1
|
Lipworth L, Panko JM, Allen BC, Mumma MT, Jiang X, Vincent MJ, Bare JL, Antonijevic T, Vivanco SN, Marano DE, Suh M, Cohen S, Mittal L, Proctor DM. Lung cancer mortality among aircraft manufacturing workers with long-term, low-level, hexavalent chromium exposure. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2025:1-14. [PMID: 39773194 DOI: 10.1080/15459624.2024.2439817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Hexavalent chromium (CrVI) is known to cause lung cancer among workers exposed to high concentrations in certain historical industries. It is also a toxic air contaminant considered to pose a potentially significant cancer risk at comparatively low concentrations in urban air. However, very limited data currently exist to quantify risk at low-concentration occupational or environmental exposures. This study reconstructs individual-level exposures using a job-exposure matrix (JEM) and examines mortality among 3,723 CrVI-exposed aircraft manufacturing workers, including 440 women with long-term low-level CrVI exposures and long-term follow-up. The JEM used Bayesian methods with industrial hygiene data to calculate cumulative worker exposures from 1960 to 1998. A retrospective cohort mortality study was also conducted to calculate standardized mortality ratios (SMRs) by population demographics and to conduct an internally referenced dose-response analysis. CrVI-exposed painters, electroplaters, and aircraft assembly workers, with 1 to 37 years of exposure (median: 8 years) had mean and median cumulative exposures of 16 µg/m3-yrs and 2.9 µg/m3-yrs, respectively. Based on 1,758 observed deaths, mortality from cancer overall (SMR 1.24; 95% CI 1.13-1.36), smoking-related cancers (SMR 1.31; 95% CI 1.15-1.49), and lung cancer (SMR 1.39; 95% CI 1.17-1.63) were significantly elevated and more highly elevated among women (lung cancer SMR 2.61; 95% CI:1.66-3.92). Internal analyses revealed no dose-response relationship between cumulative exposure and lung cancer mortality. Data available for 12% of CrVI-exposed workers showed smoking prevalence higher than general population norms, especially for women. The absence of a dose-response relationship with cumulative exposure suggests that elevated cancer risks are primarily smoking-related in this cohort, and possibly as a consequence, any increased risk associated with CrVI exposure is not observable. Although an association between lung cancer risk and CrVI exposure was not found, this study provides significant new observations in the low exposure range, and among women, which may be useful for quantitative risk assessment.
Collapse
Affiliation(s)
- Loren Lipworth
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | - Xiaohui Jiang
- EpidStrategies (a Division of ToxStrategies LLC), Mission Viejo, California
| | | | | | - Todor Antonijevic
- ToxStrategies LLC, Katy, Texas
- ScitoVation, LLC, Durham, North Carolina
| | | | | | - Mina Suh
- EpidStrategies (a Division of ToxStrategies LLC), Mission Viejo, California
| | - Sarah Cohen
- EpidStrategies (a Division of ToxStrategies LLC), Mission Viejo, California
| | | | | |
Collapse
|
2
|
Nguyen DK, Dinh VP. Highly Efficient Removal of Cr(VI) by Biochar Derived from Vietnamese Young Durian Fruit: Comparison of Traditional and Microwave-Assisted Pyrolysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39718351 DOI: 10.1021/acs.langmuir.4c03775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
This study compares the material characteristics and evaluates the Cr(VI) adsorption capacity of biochar derived from a novel byproduct (young durian fruit, YDF), synthesized using two pyrolysis methods (traditional and microwave-assisted). The optimal pyrolysis conditions for porosity were 800 °C and 800 W for 30 min, respectively. The traditional pyrolysis method yielded a very high surface area and pore volume (668 m2/g; 0.332 cm3/g). XRD patterns and FTIR spectra demonstrated structural and functional group differences, significantly impacting the Cr(VI) removal efficiency in water. pH was a critical factor with optimal adsorption at pH 2.0. The adsorption process reached equilibrium at 180 and 100 min at initial concentrations of 100 and 125 mg/L for biochar synthesized by traditional and microwave-assisted pyrolysis, respectively. The adsorption mechanisms proposed based on modern analytical methods include adsorption-reduction, ion exchange, electrostatic interaction, and surface complexation. Industrial wastewater containing chromium was effectively treated under natural conditions (pH = 5.88; Co = 129.9 mg/L) using biochar synthesized via microwave, achieving a Qe of 21.41 mg/g. The research results pave the way for new directions in the synthesis and application of biochar in environmental treatment, specifically using young fruit materials and microwave methods.
Collapse
Affiliation(s)
- Duy-Khoi Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Van-Phuc Dinh
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
3
|
Nguyen DK, Ly-Tran QB, Dinh VP, Duong BN, Nguyen TPT, Nguyen Kim Tuyen P. Adsorption mechanism of aqueous Cr(vi) by Vietnamese corncob biochar: a spectroscopic study. RSC Adv 2024; 14:39205-39218. [PMID: 39664238 PMCID: PMC11632952 DOI: 10.1039/d4ra07455f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Cr(vi) is highly toxic and carcinogenic, posing significant threats to health and ecosystems. This study utilizes solid waste from corncobs to synthesize biochar (CCBC) for the removal of Cr(vi) from water. The most effective Cr(vi) removal was achieved at pH 2.0, with a maximum adsorption capacity (Q m, Langmuir, mg g-1) of 38.1, higher than that of activated carbon (25.69), composite (35.84), and magnetic biochar (25.94) derived from corncobs. Brunauer-Emmett-Teller (BET) results indicated that Cr(vi) was adsorbed on the internal surface instead of external surface. Scanning electron microscope (SEM-mapping) images combined with the pHPZC value (7.6) demonstrated that Cr(vi) interacts with the material surface via electrostatic mechanisms. Energy-dispersive X-ray (EDX) spectra combined with Fourier-transform infrared (FTIR) spectra demonstrate that two key adsorption mechanisms in this study are surface adsorption (Cr(vi)-biochar) followed by the reduction of Cr(vi) to Cr(iii), allowing ion exchange adsorption to occur. X-ray diffraction (XRD) patterns indicate no precipitation on the surface, and the material remains stable after four reuse cycles. These results suggest that CCBC can be used as an efficient, cost-effective, and environmentally friendly adsorbent for Cr(vi) removal from water. This is the first study to combine spectroscopic methods and theoretical models to gain deeper insights into the Cr(vi) adsorption mechanisms onto CCBC.
Collapse
Affiliation(s)
- Duy-Khoi Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Quoc-Bao Ly-Tran
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Van-Phuc Dinh
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Bich-Ngoc Duong
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Thi-Phuong-Tu Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | | |
Collapse
|
4
|
Meaza I, Williams AR, Wise SS, Lu H, Pierce JW. Carcinogenic Mechanisms of Hexavalent Chromium: From DNA Breaks to Chromosome Instability and Neoplastic Transformation. Curr Environ Health Rep 2024; 11:484-546. [PMID: 39466546 DOI: 10.1007/s40572-024-00460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW Hexavalent chromium [Cr(VI)] is a well-established human carcinogen, yet the mechanisms by which it leads to carcinogenic outcomes is still unclear. As a driving factor in its carcinogenic mechanism, Cr(VI) causes DNA double strand breaks and break-repair deficiency, leading to the development of chromosome instability. Therefore, the aim of this review is to discuss studies assessing Cr(VI)-induced DNA double strand breaks, chromosome damage and instability, and neoplastic transformation including cell culture, experimental animal, human pathology and epidemiology studies. RECENT FINDINGS Recent findings confirm Cr(VI) induces DNA double strand breaks, chromosome instability and neoplastic transformation in exposed cells, animals and humans, emphasizing these outcomes as key steps in the mechanism of Cr(VI) carcinogenesis. Moreover, recent findings suggest chromosome instability is a key phenotype in Cr(VI)-neoplastically transformed clones and is an inheritable and persistent phenotype in exposed cells, once more suggesting chromosome instability as central in the carcinogenic mechanism. Although limited, some studies have demonstrated DNA damage and epigenetic modulation are also key outcomes in biopsies from chromate workers that developed lung cancer. Additionally, we also summarized new studies showing Cr(VI) causes genotoxic and clastogenic effects in cells from wildlife, such as sea turtles, whales, and alligators. Overall, across the literature, it is clear that Cr(VI) causes neoplastic transformation and lung cancer. Many studies measured Cr(VI)-induced increases in DNA double strand breaks, the most lethal type of breaks clearly showing that Cr(VI) is genotoxic. Unrepaired or inaccurately repaired breaks lead to the development of chromosome instability, which is a common phenotype in Cr(VI) exposed cells, animals, and humans. Indeed, many studies show Cr(VI) induces both structural and numerical chromosome instability. Overall, the large body of literature strongly supports the conclusion that Cr(VI) causes DNA double strand breaks, inhibits DNA repair and chromosome instability, which are key to the development of Cr(VI)-induced cell transformation.
Collapse
Affiliation(s)
- Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Aggie R Williams
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - John W Pierce
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA.
| |
Collapse
|
5
|
Jegadheeshwari S, Santhi JJ, Velayutham M, Issac PK, Kesavan M. DbGTi protein attenuates chromium (VI)-induced oxidative stress via activation of the Nrf2/HO-1 signalling pathway in zebrafish (Danio rerio) larval model. Int J Biol Macromol 2024; 280:136099. [PMID: 39343269 DOI: 10.1016/j.ijbiomac.2024.136099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Hexavalent chromium (Cr (VI)) contamination poses a significant threat to environmental and human health due to its ability to induce oxidative stress. Conventional strategies to counter Cr (VI)-induced oxidative stress, like antioxidants and chelating agents, face efficacy limitations and adverse effects. The present study is intended to counteract the limitations of conventional strategies by introducing a trypsin inhibitor isolated from Dioscorea bulbifera L. tubers, known as DbGTi protein, against Cr (VI)-induced developmental toxicity and oxidative stress. Through a comprehensive array of biochemical assays, behavioural tests, and gene expression analyses, this study interprets the underlying mechanisms of the DbGTi protein. Results demonstrated that the DbGTi protein effectively restored antioxidant defense systems, including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione S-transferase (GST), and glutathione peroxidase (GTPx), thereby mitigating cellular damage, reducing cell death, and enhancing neuro-biomarkers. qRT-PCR analysis of mRNA expression profiling revealed the upregulation of genes associated with antioxidant defense (sod, cat, gpx) and defense pathway (nrf2, hmox-1a), further highlighting the protective effects of DbGTi protein against Cr (VI)-induced oxidative stress.
