1
|
Bowling DL. Biological principles for music and mental health. Transl Psychiatry 2023; 13:374. [PMID: 38049408 PMCID: PMC10695969 DOI: 10.1038/s41398-023-02671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
Efforts to integrate music into healthcare systems and wellness practices are accelerating but the biological foundations supporting these initiatives remain underappreciated. As a result, music-based interventions are often sidelined in medicine. Here, I bring together advances in music research from neuroscience, psychology, and psychiatry to bridge music's specific foundations in human biology with its specific therapeutic applications. The framework I propose organizes the neurophysiological effects of music around four core elements of human musicality: tonality, rhythm, reward, and sociality. For each, I review key concepts, biological bases, and evidence of clinical benefits. Within this framework, I outline a strategy to increase music's impact on health based on standardizing treatments and their alignment with individual differences in responsivity to these musical elements. I propose that an integrated biological understanding of human musicality-describing each element's functional origins, development, phylogeny, and neural bases-is critical to advancing rational applications of music in mental health and wellness.
Collapse
Affiliation(s)
- Daniel L Bowling
- Department of Psychiatry and Behavioral Sciences, Stanford University, School of Medicine, Stanford, CA, USA.
- Center for Computer Research in Music and Acoustics (CCRMA), Stanford University, School of Humanities and Sciences, Stanford, CA, USA.
| |
Collapse
|
2
|
Wesseldijk LW, Ullén F, Mosing MA. Music and Genetics. Neurosci Biobehav Rev 2023; 152:105302. [PMID: 37400010 DOI: 10.1016/j.neubiorev.2023.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The first part of this review provides a brief historical background of behavior genetic research and how twin and genotype data can be utilized to study genetic influences on individual differences in human behavior. We then review the field of music genetics, from its emergence to large scale twin studies and the recent, first molecular genetic studies of music-related traits. In the second part of the review, we discuss the wider utility of twin and genotype data beyond estimating heritability and gene-finding. We present four examples of music studies that utilized genetically informative samples to analyze causality and gene-environmental interplay for music skills. Overall, research in the field of music genetics has gained much momentum over the last decade and its findings highlight the importance of studying both environmental and genetic factors and particularly their interplay, paving the way for exciting and fruitful times to come.
Collapse
Affiliation(s)
- Laura W Wesseldijk
- Department of Neuroscience, Karolinska Institutet, Sweden; Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Netherlands; Department of Cognitive Neuropsychology, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany.
| | - Fredrik Ullén
- Department of Neuroscience, Karolinska Institutet, Sweden; Department of Cognitive Neuropsychology, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Miriam A Mosing
- Department of Neuroscience, Karolinska Institutet, Sweden; Department of Cognitive Neuropsychology, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany; Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Australia; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden
| |
Collapse
|
3
|
Navarro L, Martinón-Torres F, Salas A. Sensogenomics and the Biological Background Underlying Musical Stimuli: Perspectives for a New Era of Musical Research. Genes (Basel) 2021; 12:1454. [PMID: 34573436 PMCID: PMC8472585 DOI: 10.3390/genes12091454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 01/03/2023] Open
Abstract
What is the actual impact of music on the human being and the scope for scientific research in this realm? Compared to other areas, the study of the relationship between music and human biology has received limited attention. At the same time, evidence of music's value in clinical science, neuroscience, and social science keeps increasing. This review article synthesizes the existing knowledge of genetics related to music. While the success of genomics has been demonstrated in medical research, with thousands of genes that cause inherited diseases or a predisposition to multifactorial disorders identified, much less attention has been paid to other human traits. We argue for the development of a new discipline, sensogenomics, aimed at investigating the impact of the sensorial input on gene expression and taking advantage of new, discovery-based 'omic' approaches that allow for the exploration of the whole transcriptome of individuals under controlled experiments and circumstances.
