1
|
Zhou R, Li J, Wang R, Chen Z, Zhou F. The neurovascular unit in healthy and injured spinal cord. J Cereb Blood Flow Metab 2023; 43:1437-1455. [PMID: 37190756 PMCID: PMC10414016 DOI: 10.1177/0271678x231172008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
The neurovascular unit (NVU) reflects the close temporal and spatial link between neurons and blood vessels. However, the understanding of the NVU in the spinal cord is far from clear and largely based on generalized knowledge obtained from the brain. Herein, we review the present knowledge of the NVU and highlight candidate approaches to investigate the NVU, particularly focusing on the spinal cord. Several unique features maintain the highly regulated microenvironment in the NVU. Autoregulation and neurovascular coupling ensure regional blood flow meets the metabolic demand according to the blood supply or local neural activation. The blood-central nervous system barrier partitions the circulating blood from neural parenchyma and facilitates the selective exchange of substances. Furthermore, we discuss spinal cord injury (SCI) as a common injury from the perspective of NVU dysfunction. Hopefully, this review will help expand the understanding of the NVU in the spinal cord and inspire new insights into SCI.
Collapse
Affiliation(s)
- Rubing Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junzhao Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Lee H, Choi W, Kim C, Park B, Kim J. Review on ultrasound-guided photoacoustic imaging for complementary analyses of biological systems in vivo. Exp Biol Med (Maywood) 2023; 248:762-774. [PMID: 37452700 PMCID: PMC10468641 DOI: 10.1177/15353702231181341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Photoacoustic imaging has been developed as a new biomedical molecular imaging modality. Due to its similarity to conventional ultrasound imaging in terms of signal detection and image generation, dual-modal photoacoustic and ultrasound imaging has been applied to visualize physiological and morphological information in biological systems in vivo. By complementing each other, dual-modal photoacoustic and ultrasound imaging showed synergistic advances in photoacoustic imaging with the guidance of ultrasound images. In this review, we introduce our recent progresses in dual-modal photoacoustic and ultrasound imaging systems at various scales of study, from preclinical small animals to clinical humans. A summary of the works reveals various strategies for combining the structural information of ultrasound images with the molecular information of photoacoustic images.
Collapse
Affiliation(s)
- Haeni Lee
- Department of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wonseok Choi
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Tsai CH, Chu TS, Hung YT, Lee MY, Chen HH, Chen LT, Ger TR, Wang YH, Chiang NJ, Liao LD. Revisiting the cerebral hemodynamics of awake, freely moving rats with repeated ketamine self-administration using a miniature photoacoustic imaging system. NEUROPHOTONICS 2022; 9:045003. [PMID: 36338453 PMCID: PMC9623815 DOI: 10.1117/1.nph.9.4.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Revealing the dynamic associations between brain functions and behaviors is a significant challenge in neurotechnology, especially for awake subjects. Imaging cerebral hemodynamics in awake animal models is important because the collected data more realistically reflect human disease states. AIM We previously reported a miniature head-mounted scanning photoacoustic imaging (hmPAI) system. In the present study, we utilized this system to investigate the effects of ketamine on the cerebral hemodynamics of normal rats and rats subjected to prolonged ketamine self-administration. APPROACH The cortical superior sagittal sinus (SSS) was continuously monitored. The full-width at half-maximum (FWHM) of the photoacoustic (PA) A-line signal was used as an indicator of the SSS diameter, and the number of pixels in PA B-scan images was used to investigate changes in the cerebral blood volume (CBV). RESULTS We observed a significantly higher FWHM (blood vessel diameter) and CBV in normal rats injected with ketamine than in normal rats injected with saline. For rats subjected to prolonged ketamine self-administration, no significant changes in either the blood vessel diameter or CBV were observed. CONCLUSIONS The lack of significant change in prolonged ketamine-exposed rats was potentially due to an increased ketamine tolerance. Our device can reliably detect changes in the dilation of cortical blood vessels and the CBV. This study validates the utility of the developed hmPAI system in an awake, freely moving rat model for behavioral, cognitive, and preclinical cerebral disease studies.
Collapse
Affiliation(s)
- Yuhling Wang
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Hua Tsai
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Tsung-Sheng Chu
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
- Chung Yuan Christian University, Department of Biomedical Engineering, Taoyuan City, Taiwan
| | - Yun-Ting Hung
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Yi Lee
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Hwei-Hsien Chen
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Li-Tzong Chen
- Kaohsiung Medical University, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
| | - Tzong-Rong Ger
- Chung Yuan Christian University, Department of Biomedical Engineering, Taoyuan City, Taiwan
| | - Yung-Hsuan Wang
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
| | - Nai-Jung Chiang
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
- Taipei Veterans General Hospital, Department of Oncology, Taipei City, Taiwan
| | - Lun-De Liao
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
4
|
Challenges and Perspectives of Mapping Locus Coeruleus Activity in the Rodent with High-Resolution fMRI. Brain Sci 2022; 12:brainsci12081085. [PMID: 36009148 PMCID: PMC9405540 DOI: 10.3390/brainsci12081085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
The locus coeruleus (LC) is one of the most commonly studied brainstem nuclei when investigating brain–behavior associations. The LC serves as a major brainstem relay for both ascending bottom-up and descending top-down projections. Specifically, noradrenergic (NA) LC neurons not only connect globally to higher-order subcortical nuclei and cortex to mediate arousal and attention but also directly project to other brainstem nuclei and to the spinal cord to control autonomic function. Despite the extensive investigation of LC function using electrophysiological recordings and cellular/molecular imaging for both cognitive research and the contribution of LC to different pathological states, the role of neuroimaging to investigate LC function has been restricted. For instance, it remains challenging to identify LC-specific activation with functional MRI (fMRI) in animal models, due to the small size of this nucleus. Here, we discuss the complexity of fMRI applications toward LC activity mapping in mouse brains by highlighting the technological challenges. Further, we introduce a single-vessel fMRI mapping approach to elucidate the vascular specificity of high-resolution fMRI signals coupled to LC activation in the mouse brainstem.
Collapse
|
5
|
Robin J, Ozbek A, Reiss M, Dean-Ben XL, Razansky D. Dual-Mode Volumetric Optoacoustic and Contrast Enhanced Ultrasound Imaging With Spherical Matrix Arrays. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:846-856. [PMID: 34735340 DOI: 10.1109/tmi.2021.3125398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spherical matrix arrays represent an advantageous tomographic detection geometry for non-invasive deep tissue mapping of vascular networks and oxygenation with volumetric optoacoustic tomography (VOT). Hybridization of VOT with ultrasound (US) imaging remains difficult with this configuration due to the relatively large inter-element pitch of spherical arrays. We suggest a new approach for combining VOT and US contrast-enhanced 3D imaging employing injection of clinically-approved microbubbles. Power Doppler (PD) and US localization imaging were enabled with a sparse US acquisition sequence and model-based inversion based on infimal convolution of total variation (ICTV) regularization. In vitro experiments in tissue-mimicking phantoms and in living mouse brain demonstrate the powerful capabilities of the new dual-mode imaging approach attaining 80 μm spatial resolution and a more than 10 dB signal to noise improvement with respect to a classical delay and sum beamformer. Microbubble localization and tracking allowed for flow velocity mapping up to 40 mm/s.
Collapse
|
6
|
Kang J, Koehler RC, Graham EM, Boctor EM. Photoacoustic assessment of the fetal brain and placenta as a method of non-invasive antepartum and intrapartum monitoring. Exp Neurol 2022; 347:113898. [PMID: 34662542 PMCID: PMC8756814 DOI: 10.1016/j.expneurol.2021.113898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022]
Abstract
A noninvasive monitor for concurrent evaluation of placental and fetal sagittal sinus sO 2 for both antepartum surveillance at the late 2nd and 3rd trimesters and intrapartum monitoring would be a great advantage over current methods. A PA fetal brain and placental monitor has potential value to rapidly identify the fetus at risk for developing hypoxia and ischemia of a sufficient degree that brain injury or death may develop, which may be prevented by intervention with delivery and other follow-up treatments.