Collapse
Affiliation(s)
- S Jegadheeshwari
- Department of Biotechnology, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Jenila John Santhi
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Kanchipuram, Tamil Nadu, India
| | - Manikandan Velayutham
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Kanchipuram, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Kanchipuram, Tamil Nadu, India
| | - M Kesavan
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
6
|
Khoshakhlagh AH, Mohammadzadeh M, Gruszecka-Kosowska A. The preventive and carcinogenic effect of metals on cancer: a systematic review. BMC Public Health 2024; 24:2079. [PMID: 39090615 PMCID: PMC11293075 DOI: 10.1186/s12889-024-19585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Many studies have investigated the role of metals in various types of malignancies. Considering the wide range of studies conducted in this field and the achievement of different results, the presented systematic review was performed to obtain the results of investigations on the prevention and occurrence of various types of cancer associated with metal exposures. METHODS In this review, research was conducted in the three databases: Scopus, PubMed, and Web of Science without historical restrictions until May 31, 2024. Animal studies, books, review articles, conference papers, and letters to the editors were omitted. The special checklist of Joanna Briggs Institute (JBI) was used for the quality assessment of the articles. Finally, the findings were classified according to the effect of the metal as preventive or carcinogenic. RESULTS The total number of retrieved articles was 4695, and 71 eligible results were used for further investigation. In most studies, the concentration of toxic metals such as lead (Pb), chromium (Cr (VI)), arsenic (As), cadmium (Cd), and nickel (Ni) in the biological and clinical samples of cancer patients was higher than that of healthy people. In addition, the presence of essential elements, such as selenium (Se), zinc (Zn), iron (Fe), and manganese (Mn) in tolerable low concentrations was revealed to have anti-cancer properties, while exposure to high concentrations has detrimental health effects. CONCLUSIONS Metals have carcinogenic effects at high levels of exposure. Taking preventive measures, implementing timely screening, and reducing the emission of metal-associated pollutants can play an effective role in reducing cancer rates around the world.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdiyeh Mohammadzadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Climate Change and Health Research Center (CCHRC), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Agnieszka Gruszecka-Kosowska
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Department of Environmental Protection, Al. A. Mickiewicza 30, Krakow, 30-059, Poland
| |
Collapse
|
7
|
Milošević N, Milanović M, Sazdanić Velikić D, Sudji J, Jovičić-Bata J, Španović M, Ševo M, Lukić Šarkanović M, Torović L, Bijelović S, Milić N. Biomonitoring Study of Toxic Metal(loid)s: Levels in Lung Adenocarcinoma Patients. TOXICS 2024; 12:490. [PMID: 39058142 PMCID: PMC11281202 DOI: 10.3390/toxics12070490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Lung cancer is a leading cause of cancer deaths worldwide. The aim of this study was to investigate heavy metal(loid)s (Cd, Pb, Hg, Cr, Mn, Mo, Ni, and As) in lung cancer patients in order to elucidate their role as lung cancer environmental risk factors. Sixty-three patients of both sexes with adenocarcinoma stage IIIB or IV were enrolled in this research. The heavy metal(loid) urine concentrations were measured using ICP-MS. Arsenic was quantified above 10 μg/L in 44.44% of the samples. Nickel urinary concentrations above the ToxGuide reference levels were found in 50.79% of the samples, while lead was quantified in 9.52% of the urine samples. The urinary chromium levels were above the mean ToxGuide levels in 41.27% of the patients and were significantly higher in men in comparison with women (p = 0.035). The chromium urinary concentrations were positively associated with the CRP serum levels (p = 0.037). Cadmium was quantified in 61.90% of the samples with levels significantly higher in females than in males (p = 0.023), which was associated with smoking habits. Mercury was measured above the limit of quantification in 63.49% of the samples and was not associated with amalgam dental fillings. However, the Hg urinary concentrations were correlated positively with the ALT (p = 0.02), AST (p < 0.001), and GGT (p < 0.001) serum levels. In 46.03% of the samples, the Mo concentrations were above 32 μg/L, the mean value for healthy adults according to the ToxGuide, and 9.52% of the patients had Mn levels higher than 8 μg/L, the reference value for healthy adults based on ToxGuide data. The obtained results are preliminary, and further studies are needed to have a deeper insight into metal(loid) exposure's association with lung cancer development, progression, and survival prediction.
Collapse
Affiliation(s)
- Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Danica Sazdanić Velikić
- Institute for Pulmonary Diseases of Vojvodina, Clinic for Pulmonary Oncology, Faculty of Medicine, University of Novi Sad, 21204 Sremska Kamenica, Serbia;
| | - Jan Sudji
- Institute of Occupational Health Novi Sad, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (J.S.); (M.Š.)
| | - Jelena Jovičić-Bata
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Milorad Španović
- Institute of Occupational Health Novi Sad, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (J.S.); (M.Š.)
| | - Mirjana Ševo
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- IMC Banja Luka-Center of Radiotherapy, Part of Affidea Group, 78000 Banja Luka, Bosnia and Herzegovina
| | - Mirka Lukić Šarkanović
- Clinical Center of Vojvodina, Clinic for Anesthesiology, Intensive Therapy and Pain Therapy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Ljilja Torović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Sanja Bijelović
- Institute of Public Health of Vojvodina, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| |
Collapse
|
8
|
Valiente S, Krawic C, Zhitkovich A. ATR activation by Cr-DNA damage is a major survival response establishing late S and G2 checkpoints after Cr(VI) exposure. Toxicol Appl Pharmacol 2023; 477:116696. [PMID: 37734571 PMCID: PMC10591798 DOI: 10.1016/j.taap.2023.116696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Inhalation exposure to hexavalent chromium is known to cause lung cancer and other pulmonary toxicity. Cellular metabolism of chromium(VI) entering cells as chromate anion produces different amounts of reactive Cr(V) intermediates and finally yields Cr(III). Direct reduction of Cr(VI) by ascorbate (Asc), the dominant metabolic reaction in vivo but not in standard cell cultures, skips production of Cr(V) but still permits extensive formation of Cr-DNA damage. To understand the importance of different forms of biological injury in Cr(VI) toxicity, we examined activation of several protein- and DNA damage-sensitive stress responses in human lung cells under Asc-restored conditions. We found that Asc-restored cells suppressed upregulation of oxidant-sensitive stress systems by Cr(VI) but showed a strong activation of the apical DNA damage-responsive kinase ATR. ATR signaling was triggered in late S phase and persisted upon entry of cells into G2 phase. Inhibition of ATR prevented the establishment of late-S and G2 cell cycle checkpoints and did not lead to a compensatory activation of a related kinase ATM. Inactivation of ATR also strongly impaired viability of Cr(VI)-treated lung cells including stem-like cells and revealed a significant formation of toxic Cr-DNA damage at low Cr(VI) doses. Our findings identified a major Cr(VI) resistance mechanism involving sensing of Cr-DNA damage by ATR in late S phase and a subsequent establishment of protective cell cycle checkpoints.
Collapse
Affiliation(s)
- Sophia Valiente
- Brown University, Legorreta Cancer Center, Department of Pathology and Laboratory Medicine, Providence, RI 02912, USA
| | - Casey Krawic
- Brown University, Legorreta Cancer Center, Department of Pathology and Laboratory Medicine, Providence, RI 02912, USA
| | - Anatoly Zhitkovich
- Brown University, Legorreta Cancer Center, Department of Pathology and Laboratory Medicine, Providence, RI 02912, USA.
| |
Collapse
|
9
|
Mastin J, Saini A, Schuster JK, Harner T, Dabek-Zlotorzynska E, Celo V, Gaga EO. Trace Metals in Global Air: First Results from the GAPS and GAPS Megacities Networks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14661-14673. [PMID: 37732724 PMCID: PMC10552545 DOI: 10.1021/acs.est.3c05733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Trace metals, as constituents of ambient air, can have impacts on human and environmental health. The Global Atmospheric Passive Sampling (GAPS) and GAPS Megacities (GAPS-MC) networks investigated trace metals in the air at 51 global locations by deploying polyurethane foam disk passive air samplers (PUF-PAS) for periods of 3-12 months. Aluminum and iron exhibited the highest concentrations in air (x̅ = 3400 and 4630 ng/m3, respectively), with notably elevated values at a rural site in Argentina thought to be impacted by resuspended soil. Urban sites had the highest levels of toxic Pb and Cd, with enrichment factors suggesting primarily anthropogenic influences. High levels of As at rural sites were also observed. Elevated trace metal concentrations in cities are associated with local emissions and higher PM2.5 and PM10 concentrations. Brake and tire wear-associated metals Sb, Cu, and Zn are significantly correlated and elevated at urban locations relative to those at background sites. These data demonstrate the versatility of PUF-PAS for measuring trace metals and other particle-associated pollutants in ambient air in a cost-effective and simple manner. The data presented here will serve as a global baseline for assessing future changes in ambient air associated with industrialization, urbanization, and population growth.
Collapse
Affiliation(s)
- Jacob Mastin
- Air
Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Amandeep Saini
- Air
Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Jasmin K. Schuster
- Air
Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Tom Harner
- Air
Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Ewa Dabek-Zlotorzynska
- Analysis
and Air Quality Section, Air Quality Research Division, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario K1A 0H3, Canada
| | - Valbona Celo
- Analysis
and Air Quality Section, Air Quality Research Division, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario K1A 0H3, Canada
| | - Eftade O. Gaga
- Faculty
of Engineering, Department of Environmental Engineering, Eskişehir Technical University, 26555 Eskişehir, Türkiye
| |
Collapse
|
10
|
Wu Q, Li Q, Zhang Y, Wan R, Peng S. Cr(VI) reduction by Agrobacterium sp. Cr-1 and Lysinibacillus sp. Cr-2, novel Cr(VI)-reducing strains isolated from chromium plant soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109724-109737. [PMID: 37776430 DOI: 10.1007/s11356-023-30181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
The bioremediation of Cr(VI)-contaminated soil is a promising strategy; however, the performance of Cr(VI)-reducing bacteria is limited by the toxicity of Cr(VI). In this study, two novel Cr(VI)-reducing bacteria were isolated from a Cr salt plant and identified as Agrobacterium sp. and Lysinibacillus sp. The Cr(VI) reduction conditions of the two strains were optimized. At a Cr(VI) concentration of 500 mg/L, Agrobacterium sp. Cr-1 reduced Cr(VI) with a removal rate of 96.91%, while that for Lysinibacillus sp. Cr-2 was 92.82%. First-order reaction kinetic equations simulated the positive relationship between time and Cr(VI) concentration during Cr(VI) reduction in these two strains. Agrobacterium sp. Cr-1 was further studied, and the effects of different cell components on Cr(VI) reduction were detected. The extracellular extracts of Agrobacterium sp. Cr-1 played a major role in Cr(VI) reduction, followed by intracellular extracts and cell membranes. The scanning electron microscope-energy dispersive spectrometer (SEM-EDS) images show that the precipitation was Cr. The high Cr(VI) reducing ability of Agrobacterium sp. Cr-1 suggests that this strain is promising for the remediation of Cr(VI)-contaminated sites.