Collapse
Affiliation(s)
- Laura Navarro
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, 15706 Santiago de Compostela, Spain;
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de San-tiago (SERGAS), Galicia, 15706 Santiago de Compostela, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela (USC), Galicia, 15706 Santiago de Compostela, Spain;
| | - Federico Martinón-Torres
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela (USC), Galicia, 15706 Santiago de Compostela, Spain;
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, 15706 Santiago de Compostela, Spain
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, 15706 Santiago de Compostela, Spain;
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de San-tiago (SERGAS), Galicia, 15706 Santiago de Compostela, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela (USC), Galicia, 15706 Santiago de Compostela, Spain;
| |
Collapse
|
4
|
Beccacece L, Abondio P, Cilli E, Restani D, Luiselli D. Human Genomics and the Biocultural Origin of Music. Int J Mol Sci 2021; 22:5397. [PMID: 34065521 PMCID: PMC8160972 DOI: 10.3390/ijms22105397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Music is an exclusive feature of humankind. It can be considered as a form of universal communication, only partly comparable to the vocalizations of songbirds. Many trends of research in this field try to address music origins, as well as the genetic bases of musicality. On one hand, several hypotheses have been made on the evolution of music and its role, but there is still debate, and comparative studies suggest a gradual evolution of some abilities underlying musicality in primates. On the other hand, genome-wide studies highlight several genes associated with musical aptitude, confirming a genetic basis for different musical skills which humans show. Moreover, some genes associated with musicality are involved also in singing and song learning in songbirds, suggesting a likely evolutionary convergence between humans and songbirds. This comprehensive review aims at presenting the concept of music as a sociocultural manifestation within the current debate about its biocultural origin and evolutionary function, in the context of the most recent discoveries related to the cross-species genetics of musical production and perception.
Collapse
Affiliation(s)
- Livia Beccacece
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Paolo Abondio
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna—Ravenna Campus, 48121 Ravenna, Italy; (E.C.); (D.R.)
| | - Donatella Restani
- Department of Cultural Heritage, University of Bologna—Ravenna Campus, 48121 Ravenna, Italy; (E.C.); (D.R.)
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna—Ravenna Campus, 48121 Ravenna, Italy; (E.C.); (D.R.)
| |
Collapse
|
5
|
Harvey AR. Links Between the Neurobiology of Oxytocin and Human Musicality. Front Hum Neurosci 2020; 14:350. [PMID: 33005139 PMCID: PMC7479205 DOI: 10.3389/fnhum.2020.00350] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
The human species possesses two complementary, yet distinct, universal communication systems—language and music. Functional imaging studies have revealed that some core elements of these two systems are processed in closely related brain regions, but there are also clear differences in brain circuitry that likely underlie differences in functionality. Music affects many aspects of human behavior, especially in encouraging prosocial interactions and promoting trust and cooperation within groups of culturally compatible but not necessarily genetically related individuals. Music, presumably via its impact on the limbic system, is also rewarding and motivating, and music can facilitate aspects of learning and memory. In this review these special characteristics of music are considered in light of recent research on the neuroscience of the peptide oxytocin, a hormone that has both peripheral and central actions, that plays a role in many complex human behaviors, and whose expression has recently been reported to be affected by music-related activities. I will first briefly discuss what is currently known about the peptide’s physiological actions on neurons and its interactions with other neuromodulator systems, then summarize recent advances in our knowledge of the distribution of oxytocin and its receptor (OXTR) in the human brain. Next, the complex links between oxytocin and various social behaviors in humans are considered. First, how endogenous oxytocin levels relate to individual personality traits, and then how exogenous, intranasal application of oxytocin affects behaviors such as trust, empathy, reciprocity, group conformity, anxiety, and overall social decision making under different environmental conditions. It is argued that many of these characteristics of oxytocin biology closely mirror the diverse effects that music has on human cognition and emotion, providing a link to the important role music has played throughout human evolutionary history and helping to explain why music remains a special prosocial human asset. Finally, it is suggested that there is a potential synergy in combining oxytocin- and music-based strategies to improve general health and aid in the treatment of various neurological dysfunctions.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| |
Collapse
|
6
|
Roach KL, Hershberger PE, Rutherford JN, Molokie RE, Wang ZJ, Wilkie DJ. The AVPR1A Gene and Its Single Nucleotide Polymorphism rs10877969: A Literature Review of Associations with Health Conditions and Pain. Pain Manag Nurs 2018; 19:430-444. [PMID: 29503216 DOI: 10.1016/j.pmn.2018.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 01/07/2018] [Accepted: 01/14/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pain is the quintessential symptom for individuals suffering from sickle cell disease (SCD). Although the degree of suffering and the cost of treatment are staggering, SCD continues to be grossly understudied, including a lack of data for pain-related genes and prevalence of polymorphisms in this population. This lack of data adds to the inadequacy of pain therapy in this population. Pain genetics investigators have recently examined allele frequencies of single-nucleotide polymorphisms from candidate genes in people who have SCD. One of the genes identified was the arginine vasopressin receptor 1A gene (AVPR1A) and its associated single-nucleotide polymorphism (SNP) rs10877969. Progress in explaining pain-related polymorphisms associated with SCD can be facilitated by understanding the literature. Aim/Design: The purpose of this literature review was to describe mechanisms of the polymorphic gene AVPR1A and the phenotypic variations associated with its SNPs relative to health conditions and pain. METHODS Published studies were included if the research addressed AVPR1A and was a full article in a peer-reviewed journal, in the English language, a human or animal study, and published 2009 to present. Abstracts were included if they were in English and provided information not found in a full article. RESULTS The results of this review revealed that AVPR1A is associated with behavioral phenotypes, which include pair bonding, autism spectrum disorder, musical aptitude, infidelity, altruism, monogamy, mating, substance abuse, and alcohol preference. In addition, there were associations with pain, stress pain by sex, and sickle cell pain. CONCLUSION Summary of this literature could provide insights into future pain research of this SNP in people with SCD.