Collapse
Affiliation(s)
- Jeeun Kang
- Laboratory for Computational Sensing and Robotics, Whiting School of Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Raymond C Koehler
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Ernest M Graham
- Department of Gyn-Ob, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of Medicine; Baltimore, MD, United States of America.
| | - Emad M Boctor
- Laboratory for Computational Sensing and Robotics, Whiting School of Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
7
|
Markicevic M, Savvateev I, Grimm C, Zerbi V. Emerging imaging methods to study whole-brain function in rodent models. Transl Psychiatry 2021; 11:457. [PMID: 34482367 PMCID: PMC8418612 DOI: 10.1038/s41398-021-01575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
In the past decade, the idea that single populations of neurons support cognition and behavior has gradually given way to the realization that connectivity matters and that complex behavior results from interactions between remote yet anatomically connected areas that form specialized networks. In parallel, innovation in brain imaging techniques has led to the availability of a broad set of imaging tools to characterize the functional organization of complex networks. However, each of these tools poses significant technical challenges and faces limitations, which require careful consideration of their underlying anatomical, physiological, and physical specificity. In this review, we focus on emerging methods for measuring spontaneous or evoked activity in the brain. We discuss methods that can measure large-scale brain activity (directly or indirectly) with a relatively high temporal resolution, from milliseconds to seconds. We further focus on methods designed for studying the mammalian brain in preclinical models, specifically in mice and rats. This field has seen a great deal of innovation in recent years, facilitated by concomitant innovation in gene-editing techniques and the possibility of more invasive recordings. This review aims to give an overview of currently available preclinical imaging methods and an outlook on future developments. This information is suitable for educational purposes and for assisting scientists in choosing the appropriate method for their own research question.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Iurii Savvateev
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
- Decision Neuroscience Lab, HEST, ETH Zürich, Zürich, Switzerland
| | - Christina Grimm
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Valerio Zerbi
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
An Adjustable Dark-Field Acoustic-Resolution Photoacoustic Imaging System with Fiber Bundle-Based Illumination. BIOSENSORS-BASEL 2021; 11:bios11080262. [PMID: 34436064 PMCID: PMC8391745 DOI: 10.3390/bios11080262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Photoacoustic (PA) imaging has become one of the major imaging methods because of its ability to record structural information and its high spatial resolution in biological tissues. Current commercialized PA imaging instruments are limited to varying degrees by their bulky size (i.e., the laser or scanning stage) or their use of complex optical components for light delivery. Here, we present a robust acoustic-resolution PA imaging system that consists of four adjustable optical fibers placed 90° apart around a 50 MHz high-frequency ultrasound (US) transducer. In the compact design concept of the PA probe, the relative illumination parameters (i.e., angles and fiber size) can be adjusted to fit different imaging applications in a single setting. Moreover, this design concept involves a user interface built in MATLAB. We first assessed the performance of our imaging system using in vitro phantom experiments. We further demonstrated the in vivo performance of the developed system in imaging (1) rat ear vasculature, (2) real-time cortical hemodynamic changes in the superior sagittal sinus (SSS) during left-forepaw electrical stimulation, and (3) real-time cerebral indocyanine green (ICG) dynamics in rats. Collectively, this alignment-free design concept of a compact PA probe without bulky optical lens systems is intended to satisfy the diverse needs in preclinical PA imaging studies.
Collapse
|
9
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
10
|
In Vivo Assessment of Hypoxia Levels in Pancreatic Tumors Using a Dual-Modality Ultrasound/Photoacoustic Imaging System. MICROMACHINES 2021; 12:mi12060668. [PMID: 34200388 PMCID: PMC8229757 DOI: 10.3390/mi12060668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
Noninvasive anatomical and functional imaging has become an essential tool to evaluate tissue oxygen saturation dynamics in preclinical or clinical studies of hypoxia. Our dual-wavelength technique for photoacoustic (PA) imaging based on the differential absorbance spectrum of oxyhemoglobin (oxy-Hb) and deoxyhemoglobin (deoxy-Hb) can quantify tissue oxygen saturation using the intrinsic contrast property. PA imaging of tissue oxygen saturation can be used to monitor tumor-related hypoxia, which is a particularly relevant functional parameter of the tumor microenvironment that has a strong influence on tumor aggressiveness. The simultaneous acquisition of anatomical and functional information using dual-modality ultrasound (US) and PA imaging technology enhances the preclinical applicability of the method. Here, the developed dual-modality US/PA system was used to measure relative tissue oxygenation using the dual-wavelength technique. Tissue oxygen saturation was quantified in a pancreatic tumor mouse model. The differences in tissue oxygenation were detected by comparing pancreatic samples from normal and tumor-bearing mice at various time points after implantation. The use of an in vivo pancreatic tumor model revealed changes in hypoxia at various stages of tumor growth. The US/PA imaging data positively correlated with the results of immunohistochemical staining for hypoxia. Thus, our dual-modality US/PA imaging system can be used to reliably assess and monitor hypoxia in pancreatic tumor mouse models. These findings enable the use of a combination of US and PA imaging to acquire anatomical and functional information on tumor growth and to evaluate treatment responses in longitudinal preclinical studies.
Collapse
|
11
|
Hemodynamic response to sensory stimulation in mice: Comparison between functional ultrasound and optoacoustic imaging. Neuroimage 2021; 237:118111. [PMID: 33940140 DOI: 10.1016/j.neuroimage.2021.118111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/18/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022] Open
Abstract
Intense efforts are underway to develop functional imaging modalities for capturing brain activity at the whole organ scale with high spatial and temporal resolution. Functional optoacoustic (fOA) imaging is emerging as a new tool to monitor multiple hemodynamic parameters across the mouse brain, but its sound validation against other neuroimaging modalities is often lacking. Here we investigate mouse brain responses to peripheral sensory stimulation using both fOA and functional ultrasound (fUS) imaging. The two modalities operate under similar spatio-temporal resolution regime, with a potential to provide synergistic and complementary hemodynamic readouts. Specific contralateral activation was observed with sub-millimeter spatial resolution with both methods. Sensitivity to hemodynamic activity was found to be on comparable levels, with the strongest responses obtained in the oxygenated hemoglobin channel of fOA. While the techniques attained highly correlated hemodynamic responses, the differential fOA readings of oxygenated and deoxygenated haemoglobin provided complementary information to the blood flow contrast of fUS. The multi-modal approach may thus emerge as a powerful tool providing new insights into brain function, complementing our current knowledge generated with well-established neuroimaging methods.
Collapse
|
12
|
Liang B, Wang S, Shen F, Liu QH, Gong Y, Yao J. Acoustic impact of the human skull on transcranial photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:1512-1528. [PMID: 33796369 PMCID: PMC7984784 DOI: 10.1364/boe.420084] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 05/03/2023]
Abstract
With balanced spatial resolution, imaging depth, and functional sensitivity, photoacoustic tomography (PAT) hold great promise for human brain imaging. However, the strong acoustic attenuation and aberration of the human skull (∼8 mm thick) are longstanding technical challenges for PAT of the human brain. In this work, we numerically investigated the impacts of the stratified human skull on photoacoustic wave propagation (i.e., the forward model) and PAT image formation (i.e., the inverse model). We simulated two representative transcranial PAT implementations: photoacoustic computed tomography (PACT) and photoacoustic macroscopy (PAMac). In the forward model, we simulated the detailed photoacoustic wave propagation from a point or line source through a digital human skull. The wave attenuation, refraction, mode conversation, and reverberation were thoroughly investigated. In the inverse model, we reconstructed the transcranial PACT and PAMac images of a point or line target enclosed by the human skull. Our results demonstrate that transcranial PAMac suffers mainly from wave reverberation within the skull, leading to prolonged signal duration and reduced axial resolution. Transcranial PACT is more susceptible to the skull's acoustic distortion, mode conversion, and reverberation, which collectively lead to strong image artifacts and deteriorated spatial resolutions. We also found that PACT with a ring-shaped transducer array shows more tolerance of the skull's adverse impacts and can provide more accurate image reconstruction. Our results suggest that incorporating the skull's geometry and acoustic properties can improve transcranial PAT image reconstruction. We expect that our results have provided a more comprehensive understanding of the acoustic impact of the human skull on transcranial PAT.