Collapse
Affiliation(s)
- Qing Wu
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Tianjin, 300350, Jinnan District, China.
| | - Qiannan Li
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Tianjin, 300350, Jinnan District, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Tianjin, 300350, Jinnan District, China
| | - Ruihan Wan
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Tianjin, 300350, Jinnan District, China
| | - Sen Peng
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Tianjin, 300350, Jinnan District, China
| |
Collapse
|
11
|
Mortada WI, El-Naggar A, Mosa A, Palansooriya KN, Yousaf B, Tang R, Wang S, Cai Y, Chang SX. Biogeochemical behaviour and toxicology of chromium in the soil-water-human nexus: A review. CHEMOSPHERE 2023; 331:138804. [PMID: 37137390 DOI: 10.1016/j.chemosphere.2023.138804] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Chromium (Cr) affects human health if it accumulates in organs to elevated concentrations. The toxicity risk of Cr in the ecosphere depends upon the dominant Cr species and their bioavailability in the lithosphere, hydrosphere, and biosphere. However, the soil-water-human nexus that controls the biogeochemical behaviour of Cr and its potential toxicity is not fully understood. This paper synthesizes information on different dimensions of Cr ecotoxicological hazards in the soil and water and their subsequent effects on human health. The various routes of environmental exposure of Cr to humans and other organisms are also discussed. Human exposure to Cr(VI) causes both carcinogenic and non-carcinogenic health effects via complicated reactions that include oxidative stress, chromosomal and DNA damage, and mutagenesis. Chromium (VI) inhalation can cause lung cancer; however, incidences of other types of cancer following Cr(VI) exposure are low but probable. The non-carcinogenic health consequences of Cr(VI) exposure are primarily respiratory and cutaneous. Research on the biogeochemical behaviour of Cr and its toxicological hazards on human and other biological routes is therefore urgently needed to develop a holistic approach to understanding the soil-water-human nexus that controls the toxicological hazards of Cr and its detoxification.
Collapse
Affiliation(s)
- Wael I Mortada
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt; Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| | | | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; Department of Environmental Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Ronggui Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, 196 W Huayang Rd, Yangzhou, Jiangsu, PR China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China; Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada.
| |
Collapse
|
12
|
Saouli A, Adjroud O, Ncir M, Bachir A, El Feki A. Attenuating effects of selenium and zinc against hexavalent chromium-induced oxidative stress, hormonal instability, and placenta damage in preimplanted rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60050-60079. [PMID: 37017835 DOI: 10.1007/s11356-023-26700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
As a toxic metal, hexavalent chromium (CrVI) has effects on both the reproductive and endocrine systems. This study aimed to evaluate the protective effects of selenium (Se) and zinc (Zn) against the toxicity of chromium on the placenta in pregnant Wistar albino rats. Thirty pregnant Wistar rats were divided into control and four treated groups, receiving subcutaneously (s.c) on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg body weight (bw)) alone, or in association with Se (0.3 mg/kg bw), ZnCl2 (20 mg/kg bw), or both of them simultaneously. Plasma steroid hormones, placenta histoarchitecture, oxidative stress profile, and developmental parameters were investigated. These results showed that K2Cr2O7 exposure induced a significant increase in the levels of both plasma estradiol (E2) and placenta malondialdehyde (MDA), the number of fetal resorptions, and percent of post-implantation loss. On the other hand, K2Cr2O7 significantly reduced developmental parameters, maternal body and placenta weight, and plasma progesterone (P) and chorionic gonadotropin hormone (β HCG) levels. However, K2Cr2O7 significantly decreased the placenta activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH), and nonprotein sulfhydryl (NPSH). These changes have been reinforced by histopathological evaluation of the placenta. Se and/or ZnCl2 supplementation provoked a significant improvement in most indices. These results suggest that the co-treatment with Se or ZnCl2 strongly opposes the placenta cytotoxicity induced by K2Cr2O7 through its antioxidant action.
Collapse
Affiliation(s)
- Asma Saouli
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria.
| | - Ounassa Adjroud
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria
| | - Marwa Ncir
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Achouak Bachir
- Anatomy and Pathology Laboratory, EHS Salim Zemirli, 16200, El Harrach, Algeria
| | - Abdelfattah El Feki
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| |
Collapse
|
13
|
Koivisto AJ, Altin M, Furxhi I, Eliat M, Trabucco S, Blosi M, Lopez de Ipiña J, Belosi F, Costa A. Burden of Disease (BoD) Assessment to Estimate Risk Factors Impact in a Real Nanomanufacturing Scenario. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4089. [PMID: 36432374 PMCID: PMC9696424 DOI: 10.3390/nano12224089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
An industrial nanocoating process air emissions impact on public health was quantified by using the burden of disease (BoD) concept. The health loss was calculated in Disability Adjusted Life Years (DALYs), which is an absolute metric that enables comparisons of the health impacts of different causes. Here, the health loss was compared with generally accepted risk levels for air pollution. Exposure response functions were not available for Ag nanoform. The health loss for TiO2 nanoform emissions were 0.0006 DALYs per 100,000 persons per year. Moreover, the exposure risk characterization was performed by comparing the ground level air concentrations with framework values. The exposure levels were ca. 3 and 18 times lower than the derived limit values of 0.1 μg-TiO2/m3 and 0.01 μg-Ag/m3 for the general population. The accumulations of TiO2 and Ag nanoforms on the soil top layer were estimated to be up to 85 μg-TiO2/kg and 1.4 μg-Ag/kg which was considered low as compared to measured elemental TiO2 and Ag concentrations. This assessment reveals that the spray coating process air emissions are adequately controlled. This study demonstrated how the BoD concept can be applied to quantify health impacts of nanoform outdoor air emissions from an industrial site.
Collapse
Affiliation(s)
- Antti Joonas Koivisto
- Air Pollution Management APM, Mattilanmäki 38, 33610 Tampere, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, PL 64, 00014 Helsinki, Finland
- ARCHE Consulting, Liefkensstraat 35D, 9032 Wondelgem, Belgium
| | - Marko Altin
- Witek s.r.l., Via Siena 47, 50142 Firenze, Italy
| | - Irini Furxhi
- Transgero Limited, Cullinagh, Newcastle West, Co. Limerick, V42 V384 Limerick, Ireland
- Department of Accounting and Finance, Kemmy Business School, University of Limerick, V94 T9PX Limerick, Ireland
| | - Maxime Eliat
- ARCHE Consulting, Liefkensstraat 35D, 9032 Wondelgem, Belgium
| | - Sara Trabucco
- CNR-ISAC, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| | - Magda Blosi
- ISTEC-CNR, Institute of Science and Technology for Ceramics, CNR, National Research Council, Via Granarolo 64, 48018 Faenza, Italy
| | - Jesús Lopez de Ipiña
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Leonardo Da Vinci 11, 01510 Miñano, Spain
| | - Franco Belosi
- CNR-ISAC, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| | - Anna Costa
- ISTEC-CNR, Institute of Science and Technology for Ceramics, CNR, National Research Council, Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
14
|
Yang X, Tang Z, Li J, Jiang J. Esophagus cancer and essential trace elements. Front Public Health 2022; 10:1038153. [PMID: 36466456 PMCID: PMC9709130 DOI: 10.3389/fpubh.2022.1038153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous epidemiological and laboratory studies on essential trace elements have reported protective associations in developing various cancer types, including esophagus cancer (EC). However, the results are not always consistent. Some essential trace elements could play a vital role in preventing esophagus cancer. Some showed no association with esophageal cancer risk, while others harmed individuals. This article reviews the association between the intake or supplementation of essential trace elements (especially zinc, copper, iron, and selenium) and the risk of esophageal cancer. Generally, zinc intake may decrease the risk of esophageal cancer (EC), especially in high esophageal squamous cell carcinoma (ESCC) prevalence regions. The association between copper supplementation and EC remains uncertain. Total iron consumption is thought to be associated with lower EC risk, while heme iron intake may be associated with higher EC risk. Selenium intake showed a protective effect against EC, especially for those individuals with a low baseline selenium level. This review also prospects the research direction of the association between EC and essential trace elements.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizong Jiang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jizong Jiang
| |
Collapse
|
15
|
Hossini H, Shafie B, Niri AD, Nazari M, Esfahlan AJ, Ahmadpour M, Nazmara Z, Ahmadimanesh M, Makhdoumi P, Mirzaei N, Hoseinzadeh E. A comprehensive review on human health effects of chromium: insights on induced toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70686-70705. [PMID: 36042133 DOI: 10.1007/s11356-022-22705-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/20/2022] [Indexed: 05/13/2023]
Abstract
The growing use of heavy metals in most industrial activities has led to it being considered as the most important environmental pollutant that may cause harm and toxicity to animals and humans. Chromium has been found in the environment in different oxidation states such as Cr0, Cr(III), and Cr(VI) and is released from a variety of anthropogenic and natural activities. At among, trivalent and hexavalent chromium are the most stable forms. Considerably, Cr(VI) is frequently more toxic than Cr(III) because of its particular solubility and high mobility. Chronic exposure and bioaccumulation of chromium, as a heavy metal, can cause toxicity and numerous pathophysiological defects, including allergic reactions, anemia, burns, and sores especially in the stomach and small intestine, damage to sperm along with the male reproductive system, and affect various biological systems. Chromium pollution can have severe consequences for water and the soil environment. This article reviews the toxicological effects of Cr(VI) and Cr(III) and their mechanisms of toxicity and carcinogenicity.
Collapse
Affiliation(s)
- Hooshyar Hossini
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behnaz Shafie
- Food and Drug Administration, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Dehghan Niri
- Department of Occupational Health Engineering, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Mahboubeh Nazari
- Department of Medical and Surgical Nursing, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aylin Jahanban Esfahlan
- Department of Nursing, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Ahmadpour
- Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zohreh Nazmara
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadimanesh
- Food and Drug Vice Presidency, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouran Makhdoumi
- Student research committee, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Nezam Mirzaei
- Department of Environmental Health Engineering, Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Edris Hoseinzadeh
- Incubation and Innovation center, Saveh University of Medical Sciences, Saveh, Iran
| |
Collapse
|
16
|
Bao S, Zhang C, Luo S, Jiang L, Li Q, Kong Y, Cao J. HMGA2 mediates Cr (VI)-induced metabolic reprogramming through binding to mitochondrial D-Loop region. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114085. [PMID: 36116352 DOI: 10.1016/j.ecoenv.2022.114085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium [Cr (VI)] exists environmentally and occupationally. It has been shown to pose a carcinogenic hazard in certain occupations. This study was to investigate the role of high mobility group A2 (HMGA2) in Cr (VI)-induced metabolism reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis in A549 and HELF cells. First, knockdown of HMGA2 by siHMGA2 significantly attenuated Cr (VI)-reduced expression of OXPHOS-related proteins (COX IV and ND1) and mitochondrial mass, indicating that HMGA2 was involved in Cr (VI)-reduced OXPHOS. Overexpression of HMGA2 by transfection of HMGA2-DNA plasmids reduced the expression of COX IV, ND1 and mitochondrial mass, suggesting the negative role of HMGA2 in OXPHOS. Secondly, both CCCP, the inhibitor of mitochondrial function, and the ER stress inhibitor, 4-phenylbutyric acid (4-PBA), decreased the level of HMGA2, indicating that the interaction of mitochondrial dysfunction and ER stress resulted in Cr (VI)-induced HMGA2 expression. Further study demonstrated that ER stress/HMGA2 axis mediated the metabolism rewiring from OXPHOS to aerobic glycolysis. Notably, Cr (VI) induced the accumulation of HMGA2 proteins in mitochondria and ChIP assay demonstrated that HMGA2 proteins could bind to D-loop region of mitochondrial DNA (mtDNA), which provided the proof for HMGA2-modulating OXPHOS. Taken together, our results suggested that the interaction of mitochondria and ER stress-enhanced HMGA2 played an important role in Cr (VI)-induced metabolic reprogramming from OXPHOS to glycolysis by binding directly to D-loop region of mtDNA. This work informs on the potential mode of action for Cr (VI)-induced tumors and builds on growing evidence regarding the contribution of cellular metabolic disruption contributing to carcinogenicity.