Collapse
Affiliation(s)
- Keesha L Roach
- Department of Biobehavioral Health Sciences, College of Nursing, University of Illinois at Chicago, Chicago, Illinois.
| | - Patricia E Hershberger
- Department of Health Systems Science, College of Nursing, University of Illinois at Chicago, Chicago, Illinois
| | - Julienne N Rutherford
- Department of Women, Child, and Family Health Science, College of Nursing, University of Illinois at Chicago, Chicago, Illinois
| | - Robert E Molokie
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois; Division of Hematology/Oncology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jessie Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Zaijie Jim Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois; Cancer Center, University of Illinois at Chicago, Chicago, Illinois
| | - Diana J Wilkie
- Department of Biobehavioral Health Sciences, College of Nursing, University of Illinois at Chicago, Chicago, Illinois; Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida
| |
Collapse
|
7
|
Abstract
The present study is focused on a review of the current state of investigating music-evoked emotions experimentally, theoretically and with respect to their therapeutic potentials. After a concise historical overview and a schematic of the hearing mechanisms, experimental studies on music listeners and on music performers are discussed, starting with the presentation of characteristic musical stimuli and the basic features of tomographic imaging of emotional activation in the brain, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), which offer high spatial resolution in the millimeter range. The progress in correlating activation imaging in the brain to the psychological understanding of music-evoked emotion is demonstrated and some prospects for future research are outlined. Research in psychoneuroendocrinology and molecular markers is reviewed in the context of music-evoked emotions and the results indicate that the research in this area should be intensified. An assessment of studies involving measuring techniques with high temporal resolution down to the 10 ms range, as, e.g., electroencephalography (EEG), event-related brain potentials (ERP), magnetoencephalography (MEG), skin conductance response (SCR), finger temperature, and goose bump development (piloerection) can yield information on the dynamics and kinetics of emotion. Genetic investigations reviewed suggest the heredity transmission of a predilection for music. Theoretical approaches to musical emotion are directed to a unified model for experimental neurological evidence and aesthetic judgment. Finally, the reports on musical therapy are briefly outlined. The study concludes with an outlook on emerging technologies and future research fields.
Collapse
Affiliation(s)
- Hans-Eckhardt Schaefer
- Tübingen University, Institute of Musicology, Tübingen, Germany.,Institute of Functional Matter and Quantum Technology, Stuttgart University, Stuttgart, Germany
| |
Collapse
|
8
|
Mariath LM, Silva AMD, Kowalski TW, Gattino GS, Araujo GAD, Figueiredo FG, Tagliani-Ribeiro A, Roman T, Vianna FSL, Schuler-Faccini L, Schuch JB. Music genetics research: Association with musicality of a polymorphism in the AVPR1A gene. Genet Mol Biol 2017; 40:421-429. [PMID: 28534928 PMCID: PMC5488451 DOI: 10.1590/1678-4685-gmb-2016-0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 12/15/2016] [Indexed: 01/01/2023] Open
Abstract
Musicality is defined as a natural tendency, sensibility, knowledge, or talent to
create, perceive, and play music. Musical abilities involve a great range of social
and cognitive behaviors, which are influenced by both environmental and genetic
factors. Although a number of studies have yielded insights into music genetics
research, genes and biological pathways related to these traits are not fully
understood. Our hypothesis in the current study is that genes associated with
different behaviors could also influence the musical phenotype. Our aim was to
investigate whether polymorphisms in six genes (AVPR1A, SLC6A4, ITGB3, COMT, DRD2 and
DRD4) related to social and cognitive traits are associated with musicality in a
sample of children. Musicality was assessed through an individualized music therapy
assessment profile (IMTAP) which has been validated in Brazil to measure musical
ability. We show here that the RS1 microsatellite of the AVPR1A gene is nominally
associated with musicality, corroborating previous results linking AVPR1A with
musical activity. This study is one of the first to investigate musicality in a
comprehensive way, and it contributes to better understand the genetic basis
underlying musical ability.