Collapse
Affiliation(s)
- Bingyang Liang
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
- National Key Laboratory on Vacuum Electronics, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Shaomeng Wang
- National Key Laboratory on Vacuum Electronics, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Fei Shen
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Qing Huo Liu
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Yubin Gong
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
- National Key Laboratory on Vacuum Electronics, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
13
|
Olefir I, Ghazaryan A, Yang H, Malekzadeh-Najafabadi J, Glasl S, Symvoulidis P, O'Leary VB, Sergiadis G, Ntziachristos V, Ovsepian SV. Spatial and Spectral Mapping and Decomposition of Neural Dynamics and Organization of the Mouse Brain with Multispectral Optoacoustic Tomography. Cell Rep 2020; 26:2833-2846.e3. [PMID: 30840901 PMCID: PMC6403416 DOI: 10.1016/j.celrep.2019.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
In traditional optical imaging, limited light penetration constrains high-resolution interrogation to tissue surfaces. Optoacoustic imaging combines the superb contrast of optical imaging with deep penetration of ultrasound, enabling a range of new applications. We used multispectral optoacoustic tomography (MSOT) for functional and structural neuroimaging in mice at resolution, depth, and specificity unattainable by other neuroimaging modalities. Based on multispectral readouts, we computed hemoglobin gradient and oxygen saturation changes related to processing of somatosensory signals in different structures along the entire subcortical-cortical axis. Using temporal correlation analysis and seed-based maps, we reveal the connectivity between cortical, thalamic, and sub-thalamic formations. With the same modality, high-resolution structural tomography of intact mouse brain was achieved based on endogenous contrasts, demonstrating near-perfect matches with anatomical features revealed by histology. These results extend the limits of noninvasive observations beyond the reach of standard high-resolution neuroimaging, verifying the suitability of MSOT for small-animal studies.
Collapse
Affiliation(s)
- Ivan Olefir
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany
| | - Ara Ghazaryan
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Hong Yang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jaber Malekzadeh-Najafabadi
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Sarah Glasl
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Panagiotis Symvoulidis
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine of Charles University, 11636 Prague, Czech Republic
| | - George Sergiadis
- Department of Electrical and Computer Engineering, Aristotle University, 54124 Thessaloniki, Greece
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany.
| | - Saak V Ovsepian
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany; Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 25067 Klecany, Czech Republic; Department of Psychiatry and Medical Psychology, Third Faculty of Medicine of Charles University, 11636 Prague, Czech Republic.
| |
Collapse
|
14
|
Mc Larney B, Hutter MA, Degtyaruk O, Deán-Ben XL, Razansky D. Monitoring of Stimulus Evoked Murine Somatosensory Cortex Hemodynamic Activity With Volumetric Multi-Spectral Optoacoustic Tomography. Front Neurosci 2020; 14:536. [PMID: 32581686 PMCID: PMC7283916 DOI: 10.3389/fnins.2020.00536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/01/2020] [Indexed: 01/17/2023] Open
Abstract
Sensory stimulation is an attractive paradigm for studying brain activity using various optical-, ultrasound- and MRI-based functional neuroimaging methods. Optoacoustics has been recently suggested as a powerful new tool for scalable mapping of multiple hemodynamic parameters with rich contrast and previously unachievable spatio-temporal resolution. Yet, its utility for studying the processing of peripheral inputs at the whole brain level has so far not been quantified. We employed volumetric multi-spectral optoacoustic tomography (vMSOT) to non-invasively monitor the HbO, HbR, and HbT dynamics across the mouse somatosensory cortex evoked by electrical paw stimuli. We show that elevated contralateral activation is preserved in the HbO map (invisible to MRI) under isoflurane anesthesia. Brain activation is shown to be predominantly confined to the somatosensory cortex, with strongest activation in the hindpaw region of the contralateral sensorimotor cortex. Furthermore, vMSOT detected the presence of an initial dip in the contralateral hindpaw region in the delta HbO channel. Sensorimotor cortical activity was identified over all other regions in HbT and HbO but not in HbR. Pearson’s correlation mapping enabled localizing the response to the sensorimotor cortex further highlighting the ability of vMSOT to bridge over imaging performance deficiencies of other functional neuroimaging modalities.
Collapse
Affiliation(s)
- Benedict Mc Larney
- Faculty of Medicine, Technical University of Munich, Munich, Germany.,Institute for Biological and Medical Imaging, Helmholtz Center Munich, Munich, Germany
| | | | - Oleksiy Degtyaruk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Munich, Germany.,Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Daniel Razansky
- Faculty of Medicine, Technical University of Munich, Munich, Germany.,Institute for Biological and Medical Imaging, Helmholtz Center Munich, Munich, Germany.,Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| |
Collapse
|
15
|
He Y, Shi J, Maslov KI, Cao R, Wang LV. Wave of single-impulse-stimulated fast initial dip in single vessels of mouse brains imaged by high-speed functional photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-11. [PMID: 32529816 PMCID: PMC7289453 DOI: 10.1117/1.jbo.25.6.066501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/28/2020] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE The initial dip in hemoglobin-oxygenation response to stimulations is a spatially confined endogenous indicator that is faster than the blood flow response, making it a desired label-free contrast to map the neural activity. A fundamental question is whether a single-impulse stimulus, much shorter than the response delay, could produce an observable initial dip without repeated stimulation. AIM To answer this question, we report high-speed functional photoacoustic (PA) microscopy to investigate the initial dip in mouse brains. APPROACH We developed a Raman-laser-based dual-wavelength functional PA microscope that can image capillary-level blood oxygenation at a 1-MHz one-dimensional imaging rate. This technology was applied to monitor the hemodynamics of mouse cerebral vasculature after applying an impulse stimulus to the forepaw. RESULTS We observed a transient initial dip in cerebral microvessels starting as early as 0.13 s after the onset of the stimulus. The initial dip and the subsequent overshoot manifested a wave pattern propagating across different microvascular compartments. CONCLUSIONS We quantified both spatially and temporally the single-impulse-stimulated microvascular hemodynamics in mouse brains at single-vessel resolution. Fast label-free imaging of single-impulse response holds promise for real-time brain-computer interfaces.
Collapse
Affiliation(s)
- Yun He
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Junhui Shi
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Konstantin I. Maslov
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Rui Cao
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
- Address all correspondence to Lihong V. Wang, E-mail:
| |
Collapse
|
16
|
Li Y, Li L, Zhu L, Maslov K, Shi J, Hu P, Bo E, Yao J, Liang J, Wang L, Wang LV. Snapshot Photoacoustic Topography Through an Ergodic Relay for High-throughput Imaging of Optical Absorption. NATURE PHOTONICS 2020; 14:164-170. [PMID: 34178097 PMCID: PMC8223468 DOI: 10.1038/s41566-019-0576-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Current embodiments of photoacoustic imaging require either serial detection with a single-element ultrasonic transducer or parallel detection with an ultrasonic array, necessitating a trade-off between cost and throughput. Here, we present photoacoustic topography through an ergodic relay (PATER) for low-cost high-throughput snapshot widefield imaging. Encoding spatial information with randomized temporal signatures through ergodicity, PATER requires only a single-element ultrasonic transducer to capture a widefield image with a single laser shot. We applied PATER to demonstrate both functional imaging of hemodynamic responses and high-speed imaging of blood pulse wave propagation in mice in vivo. Leveraging the high frame rate of 2 kHz, PATER tracked and localized moving melanoma tumor cells in the mouse brain in vivo, which enabled flow velocity quantification and super-resolution imaging. Among the potential biomedical applications of PATER, wearable monitoring of human vital signs in particular is envisaged.
Collapse
Affiliation(s)
- Yang Li
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Liren Zhu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Junhui Shi
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Peng Hu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - En Bo
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899, USA
| | - Jinyang Liang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Lidai Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Correspondence should be addressed to L.V.W. ()
| |
Collapse
|
17
|
Ovsepian SV, Olefir I, Ntziachristos V. Advances in Optoacoustic Neurotomography of Animal Models. Trends Biotechnol 2019; 37:1315-1326. [PMID: 31662189 DOI: 10.1016/j.tibtech.2019.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/02/2023]
Abstract
Unlike traditional optical methods, optoacoustic imaging is less sensitive to scattering of ballistic photons, so it is capable of high-resolution interrogation at a greater depth. By integrating video-rate visualization with multiplexing and sensing a range of endogenous and exogenous chromophores, optoacoustic imaging has matured into a versatile noninvasive investigation modality with rapidly expanding use in biomedical research. We review the principal features of the technology and discuss recent advances it has enabled in structural, functional, and molecular neuroimaging in small-animal models. In extending the boundaries of noninvasive observation beyond the reach of customary photonic methods, the latest developments in optoacoustics have substantially advanced neuroimaging inquiry, with promising implications for basic and translational studies.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; School of Bioengineering, Technical University of Munich, 81675 Munich, Germany; Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Third Faculty of Medicine, Charles University, 116 36 Prague, Czech Republic.
| | - Ivan Olefir
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; School of Bioengineering, Technical University of Munich, 81675 Munich, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; School of Bioengineering, Technical University of Munich, 81675 Munich, Germany.
