine transport at the blood-brain barrier. CONCLUSIONS P-glycoprotein plays a key-protective role in buprenorphine-related respiratory effects, by allowing norbuprenorphine efflux at the blood-brain barrier. Our findings suggest a major role for drug-drug interactions that lead to P-glycoprotein inhibition in buprenorphine-associated fatalities and respiratory depression.
Collapse
|
30
|
Cisternino S, Chapy H, André P, Smirnova M, Debray M, Scherrmann JM. Coexistence of passive and proton antiporter-mediated processes in nicotine transport at the mouse blood-brain barrier. AAPS JOURNAL 2012; 15:299-307. [PMID: 23212563 DOI: 10.1208/s12248-012-9434-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/25/2012] [Indexed: 01/04/2023]
Abstract
Nicotine, the main tobacco alkaloid leading to smoking dependence, rapidly crosses the blood-brain barrier (BBB) to become concentrated in the brain. Recently, it has been shown that nicotine interacts with some organic cation transporters (OCT), but their influence at the BBB has not yet been assessed in vivo. In this study, we characterized the transport of nicotine at the mouse luminal BBB by in situ brain perfusion. Its influx was saturable and followed the Michaelis-Menten kinetics (K(m)=2.60 mM, V(max)=37.60 nmol/s/g at pH 7.40). At its usual micromolar concentrations in the plasma, most (79%) of the net transport of nicotine at the BBB was carrier-mediated, while passive diffusion accounted for 21%. Studies on knockout mice showed that the OCT Oct1-3, P-gp, and Bcrp did not alter [(3)H]-nicotine transport at the BBB. Neither did inhibiting the transporters Mate1, Octn, or Pmat. The in vivo manipulation of intracellular and/or extracellular pH, the chemical inhibition profile, and the trans-stimulation experiments demonstrated that the nicotine transporter at the BBB shared the properties of the clonidine/proton antiporter. The molecular features of this proton-coupled antiporter have not yet been identified, but it also transports diphenhydramine and tramadol and helps nicotine cross the BBB at a faster rate and to a greater extent. The pharmacological inhibition of this nicotine/proton antiporter could represent a new strategy to reduce nicotine uptake by the brain and thus help curb addiction to smoking.
Collapse
Affiliation(s)
- Salvatore Cisternino
- INSERM U705, CNRS UMR 8206, Pharmacocinétique, Faculté de Pharmacie, Sorbonne Paris Cité, Université Paris Diderot, Université Paris Descartes, 4, Avenue de l'Observatoire, 75006 Paris, France.
| | | | | | | | | | | |
Collapse
|
31
|
Transport of biogenic amine neurotransmitters at the mouse blood-retina and blood-brain barriers by uptake1 and uptake2. J Cereb Blood Flow Metab 2012; 32:1989-2001. [PMID: 22850405 PMCID: PMC3493996 DOI: 10.1038/jcbfm.2012.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Uptake1 and uptake2 transporters are involved in the extracellular clearance of biogenic amine neurotransmitters at synaptic clefts. We looked for them at the blood-brain barrier (BBB) and blood-retina barriers (BRB), where they could be involved in regulating the neurotransmitter concentration and modulate/terminate receptor-mediated effects within the neurovascular unit (NVU). Uptake2 (Oct1-3/Slc22a1-3, Pmat/Slc29a4) and Mate1/Slc47a1 transporters are also involved in the transport of xenobiotics. We used in situ carotid perfusion of prototypic substrates like [(3)H]-1-methyl-4-phenylpyridinium ([(3)H]-MPP(+)), [(3)H]-histamine, [(3)H]-serotonin, and [(3)H]-dopamine, changes in ionic composition and genetic deletion of Oct1-3 carriers to detect uptake1 and uptake2 at the BBB and BRB. We showed that uptake1 and uptake2 are involved in the transport of [(3)H]-dopamine and [(3)H]-MPP(+) at the blood luminal BRB, but not at the BBB. These functional studies, together with quantitative RT-PCR and confocal imaging, suggest that the mouse BBB lacks uptake1 (Net/Slc6a2, Dat/Slc6a3, Sert/Slc6a4), uptake2, and Mate1 on both the luminal and abluminal sides. However, we found evidence for functional Net and Oct1 transporters at the luminal BRB. These heterogeneous transport properties of the brain and retina NVUs suggest that the BBB helps protect the brain against biogenic amine neurotransmitters in the plasma while the BRB has more of a metabolic/endocrine role.