Collapse
Affiliation(s)
- Luiza Monteavaro Mariath
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Mauat da Silva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Thayne Woycinck Kowalski
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gustavo Schulz Gattino
- Programa de Pos-Graduação em Saúde da Criança e Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gustavo Andrade de Araujo
- Programa de Pos-Graduação em Saúde da Criança e Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Grahl Figueiredo
- Programa de Pos-Graduação em Saúde da Criança e Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alice Tagliani-Ribeiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tatiana Roman
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Sales Luiz Vianna
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lavínia Schuler-Faccini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jaqueline Bohrer Schuch
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Miani A. Sexual arousal and rhythmic synchronization: A possible effect of vasopressin. Med Hypotheses 2016; 93:122-5. [PMID: 27372870 DOI: 10.1016/j.mehy.2016.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
Abstract
Music is ubiquitous. Yet, its biological relevance is still an ongoing debate. Supporting the view that music had an ancestral role in courtship displays, a pilot study presented here provides preliminary evidence on the link between music and sexual selection. The underlying hypothesis is based on the fact that the sexually dimorphic neuropeptide vasopressin has its receptors in the part of the brain involved in music and dance performance (the basal ganglia), and its concentrations rise during sexual arousal in men. In addition, music, dance, and courtship phenotypes seem to be in part regulated by vasopressin and its genes. Hence, to test this hypothesis, a rhythmic synchronization task was employed here on one male subject during sexual arousal. Results revealed a significant effect of sexual arousal on rhythm synchronization. This is the first report that empirically supports the hypothesis on the role of music in sexual selection. Further studies are clearly required.
Collapse
Affiliation(s)
- Alessandro Miani
- Center for Semiotics, Aarhus University, Jens Chr. Skous Vej 2, bygning 1485, 8000 Aarhus C, Denmark.
| |
Collapse
|
10
|
Gingras B, Honing H, Peretz I, Trainor LJ, Fisher SE. Defining the biological bases of individual differences in musicality. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140092. [PMID: 25646515 DOI: 10.1098/rstb.2014.0092] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in molecular technologies make it possible to pinpoint genomic factors associated with complex human traits. For cognition and behaviour, identification of underlying genes provides new entry points for deciphering the key neurobiological pathways. In the past decade, the search for genetic correlates of musicality has gained traction. Reports have documented familial clustering for different extremes of ability, including amusia and absolute pitch (AP), with twin studies demonstrating high heritability for some music-related skills, such as pitch perception. Certain chromosomal regions have been linked to AP and musical aptitude, while individual candidate genes have been investigated in relation to aptitude and creativity. Most recently, researchers in this field started performing genome-wide association scans. Thus far, studies have been hampered by relatively small sample sizes and limitations in defining components of musicality, including an emphasis on skills that can only be assessed in trained musicians. With opportunities to administer standardized aptitude tests online, systematic large-scale assessment of musical abilities is now feasible, an important step towards high-powered genome-wide screens. Here, we offer a synthesis of existing literatures and outline concrete suggestions for the development of comprehensive operational tools for the analysis of musical phenotypes.
Collapse
Affiliation(s)
- Bruno Gingras
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| | - Henkjan Honing
- Amsterdam Brain and Cognition (ABC), Institute of Logic, Language and Computation (ILLC), University of Amsterdam, Amsterdam, The Netherlands
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound Research, Department of Psychology, University of Montreal, Quebec, Canada
| | - Laurel J Trainor
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Ontario, Canada
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Legge AW. On the Neural Mechanisms of Music Therapy in Mental Health Care: Literature Review and Clinical Implications. ACTA ACUST UNITED AC 2015. [DOI: 10.1093/mtp/miv025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Kanduri C, Raijas P, Ahvenainen M, Philips AK, Ukkola-Vuoti L, Lähdesmäki H, Järvelä I. The effect of listening to music on human transcriptome. PeerJ 2015; 3:e830. [PMID: 25789207 PMCID: PMC4362302 DOI: 10.7717/peerj.830] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/18/2015] [Indexed: 01/09/2023] Open
Abstract
Although brain imaging studies have demonstrated that listening to music alters human brain structure and function, the molecular mechanisms mediating those effects remain unknown. With the advent of genomics and bioinformatics approaches, these effects of music can now be studied in a more detailed fashion. To verify whether listening to classical music has any effect on human transcriptome, we performed genome-wide transcriptional profiling from the peripheral blood of participants after listening to classical music (n = 48), and after a control study without music exposure (n = 15). As musical experience is known to influence the responses to music, we compared the transcriptional responses of musically experienced and inexperienced participants separately with those of the controls. Comparisons were made based on two subphenotypes of musical experience: musical aptitude and music education. In musically experiencd participants, we observed the differential expression of 45 genes (27 up- and 18 down-regulated) and 97 genes (75 up- and 22 down-regulated) respectively based on subphenotype comparisons (rank product non-parametric statistics, pfp 0.05, >1.2-fold change over time across conditions). Gene ontological overrepresentation analysis (hypergeometric test, FDR < 0.05) revealed that the up-regulated genes are primarily known to be involved in the secretion and transport of dopamine, neuron projection, protein sumoylation, long-term potentiation and dephosphorylation. Down-regulated genes are known to be involved in ATP synthase-coupled proton transport, cytolysis, and positive regulation of caspase, peptidase and endopeptidase activities. One of the most up-regulated genes, alpha-synuclein (SNCA), is located in the best linkage region of musical aptitude on chromosome 4q22.1 and is regulated by GATA2, which is known to be associated with musical aptitude. Several genes reported to regulate song perception and production in songbirds displayed altered activities, suggesting a possible evolutionary conservation of sound perception between species. We observed no significant findings in musically inexperienced participants.