| |
Collapse
|
18
|
Gottschalk S, Degtyaruk O, Mc Larney B, Rebling J, Deán-Ben XL, Shoham S, Razansky D. Isolated Murine Brain Model for Large-Scale Optoacoustic Calcium Imaging. Front Neurosci 2019; 13:290. [PMID: 31068768 PMCID: PMC6491858 DOI: 10.3389/fnins.2019.00290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/12/2019] [Indexed: 12/29/2022] Open
Abstract
Real-time visualization of large-scale neural dynamics in whole mammalian brains is hindered with existing neuroimaging methods having limited capacity when it comes to imaging large tissue volumes at high speeds. Optoacoustic imaging has been shown to be capable of real-time three-dimensional imaging of multiple cerebral hemodynamic parameters in rodents. However, optoacoustic imaging of calcium activity deep within the mammalian brain is hampered by strong blood absorption in the visible light spectrum as well as a lack of activity labels excitable in the near-infrared window. We have developed and validated an isolated whole mouse brain preparation labeled with genetically encoded calcium indicator GCaMP6f, which can closely resemble in vivo conditions. An optoacoustic imaging system coupled to a superfusion system was further designed and used for rapid volumetric monitoring of stimulus-evoked calcium dynamics in the brain. These new imaging setup and isolated preparation's protocols and characteristics are described here in detail. Our new technique captures calcium fluxes as true three-dimensional information across the entire brain with temporal resolution of 10 ms and spatial resolution of 150 μm, thus enabling large-scale neural recording at penetration depths and spatio-temporal resolution scales not covered with any existing neuroimaging techniques.
Collapse
Affiliation(s)
- Sven Gottschalk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Oleksiy Degtyaruk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Benedict Mc Larney
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Rebling
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Technical University of Munich, Munich, Germany
- Faculty of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Xosé Luis Deán-Ben
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Shy Shoham
- Tech4Health and Neuroscience Institutes and Department of Ophthalmology, New York University Langone Health, New York, NY, United States
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Technical University of Munich, Munich, Germany
- Faculty of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Abstract
Fuelled by innovation, optical microscopy plays a critical role in the life sciences and medicine, from basic discovery to clinical diagnostics. However, optical microscopy is limited by typical penetration depths of a few hundred micrometres for in vivo interrogations in the visible spectrum. Optoacoustic microscopy complements optical microscopy by imaging the absorption of light, but it is similarly limited by penetration depth. In this Review, we summarize progress in the development and applicability of optoacoustic mesoscopy (OPAM); that is, optoacoustic imaging with acoustic resolution and wide-bandwidth ultrasound detection. OPAM extends the capabilities of optical imaging beyond the depths accessible to optical and optoacoustic microscopy, and thus enables new applications. We explain the operational principles of OPAM, its placement as a bridge between optoacoustic microscopy and optoacoustic macroscopy, and its performance in the label-free visualization of tissue pathophysiology, such as inflammation, oxygenation, vascularization and angiogenesis. We also review emerging applications of OPAM in clinical and biological imaging.
Collapse
|
20
|
Bandla A, Liao LD, Chan SJ, Ling JM, Liu YH, Shih YYI, Pan HC, Wong PTH, Lai HY, King NKK, Chen YY, Ng WH, Thakor NV. Simultaneous functional photoacoustic microscopy and electrocorticography reveal the impact of rtPA on dynamic neurovascular functions after cerebral ischemia. J Cereb Blood Flow Metab 2018; 38:980-995. [PMID: 28685662 PMCID: PMC5999003 DOI: 10.1177/0271678x17712399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The advance of thrombolytic therapy has been hampered by the lack of optimization of the therapy during the hyperacute phase of focal ischemia. Here, we investigate neurovascular dynamics using a custom-designed hybrid electrocorticography (ECoG)-functional photoacoustic microscopy (fPAM) imaging system during the hyperacute phase (first 6 h) of photothrombotic ischemia (PTI) in male Wistar rats following recombinant tissue plasminogen activator (rtPA)-mediated thrombolysis. We reported, for the first time, the changes in neural activity and cerebral hemodynamic responses following rtPA infusion at different time points post PTI. Interestingly, very early administration of rtPA (< 1 h post PTI) resulted in only partial recovery of neurovascular dynamics (specifically , neural activity recovered to 71 ± 3.5% of baseline and hemodynamics to only 52 ± 2.6% of baseline) and late administration of rtPA (> 4 h post PTI) resulted in the deterioration of neurovascular function. A therapeutic window between 1 and 3 h post PTI was found to improve recovery of neurovascular function (i.e. significant restoration of neural activity to 93 ± 4.2% of baseline and hemodynamics to 81 ± 2.1% of baseline, respectively). The novel combination of fPAM and ECoG enables direct mapping of neurovascular dynamics and serves as a platform to evaluate potential interventions for stroke.
Collapse
Affiliation(s)
- Aishwarya Bandla
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,2 Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Lun-De Liao
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,3 Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Taiwan, R.O.C
| | - Su Jing Chan
- 4 Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA.,5 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ji Min Ling
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,6 Department of Neurosurgery, National Neuroscience Institute, Singapore.,7 SingHealth Duke-NUS Neuroscience Academic Clinical Program, National Neuroscience Institute, Singapore
| | - Yu-Hang Liu
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,8 Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Yen-Yu Ian Shih
- 9 Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Han-Chi Pan
- 3 Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Taiwan, R.O.C
| | - Peter Tsun-Hon Wong
- 5 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hsin-Yi Lai
- 10 Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, China
| | | | - You-Yin Chen
- 11 Department of Biomedical Engineering, National Yang Ming University, Taiwan, R.O.C
| | - Wai Hoe Ng
- 6 Department of Neurosurgery, National Neuroscience Institute, Singapore.,7 SingHealth Duke-NUS Neuroscience Academic Clinical Program, National Neuroscience Institute, Singapore
| | - Nitish V Thakor
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,2 Department of Biomedical Engineering, National University of Singapore, Singapore.,8 Department of Electrical and Computer Engineering, National University of Singapore, Singapore.,12 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Pushing the Boundaries of Neuroimaging with Optoacoustics. Neuron 2017; 96:966-988. [DOI: 10.1016/j.neuron.2017.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
|
22
|
Liu YH, Chan SJ, Pan HC, Bandla A, King NKK, Wong PTH, Chen YY, Ng WH, Thakor NV, Liao LD. Integrated treatment modality of cathodal-transcranial direct current stimulation with peripheral sensory stimulation affords neuroprotection in a rat stroke model. NEUROPHOTONICS 2017; 4:045002. [PMID: 29021986 PMCID: PMC5627795 DOI: 10.1117/1.nph.4.4.045002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/12/2017] [Indexed: 05/03/2023]
Abstract
Cathodal-transcranial direct current stimulation induces therapeutic effects in animal ischemia models by preventing the expansion of ischemic injury during the hyperacute phase of ischemia. However, its efficacy is limited by an accompanying decrease in cerebral blood flow. On the other hand, peripheral sensory stimulation can increase blood flow to specific brain areas resulting in rescue of neurovascular functions from ischemic damage. Therefore, the two modalities appear to complement each other to form an integrated treatment modality. Our results showed that hemodynamics was improved in a photothrombotic ischemia model, as cerebral blood volume and hemoglobin oxygen saturation ([Formula: see text]) recovered to 71% and 76% of the baseline values, respectively. Furthermore, neural activities, including somatosensory-evoked potentials (110% increase), the alpha-to-delta ratio (27% increase), and the [Formula: see text] ratio (27% decrease), were also restored. Infarct volume was reduced by 50% with a 2-fold preservation in the number of neurons and a 6-fold reduction in the number of active microglia in the infarct region compared with the untreated group. Grip strength was also better preserved (28% higher) compared with the untreated group. Overall, this nonpharmacological, nonintrusive approach could be prospectively developed into a clinical treatment modality.