Collapse
|
32
|
Abstract
The occurrence of altered brain glucose metabolism has long been suggested in both diabetes and Alzheimer’s diseases. However, the preceding mechanism to altered glucose metabolism has not been well understood. Glucose enters the brain via glucose transporters primarily present at the blood-brain barrier. Any changes in glucose transporter function and expression dramatically affects brain glucose homeostasis and function. In the brains of both diabetic and Alzheimer’s disease patients, changes in glucose transporter function and expression have been observed, but a possible link between the altered glucose transporter function and disease progress is missing. Future recognition of the role of new glucose transporter isoforms in the brain may provide a better understanding of brain glucose metabolism in normal and disease states. Elucidation of clinical pathological mechanisms related to glucose transport and metabolism may provide common links to the etiology of these two diseases. Considering these facts, in this review we provide a current understanding of the vital roles of a variety of glucose transporters in the normal, diabetic and Alzheimer’s disease brain.
Collapse
Affiliation(s)
- Kaushik Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA.
| | | | | |
Collapse
|
33
|
Discrepancies in the P-glycoprotein-mediated transport of (18)F-MPPF: a pharmacokinetic study in mice and non-human primates. Pharm Res 2012; 29:2468-76. [PMID: 22644589 DOI: 10.1007/s11095-012-0776-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/09/2012] [Indexed: 01/15/2023]
Abstract
PURPOSE Several in vivo studies have found that the 5-HT(1A) PET radioligand (18)F-MPPF is a substrate of rodent P-glycoprotein (P-gp). However, in vitro assays suggest that MPPF is not a substrate of human P-gp. We have now tested the influence of inhibiting P-gp on the brain kinetics of (18)F-MPPF in mice and non-human primates. METHODS We measured the peripheral kinetics (arterial input function, metabolism, free fraction in plasma (f(P))) during (18)F-MPPF brain PET scanning in baboons with or without cyclosporine A (CsA) infusion. We measured (3)H-MPPF transport at the mouse BBB using in situ brain perfusion in P-gp/Bcrp deficient mice and after inhibiting P-gp with PSC833. RESULTS There was an unexpected 1.9-fold increase in brain area under the curve in CsA-treated baboons (n = 4), with no change in radiometabolite-corrected arterial input. However, total volume of distribution corrected for f(P) (V(T)/f(P)) remained unchanged. In situ brain perfusion showed that P-gp restricted the permeability of the mouse BBB to (3)H-MPPF while Bcrp did not. CONCLUSION These and previous in vitro results suggest that P-gp may not influence the permeability of human BBB to (18)F-MPPF. However, CsA treatment increased (18)F-MPPF free fraction, which is responsible for a misleading, P-gp unrelated enhanced brain uptake.
Collapse
|
34
|
Do TM, Ouellet M, Calon F, Chimini G, Chacun H, Farinotti R, Bourasset F. Direct evidence of abca1-mediated efflux of cholesterol at the mouse blood-brain barrier. Mol Cell Biochem 2011; 357:397-404. [PMID: 21660464 DOI: 10.1007/s11010-011-0910-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/28/2011] [Indexed: 02/07/2023]
Abstract
We investigated the expression and function of Abca1 in wild-type C57BL/6, abca1(+/+), and abca1(-/-) mice brain capillaries forming the blood-brain barrier (BBB). We first demonstrated by quantitative RT-PCR and Western immunoblot that Abca1 was expressed and enriched in the wild-type mouse brain capillaries. In abca1(-/-) mice, we reported that the lack of Abca1 resulted in an 1.6-fold increase of the Abcg4 expression level compared to abca1(+/+) mice. Next, using the in situ brain perfusion technique, we showed that the [(3)H]cholesterol brain uptake clearance (Cl(up), μl/s/g brain), was significantly increased (107%) in abca1(-/-) mice compared to abca1(+/+) mice, meaning that the deficiency of Abca1 conducted to a significant decrease of the cholesterol efflux at the BBB level. In addition, the co-perfusion of probucol (Abca1 inhibitor) with [(3)H]cholesterol resulted in an increase of [(3)H]cholesterol Cl(up) (115%) in abca1(+/+) but not in abca1(-/-) mice, meaning that probucol inhibited selectively the efflux function of Abca1. In conclusion, our results demonstrated that Abca1 was expressed in the mouse brain capillaries and that Abca1 functions as an efflux transporter through the mouse BBB.