Collapse
Affiliation(s)
| | - Pirre Raijas
- DocMus Department, University of the Arts Helsinki , Helsinki , Finland
| | - Minna Ahvenainen
- Department of Medical Genetics, University of Helsinki , Finland
| | - Anju K Philips
- Department of Medical Genetics, University of Helsinki , Finland
| | | | - Harri Lähdesmäki
- Department of Information and Computer Science, Aalto University , AALTO , Finland
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki , Finland
| |
Collapse
|
13
|
Oikkonen J, Huang Y, Onkamo P, Ukkola-Vuoti L, Raijas P, Karma K, Vieland VJ, Järvelä I. A genome-wide linkage and association study of musical aptitude identifies loci containing genes related to inner ear development and neurocognitive functions. Mol Psychiatry 2015; 20:275-82. [PMID: 24614497 PMCID: PMC4259854 DOI: 10.1038/mp.2014.8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/17/2013] [Accepted: 01/06/2014] [Indexed: 01/06/2023]
Abstract
Humans have developed the perception, production and processing of sounds into the art of music. A genetic contribution to these skills of musical aptitude has long been suggested. We performed a genome-wide scan in 76 pedigrees (767 individuals) characterized for the ability to discriminate pitch (SP), duration (ST) and sound patterns (KMT), which are primary capacities for music perception. Using the Bayesian linkage and association approach implemented in program package KELVIN, especially designed for complex pedigrees, several single nucleotide polymorphisms (SNPs) near genes affecting the functions of the auditory pathway and neurocognitive processes were identified. The strongest association was found at 3q21.3 (rs9854612) with combined SP, ST and KMT test scores (COMB). This region is located a few dozen kilobases upstream of the GATA binding protein 2 (GATA2) gene. GATA2 regulates the development of cochlear hair cells and the inferior colliculus (IC), which are important in tonotopic mapping. The highest probability of linkage was obtained for phenotype SP at 4p14, located next to the region harboring the protocadherin 7 gene, PCDH7. Two SNPs rs13146789 and rs13109270 of PCDH7 showed strong association. PCDH7 has been suggested to play a role in cochlear and amygdaloid complexes. Functional class analysis showed that inner ear and schizophrenia-related genes were enriched inside the linked regions. This study is the first to show the importance of auditory pathway genes in musical aptitude.
Collapse
Affiliation(s)
- J. Oikkonen
- Department of Medical Genetics, University of Helsinki, P.O. Box 63, 00014 University of Helsinki, Finland
- Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014 University of Helsinki
| | - Y. Huang
- The Research Institute at Nationwide Children's Hospital & The Ohio State University, Columbus OH 43215, USA
| | - P. Onkamo
- Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014 University of Helsinki
| | - L. Ukkola-Vuoti
- Department of Medical Genetics, University of Helsinki, P.O. Box 63, 00014 University of Helsinki, Finland
| | - P. Raijas
- DocMus Department, University of the Arts Helsinki, P.O. Box 86, 00251 Helsinki, Finland
| | - K. Karma
- DocMus Department, University of the Arts Helsinki, P.O. Box 86, 00251 Helsinki, Finland
| | - V. J. Vieland
- The Research Institute at Nationwide Children's Hospital & The Ohio State University, Columbus OH 43215, USA
| | - I. Järvelä
- Department of Medical Genetics, University of Helsinki, P.O. Box 63, 00014 University of Helsinki, Finland
| |
Collapse
|
14
|
Fukui H, Toyoshima K. Music increase altruism through regulating the secretion of steroid hormones and peptides. Med Hypotheses 2014; 83:706-8. [PMID: 25459139 DOI: 10.1016/j.mehy.2014.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/29/2014] [Indexed: 12/30/2022]
Abstract
Music is well known for its effect on human behavior especially of their bonding and empathy towards others. Music provokes one's emotion and activates mirror neurons and reward system. It also regulates social hormones such as steroid hormones or peptides, and increases empathy, pro-sociality and altruism. As a result, it improves one's reproductive success.