Collapse
Affiliation(s)
- Yu-Hang Liu
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), Singapore, Singapore
- National University of Singapore, Department of Electrical and Computer Engineering, Singapore, Singapore
| | - Su Jing Chan
- Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| | - Han-Chi Pan
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
| | - Aishwarya Bandla
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), Singapore, Singapore
| | - Nicolas K. K. King
- National Neuroscience Institute (NNI), Department of Neurosurgery, Singapore, Singapore
- National Neuroscience Institute (NNI), SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore, Singapore
| | - Peter Tsun Hon Wong
- National University of Singapore, Department of Pharmacology, Singapore, Singapore
| | - You-Yin Chen
- National Yang Ming University, Department of Biomedical Engineering, Taipei, Taiwan
| | - Wai Hoe Ng
- National Neuroscience Institute (NNI), Department of Neurosurgery, Singapore, Singapore
- National Neuroscience Institute (NNI), SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore, Singapore
| | - Nitish V. Thakor
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), Singapore, Singapore
- National University of Singapore, Department of Electrical and Computer Engineering, Singapore, Singapore
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Lun-De Liao
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), Singapore, Singapore
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
- Address all correspondence to: Lun-De Liao, E-mail:
| |
Collapse
|
23
|
Urban A, Golgher L, Brunner C, Gdalyahu A, Har-Gil H, Kain D, Montaldo G, Sironi L, Blinder P. Understanding the neurovascular unit at multiple scales: Advantages and limitations of multi-photon and functional ultrasound imaging. Adv Drug Deliv Rev 2017; 119:73-100. [PMID: 28778714 DOI: 10.1016/j.addr.2017.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Developing efficient brain imaging technologies by combining a high spatiotemporal resolution and a large penetration depth is a key step for better understanding the neurovascular interface that emerges as a main pathway to neurodegeneration in many pathologies such as dementia. This review focuses on the advances in two complementary techniques: multi-photon laser scanning microscopy (MPLSM) and functional ultrasound imaging (fUSi). MPLSM has become the gold standard for in vivo imaging of cellular dynamics and morphology, together with cerebral blood flow. fUSi is an innovative imaging modality based on Doppler ultrasound, capable of recording vascular brain activity over large scales (i.e., tens of cubic millimeters) at unprecedented spatial and temporal resolution for such volumes (up to 10μm pixel size at 10kHz). By merging these two technologies, researchers may have access to a more detailed view of the various processes taking place at the neurovascular interface. MPLSM and fUSi are also good candidates for addressing the major challenge of real-time delivery, monitoring, and in vivo evaluation of drugs in neuronal tissue.
Collapse
Affiliation(s)
- Alan Urban
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Golgher
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Clément Brunner
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Amos Gdalyahu
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hagai Har-Gil
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - David Kain
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriel Montaldo
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Laura Sironi
- Physics Dept., Universita degli Studi di Milano Bicocca, Italy
| | - Pablo Blinder
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
24
|
Deán-Ben XL, Gottschalk S, Mc Larney B, Shoham S, Razansky D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev 2017; 46:2158-2198. [PMID: 28276544 PMCID: PMC5460636 DOI: 10.1039/c6cs00765a] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Visualization of dynamic functional and molecular events in an unperturbed in vivo environment is essential for understanding the complex biology of living organisms and of disease state and progression. To this end, optoacoustic (photoacoustic) sensing and imaging have demonstrated the exclusive capacity to maintain excellent optical contrast and high resolution in deep-tissue observations, far beyond the penetration limits of modern microscopy. Yet, the time domain is paramount for the observation and study of complex biological interactions that may be invisible in single snapshots of living systems. This review focuses on the recent advances in optoacoustic imaging assisted by smart molecular labeling and dynamic contrast enhancement approaches that enable new types of multiscale dynamic observations not attainable with other bio-imaging modalities. A wealth of investigated new research topics and clinical applications is further discussed, including imaging of large-scale brain activity patterns, volumetric visualization of moving organs and contrast agent kinetics, molecular imaging using targeted and genetically expressed labels, as well as three-dimensional handheld diagnostics of human subjects.
Collapse
Affiliation(s)
- X L Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - S Gottschalk
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - B Mc Larney
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - S Shoham
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - D Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
25
|
Gottschalk S, Fehm TF, Deán-Ben XL, Tsytsarev V, Razansky D. Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. NEUROPHOTONICS 2017; 4:011007. [PMID: 27725948 PMCID: PMC5050254 DOI: 10.1117/1.nph.4.1.011007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/13/2016] [Indexed: 05/05/2023]
Abstract
Visualization of whole brain activity during epileptic seizures is essential for both fundamental research into the disease mechanisms and the development of efficient treatment strategies. It has been previously discussed that pathological synchronization originating from cortical areas may reinforce backpropagating signaling from the thalamic neurons, leading to massive seizures through enhancement of high frequency neural activity in the thalamocortical loop. However, the study of deep brain neural activity is challenging with the existing functional neuroimaging methods due to lack of adequate spatiotemporal resolution or otherwise insufficient penetration into subcortical areas. To investigate the role of thalamocortical activity during epileptic seizures, we developed a new functional neuroimaging framework based on spatiotemporal correlation of volumetric optoacoustic hemodynamic responses with the concurrent electroencephalogram recordings and anatomical brain landmarks. The method is shown to be capable of accurate three-dimensional mapping of the onset, spread, and termination of the epileptiform events in a 4-aminopyridine acute model of focal epilepsy. Our study is the first to demonstrate entirely noninvasive real-time visualization of synchronized epileptic foci in the whole mouse brain, including the neocortex and subcortical structures, thus opening new vistas in systematic studies toward the understanding of brain signaling and the origins of neurological disorders.
Collapse
Affiliation(s)
- Sven Gottschalk
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Thomas Felix Fehm
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Technical University of Munich, Faculty of Medicine, Ismaninger Str. 22, 81675 Munich, Germany
| | - Xose Luís Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Vassiliy Tsytsarev
- University of Maryland School of Medicine, Department of Anatomy and Neurobiology, 20 Penn Street, HSF II, Baltimore, Maryland 21201, United States
| | - Daniel Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Technical University of Munich, Faculty of Medicine, Ismaninger Str. 22, 81675 Munich, Germany
- Address all correspondence to: Daniel Razansky, E-mail:
| |
Collapse
|
26
|
Jiang B, Yang X, Luo Q. Reflection-mode Bessel-beam photoacoustic microscopy for in vivo imaging of cerebral capillaries. OPTICS EXPRESS 2016; 24:20167-76. [PMID: 27607624 DOI: 10.1364/oe.24.020167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A reflection-mode Bessel-beam photoacoustic microscope (BB-PAM) is developed for the in vivo imaging of cerebral capillaries with extended depth of field (DoF). The non-diffraction characteristic of Bessel beams means that a larger DoF can be expected in the PAM compared to that using a Gaussian beam (GB). In our system, we generate the Bessel beam using an axicon and an annular mask. The lateral resolution of the system is estimated to be 1.6 μm. The DoF is measured to be 483 μm, and this is verified by imaging a carbon fiber network. The DoF of BB-PAM is about 7 times that of a GB-PAM. The cerebral vasculature of an open-skull mouse is imaged using the developed BB-PAM to demonstrate its in vivo imaging capability and advantages over GB-PAM.
Collapse
|
27
|
Olefir I, Mercep E, Burton NC, Ovsepian SV, Ntziachristos V. Hybrid multispectral optoacoustic and ultrasound tomography for morphological and physiological brain imaging. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:86005. [PMID: 27533442 DOI: 10.1117/1.jbo.21.8.086005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/25/2016] [Indexed: 05/18/2023]
Abstract
Expanding usage of small animal models in biomedical research necessitates development of technologies for structural, functional, or molecular imaging that can be readily integrated in the biological laboratory. Herein, we consider dual multispectral optoacoustic (OA) and ultrasound tomography based on curved ultrasound detector arrays and describe the performance achieved for hybrid morphological and physiological brain imaging of mice in vivo. We showcase coregistered hemodynamic parameters resolved by OA tomography under baseline conditions and during alterations of blood oxygen saturation. As an internal reference, we provide imaging of abdominal organs. We illustrate the performance advantages of hybrid curved detector ultrasound and OA tomography and discuss immediate and long-term implications of our findings in the context of animal and human studies.
Collapse
Affiliation(s)
- Ivan Olefir
- Helmholtz Zentrum München, Institute for Biological and Medical Imaging, Ingolstädter Landstraße 1, Neuherberg 85764, GermanybTechnische Universität München, School of Bioengineering, Boltzmannstraße 11, Garching 85748, Germany
| | - Elena Mercep
- Helmholtz Zentrum München, Institute for Biological and Medical Imaging, Ingolstädter Landstraße 1, Neuherberg 85764, GermanycTechnische Universität München, Faculty of Medicine, Ismaninger Straße 22, Munich 81675, GermanydiThera Medical GmbH, Zielstattst
| | - Neal C Burton
- iThera Medical GmbH, Zielstattstrasse 13, Munich 81379, Germany
| | - Saak V Ovsepian
- Helmholtz Zentrum München, Institute for Biological and Medical Imaging, Ingolstädter Landstraße 1, Neuherberg 85764, GermanybTechnische Universität München, School of Bioengineering, Boltzmannstraße 11, Garching 85748, Germany
| | - Vasilis Ntziachristos
- Helmholtz Zentrum München, Institute for Biological and Medical Imaging, Ingolstädter Landstraße 1, Neuherberg 85764, GermanybTechnische Universität München, School of Bioengineering, Boltzmannstraße 11, Garching 85748, Germany
| |
Collapse
|
28
|
Zhou Y, Yao J, Wang LV. Tutorial on photoacoustic tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:61007. [PMID: 27086868 PMCID: PMC4834026 DOI: 10.1117/1.jbo.21.6.061007] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT’s basic principles, major implementations, imaging contrasts, and recent applications.