Collapse
Affiliation(s)
- Tuan Minh Do
- Laboratory of Clinical Pharmacy, EA4123, University of Paris Sud 11, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Tan SY, Kan E, Lim WY, Chay G, Law JHK, Soo GW, Bukhari NI, Segarra I. Metronidazole leads to enhanced uptake of imatinib in brain, liver and kidney without affecting its plasma pharmacokinetics in mice. J Pharm Pharmacol 2011; 63:918-25. [DOI: 10.1111/j.2042-7158.2011.01296.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Objectives
The pharmacokinetic interaction between metronidazole, an antibiotic–antiparasitic drug used to treat anaerobic bacterial and protozoal infections, and imatinib, a CYP3A4, P-glycoprotein substrate kinase inhibitor anticancer drug, was evaluated.
Methods
Male imprinting control region mice were given 50 mg/kg imatinib PO (control group) or 50 mg/kg imatinib PO, 15 min after 40 mg/kg PO metronidazole (study group). Imatinib plasma, brain, kidney and liver concentrations were measured by HPLC and non-compartmental pharmacokinetic parameters estimated.
Key findings
Metronidazole coadministration resulted in a double-peak imatinib disposition profile. The maximum concentration (Cmax) decreased by 38%, the area under the curve (AUC0–∞) decreased by 14% and the time to Cmax (Tmax) was earlier (50%) in plasma. Apparent volume of distribution (VSS/F) and oral clearance (Cl/F) increased by 21% and 17%, respectively. Imatinib tissue penetration was higher after metronidazole coadministration, with 1.7 and 2.1-fold AUC0–∞ increases in liver and kidney, respectively. Metronidazole increased imatinib's tissue-to-plasma AUC0–∞ ratio in liver from 2.29 to 4.53 and in kidney from 3.04 to 7.57, suggesting higher uptake efficiency. Brain Cmax was 3.9-fold higher than control and AUC0–t last was 2.3-fold greater than plasma (3.5% in control group). No tissue-plasma concentration correlation was found.
Conclusions
Metronidazole slightly decreased imatinib systemic exposure but enhanced liver, kidney and brain penetration, probably due to metronidazole-mediated inhibition of P-glycoprotein and other efflux transporters. The high brain exposure opens possibilities for treatment of glioma and glioblastoma. Renal and hepatic functions may need to be monitored due to potential renal and hepatic toxicity.
Collapse
Affiliation(s)
- Shin Yee Tan
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Elaine Kan
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Wei Yin Lim
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Grace Chay
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Jason H K Law
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Gian Wan Soo
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Nadeem Irfan Bukhari
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Ignacio Segarra
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Tournier N, André P, Blondeel S, Rizzo-Padoin N, du Moulinet d'Hardemarre A, Declèves X, Scherrmann JM, Cisternino S. Ibogaine labeling with 99mTc-tricarbonyl: Synthesis and transport at the mouse blood–brain barrier. J Pharm Sci 2009; 98:4650-60. [DOI: 10.1002/jps.21771] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Clonidine transport at the mouse blood-brain barrier by a new H+ antiporter that interacts with addictive drugs. J Cereb Blood Flow Metab 2009; 29:1293-304. [PMID: 19458607 DOI: 10.1038/jcbfm.2009.54] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Identifying drug transporters and their in vivo significance will help to explain why some central nervous system (CNS) drugs cross the blood-brain barrier (BBB) and reach the brain parenchyma. We characterized the transport of the drug clonidine at the luminal BBB by in situ mouse brain perfusion. Clonidine influx was saturable, followed by Michaelis-Menten kinetics (K(m)=0.62 mmol/L, V(max)=1.76 nmol/sec per g at pH 7.40), and was insensitive to both sodium and trans-membrane potential. In vivo manipulation of intracellular and/or extracellular pH and trans-stimulation showed that clonidine was transported by an H+-coupled antiporter regulated by both proton and clonidine gradients, and that diphenhydramine was also a substrate. Organic cation transporters (Oct1-3), P-gp, and Bcrp did not alter clonidine transport at the BBB in knockout mice. Secondary or tertiary amine CNS compounds such as oxycodone, morphine, diacetylmorphine, methylenedioxyamphetamine (MDMA), cocaine, and nicotine inhibited clonidine transport. However, cationic compounds that interact with choline, Mate, Octn, and Pmat transporters did not. This suggests that clonidine is transported at the luminal mouse BBB by a new H+-coupled reversible antiporter.