Collapse
Affiliation(s)
- Hajime Fukui
- Department of Education, Nara University of Education, Nara, Japan.
| | - Kumiko Toyoshima
- Department of Education, Nara University of Education, Nara, Japan
| |
Collapse
|
15
|
Tan YT, McPherson GE, Peretz I, Berkovic SF, Wilson SJ. The genetic basis of music ability. Front Psychol 2014; 5:658. [PMID: 25018744 PMCID: PMC4073543 DOI: 10.3389/fpsyg.2014.00658] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 06/08/2014] [Indexed: 01/18/2023] Open
Abstract
Music is an integral part of the cultural heritage of all known human societies, with the capacity for music perception and production present in most people. Researchers generally agree that both genetic and environmental factors contribute to the broader realization of music ability, with the degree of music aptitude varying, not only from individual to individual, but across various components of music ability within the same individual. While environmental factors influencing music development and expertise have been well investigated in the psychological and music literature, the interrogation of possible genetic influences has not progressed at the same rate. Recent advances in genetic research offer fertile ground for exploring the genetic basis of music ability. This paper begins with a brief overview of behavioral and molecular genetic approaches commonly used in human genetic analyses, and then critically reviews the key findings of genetic investigations of the components of music ability. Some promising and converging findings have emerged, with several loci on chromosome 4 implicated in singing and music perception, and certain loci on chromosome 8q implicated in absolute pitch and music perception. The gene AVPR1A on chromosome 12q has also been implicated in music perception, music memory, and music listening, whereas SLC6A4 on chromosome 17q has been associated with music memory and choir participation. Replication of these results in alternate populations and with larger samples is warranted to confirm the findings. Through increased research efforts, a clearer picture of the genetic mechanisms underpinning music ability will hopefully emerge.
Collapse
Affiliation(s)
- Yi Ting Tan
- Melbourne Conservatorium of Music, University of Melbourne Parkville, VIC, Australia
| | - Gary E McPherson
- Melbourne Conservatorium of Music, University of Melbourne Parkville, VIC, Australia
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound Research and Department of Psychology, Université de Montréal Montreal, QC, Canada
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, University of Melbourne Heidelberg, VIC, Australia
| | - Sarah J Wilson
- Department of Medicine, Epilepsy Research Centre, University of Melbourne Heidelberg, VIC, Australia ; Melbourne School of Psychological Sciences, University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
16
|
Boer D, Abubakar A. Music listening in families and peer groups: benefits for young people's social cohesion and emotional well-being across four cultures. Front Psychol 2014; 5:392. [PMID: 24847296 PMCID: PMC4021113 DOI: 10.3389/fpsyg.2014.00392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/14/2014] [Indexed: 12/03/2022] Open
Abstract
Families are central to the social and emotional development of youth, and most families engage in musical activities together, such as listening to music or talking about their favorite songs. However, empirical evidence of the positive effects of musical family rituals on social cohesion and emotional well-being is scarce. Furthermore, the role of culture in the shaping of musical family rituals and their psychological benefits has been neglected entirely. This paper investigates musical rituals in families and in peer groups (as an important secondary socialization context) in two traditional/collectivistic and two secular/individualistic cultures, and across two developmental stages (adolescence vs. young adulthood). Based on cross-sectional data from 760 young people in Kenya, the Philippines, New Zealand, and Germany, our study revealed that across cultures music listening in families and in peer groups contributes to family and peer cohesion, respectively. Furthermore, the direct contribution of music in peer groups on well-being appears across cultural contexts, whereas musical family rituals affect emotional well-being in more traditional/collectivistic contexts. Developmental analyses show that musical family rituals are consistently and strongly related to family cohesion across developmental stages, whereas musical rituals in peer groups appear more dependent on the developmental stage (in interaction with culture). Contributing to developmental as well as cross-cultural psychology, this research elucidated musical rituals and their positive effects on the emotional and social development of young people across cultures. The implications for future research and family interventions are discussed.