Collapse
Affiliation(s)
- Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Junjie Yao
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| |
Collapse
|
29
|
Abstract
Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT.
Collapse
Affiliation(s)
- Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | - Jun Xia
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, MO, USA Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lihong V Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| |
Collapse
|
30
|
Assessment of neurovascular dynamics during transient ischemic attack by the novel integration of micro-electrocorticography electrode array with functional photoacoustic microscopy. Neurobiol Dis 2015; 82:455-465. [DOI: 10.1016/j.nbd.2015.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/11/2015] [Accepted: 06/24/2015] [Indexed: 01/18/2023] Open
|
31
|
Liao LD, Li ML, Lai HY, Chen YY, Thakor NV. Study of neurovascular coupling functions for transient focal cerebral ischemia in rats using electrocorticography functional photoacoustic microscopy (ECoG-fPAM). ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:1799-802. [PMID: 24110058 DOI: 10.1109/embc.2013.6609871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, the functional photoacoustic microscopy (fPAM) system has been proven to be a reliable imaging technique for measuring the total hemoglobin concentration (HbT), cerebral blood volume (CBV) and hemoglobin oxygen saturation (SO2) in single cerebral blood vessels of rats. In this study, we report for the first time the combination of electrocorticography (ECoG) recordings and fPAM (ECoG-fPAM) to investigate functional hemodynamic changes and neuro-vascular coupling in single cortical arterioles of rats with electrical forepaw stimulation after photothrombotic stroke. Because of the optical focusing nature of our fPAM system, photo-induced ischemic stroke targeting on single cortical arterioles can be easily conducted with simple adaptation. Functional cerebral HbT, CBV and SO2 changes associated with the induced stroke in selected arterioles from the anterior cerebral artery system were imaged with a 36 × 65-µm spatial resolution. The ECoG-fPAM system complements existing imaging techniques and has the potential to offer a favorable tool for explicitly studying cerebral hemodynamics and neuro-vascular coupling in small animal models of photo-induced ischemic stroke.
Collapse
|
32
|
Yao J, Wang L, Yang JM, Maslov KI, Wong TTW, Li L, Huang CH, Zou J, Wang LV. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods 2015; 12:407-10. [PMID: 25822799 PMCID: PMC4428901 DOI: 10.1038/nmeth.3336] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
We present fast functional photoacoustic microscopy (PAM) for three-dimensional high-resolution, high-speed imaging of the mouse brain, complementary to other imaging modalities. We implemented a single-wavelength pulse-width-based method with a one-dimensional imaging rate of 100 kHz to image blood oxygenation with capillary-level resolution. We applied PAM to image the vascular morphology, blood oxygenation, blood flow and oxygen metabolism in both resting and stimulated states in the mouse brain.
Collapse
Affiliation(s)
- Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lidai Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joon-Mo Yang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Konstantin I Maslov
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Terence T W Wong
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lei Li
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chih-Hsien Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Jun Zou
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Lihong V Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
33
|
Noninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography. J Cereb Blood Flow Metab 2015; 35:531-5. [PMID: 25586142 PMCID: PMC4420890 DOI: 10.1038/jcbfm.2014.249] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 11/24/2014] [Accepted: 12/11/2014] [Indexed: 11/08/2022]
Abstract
Current functional neuroimaging methods are not adequate for high-resolution whole-brain visualization of neural activity in real time. Here, we show imaging of fast hemodynamic changes in deep mouse brain using fully noninvasive acquisition of five-dimensional optoacoustic data from animals subjected to oxygenation stress. Multispectral video-rate acquisition of three-dimensional tomographic data enables simultaneous label-free assessment of multiple brain hemodynamic parameters, including blood oxygenation, total hemoglobin, cerebral blood volume, oxygenized and deoxygenized hemoglobin, in real time. The unprecedented results indicate that the proposed methodology may serve as a powerful complementary, and potentially superior, method for functional neuroimaging studies in rodents.
Collapse
|
34
|
Liao LD, Liu YH, Lai HY, Bandla A, Shih YYI, Chen YY, Thakor NV. Rescue of cortical neurovascular functions during the hyperacute phase of ischemia by peripheral sensory stimulation. Neurobiol Dis 2015; 75:53-63. [DOI: 10.1016/j.nbd.2014.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/07/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022] Open
|
35
|
|
36
|
Rare-Earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging. Sci Rep 2014; 4:6562. [PMID: 25297843 PMCID: PMC4190509 DOI: 10.1038/srep06562] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/12/2014] [Indexed: 11/17/2022] Open
Abstract
Multi-modal imaging is an emerging area that integrates multiple imaging modalities to simultaneously capture visual information over many spatial scales. Complementary contrast agents need to be co-developed in order to achieve high resolution and contrast. In this work, we demonstrated that rare-earth doped particles (REDPs) can be employed as dual-modal imaging agents for both luminescence and photoacoustic (PA) imaging to achieve intrinsic high contrast, temporal and spatial resolution, reaching deeper depth. REDPs synthesized with different surfactants (citric acid, polyacrylic acid, ethylenediaminetetraacetic acid and sodium citrate) exhibit tunable emission properties and PA signal amplitudes. Amongst these samples, sodium citrate-modified REDPs showed the strongest PA signals. Furthermore, since REDPs have multiple absorption peaks, they offer a unique opportunity for multi-wavelength PA imaging (e.g. PA signals were measured using 520 and 975 nm excitations). The in vivo PA images around the cortical superior sagittal sinus (SSS) blood vessel captured with enhanced signal arising from REDPs demonstrated that in addition to be excellent luminescent probes, REDPs can also be used as successful PA contrast agents. Anisotropic polyacrylic acid-modified REDPs were found to be the best candidates for dual-modal luminescence and PA imaging due to their strong luminescence and PA signal intensities.
Collapse
|
37
|
Jeon M, Kim J, Kim C. Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo. Med Biol Eng Comput 2014; 54:283-94. [PMID: 25115270 DOI: 10.1007/s11517-014-1182-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/30/2014] [Indexed: 02/04/2023]
Abstract
We have successfully developed a multiscale acoustic-resolution photoacoustic tomography system in a single imaging platform. By switching between ultrasound transducers (center frequencies 5 and 40 MHz) and optical condensers, we have photoacoustically imaged microvasculatures of small animals in vivo at different scales. Further, we have extended the field of view of our imaging system to entire bodies of small animals. At different imaging planes, we have noninvasively imaged the major blood vessels (e.g., descending aorta, intercostal vessels, cephalic vessels, brachial vessels, femoral vessels, popliteal vessels, lateral marginal vessels, cranial mesenteric vessels, mammalian vessels, carotid artery, jugular vein, subclavian vessels, iliac vessels, and caudal vessels) as well as intact internal organs (e.g., spleen, liver, kidney, intestine, cecum, and spinal cord) of the animals in vivo. The spectroscopic whole-body photoacoustic imaging clearly reveals the spectral responses of the internal structures. Similar to other existing preclinical whole-body imaging systems, this whole-body photoacoustic tomography can be a useful tool for small-animal research.