Collapse
Affiliation(s)
- Shibo Bao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian 116044, China
| | - Shengxiang Luo
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
17
|
Ge X, He J, Wang L, Zhao L, Wang Y, Wu G, Liu W, Shu Y, Gong W, Ma XL, Wang Y, Jiang BH, Liu LZ. Epigenetic alterations of CXCL5 in Cr(VI)-induced carcinogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155713. [PMID: 35660107 PMCID: PMC9290188 DOI: 10.1016/j.scitotenv.2022.155713] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 05/14/2023]
Abstract
Chronic exposure to hexavalent chromium compounds [Cr(VI)] is associated with an increased risk of cancers, but the molecular mechanisms remain to be elucidated. In this study, we found that CXCL5 levels in peripheral blood monocytes (PBMCs) and plasma from workers with occupational exposure to Cr(VI) were dramatically upregulated compared to non-exposure healthy subjects, and plasma C-X-C Motif Chemokine Ligand 5 (CXCL5) CXCL5 levels were positively correlated with Cr concentrations in subjects' toenails. Zinc chromate exposed mice showed higher levels of CXCL5 and its receptor CXCR2 in lung tissues, and in PBMCs. Similar CXCL5 upregulation was evident in Cr(VI)-induced transformed (Cr-T) cells with long-term Cr(VI) treatment. Mechanistic studies showed that elevated CXCL5 expression levels were regulated by Cr(VI)-induced histone modifications and DNA hypomethylation, and that the c-Myc/p300 complex was a key upstream regulator of histone H3 acetylation. CXCL5 overexpression promoted Cr(VI)-induced the epithelial to mesenchyme transition (EMT) by upregulating zinc finger E-box binding homeobox 1 (ZEB1) to promote tumor development. Our findings identify a novel mechanism by which CXCL5 is upregulated and promotes EMT and carcinogenesis upon chronic Cr(VI) exposure. Our work also implies that CXCL5 mRNA and protein levels will elevate in PBMCs and serum after occupational Cr(VI) exposure, which may be a potential target and biomarker for cancer prevention and health surveillance among populations exposed to Cr(VI).
Collapse
Affiliation(s)
- Xin Ge
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jun He
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lin Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Zhao
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yifang Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gang Wu
- Department of Occupational Health, Changzhou Center of Disease Control, Changzhou, Jiangsu, China
| | - Wenjing Liu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Department of Occupational Health, Jiangsu Center of Disease Control, Nanjing, Jiangsu, China
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
18
|
Narayanasamy S, Sundaram V, Sundaram T, Vo DVN. Biosorptive ascendency of plant based biosorbents in removing hexavalent chromium from aqueous solutions - Insights into isotherm and kinetic studies. ENVIRONMENTAL RESEARCH 2022; 210:112902. [PMID: 35167851 DOI: 10.1016/j.envres.2022.112902] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Chromium is a toxic heavy metal prevalent in higher levels in aqueous matrices owing to industrial applications. Whilst being a key player in industries, the environmental issues caused by Cr(VI) are highly deleterious. Adsorptive remediation is found to be an effective method adopted by researchers in the past decades for Cr(VI) removal from water streams in which variety of naturally available biosorbents have been explored for handling Cr(VI). This review article briefly sketches up the biosorptive potential of plant-based biosorbents used in raw and chemically modified form for the optimum exclusion of Cr(VI) from aqueous sources. Mechanisms and kinetic behavior of the removal process are also discussed. pH of the solution and initial Cr(VI) concentration were found to be the key parameters in Cr removal. The mechanism of Cr removal from aqueous systems was elucidated to be either adsorption or adsorption-coupled-reduction. After precise discussion on various plant-based biosorbents with their maximum adsorption capacities, desorption and regeneration potential, it is perceived that plant-based biosorbents are superior options for Cr(VI) elimination from aqueous streams.
Collapse
Affiliation(s)
- Saranya Narayanasamy
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Vickram Sundaram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Thanigaivel Sundaram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India.
| | - Dai-Viet N Vo
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
19
|
Xia B, Yuan J, Pang L, He K. Chromium [Cr(VI)] Exposure Causes Cytotoxicity of Human Bronchial Epithelial Cells (16-HBE) and Proteomic Alterations. Int J Toxicol 2022; 41:225-233. [PMID: 35341331 DOI: 10.1177/10915818221078277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a common industrial pollutant, and exposure may cause toxic effects in multiple organ systems and carcinogenesis, including lung cancer. However, the toxic effect of Cr(VI) on the respiratory system is poorly understood. In the present study, it was demonstrated that Cr(VI) exposure significantly decreased the viability of human bronchial epithelial cells (16-HBE) in a dose-dependent manner. Flow cytometry demonstrated that Cr(VI) enhanced the transition of 16-HBE cells from G1 to S phase and arrested S-phase progression. Reverse transcription-quantitative polymerase chain reaction analysis revealed a significant alteration in the expression of apoptosis-associated genes in Cr(VI)-treated 16-HBE cells. In addition, using two-dimensional fluorescence differential gel electrophoresis with mass spectrometry, 15 differentially expressed proteins (1 upregulated and 14 downregulated) were identified in 16-HBE cells with Cr(VI) treatment compared with controls. Functional classification revealed that these differentially expressed proteins were involved in apoptosis, cytoskeletal structure, and energy metabolism. In conclusion, these data suggested that Cr(VI) caused toxic effects in bronchial epithelial cells and the mechanisms may involve the abnormal expression of apoptosis-associated proteins, cytoskeletal proteins, and energy metabolism-associated proteins.
Collapse
Affiliation(s)
- Bo Xia
- College of Food Science and Technology, 12575Hunan Agricultural University, East Renmin Road, Changsha, China.,Key Laboratory of Modern Toxicology of Shenzhen, 568734Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jiao Yuan
- College of Food Science and Technology, 12575Hunan Agricultural University, East Renmin Road, Changsha, China
| | - Li Pang
- College of Horticulture, 12575Hunan Agricultural University, East Renmin Road, Changsha, China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, 568734Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
20
|
Sohrabi M, Nikkhah M, Sohrabi M, Rezaee Farimani A, Mirasgari Shahi M, Ziaie H, Shirmardi S, Kohi Z, Salehpour D, Safarnezhad Tameshkel F, Hajibaba M, Zamani F, Ajdarkosh H, Sohrabi M, Gholami A. Evaluating tissue levels of the eight trace elements and heavy metals among esophagus and gastric cancer patients: A comparison between cancerous and non-cancerous tissues. J Trace Elem Med Biol 2021; 68:126761. [PMID: 34139544 DOI: 10.1016/j.jtemb.2021.126761] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Considering the affecting role of environmental factors including trace elements and heavy metals on the upper gastrointestinal (GI) cancers, there is paucity of empirical research in tissue evaluations. OBJECTIVES The present study aimed to measure the tissue content of some trace elements and heavy metals such as zinc (Zn), chromium (Cr), manganese (Mn), tin (Sn), copper (Cu), aluminum (Al), lead (Pb), and iron (Fe) in esophagus and gastric cancerous tissues compared to the adjacent healthy tissues. METHODS In a cross-sectional study, the aforementioned trace elements and heavy metals were evaluated among patients with esophagus and gastric cancers. During endoscopy, multiple samples were taken from cancerous lesions and the adjacent healthy tissues. The classic flame atomic absorption spectroscopy (FAAS) method was employed as the study framework. RESULTS Fifty patients with the mean age of 53.92 ± 8.73 were enrolled in the current study. Thirteen patients suffered from esophageal cancer and thirty-seven patients were afflicted with gastric cancer. The results revealed significant differences in the median concentrations of Zn, Cr, Sn and, Cu (P < 0.05) between the two groups. Although there were no significant changes in the tissue content in the esophageal samples, in the median concentrations of Zn, Cr and, Sn (P < 0.05) in gastric tissues, significant differences were observed. Further, the results indicated that gender enacted an affecting role in the level of some trace elements and heavy metals. CONCLUSION The tissue contents of some elements were altered in gastric and esophageal cancers; this difference may reflect the underlying mechanism of cellular changing during the tumorigenesis or direct exposure of these elements. It seems that under the shade of other coexisting risk factors, larger cohort studies are suggested to be conducted to investigate other probable aspects in this area of interest.
Collapse
Affiliation(s)
- Masoudreza Sohrabi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Nikkhah
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Sohrabi
- Department of Chemistry, Faculty of Basic Sciences, Tehran Islamic Azad University, North Branch, Tehran, Iran
| | - Azam Rezaee Farimani
- Department of Clinical Biochemistry, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | - Hossein Ziaie
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Solmaz Shirmardi
- Department of Chemistry, Faculty of Basic Sciences, Tehran Islamic Azad University, North Branch, Tehran, Iran
| | - Zahra Kohi
- Department of Chemistry, Faculty of Basic Sciences, Tehran Islamic Azad University, North Branch, Tehran, Iran
| | - Delaram Salehpour
- Department of Chemistry, Faculty of Basic Sciences, Tehran Islamic Azad University, North Branch, Tehran, Iran
| | | | - Marzieh Hajibaba
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Sohrabi
- Department of Chemistry, Faculty of Basic Sciences, Tehran Islamic Azad University, North Branch, Tehran, Iran.
| | - Ali Gholami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
21
|
den Braver-Sewradj SP, van Benthem J, Staal YCM, Ezendam J, Piersma AH, Hessel EVS. Occupational exposure to hexavalent chromium. Part II. Hazard assessment of carcinogenic effects. Regul Toxicol Pharmacol 2021; 126:105045. [PMID: 34506880 DOI: 10.1016/j.yrtph.2021.105045] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022]
Abstract
Hexavalent chromium (Cr(VI)) compounds have been studied extensively and several agencies have described their toxicological profile. In the past, personnel of the Dutch Ministry of Defence may have been exposed to Cr(VI) during maintenance activities on NATO equipment. To investigate if this exposure may have caused irreversible adverse health effects, the Dutch National Institute for Public Health and the Environment (RIVM) summarized all available knowledge from previous evaluations. This information was complemented with a scoping review to retrieve new scientific literature. All scientific evidence was evaluated in workshops with external experts to come to an overview of irreversible adverse health effects that could be caused by occupational exposure to Cr(VI) compounds. This review provides the hazard assessment for occupational exposure to Cr(VI) and carcinogenic effects by integrating and weighting evidence provided by international agencies complemented with newly published studies. It was concluded that occupational exposure to Cr(VI) can cause lung cancer, nose and nasal sinus cancer in humans. Cr(VI) is suspected to cause stomach cancer and laryngeal cancer in humans. It is currently insufficiently clear if Cr(VI) can cause cancer of the small intestine, oral cavity, pancreas, prostate or bladder in humans.