Collapse
Affiliation(s)
- Diana Boer
- Department of Social Psychology, Institute of Psychology, Goethe University Frankfurt Frankfurt, Germany
| | - Amina Abubakar
- Department of Cross-Cultural Psychology, Tilburg University Tilburg, Netherlands
| |
Collapse
|
17
|
Fukui H, Toyoshima K. Influence of music on steroid hormones and the relationship between receptor polymorphisms and musical ability: a pilot study. Front Psychol 2013; 4:910. [PMID: 24348454 PMCID: PMC3848314 DOI: 10.3389/fpsyg.2013.00910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/15/2013] [Indexed: 01/08/2023] Open
Abstract
Studies have shown that music confers plasticity to the brain. In a preliminary pilot study, we examined the effect of music listening on steroid hormones and the relationship between steroid hormone receptor polymorphisms and musical ability. Twenty-one subjects (10 males and 11 females) were recruited and divided into musically talented and control groups. The subjects selected (1) music they preferred (chill-inducing music) and (2) music they did not like. Before and after the experiments, saliva was collected to measure the levels of steroid hormones such as testosterone, estradiol, and cortisol. DNA was also isolated from the saliva samples to determine the androgen receptor (AR) and arginine vasopressin receptor 1A genotypes. Advanced Measures of Music Audiation (AMMA) was used to determine the musical ability of the subjects. With both types of music, the cortisol levels decreased significantly in both sexes. The testosterone (T) levels declined in males when they listened to both types of music. In females, the T levels increased in those listening to chill-inducing music but declined when they listened to music they disliked. However, these differences were not significant. The 17-beta estradiol levels increased in males with both types of music, whereas the levels increased with chill-inducing music but declined with disliked music in females. The AMMA scores were higher for the short repeat length-type AR than for the long repeat length-type. Comparisons of AR polymorphisms and T levels before the experiments showed that the T levels were within the low range in the short repeat length-type group and there was a positive relationship with the repeat length, although it was not significant. This is the first study conducted in humans to analyze the relationships between the AR gene, T levels, and musical ability.
Collapse
Affiliation(s)
- Hajime Fukui
- Department of Education, Nara University of EducationNara, Japan
| | | |
Collapse
|
18
|
Granot RY, Uzefovsky F, Bogopolsky H, Ebstein RP. Effects of arginine vasopressin on musical working memory. Front Psychol 2013; 4:712. [PMID: 24151474 PMCID: PMC3798009 DOI: 10.3389/fpsyg.2013.00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/18/2013] [Indexed: 01/11/2023] Open
Abstract
Previous genetic studies showed an association between variations in the gene coding for the 1a receptor of the neuro-hormone arginine vasopressin (AVP) and musical working memory (WM). The current study set out to test the influence of intranasal administration (INA) of AVP on musical as compared to verbal WM using a double blind crossover (AVP—placebo) design. Two groups of 25 males were exposed to 20 IU of AVP in one session, and 20 IU of saline water (placebo) in a second session, 1 week apart. In each session subjects completed the tonal subtest from Gordon's “Musical Aptitude Profile,” the interval subtest from the “Montreal Battery for Evaluation of Amusias (MBEA),” and the forward and backward digit span tests. Scores in the digit span tests were not influenced by AVP. In contrast, in the music tests there was an AVP effect. In the MBEA test, scores for the group receiving placebo in the first session (PV) were higher than for the group receiving vasopressin in the first session (VP) (p < 0.05) with no main Session effect nor Group × Session interaction. In the Gordon test there was a main Session effect (p < 0.05) with scores higher in the second as compared to the first session, a marginal main Group effect (p = 0.093) and a marginal Group × Session interaction (p = 0.88). In addition we found that the group that received AVP in the first session scored higher on scales indicative of happiness, and alertness on the positive and negative affect scale, (PANAS). Only in this group and only in the music test these scores were significantly correlated with memory scores. Together the results reflect a complex interaction between AVP, musical memory, arousal, and contextual effects such as session, and base levels of memory. The results are interpreted in light of music's universal use as a means to modulate arousal on the one hand, and AVP's influence on mood, arousal, and social interactions on the other.
Collapse
Affiliation(s)
- Roni Y Granot
- Department of Musicology, The Hebrew University of Jerusalem Jerusalem, Israel
| | | | | | | |
Collapse
|
19
|
Chanda ML, Levitin DJ. The neurochemistry of music. Trends Cogn Sci 2013; 17:179-93. [PMID: 23541122 DOI: 10.1016/j.tics.2013.02.007] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 12/14/2022]
Abstract
Music is used to regulate mood and arousal in everyday life and to promote physical and psychological health and well-being in clinical settings. However, scientific inquiry into the neurochemical effects of music is still in its infancy. In this review, we evaluate the evidence that music improves health and well-being through the engagement of neurochemical systems for (i) reward, motivation, and pleasure; (ii) stress and arousal; (iii) immunity; and (iv) social affiliation. We discuss the limitations of these studies and outline novel approaches for integration of conceptual and technological advances from the fields of music cognition and social neuroscience into studies of the neurochemistry of music.