Collapse
Affiliation(s)
- Mansik Jeon
- Departments of Creative IT Engineering and Electrical Engineering, Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Jeesu Kim
- Departments of Creative IT Engineering and Electrical Engineering, Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Chulhong Kim
- Departments of Creative IT Engineering and Electrical Engineering, Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea.
| |
Collapse
|
38
|
Zhou Y, Yi X, Xing W, Hu S, Maslov KI, Wang LV. Microcirculatory changes identified by photoacoustic microscopy in patients with complex regional pain syndrome type I after stellate ganglion blocks. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:086017. [PMID: 25144451 PMCID: PMC4407664 DOI: 10.1117/1.jbo.19.8.086017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/01/2014] [Indexed: 05/04/2023]
Abstract
Complex regional pain syndrome (CRPS) is a chronic pain syndrome that causes intractable pain, disability, and poor quality of life for patients. The etiology and pathophysiology of CRPS are still poorly understood. Due to a lack of proper diagnostic tools, the prognosis of CRPS is primarily based on clinical observation. The objective of this work is to evaluate a new imaging modality, photoacoustic microscopy (PAM), for assisting diagnoses and monitoring the progress and treatment outcome of CRPS. Blood vasculature and oxygen saturation (sO₂) were imaged by PAM from eight adult patients with CRPS-1. Patients' hands and cuticles were imaged both before and after stellate ganglion block (SGB) for comparison. For all patients, both vascular structure and sO₂ could be assessed by PAM. In addition, more vessels and stronger signals were observed after SGB. The results show that PAM can help diagnose and monitor CRPS.
Collapse
Affiliation(s)
- Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Xiaobin Yi
- Washington University School of Medicine, Department of Anesthesiology/Pain Management, 660 South Euclid Avenue, Campus Box 8054, St. Louis, Missouri 63110, United States
- Address all correspondence to: Xiaobin Yi and Lihong V. Wang, E-mail: and
| | - Wenxin Xing
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Song Hu
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Konstantin I. Maslov
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
- Address all correspondence to: Xiaobin Yi and Lihong V. Wang, E-mail: and
| |
Collapse
|
39
|
Jiang B, Yang X, Liu Y, Deng Y, Luo Q. Multiscale photoacoustic microscopy with continuously tunable resolution. OPTICS LETTERS 2014; 39:3939-3941. [PMID: 24978776 DOI: 10.1364/ol.39.003939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A multiscale photoacoustic microscope with continuously tunable lateral resolution is developed. The tunable resolution is achieved by using an electrical varifocal lens and an optical fiber bundle. The varifocal lens is used to generate a size tunable focused laser spot on the tip of the fiber bundle. Laser beams emerging from the other end of the fiber bundle are imaged into the object as the excitation light spot for acoustic generation. The verified lateral resolution of the system can be tuned from ~1 μm to more than 44.8 μm, which span from optical resolution to acoustic resolution. Additionally, a mouse ear was imaged in vivo using three different resolutions to demonstrate the feasibility of the multiscale imaging capability of our system.
Collapse
|
40
|
Liao LD, Bandla A, Ling JM, Liu YH, Kuo LW, Chen YY, King NKK, Lai HY, Lin YR, Thakor NV. Improving neurovascular outcomes with bilateral forepaw stimulation in a rat photothrombotic ischemic stroke model. NEUROPHOTONICS 2014; 1:011007. [PMID: 26157965 PMCID: PMC4478786 DOI: 10.1117/1.nph.1.1.011007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/01/2014] [Accepted: 05/13/2014] [Indexed: 05/19/2023]
Abstract
Restoring perfusion to the penumbra during the hyperacute phase of ischemic stroke is a key goal of neuroprotection. Thrombolysis is currently the only approved treatment for ischemic stroke. However, its use is limited by the narrow therapeutic window and side effect of bleeding. Therefore, other interventions are desired that could potentially increase the perfusion of the penumbra. Here, we hypothesized that bilateral peripheral electrical stimulation will improve cerebral perfusion and restore cortical neurovascular response. We assess the outcomes of bilateral forepaw electrical stimulation at intensities of 2 and 4 mA, administered either unilaterally or bilaterally. We developed a combined electrocorticogram (ECoG)-functional photoacoustic microscopy (fPAM) system to evaluate the relative changes in cerebral hemodynamic function and electrophysiologic response to acute, focal stroke. The fPAM system is used for cerebral blood volume (CBV) and hemoglobin oxygen saturation ([Formula: see text]) and the ECoG for neural activity, namely somatosensory-evoked potential (SSEP), interhemispheric coherence, and alpha-delta ratio (ADR) in response to forepaw stimulation. Our results confirmed the neuroprotective effect of bilateral forepaw stimulation at 2 mA as indicated by the 82% recovery of ADR and 95% improvement in perfusion into the region of penumbra. This experimental model can be used to study other potential interventions such as therapeutic hypertension and hypercarbia.
Collapse
Affiliation(s)
- Lun-De Liao
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- Address all correspondence to: Lun-De Liao, E-mail: or
| | - Aishwarya Bandla
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- National University of Singapore, Department of Biomedical Engineering, 9 Engineering Drive 1, Block EA #03-12, Singapore 117575, Singapore
| | - Ji Min Ling
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- National Neuroscience Institute, Department of Neurosurgery, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Yu-Hang Liu
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- National University of Singapore, Department of Electrical & Computer Engineering, Block E4, Level 5, Room 45, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Li-Wei Kuo
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - You-Yin Chen
- National Yang Ming University, Department of Biomedical Engineering, No. 155, Sec. 2, Linong St., Taipei, Taiwan 112
| | - Nicolas KK King
- National Neuroscience Institute, Department of Neurosurgery, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Hsin-Yi Lai
- Chang Gung Memorial Hospital and Chang Gung University, Department of Physical Medicine and Rehabilitation, Taoyuan 333, Taiwan
| | - Yan-Ren Lin
- Changhua Christian Hospital, Department of Emergency Medicine, 135 Nanshsiao Street, Changhua, Taiwan 500
| | - Nitish V. Thakor
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- National University of Singapore, Department of Biomedical Engineering, 9 Engineering Drive 1, Block EA #03-12, Singapore 117575, Singapore
- National University of Singapore, Department of Electrical & Computer Engineering, Block E4, Level 5, Room 45, 4 Engineering Drive 3, Singapore 117583, Singapore
- Johns Hopkins University, Department of Biomedical Engineering, Traylor 701/720 Rutland Avenue, Baltimore, Maryland 21205
| |
Collapse
|
41
|
Yao J, Wang LV. Photoacoustic Brain Imaging: from Microscopic to Macroscopic Scales. NEUROPHOTONICS 2014; 1:1877516. [PMID: 25401121 PMCID: PMC4232215 DOI: 10.1117/1.nph.1.1.011003] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 05/12/2023]
Abstract
Human brain mapping has become one of the most exciting contemporary research areas, with major breakthroughs expected in the following decades. Modern brain imaging techniques have allowed neuroscientists to gather a wealth of anatomic and functional information about the brain. Among these techniques, by virtue of its rich optical absorption contrast, high spatial and temporal resolutions, and deep penetration, photoacoustic tomography (PAT) has attracted more and more attention, and is playing an increasingly important role in brain studies. In particular, PAT complements other brain imaging modalities by providing high-resolution functional and metabolic imaging. More importantly, PAT's unique scalability enables scrutinizing the brain at both microscopic and macroscopic scales, using the same imaging contrast. In this Review, we present the state-of-the-art PAT techniques for brain imaging, summarize representative neuroscience applications, outline the technical challenges in translating PAT to human brain imaging, and envision potential technological deliverables.
Collapse
Affiliation(s)
- Junjie Yao
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130
| |
Collapse
|
42
|
Kong KV, Liao LD, Lam Z, Thakor NV, Leong WK, Olivo M. Organometallic carbonyl clusters: a new class of contrast agents for photoacoustic cerebral vascular imaging. Chem Commun (Camb) 2014; 50:2601-3. [DOI: 10.1039/c3cc48529c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The strong photoacoustic signal of a water soluble osmium carbonyl cluster allowed it to be employed as a contrast agent to image the cerebral vasculature of a rat. The high stability and low toxicity of such a compound make it an excellent candidate in such biomedical applications.