Collapse
Affiliation(s)
| | - Jan van Benthem
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, the Netherlands
| | - Yvonne C M Staal
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, the Netherlands
| | - Janine Ezendam
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, the Netherlands
| | - Aldert H Piersma
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, the Netherlands
| | - Ellen V S Hessel
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, the Netherlands
| |
Collapse
|
22
|
Ramírez-Quesada MM, Venegas-Padilla J, Sibaja-Brenes JP, Calderón-Jiménez B. New advances in the method validation, extraction methods and measurement uncertainty for the determination of water-soluble hexavalent chromium in hydraulic cement. Talanta 2021; 232:122286. [PMID: 34074381 DOI: 10.1016/j.talanta.2021.122286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/28/2023]
Abstract
The quantification of Cr (VI) in the cement matrix is highly important, given the possibility of suffering illnesses including dermatitis, induced nasal carcinoma, and DNA damage produced by inhalation of and/or direct contact with this substance by construction workers. This study presents an analytical validation of the determination of water-soluble Cr (VI) using Ultraviolet-Visible Spectroscopy (UV-Vis) with 1.5-diphenylcarbazide. To do so, different performance characteristics were determined: working interval, analytical sensitivity, linearity, limits of detection (LOD) and quantification (LOQ), as well as measurement uncertainty, in order to provide better metrological information about the performance of this method. The study also focused on evaluating the impact of use of different types of standard sands (ASTM C-778 and CEN) for preparing mortar cement and extracting water soluble Cr (VI) present in the cement. For this purpose, two cements with different concentrations (2.01 ± 0.21 and 0.75 ± 0.09 mg-kg-1) of Cr (IV) were created to evaluate extraction using three types of treatments: oxidized with potassium peroxidisulfite, non-oxidized, and an alternative method using cement paste. It was observed that mortar cement using ASTM C-778 sand tends to underestimate Cr (IV) content when concentrations are below 0.8 mg kg-1, while at higher concentrations of ~2.0 mg kg-1 it does not generate different results compared to those obtained using mortar cement made with CEN-standard sand. An alternative method called "paste extraction" also showed statistically comparable results with respect to standard mortar for both concentration levels evaluated. Finally, samples of cement marketed in Costa Rica were analyzed using different types of water soluble Cr (IV) extraction methods. The results show concentrations between 0.70 ± 0.13 mg kg-1 and 1.30 ± 0.13 mg kg-1, demonstrating that they comply with the limits established by international standards and national regulations in Costa Rica.
Collapse
Affiliation(s)
| | - Jimmy Venegas-Padilla
- Chemical Metrology Division, National Metrology Laboratory of Costa Rica (LCM), San José, Costa Rica.
| | - José Pablo Sibaja-Brenes
- Laboratory of Atmospheric Chemistry (LAQAT-UNA), School of Chemistry, Universidad Nacional de Costa Rica, Costa Rica
| | - Bryan Calderón-Jiménez
- Chemical Metrology Division, National Metrology Laboratory of Costa Rica (LCM), San José, Costa Rica.
| |
Collapse
|
23
|
Proctor DM, Bhat V, Suh M, Reichert H, Jiang X, Thompson CM. Inhalation cancer risk assessment for environmental exposure to hexavalent chromium: Comparison of margin-of-exposure and linear extrapolation approaches. Regul Toxicol Pharmacol 2021; 124:104969. [PMID: 34089813 DOI: 10.1016/j.yrtph.2021.104969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Hexavalent chromium [Cr(VI)] exists in the ambient air at low concentrations (average upperbound ~0.1 ng/m3) yet airborne concentrations typically exceed EPA's Regional Screening Level for residential exposure (0.012 ng/m3) and other similar benchmarks, which assume a mutagenic mode of action (MOA) and use low-dose linear risk assessment models. We reviewed Cr(VI) inhalation unit risk estimates developed by researchers and regulatory agencies for environmental and occupational exposures and the underlying epidemiologic data, updated a previously published MOA analysis, and conducted dose-response modeling of rodent carcinogenicity data to evaluate the need for alternative exposure-response data and risk assessment approaches. Current research supports the role of non-mutagenic key events in the MOA, with growing evidence for epigenetic modifiers. Animal data show a weak carcinogenic response, even at cytotoxic exposures, and highlight the uncertainties associated with the current epidemiological data used in risk assessment. Points of departure from occupational and animal studies were used to determine margins of exposure (MOEs). MOEs range from 1.5 E+3 to 3.3 E+6 with a median of 5 E+5, indicating that current environmental exposures to Cr(VI) in ambient air should be considered of low concern. In this comprehensive review, the divergent results from default linear and MOE assessments support the need for more relevant and robust epidemiologic data, additional mechanistic studies, and refined risk assessment strategies.
Collapse
Affiliation(s)
- Deborah M Proctor
- ToxStrategies, Inc, 27001 La Paz Rd, Suite 260, Mission Viejo, CA, 92691, USA.
| | | | - Mina Suh
- ToxStrategies, Inc, 27001 La Paz Rd, Suite 260, Mission Viejo, CA, 92691, USA
| | | | | | | |
Collapse
|
24
|
Ye J, Wang Y, Xu Q, Wu H, Tong J, Shi J. Removal of hexavalent chromium from wastewater by Cu/Fe bimetallic nanoparticles. Sci Rep 2021; 11:10848. [PMID: 34035405 PMCID: PMC8149398 DOI: 10.1038/s41598-021-90414-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
Passivation of nanoscale zerovalent iron hinders its efficiency in water treatment, and loading another catalytic metal has been found to improve the efficiency significantly. In this study, Cu/Fe bimetallic nanoparticles were prepared by liquid-phase chemical reduction for removal of hexavalent chromium (Cr(VI)) from wastewater. Synthesized bimetallic nanoparticles were characterized by transmission electron microscopy, Brunauer-Emmet-Teller isotherm, and X-ray diffraction. The results showed that Cu loading can significantly enhance the removal efficiency of Cr(VI) by 29.3% to 84.0%, and the optimal Cu loading rate was 3% (wt%). The removal efficiency decreased with increasing initial pH and Cr(VI) concentration. The removal of Cr(VI) was better fitted by pseudo-second-order model than pseudo-first-order model. Thermodynamic analysis revealed that the Cr(VI) removal was spontaneous and endothermic, and the increase of reaction temperature facilitated the process. X-ray photoelectron spectroscopy (XPS) analysis indicated that Cr(VI) was completely reduced to Cr(III) and precipitated on the particle surface as hydroxylated Cr(OH)3 and CrxFe1-x(OH)3 coprecipitation. Our work could be beneficial for the application of iron-based nanomaterials in remediation of wastewater.
Collapse
Affiliation(s)
- Jien Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Rheinberger CM. A Unified Probabilistic Framework for Cancer Risk Management. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:584-595. [PMID: 33340129 DOI: 10.1111/risa.13666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/28/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Cancer risk assessments in the regulatory realm are often deterministic. Probabilistic approaches that allow characterizing and propagating uncertainty and variability are better suited to predict the socioeconomic impacts of regulating carcinogens. In this article, I present a unified framework for cancer risk management consisting of (i) a probabilistic exposure model that takes into account variability in individual exposure to the substance of concern; (ii) a probabilistic dose-response model that accounts for differences in individual cancer susceptibility; (iii) an impact assessment model that quantifies individuals' excess lifetime cancer risk; and (iv) a welfare model that values changes in disability-adjusted life expectancy based on workers' willingness-to-pay and aggregates individual valuations across the population at risk. I illustrate the framework with data on occupational exposure to hexavalent chromium in France. In a cohort of 10,000 synthetic workers, about one third of the exposed benefit from the introduction of a binding occupational exposure limit (BOEL). Limiting hexavalent chromium exposure to the BOEL reduces the statistical worker's excess lifetime risk of fatal and nonfatal lung cancer by 4.7E-3 and 1.5E-3, respectively. At cohort level, the risk reduction corresponds to 738.4 full and 30.7 disability-adjusted life years saved. The expected welfare gain of introducing the BOEL is close to €30 million. A major advantage of the framework is its ability to visualize uncertainty and variability inherent to cancer risk assessment. Notwithstanding some implementation challenges, the framework provides a transparent characterization of regulatory impacts that supports informed risk management decisions.
Collapse
Affiliation(s)
- Christoph M Rheinberger
- Risk Management Directorate, European Chemicals Agency, Postal address: P.O. Box 400, Helsinki, 00121, Finland
| |
Collapse
|
26
|
Luo Q, Qin K, Liu F, Zheng X, Ding Y, Zhang C, Xu M, Liu X, Wei Y. Carbon dots derived from kanamycin sulfate with antibacterial activity and selectivity for Cr 6+ detection. Analyst 2021; 146:1965-1972. [PMID: 33496685 DOI: 10.1039/d0an02352c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Among antibacterial nanomaterials, carbon dots (CDs) have attracted much attention because of their unique physical and chemical properties and good biosafety. In this study, kanamycin sulfate (Kan), a broad-spectrum antibiotic, was used to synthesize novel carbon dots (CDs-Kan) by a one-step hydrothermal method. CDs-Kan showed good inhibitory effects on Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Further, scanning electron microscopy revealed that treatment with CDs-Kan and Kan resulted in the same phenomena. In particular, the morphologies of S. aureus cells treated with CDs-Kan and Kan became smaller and irregular, whereas the surfaces of E. coli cells protruded and formed vesicles. These results indicated that CDs-Kan was shown to retain the good antibacterial activity of Kan as well as its main bactericidal functional groups, namely, the amino sugar and amino cyclic alcohol, We refer to this phenomenon as the "preservation property". We also found that CDs-Kan has good biocompatibility and nontoxic properties. Moreover, CDs-Kan was successfully applied to the biological imaging of fungi and plant cells. In addition, CDs-Kan could be used as a fluorescent probe for the quick, sensitive, and selective detection of Cr6+. Therefore, CDs-Kan not only retained the good bacteriostatic properties of Kan but also expanded its application in bioimaging and biosensors.