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Aberrations in cerebral cholesterol homeostasis can lead to severe neurological diseases and have been linked to Alzheimer's disease. Many proteins involved in peripheral cholesterol metabolism are also present in the brain. Yet, brain cholesterol metabolism is very different from that in the remainder of the body. This review reports on present insights into the regulation of cerebral cholesterol homeostasis, focusing on cholesterol trafficking between astrocytes and neurons. RECENT FINDINGS Astrocytes are a major site of cholesterol synthesis. They secrete cholesterol in the form of apolipoprotein E-containing HDL-like particles. After birth, neurons are thought to reduce their cholesterol synthesis and rely predominantly on astrocytes for their cholesterol supply. How exactly neurons regulate their cholesterol supply is largely unknown. A role for the brain-specific cholesterol metabolite, 24(S)-hydroxycholesterol, in this process was recently proposed. Recent findings strengthen the link between brain cholesterol metabolism and factors involved in synaptic plasticity, a process essential for learning and memory functions, as well as regeneration, which are affected in Alzheimer's disease. SUMMARY Insight into the regulation of cerebral cholesterol homeostasis will provide possibilities to modulate the key steps involved and may lead to the development of therapies for the prevention as well as treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Monique Mulder
- Department of Internal Medicine and Division of Pharmacology, Vascular and Metabolic diseases, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
39
|
Cattelotte J, Tournier N, Rizzo-Padoin N, Schinkel AH, Scherrmann JM, Cisternino S. Changes in dipole membrane potential at the mouse blood-brain barrier enhance the transport of99mTechnetium Sestamibi more than inhibiting Abcb1, Abcc1, or Abcg2. J Neurochem 2009; 108:767-75. [DOI: 10.1111/j.1471-4159.2008.05832.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Yousif S, Saubaméa B, Cisternino S, Marie-Claire C, Dauchy S, Scherrmann JM, Declèves X. Effect of chronic exposure to morphine on the rat blood-brain barrier: focus on the P-glycoprotein. J Neurochem 2008; 107:647-57. [PMID: 18761714 DOI: 10.1111/j.1471-4159.2008.05647.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Morphine may affect the properties of the blood-brain barrier (BBB) by modifying the expression of certain BBB markers. We have determined the effect of chronic morphine treatment on the expression and function of some BBB markers in the rat. The mRNAs of 19 selected genes encoding caveolins, endothelial transporters, receptors and tight junctions proteins in the total RNA of isolated cortex microvessels were assayed by quantitative RT-PCR (qRT-PCR). The expression of genes Mdr1a, Mrp1, Bcrp, Glut-1 and Occludin, was slightly increased, while that of Flk-1 was decreased in microvessels from morphine-treated rats. The expression of the Mrd1a and Mdr1b genes encoding the P-glycoprotein (P-gp) also increased in the whole hippocampus and cortex of morphine-treated rats. The Mdr1a gene induction (1.38-fold) observed by qRT-PCR was also confirmed using in situ hybridization technique (1.40-fold). Immunoblotting revealed an increase in P-gp expression in the hippocampus (1.8-fold) and cortex (1.36-fold) of morphine-treated rats, but no effect in isolated microvessels. In contrast, morphine treatment increased by 1.48-fold the expression of P-gp in a large vessel-enriched fraction. The integrity of the BBB, measured by in situ brain perfusion of [(14)C]-sucrose, and the activity of P-gp at the BBB, measured with the P-gp substrate [(3)H]-colchicine, were not modified by morphine. Immunohistofluorescence experiments revealed that P-gp expression is restricted to large vessels and microvessels in control rats and that morphine treatment did not induce the expression of P-gp in the brain parenchyma (astrocytes or neurons). Taken together, our results showed that chronic morphine treatment does not significantly alter BBB integrity or P-gp activity. The impact of morphine-mediated P-gp induction observed in large vessels remains to be determined in terms of brain disposition of drugs that are P-gp substrates.
Collapse
Affiliation(s)
- Salah Yousif
- CNRS, UMR 7157 et Université Paris 7, Neuropsychopharmacologie des addictions, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | |
Collapse
|