Collapse
Affiliation(s)
- Kien Voon Kong
- Singapore Bioimaging Consortium
- Agency for Science
- Technology and Research
- Singapore
| | - Lun-De Liao
- Singapore Institute for Neurotechnology (SINAPSE)
- National University of Singapore
- Singapore
| | - Zhiyong Lam
- Division of Chemistry & Biological Chemistry
- Nanyang Technological University
- Singapore
| | - Nitish V. Thakor
- Singapore Institute for Neurotechnology (SINAPSE)
- National University of Singapore
- Singapore
- Department of Biomedical Engineering
- John Hopkins University
| | - Weng Kee Leong
- Division of Chemistry & Biological Chemistry
- Nanyang Technological University
- Singapore
| | - Malini Olivo
- Singapore Bioimaging Consortium
- Agency for Science
- Technology and Research
- Singapore
- School of Physics
| |
Collapse
|
43
|
Liu J, Geng J, Liao LD, Thakor N, Gao X, Liu B. Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polym Chem 2014. [DOI: 10.1039/c3py01587d] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conjugated polymer nanoparticles with strong near infrared absorbance and high photostability have been demonstrated to be an efficient photoacoustic contrast agent for vascular imaging.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117576
- Singapore
| | - Junlong Geng
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117576
- Singapore
| | - Lun-De Liao
- Singapore Institute for Neurotechnology (SINAPSE)
- National University of Singapore
- Singapore 117456
- Singapore
| | - Nitish Thakor
- Singapore Institute for Neurotechnology (SINAPSE)
- National University of Singapore
- Singapore 117456
- Singapore
- Department of Biomedical Engineering
| | - Xiaohu Gao
- Department of Bioengineering
- University of Washington
- Seattle
- USA
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117576
- Singapore
- Institute of Materials Research Engineering
| |
Collapse
|
44
|
Nie L, Chen X. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem Soc Rev 2014; 43:7132-70. [PMID: 24967718 PMCID: PMC4569000 DOI: 10.1039/c4cs00086b] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photoacoustic tomography (PAT) can offer structural, functional and molecular contrasts at scalable observation level. By ultrasonically overcoming the strong optical scattering, this imaging technology can reach centimeters penetration depth while retaining high spatial resolution in biological tissue. Recent extensive research has been focused on developing new contrast agents to improve the imaging sensitivity, specificity and efficiency. These emerging materials have substantially accelerated PAT applications in signal sensing, functional imaging, biomarker labeling and therapy monitoring etc. Here, the potentials of different optical probes as PAT contrast agents were elucidated. We first describe the instrumental embodiments and the measured functional parameters, then focus on emerging contrast agent-based PAT applications, and finally discuss the challenges and prospects.
Collapse
Affiliation(s)
- Liming Nie
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
45
|
Liao LD, Orellana J, Liu YH, Lin YR, Vipin A, Thakor NV, Shen K, Wilder-Smith E. Imaging of temperature dependent hemodynamics in the rat sciatic nerve by functional photoacoustic microscopy. Biomed Eng Online 2013; 12:120. [PMID: 24245952 PMCID: PMC4225521 DOI: 10.1186/1475-925x-12-120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/09/2013] [Indexed: 02/08/2023] Open
Abstract
Background Vascular hemodynamics is central to the regulation of neuro-metabolism and plays important roles in peripheral nerves diseases and their prevention. However, at present there are only a few techniques capable of directly measuring peripheral nerve vascular hemodynamics. Method Here, we investigate the use of dark-field functional photoacoustic microscopy (fPAM) for intrinsic visualizing of the relative hemodynamics of the rat sciatic nerve in response to localized temperature modulation (i.e., cooling and rewarming). Results and conclusion Our main results show that the relative functional total hemoglobin concentration (HbT) is more significantly correlated with localized temperature changes than the hemoglobin oxygen saturation (SO2) changes in the sciatic nerve. Our study also indicates that the relative HbT changes are better markers of neuronal activation than SO2 during nerve temperature changes. Our results show that fPAM is a promising candidate for in vivo imaging of peripheral nerve hemodynamics without the use of contrast agents. Additionally, this technique may shed light on the neuroprotective effect of hypothermia on peripheral nerves by visualizing their intrinsic hemodynamics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kaiquan Shen
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore.
| | | |
Collapse
|
46
|
Wu SL, Liao LD, Liou CH, Chen SA, Ko LW, Chen BW, Wang PS, Chen SF, Lin CT. Design of the multi-channel electroencephalography-based brain-computer interface with novel dry sensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:1793-7. [PMID: 23366259 DOI: 10.1109/embc.2012.6346298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The traditional brain-computer interface (BCI) system measures the electroencephalography (EEG) signals by the wet sensors with the conductive gel and skin preparation processes. To overcome the limitations of traditional BCI system with conventional wet sensors, a wireless and wearable multi-channel EEG-based BCI system is proposed in this study, including the wireless EEG data acquisition device, dry spring-loaded sensors, a size-adjustable soft cap. The dry spring-loaded sensors are made of metal conductors, which can measure the EEG signals without skin preparation and conductive gel. In addition, the proposed system provides a size-adjustable soft cap that can be used to fit user's head properly. Indeed, the results are shown that the proposed system can properly and effectively measure the EEG signals with the developed cap and sensors, even under movement. In words, the developed wireless and wearable BCI system is able to be used in cognitive neuroscience applications.
Collapse
Affiliation(s)
- Shang-Lin Wu
- Institute of Electrical Control Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Magnetic gold-nanorod/ PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy. Biomaterials 2013; 34:5651-60. [DOI: 10.1016/j.biomaterials.2013.03.085] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/27/2013] [Indexed: 11/21/2022]
|
48
|
Liao LD, Tsytsarev V, Delgado-Martínez I, Li ML, Erzurumlu R, Vipin A, Orellana J, Lin YR, Lai HY, Chen YY, Thakor NV. Neurovascular coupling: in vivo optical techniques for functional brain imaging. Biomed Eng Online 2013; 12:38. [PMID: 23631798 PMCID: PMC3655834 DOI: 10.1186/1475-925x-12-38] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/25/2013] [Indexed: 01/21/2023] Open
Abstract
Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology.
Collapse
Affiliation(s)
- Lun-De Liao
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn street, HSF-2, Baltimore, MD 21201, USA
| | - Ignacio Delgado-Martínez
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Meng-Lin Li
- Department of Electrical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd, Hsinchu 300, R.O.C, Taiwan
| | - Reha Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn street, HSF-2, Baltimore, MD 21201, USA
| | - Ashwati Vipin
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Josue Orellana
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
| | - Yan-Ren Lin
- Department of Emergency Medicine, Changhua Christian Hospital, 135 Nanshsiao Street, Changhua 500, R.O.C, Taiwan
| | - Hsin-Yi Lai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, R.O.C, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, No.155, Sec.2, Linong St, Taipei 112, R.O.C, Taiwan
| | - Nitish V Thakor
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- Department of Biomedical Engineering, Johns Hopkins University, Traylor 701/720 Rutland Ave, Baltimore, MD 21205, USA
| |
Collapse
|
49
|
Tsytsarev V, Arakawa H, Borisov S, Pumbo E, Erzurumlu RS, Papkovsky DB. In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe. J Neurosci Methods 2013; 216:146-51. [PMID: 23624034 DOI: 10.1016/j.jneumeth.2013.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 12/12/2022]
Abstract
Several approaches have been adopted for real-time imaging of neural activity in vivo. We tested a new cell-penetrating phosphorescent oxygen-sensitive probe, NanO2-IR, to monitor temporal and spatial dynamics of oxygen metabolism in the neocortex following peripheral sensory stimulation. Probe solution was applied to the surface of anesthetized mouse brain; optical imaging was performed using a MiCAM-02 system. Trains of whisker stimuli were delivered and associated changes in phosphorescent signal were recorded in the contralateral somatosensory ("barrel") cortex. Sensory stimulation led to changes in oxygenation of activated areas of the barrel cortex. The oxygen imaging results were compared to those produced by the voltage-sensitive dye RH-1691. While the signals emitted by the two probes differed in shape and amplitude, they both faithfully indicated specific whisker evoked cortical activity. Thus, NanO2-IR probe can be used as a tool in visualization and real-time analysis of sensory-evoked neural activity in vivo.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II, 20 Penn Street, Baltimore, MD 21201-1075, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Tsytsarev V, Rao B, Maslov KI, Li L, Wang LV. Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. J Neurosci Methods 2013; 216:142-5. [PMID: 23603664 DOI: 10.1016/j.jneumeth.2013.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 01/26/2023]
Abstract
Epilepsy mapping with high spatial and temporal resolution has great significance for both fundamental research on epileptic neurons and the clinical management of epilepsy. In this communication, we demonstrate for the first time in vivo epilepsy mapping with high spatial and temporal resolution and dual optical contrasts in an animal model. Through the variations of a depthresolved optical coherence tomography signal with optical scattering contrast, we observed that epileptic neuron activities modulated the optical refractive index of epileptic neurons and their surrounding tissue. Simultaneously, through neurovasculature coupling mechanisms and optical absorption contrast, we used photoacoustic signals to document the hemodynamic changes of the microvasculature surrounding the epileptic neurons. The epilepsy mapping results were confirmed by a simultaneously recorded electroencephalogram signal during epileptic seizure. Our new epilepsy mapping tool, with high temporal and spatial resolution and dual optical contrasts, may find many applications, such as drug development and epilepsy surgery.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|