Collapse
Affiliation(s)
- Qian Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chappell GA, Wikoff DS, Thompson CM. Assessment of Mechanistic Data for Hexavalent Chromium-Induced Rodent Intestinal Cancer Using the Key Characteristics of Carcinogens. Toxicol Sci 2021; 180:38-50. [PMID: 33404626 PMCID: PMC7916733 DOI: 10.1093/toxsci/kfaa187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oral exposure to hexavalent chromium (Cr[VI]) induces intestinal tumors in mice. Mutagenic and nonmutagenic modes of action (MOAs) have been accepted by different regulatory bodies globally, the latter involving cytotoxicity-induced regenerative cell proliferation. However, concerns persist that all possible MOAs have not been fully considered. To address the potential for alternative MOAs, mechanistic data not represented in the existing two MOAs were evaluated. Relevant data were identified and organized by key characteristics of carcinogens (KCCs); literature related to epigenetics, immunosuppression, receptor-mediated effects, and immortalization were reviewed to identify potential key events associated with an alternative MOA. Over 200 references were screened for these four KCCs and further prioritized based on relevance to the research objective (ie, in vivo, oral exposure, gastrointestinal tissue). Minimal data were available specific to the intestine for these KCCs, and there was no evidence of any underlying mechanisms or key events that are not already represented in the two proposed MOAs. For example, while epigenetic dysregulation of DNA repair genes has been demonstrated, epigenetic effects were not measured in intestinal tissue, and it has been shown that Cr(VI) does not cause DNA damage in intestinal tissue. High-throughput screening data related to the KCCs were also evaluated, with activity generally limited to the two recognized MOAs. Collectively, no plausible alternative MOAs (or key events) were identified in addition to those previously proposed for Cr(VI) small intestine tumors.
Collapse
|
28
|
Zheng X, Qin K, He L, Ding Y, Luo Q, Zhang C, Cui X, Tan Y, Li L, Wei Y. Novel fluorescent nitrogen-doped carbon dots derived from Panax notoginseng for bioimaging and high selectivity detection of Cr 6. Analyst 2021; 146:911-919. [PMID: 33237046 DOI: 10.1039/d0an01599g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbon dots (CDs) and photoluminescent carbon dots (Pn-CDs) are promising nanomaterials due to their bioimaging applications and have attracted considerable attention because of their excellent stability, good biocompatibility, and low biotoxicity. Here, the Pn-CDs and highly fluorescent nitrogen-doped CDs (Pn N-CDs) derived from Panax notoginseng were successfully synthesized by a simple hydrothermal method. Pn N-CDs exhibit optical properties and stability superior to those of Pn-CDs and can be better used as fluorescent dyes and probes in biological imaging. The obtained Pn N-CDs can be effectively applied to the imaging of bacteria, fungi, plant cells, and protozoa. In addition, Pn N-CDs can perform specific staining on the membranes of all tested cells. The in vivo imaging of mice revealed that Pn N-CDs exhibit nontoxicity and good biocompatibility and biodistribution. Furthermore, Pn N-CDs can be utilized as fluorescent probes for the rapid and highly selective detection of Cr6+. Hence, a simple, cost-effective, scalable, and green synthetic approach based on traditional Chinese medicine-derived CDs can be used to develop biolabeling, membrane targeting, and optical sensing probes.
Collapse
Affiliation(s)
- Xiaodan Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Akinwumi KA, Gbadegesin MA, Aboyewa JA, Odunola OA. Attenuation of potassium dichromate and sodium arsenite toxicities by methanol extract of Rauvolfia vomitoria in mice. J Basic Clin Physiol Pharmacol 2020; 33:255-264. [PMID: 35596240 DOI: 10.1515/jbcpp-2020-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/12/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Exposure to arsenic and hexavalent chromium is a major public health concern especially in the developing part of the world and there is paucity of information on reliable treatment modalilities. It is in this regard that this study evaluates the efficacy of methanol leaf extract of Rauvolfia vomitoria (MRV) when used as pretreatment agent against potassium dichromate (K2Cr2O7) and sodium arsenite (NaAsO2) exposure. METHODS Swiss albino mice between 7 and 10 weeks old were divided into eight cohorts of five animals each. Treatment groups consisted of a distilled water control, MRV alone (275 mg/kg po daily), K2Cr2O7 (12.0 mg/kg, single ip injection) +/- MRV pretreatment, NaAsO2 (2.5 mg/kg, single ip injection) +/- MRV pretreatment, Na2AsO2 + K2Cr2O7 +/- MRV pretreatment. MRV was given for seven consecutive days, while K2Cr2O7 and NaAsO2 were injected on day seven of the experiment. The frequency of micronucleated polychromatic erythrocytes (mPCEs) was determined in bone marrow cells, while aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were assessed in the plasma. Hepatic glutathione (GSH), malondialdehyde (MDA), catalase (CAT) and glutathione-S-transferase (GST) levels were also determined. RESULTS The NaAsO2 and K2Cr2O7 significantly (p<0.05) increased mPCE formation, AST, ALT, and CAT when compared with the control. Simultaneous exposure to NaAsO2 and K2Cr2O7 further increased the levels of the markers. Furthermore, GSH and GST were significantly reduced by NaAsO2 or K2Cr2O7 or their combination. Pretreatment with MRV reversed the markers towards that of control. CONCLUSIONS Methanol extract of Rauvolfia vomitoria may therefore ameliorate NaAsO2 and K2Cr2O7-induced toxicities via reduction of oxidative stress and fortification of anti-oxidant system.
Collapse
Affiliation(s)
- Kazeem A Akinwumi
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Chemical Sciences and Food Sciences, Bells University of Technology, Ota, Ogun State, Nigeria
| | - Michael A Gbadegesin
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Jumoke A Aboyewa
- Department of Chemical Sciences and Food Sciences, Bells University of Technology, Ota, Ogun State, Nigeria.,Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Oyeronke A Odunola
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
30
|
Gibb H, Wang J, O'Leary K, Chen C, Bateson TF, Kopylev L. The effect of age on the relative risk of lung cancer mortality in a cohort of chromium production workers. Am J Ind Med 2020; 63:774-778. [PMID: 32687217 PMCID: PMC7496708 DOI: 10.1002/ajim.23152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 11/13/2022]
Abstract
Background Hexavalent chromium has been found to increase the risk of lung cancer in occupational studies. It has been suggested that the relative risk of lung cancer may vary by age. Methods The cohort examined is the Baltimore cohort of chromium production workers. The effect of age on the lung cancer risk from hexavalent chromium exposure was examined using a conditional Poisson regression modeling approach of Richardson and Langholz (R&L) and Cox models with interaction terms of age and cumulative hexavalent chromium exposure. Results The inclusion of multiple age groups in the R&L approach suggests the existence of an age effect that is also supported by a Cox proportional hazard analysis. The hazard ratio in Cox models with age‐cumulative exposure interaction terms was significantly elevated for the youngest age group and significantly decreased for the oldest age group. Conclusions Our analyses are consistent with the observation that younger chromium production workers have a greater lung cancer risk than older workers.
Collapse
Affiliation(s)
- Herman Gibb
- Gibb Epidemiology ConsultingArlington Virginia
| | - Jing Wang
- Gibb Epidemiology ConsultingArlington Virginia
| | | | - Chao Chen
- Gibb Epidemiology ConsultingArlington Virginia
| | - Thomas F. Bateson
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental AssessmentUS Environmental Protection AgencyWashington DC
| | - Leonid Kopylev
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental AssessmentUS Environmental Protection AgencyWashington DC
| |
Collapse
|
31
|
Long B, Ye J, Ye Z, He J, Luo Y, Zhao Y, Shi J. Cr(VI) removal by Penicillium oxalicum SL2: Reduction with acidic metabolites and form transformation in the mycelium. CHEMOSPHERE 2020; 253:126731. [PMID: 32302907 DOI: 10.1016/j.chemosphere.2020.126731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/29/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Bioremediation of Cr(VI) contamination using microorganisms is a promising method for reducing its environmental risks. The objective of this study was to clarify Cr(VI) removal by Penicillium oxalicum SL2 in terms of indirect Cr(VI) reduction by metabolites, interaction sites, and form transformation of chromium. Strain SL2 could sequentially remove Cr(VI) in the bioreactor. Oxalic acid produced by the fungus contributed to Cr(VI) reduction. Scanning transmissiony X-ray microscop (STXM) analysis suggested strain SL2 could partly reduce Cr(VI) to Cr(III) in the cell. Amine, carboxyl, and phosphate groups were related to Cr(VI) removal. Chromium K-edge X-ray absorption near edge structure (XANES) analysis implied Cr(III)-Cys potentially acted as an intermediate for the formation of chromium oxalate complexes during the process of treatment. This study would support the application of strain SL2 in Cr(VI) bioremediation and expand knowledge on the interaction of chromium with fungus.
Collapse
Affiliation(s)
- Bibo Long
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, Guangdong, 510316, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jien Ye
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhe Ye
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junyu He
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, 316021, China
| | - Yating Luo
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yige Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
32
|
Bau S, Rousset D, Payet R, Keller FX. Characterizing particle emissions from a direct energy deposition additive manufacturing process and associated occupational exposure to airborne particles. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2020; 17:59-72. [PMID: 31829796 DOI: 10.1080/15459624.2019.1696969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study aims to characterize airborne particles emitted from a metal additive manufacturing machine and related levels of occupational exposure. To achieve this, a complete measurement methodology was deployed around a direct energy deposition machine. Different operating conditions were investigated, based on configurations of two materials and two injection nozzles. Two replicates were performed for each condition. Airborne particles emitted during repeated manufacturing cycles were measured simultaneously at the source, in the near field, in the far field and on the operator. Real-time instruments were used to characterize the machine emissions (10 nm-10 µm) associated with respirable and inhalable samplers and cascade impactors. Measurements were made during both the manufacturing process and transient operating phases. In parallel, personal exposure to hexavalent chromium was assessed. The number of particles measured for the different machining phases show that high levels of particles (> 5 × 105 # cm-3, 0.3-1.3 mg m-3 inhalable particles, 0.2-6 µg m-3 CrVI) were emitted in the machine enclosure. The size distributions indicate that more than 90% of the particles are smaller than 250 nm. Occupational exposure to CrVI was found to be below the LOQ of 0.098 µg m-3 for the two alloys investigated. During the machining process, near-field number and mass concentrations were ∼ 104 # cm-3, and below 0.04 mg m-3, respectively. Far-field number concentrations were also on the order of 104 # cm-3 throughout the whole monitoring period. The transient phase of door opening was found to result in high levels of exposure (> 105 # cm-3), which were also detected in the near-field, confirming the need to implement preventative actions. To address this issue, a collective protective measure, consisting of setting a time delay of about 8 min between the end of the manufacturing process and opening of the door, could be employed. This collective measure should also be accompanied by the wearing of personal protective equipment by the operator when an intervention in the machine enclosure is necessary.