Collapse
Affiliation(s)
- Mona Lisa Chanda
- Department of Psychology, McGill University, Montreal, Quebec, QC H3A 1B1, Canada
| | | |
Collapse
|
20
|
Zaidel DW. Cognition and art: the current interdisciplinary approach. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2013; 4:431-439. [PMID: 26304228 DOI: 10.1002/wcs.1236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
For decades discussions of cognition and art were anchored in psychological and perceptual theories alone and were focused primarily on pictorial art, but in recent years a major conceptual shift has altered the discussions. Now, insights, concepts, and findings from archaeology, anthropology, brain evolution, biology, genetics, neurology, and neuroscience together with psychology and perception are leading into deeper scholarly explorations of the topic than was done previously. The implication is that the relationship between cognition and art can be fully grasped only when scholarship from all these disciplines is included in the discussions. We now emphasize that the diverse art forms practiced ubiquitously in human societies have a communicative value with deep biological roots and that art is another expression of the symbolic cognition that is the hallmark of the human brain, but that early societal-type organization played a pivotal role in the enduring practice of art. Moreover, neurological evidence from artists with brain damage suggests that the communicative nature of art is neuronally damage-resistant, much more so than language. Rather than placing pictorial art center stage, as was done previously, the current interdisciplinary approach includes all the arts, points to sociocultural triggers for art practice, to the demographic conditions that prevailed in art's early beginnings, and to the interplay of these evolutionarily adaptive factors with deep biological motivations in the artist. WIREs Cogn Sci 2013, 4:431-439. doi: 10.1002/wcs.1236 The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dahlia W Zaidel
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
21
|
Ukkola-Vuoti L, Kanduri C, Oikkonen J, Buck G, Blancher C, Raijas P, Karma K, Lähdesmäki H, Järvelä I. Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music. PLoS One 2013; 8:e56356. [PMID: 23460800 PMCID: PMC3584088 DOI: 10.1371/journal.pone.0056356] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire. Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music perception related traits and supports the previous results from AP study.
Collapse
Affiliation(s)
- Liisa Ukkola-Vuoti
- Department of Medical Genetics, University of Helsinki, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hopkins WD, Donaldson ZR, Young LJ. A polymorphic indel containing the RS3 microsatellite in the 5' flanking region of the vasopressin V1a receptor gene is associated with chimpanzee (Pan troglodytes) personality. GENES BRAIN AND BEHAVIOR 2012; 11:552-8. [PMID: 22520444 DOI: 10.1111/j.1601-183x.2012.00799.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Vasopressin is a neuropeptide that has been strongly implicated in the development and evolution of complex social relations and cognition in mammals. Recent studies in voles have shown that polymorphic variation in the promoter region of the arginine vasopressin V1a receptor gene (avpr1a) is associated with different dimensions of sociality. In humans, variation in a repetitive sequence element in the 5' flanking region of the AVPR1A, known as RS3, have also been associated with variation in AVPR1a gene expression, brain activity and social behavior. Here, we examined the association of polymorphic variation in this same 5' flanking region of the AVPR1A on subjective ratings of personality in a sample of 83 chimpanzees (Pan troglodytes). Initial analyses indicated that 34 females and 19 males were homozygous for the short allele, which lacks RS3 (DupB(-/-)), while 18 females and 12 males were heterozygous and thus had one copy of the long allele containing RS3 (DupB(+/-)), yielding overall allelic frequencies of 0.82 for the DupB(-) allele and 0.18 for the DupB(+) allele. DupB(+/+) chimpanzees were excluded from the analysis because of the limited number of individuals. Results indicated no significant sex difference in personality between chimpanzees homozygous for the deletion of the RS3-containing DupB region (DupB(-/-)); however, among chimpanzees carrying one allele with the DupB present (DupB(+/-)), males had significantly higher dominance and lower conscientiousness scores than females. These findings are the first evidence showing that the AVPR1A gene plays a role in different aspects of personality in male and female chimpanzees.
Collapse
Affiliation(s)
- W D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, 30302, USA.
| | | | | |
Collapse
|
23
|
Abstract
Music can be seen as a model system for understanding gene × environment interactions and how these can influence neurocognitive development. The concept of musicality, however, is underspecified and not well understood. Here, I propose a framework for defining musicality to provide a foundation for studying the contributions of biological and environmental factors.
Collapse
Affiliation(s)
- Daniel J Levitin
- Department of Psychology and Interdisciplinary Program in Neuroscience, McGill University, 1205 Avenue Dr. Penfield, Montreal QC H3A 1B1, Canada.
| |
Collapse
|