Collapse
Affiliation(s)
- Sébastien Bau
- Department of Pollutant Metrology, Institut National de Recherche et de Sécurité, Vandoeuvre, France
| | - Davy Rousset
- Department of Pollutant Metrology, Institut National de Recherche et de Sécurité, Vandoeuvre, France
| | - Raphaël Payet
- Department of Pollutant Metrology, Institut National de Recherche et de Sécurité, Vandoeuvre, France
| | - François-Xavier Keller
- Department of Process Engineering, Institut National de Recherche et de Sécurité, Vandoeuvre, France
| |
Collapse
|
33
|
Feng L, Guo X, Li T, Yao C, Xia H, Jiang Z, Jia J, Fang Y, Shi L, Lu CA, Lou J. Novel DNA methylation biomarkers for hexavalent chromium exposure: an epigenome-wide analysis. Epigenomics 2020; 12:221-233. [DOI: 10.2217/epi-2019-0216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: We aimed to identify differential methylation of genes that could illuminate the biological mechanisms of chromium (VI) toxicity in this exposure-control study. Materials & methods: DNA methylation was measured in blood samples collected from electroplating workers and controls using a combination of Infinium Methylation450K Chip and targeted-bisulfite sequencing. QuantiGene assay was used to detect the mRNA expression of differentially methylated genes. Inductively coupled plasma–mass spectrometry was used to quantify metals in blood and urine samples. The cytosine–phosphate–guanine sites methylation and gene expression were confirmed in a human lymphoblastoid cell line. Results & conclusion: A total of 131 differentially methylated cytosine–phosphate–guanine sites were found between exposures and controls. DNA methylation of SEMA4B may serve as a potential biomarker for chromium (VI) exposure.
Collapse
Affiliation(s)
- Lingfang Feng
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, PR China
| | - Xinnian Guo
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, PR China
| | - Tao Li
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, PR China
| | - Chunji Yao
- Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou 310013, PR China
| | - Hailing Xia
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, PR China
| | - Zhaoqiang Jiang
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, PR China
| | - Junlin Jia
- Center for Biostatistics, Bioinformatics & Big Data, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Yuan Fang
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, PR China
| | - Li Shi
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, PR China
| | - Chensheng Alex Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jianlin Lou
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, PR China
| |
Collapse
|
34
|
Groenewold M, Brown L, Smith E, Haring Sweeney M, Pana‐Cryan R, Schnorr T. Burden of occupational morbidity from selected causes in the United States overall and by NORA industry sector, 2012: A conservative estimate. Am J Ind Med 2019; 62:1117-1134. [PMID: 31520453 DOI: 10.1002/ajim.23048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Timely and reliable national estimates of the occurrence of occupational injury and illness are needed to monitor the burden of occupational morbidity and mortality, establish research and intervention priorities, and evaluate the progress and effectiveness of prevention efforts. METHODS We provide updated estimates of morbidity from occupational injuries and selected illnesses, using current general population incidence rates, the proportion of the general public with a particular workplace exposure, and the relative risk of illness from that exposure. We provide estimates for the total U.S. working population and for specific industry sectors. RESULTS We estimate that, in 2012, between 5 712 362 and 5 961 620 total occupational cases, including 0.7 to 1.0 million incident illnesses and 5.0 million injuries, occurred in the United States. CONCLUSION The variety of disparate data sources and methods required to compile these estimates highlight the need for more comprehensive and compatible occupational health surveillance in the United States.
Collapse
Affiliation(s)
- Matthew Groenewold
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and Health, CDC Cincinnati Ohio
| | - Linda Brown
- Biostatistics and Epidemiology DivisionRTI International, Research Triangle Park North Carolina
| | - Emily Smith
- Biostatistics and Epidemiology DivisionRTI International, Research Triangle Park North Carolina
| | - Marie Haring Sweeney
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and Health, CDC Cincinnati Ohio
| | - Rene Pana‐Cryan
- Office of the DirectorNational Institute for Occupational Safety and Health Washington, DC
| | - Theresa Schnorr
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and Health, CDC Cincinnati Ohio
| |
Collapse
|
35
|
Speer RM, Wise SS, Croom-Perez TJ, Aboueissa AM, Martin-Bras M, Barandiaran M, Bermúdez E, Wise JP. A comparison of particulate hexavalent chromium cytotoxicity and genotoxicity in human and leatherback sea turtle lung cells from a one environmental health perspective. Toxicol Appl Pharmacol 2019; 376:70-81. [PMID: 31108106 DOI: 10.1016/j.taap.2019.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
Evaluating health risks of environmental contaminants can be better achieved by considering toxic impacts across species. Hexavalent chromium [Cr(VI)] is a marine pollutant and global environmental contaminant. While Cr(VI) has been identified as a human lung carcinogen, health effects in marine species are poorly understood. Little is known about how Cr(VI) might impact humans and marine species differently. This study used a One Environmental Health Approach to compare the cytotoxicity and genotoxicity of particulate Cr(VI) in human and leatherback sea turtle (Dermochelys coriacea) lung fibroblasts. Leatherbacks may experience prolonged exposures to environmental contaminants and provide insight to how environmental exposures affect health across species. Since humans and leatherbacks may experience prolonged exposure to Cr(VI), and prolonged Cr(VI) exposure leads to carcinogenesis in humans, in this study we considered both acute and prolonged exposures. We found particulate Cr(VI) induced cytotoxicity in leatherback cells comparable to human cell data supporting current research that shows Cr(VI) impacts health across species. To better understand mechanisms of Cr(VI) toxicity we assessed the genotoxic effects of particulate Cr(VI) in human and leatherback cells. Particulate Cr(VI) induced similar genotoxicity in both cell lines, however, human cells arrested at lower concentrations than leatherback cells. We also measured intracellular Cr ion concentrations and found after prolonged exposure human cells accumulated more Cr than leatherback cells. These data indicate Cr(VI) is a health concern for humans and leatherbacks. The data also suggest humans and leatherbacks respond to chemical exposure differently, possibly leading to the discovery of species-specific protective mechanisms.
Collapse
Affiliation(s)
- Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY 40202, United States of America
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY 40202, United States of America
| | - Tayler J Croom-Perez
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY 40202, United States of America
| | | | - Mark Martin-Bras
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY 40202, United States of America; Vieques Conservation and Historical Trust, 138 Calle Flamboyan, Vieques 00765, Puerto Rico
| | - Mike Barandiaran
- U.S. Fish and Wildlife Service, State Rd 997 km 3.2, Vieques 00765, Puerto Rico
| | - Erick Bermúdez
- U.S. Fish and Wildlife Service, State Rd 997 km 3.2, Vieques 00765, Puerto Rico
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY 40202, United States of America.
| |
Collapse
|
36
|
Abstract
Hexavalent chromium (Cr(VI)) compounds are recognized as carcinogens in the respiratory tract, giving rise to cancers of the lung, nose and nasal sinuses, especially in certain occupational environments. Inhalation exposure of Cr(VI)-containing particles, dusts and fumes commonly occurs in chromium-related occupational environments, such as chromium production, plating, welding of chromium-containing metals and alloys, electroplating, chromium-containing pigments and paints. Epidemiological surveys of chromium compounds have shown strong associations between exposure to Cr(VI) and mortality due to lung cancer, as well as positive associations with cancers of the nose and nasal cavity. Nasal symptoms, such as nasal irritation, ulceration and perforation of the nasal septum, nasal turbinate engorgement and hypertrophy, are important signs for the early diagnosis of lung cancer and cancers of the nose and nasal cavity in those with an occupational history of Cr(VI) exposure. Cr(VI) exposure in the workplace remains a serious problem as a cause of lung cancer and cancers of nose and nasal cavity, especially in relatively small enterprises that use chromium compounds. Appropriate protection for workers should be considered in occupations that involve exposure to chromium compounds.
Collapse
|
37
|
Suh M, Wikoff D, Lipworth L, Goodman M, Fitch S, Mittal L, Ring C, Proctor D. Hexavalent chromium and stomach cancer: a systematic review and meta-analysis. Crit Rev Toxicol 2019; 49:140-159. [DOI: 10.1080/10408444.2019.1578730] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mina Suh
- ToxStrategies, Inc, Mission Viejo, CA, USA
| | | | - Loren Lipworth
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Goodman
- Emory University Rollins School of Public Health, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
38
|
Deng Y, Wang M, Tian T, Lin S, Xu P, Zhou L, Dai C, Hao Q, Wu Y, Zhai Z, Zhu Y, Zhuang G, Dai Z. The Effect of Hexavalent Chromium on the Incidence and Mortality of Human Cancers: A Meta-Analysis Based on Published Epidemiological Cohort Studies. Front Oncol 2019; 9:24. [PMID: 30778374 PMCID: PMC6369173 DOI: 10.3389/fonc.2019.00024] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/08/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Hexavalent chromium [Cr(VI)] is an occupational carcinogen that can cause lung and nasal cancers, but its association with mortality and incidence in many other cancers is unclear. Objectives: In this meta-analysis, we aimed to evaluate the relationship between exposure to Cr(VI) and the mortality and incidence of human cancers. Methods: We performed a search of the literature and extracted the standardized mortality ratios (SMRs), standardized incidence ratios (SIRs), and their corresponding 95% confidence intervals (CIs), to estimate risk values. Subgroup analyses were conducted by sex, occupation, and types of cancer to identify groups that were at high-risk or predisposed to certain cancers. Results: A total of 47 cohort studies covering the period 1985–2016 were included (37 studies reporting SMRs and 16 studies reporting SIRs). The summary SMR for all studies combined was 1.07 (95% CI: 1.01–1.15). Summary SMRs were higher among chromate production workers, chrome platers, and masons, and especially male workers. In the subgroup analysis, Cr(VI) exposure was related to a higher risk of death owing to lung, larynx, bladder, kidney, testicular, bone, and thyroid cancer. The meta-SIR of all studies combined was 1.06 (95% CI: 1.04–1.09). Summary SIRs were elevated among cement industry workers and tanners. Cr(VI) exposure was related to an elevated risk of respiratory system, buccal cavity, pharynx, prostate, and stomach cancers. Conclusions: Cr(VI) might cause cancers of the respiratory system, buccal cavity and pharynx, prostate, and stomach in humans, and it is related to increased risk of overall mortality owing to lung, larynx, bladder, kidney, testicular, bone, and thyroid cancer. In addition, there was a strong association between incidence and mortality risk of cancers and concentration of Cr(VI) in the air and the exposure time.
Collapse
Affiliation(s)
- Yujiao Deng
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wang
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tian Tian
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuai Lin
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peng Xu
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Linghui Zhou
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Cong Dai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Hao
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ying Wu
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhen Zhai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yue Zhu
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guihua Zhuang
- Department of Epidemiology and Biostatistics, Xi'an Jiaotong University Health Science Center, School of Public Health, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
39
|
Loverdos K, Fotiadis A, Kontogianni C, Iliopoulou M, Gaga M. Lung nodules: A comprehensive review on current approach and management. Ann Thorac Med 2019; 14:226-238. [PMID: 31620206 PMCID: PMC6784443 DOI: 10.4103/atm.atm_110_19] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In daily clinical practice, radiologists and pulmonologists are faced with incidental radiographic findings of pulmonary nodules. Deciding how to manage these findings is very important as many of them may be benign and require no further action, but others may represent early disease and importantly early-stage lung cancer and require prompt diagnosis and definitive treatment. As the diagnosis of pulmonary nodules includes invasive procedures which can be relatively minimal, such as bronchoscopy or transthoracic aspiration or biopsy, but also more invasive procedures such as thoracic surgical biopsies, and as these procedures are linked to anxiety and to cost, it is important to have clearly defined algorithms for the description, management, and follow-up of these nodules. Clear algorithms for the imaging protocols and the management of positive findings should also exist in lung cancer screening programs, which are already established in the USA and which will hopefully be established worldwide. This article reviews current knowledge on nodule definition, diagnostic evaluation, and management based on literature data and mainly recent guidelines.
Collapse
Affiliation(s)
| | - Andreas Fotiadis
- 7th Respiratory Medicine Department, Athens Chest Hospital, Athens, Greece
| | | | | | - Mina Gaga
- 7th Respiratory Medicine Department, Athens Chest Hospital, Athens, Greece
| |
Collapse
|
40
|
Krawic C, Zhitkovich A. Toxicological Antagonism among Welding Fume Metals: Inactivation of Soluble Cr(VI) by Iron. Chem Res Toxicol 2018; 31:1172-1184. [PMID: 30362728 PMCID: PMC6247247 DOI: 10.1021/acs.chemrestox.8b00182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 12/19/2022]
Abstract
Epidemiological studies in chromate production have established hexavalent chromium as a potent lung carcinogen. Inhalation of chromium(VI) most often occurs in mixtures with other metals as among stainless steel welders, which is the largest occupational group with Cr(VI) exposure. Surprisingly, carcinogenicity of Cr(VI)-containing welding fumes is moderate and not consistently higher than that of Cr-free welding. Here, we investigated interactions between chromate and three other metal ions [Fe(III), Mn(II), Ni(II)] that are typically released from stainless steel welding particles. In human lung epithelial cells with physiological levels of ascorbate and glutathione, Cr(VI) was by far the most cytotoxic metal in single exposures. Coexposure with Fe(III) suppressed cytotoxicity and genotoxicity of Cr(VI), which resulted from a severe inhibition of Cr uptake by cells and required extracellular ascorbate/glutathione. Chemically, detoxification of Cr(VI) occurred via its rapid extracellular reduction by Fe(II) that primarily originated from ascorbate-reduced Fe(III). Glutathione was a significant contributor to reduction of Cr(VI) by Fe only in the presence of ascorbate. We further found that variability in Cr(VI) metabolism among common cell culture media was caused by their different Fe content. Ni(II) and Mn(II) had no detectable effects on metabolism, cellular uptake or cytotoxicity of Cr(VI). The main biological findings were confirmed in three human lung cell lines, including stem cell-like and primary cells. We discovered extracellular detoxification of carcinogenic chromate in coexposures with Fe(III) ions and identified the underlying chemical mechanism. Our findings established an important case when exposure to mixtures causes inactivation of a potent human carcinogen.
Collapse
Affiliation(s)
- Casey Krawic
- Department of Pathology and Laboratory
Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory
Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
41
|
Marant Micallef C, Shield KD, Baldi I, Charbotel B, Fervers B, Gilg Soit Ilg A, Guénel P, Olsson A, Rushton L, Hutchings SJ, Straif K, Soerjomataram I. Occupational exposures and cancer: a review of agents and relative risk estimates. Occup Environ Med 2018; 75:604-614. [PMID: 29735747 DOI: 10.1136/oemed-2017-104858] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The contribution of occupational exposures to the cancer burden can be estimated using population-attributable fractions, which is of great importance for policy making. This paper reviews occupational carcinogens, and presents the most relevant risk relations to cancer in high-income countries using France as an example, to provide a framework for national estimation of cancer burden attributable to occupational exposure. METHODS Occupational exposures that should be included in cancer burden studies were evaluated using multiple criteria: classified as carcinogenic or probably carcinogenic by the International Agency for Research on Cancer (IARC) Monographs volumes 1-114, being a primary occupational exposure, historical and current presence of the exposure in France and the availability of exposure and risk relation data. Relative risk estimates were obtained from published systematic reviews and from the IARC Monographs. RESULTS Of the 118 group 1 and 75 group 2A carcinogens, 37 exposures and 73 exposure-cancer site pairs were relevant. Lung cancer was associated with the most occupational carcinogenic exposures (namely, 18), followed by bladder cancer and non-Hodgkin's lymphoma. Ionising radiation was associated with the highest number of cancer sites (namely, 20), followed by asbestos and working in the rubber manufacturing industry. Asbestos, bis(chloromethyl)ether, nickel and wood dust had the strongest effect on cancer, with relative risks above 5. CONCLUSIONS A large number of occupational exposures continues to impact the burden of cancer in high-income countries such as France. Information on types of exposures, affected jobs, industries and cancer sites affected is key for prioritising policy and prevention initiatives.
Collapse
Affiliation(s)
- Claire Marant Micallef
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - Kevin David Shield
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - Isabelle Baldi
- Equipe Santé Environnement, Centre de recherche INSERM U 897, Bordeaux, France
| | - Barbara Charbotel
- Univ Lyon, Univ Lyon 1, IFSTTAR, Service des maladies professionnelles, Hospices Civils de Lyon, UMRESTTE, UMR_T9405, Lyon, France
| | - Béatrice Fervers
- Département Cancer Environnement, Centre Léon Bérard, Université de Lyon, Lyon, France
| | | | - Pascal Guénel
- Centre de recherche en Epidémiologie et Santé des Populations (CESP), Cancer and Environment team, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Ann Olsson
- Section of Environment and Radiation, International Agency for Research on Cancer, Lyon, France
- The Institute of Environmental Medicine, Karolinksa Institutet, Stockholm, Sweden
| | - Lesley Rushton
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Sally J Hutchings
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Kurt Straif
- Section of Evidence Synthesis and Classification, International Agency for Research on Cancer IARC, Lyon, France
| | - Isabelle Soerjomataram
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
42
|
Mitochondrial Biogenesis in Response to Chromium (VI) Toxicity in Human Liver Cells. Int J Mol Sci 2017; 18:ijms18091877. [PMID: 28906435 PMCID: PMC5618526 DOI: 10.3390/ijms18091877] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022] Open
Abstract
Hexavalent chromium (Cr(VI)) is a ubiquitous environmental pollutant, which poses a threat to human public health. Recent studies have shown that mitochondrial biogenesis can be activated by inflammatory and oxidative stress. However, whether mitochondrial biogenesis is involved in Cr(VI)-induced hepatotoxicity is unclear. Here, we demonstrated the induction of inflammatory response and oxidative stress, as indicated by upregulation of inflammatory factors and reactive oxygen species (ROS). Subsequently, we demonstrated that mitochondrial biogenesis, comprising the mitochondrial DNA copy number and mitochondrial mass, was significantly increased in HepG2 cells exposed to low concentrations of Cr(VI). Expression of genes related to mitochondrial function complex I and complex V was upregulated at low concentrations of Cr(VI). mRNA levels of antioxidant enzymes, including superoxide dismutase 1 and 2 (SOD1 and SOD2, respectively), kech like ECH associate protein 1 (KEAP1) and nuclear respiratory factor 2 (NRF-2), were also upregulated. Consistent with the above results, mRNA and protein levels of key transcriptional regulators of mitochondrial biogenesis such as the peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α), NRF-1 and mitochondrial transcription factor A (TFAM) were increased by low concentrations of Cr(VI) in HepG2 cells. Moreover, we found that PGC-1α and NRF-1 tended to translocate into the nucleus. The expression of genes potentially involved in mitochondrial biogenesis pathways, including mRNA level of silent information regulator-1 (SIRT1), forkhead box class-O (FOXO1), threonine kinase 1 (AKT1), and cAMP response element-binding protein (CREB1), was also upregulated. In contrast, mitochondrial biogenesis was inhibited and the expression of its regulatory factors and antioxidants was downregulated at high and cytotoxic concentrations of Cr(VI) in HepG2 cells. It is believed that pretreatment with α-tocopherol could be acting against the mitochondrial biogenesis imbalance induced by Cr(VI). In conclusion, our study suggests that the homeostasis of mitochondrial biogenesis may be an important cellular compensatory mechanism against Cr(VI)-induced toxicity and a promising detoxification target.
Collapse
|
43
|
De Flora S, Camoirano A, Micale RT, La Maestra S, Savarino V, Zentilin P, Marabotto E, Suh M, Proctor DM. Reduction of hexavalent chromium by fasted and fed human gastric fluid. I. Chemical reduction and mitigation of mutagenicity. Toxicol Appl Pharmacol 2016; 306:113-9. [DOI: 10.1016/j.taap.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/30/2022]
|
44
|
Pawełczyk A, Božek F, Grabas K. Impact of military metallurgical plant wastes on the population's health risk. CHEMOSPHERE 2016; 152:513-519. [PMID: 27011320 DOI: 10.1016/j.chemosphere.2016.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
This paper presents the results of water, soil and air analyses taken in the vicinity of a former ferrochromium metallurgical plant. In the past, the area was used for the disposal of waste materials containing smelter slag, dust and other waste products from the manufacture of ferrochromium alloys for the army. Recently, production was abandoned and a project aimed at the liquidation of the dump has been initiated. The project concentrates on the recovery of chromium remains and the utilization of the leftover material as a road construction aggregate. Based on the analyses of ground water, soil and air, a health risk caused by environmental pollution with chromium, especially with Cr(VI), was determined for residential and occupational scenarios. It was found that the level of chromium emissions to the environment constitutes a potential danger of toxic and carcinogenic cases in humans exposed to the emission in the affected area. An increased level in the hazard quotient has been observed in the case of occupational activities. As far as the mutagenic effects are concerned, the occupational inhalation exposure was found to be very high, which may raise extreme concern about carcinogenic risk.
Collapse
Affiliation(s)
- Adam Pawełczyk
- Wroclaw University of Technology, ul. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - František Božek
- University of Defence, Kounicova 65, 662 10, Brno, Czech Republic.
| | - Kazimierz Grabas
- Wroclaw University of Technology, ul. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|