1
|
Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T. Epigenetic mechanisms of rapid-acting antidepressants. Transl Psychiatry 2024; 14:359. [PMID: 39231927 PMCID: PMC11375021 DOI: 10.1038/s41398-024-03055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Collapse
Affiliation(s)
- Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Behavioral Neuroscience Laboratory, University of South Santa Catarina (UNISUL), Tubarão, Brazil., Tubarão, Brazil.
| | | | - Tamim Rezai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Varese, Italy
| |
Collapse
|
2
|
Petroff RL, Jester J, Riggs J, Alfafara E, Springer K, Kerr N, Issa M, Hall A, Rosenblum K, Goodrich JM, Muzik M. Longitudinal DNA methylation in parent-infant pairs impacted by intergenerational social adversity: An RCT of the Michigan Model of Infant Mental Health Home Visiting. Brain Behav 2024; 14:e70035. [PMID: 39295112 PMCID: PMC11410872 DOI: 10.1002/brb3.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/26/2024] [Accepted: 08/03/2024] [Indexed: 09/21/2024] Open
Abstract
INTRODUCTION Early childhood development is a strong predictor of long-term health outcomes, potentially mediated via epigenetics (DNA methylation). The aim of the current study was to examine how childhood experiences, punitive parenting, and an intergenerational psychotherapeutic intervention may impact DNA methylation in young children and their mothers. METHODS Mothers and their infants/toddlers between 0 and 24 months were recruited at baseline (n = 146, 73 pairs) to participate in a randomized control trial evaluating the effectiveness of The Michigan Model of Infant Mental Health Home Visiting (IMH-HV) parent-infant psychotherapy compared to treatment as usual. Baseline and 12-month post-enrollment data were collected in the family's home and included self-report questionnaires, biological saliva samples, home environment observation, video-taped parent-child interaction, and audio-recorded interviews. Saliva DNA methylation was measured at the genes, nuclear receptor subfamily 3 group C member 1 (NR3C1), solute carrier family 6 member 4 (SLC6A4), brain-derived neurotrophic factor (BDNF), and the genetic element, long interspersed nuclear element-1 (LINE1). RESULTS For mothers, baseline methylation of BDNF, SLC6A4, NR3C1, or LINE1 was largely not associated with baseline measures of their childhood adversity, adverse life experiences, demographic characteristics related to structurally driven inequities, or to IMH-HV treatment effect. In infants, there were suggestions that methylation in SLC6A4 and LINE1 was associated with parenting attitudes. Infant BDNF methylation suggested an overall decrease in response to IMH-HV psychotherapy over 12 months. CONCLUSIONS Overall, our findings suggest that the epigenome in infants and young children may be sensitive to both early life experiences and parent-infant psychotherapy.
Collapse
Affiliation(s)
- Rebekah L. Petroff
- Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Jennifer Jester
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Jessica Riggs
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Emily Alfafara
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Katherine Springer
- Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Natalie Kerr
- Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Meriam Issa
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Alanah Hall
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Katherine Rosenblum
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
- Department of Obstetrics & GynecologyMichigan MedicineAnn ArborMichiganUSA
- Department of PediatricsMichigan MedicineAnn ArborMichiganUSA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Maria Muzik
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
- Department of Obstetrics & GynecologyMichigan MedicineAnn ArborMichiganUSA
| | | |
Collapse
|
3
|
Khalil MH. Neurosustainability. Front Hum Neurosci 2024; 18:1436179. [PMID: 39268220 PMCID: PMC11390526 DOI: 10.3389/fnhum.2024.1436179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
While the human brain has evolved extraordinary abilities to dominate nature, modern living has paradoxically trapped it in a contemporary "cage" that stifles neuroplasticity. Within this modern environment lurk unseen natural laws with power to sustain the human brain's adaptive capacities - if consciously orchestrated into the environments we design. For too long our contemporary environments have imposed an unyielding static state, while still neglecting the brain's constant adaptive nature as it evolves to dominate the natural world with increasing sophistication. The theory introduced in this article aims to go back in nature without having to go back in time, introducing and expounding Neurosustainability as a novel paradigm seeing beyond the contemporary confines to architect environments and brains in parallel. Its integrated neuro-evidenced framework proposes four enrichment scopes-spatial, natural, aesthetic, and social-each holding multifaceted attributes promising to sustain regions like the hippocampus, cortex and amygdala. Neurosustainability aims to liberate the quintessential essence of nature to sustain and enhance neuroplastic processes through a cycle that begins with design and extends through epigenetic changes. This paradigm shift aims to foster cognitive health and wellness by addressing issues like stress, depression, anxiety and cognitive decline common in the contemporary era thereby offering a path toward a more neurosustainable era aiming to nurture the evolution of the human brain now and beyond.
Collapse
Affiliation(s)
- Mohamed Hesham Khalil
- Department of Architecture, Faculty of Architecture and History of Art, School of Arts and Humanities, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Wei X, Browning JL, Olsen ML. Neuron and astrocyte specific 5mC and 5hmC signatures of BDNF's receptor, TrkB. Front Mol Neurosci 2024; 17:1463437. [PMID: 39268252 PMCID: PMC11390696 DOI: 10.3389/fnmol.2024.1463437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Brain derived neurotrophic factor (BDNF) is the most studied trophic factor in the central nervous system (CNS), and its role in the maturation of neurons, including synapse development and maintenance has been investigated intensely for over three decades. The primary receptor for BDNF is the tropomyosin receptor kinase B (TrkB), which is broadly expressed as two primary isoforms in the brain; the full length TrkB (TrkB.FL) receptor, expressed mainly in neurons and the truncated TrkB (TrkB.T1) receptor. We recently demonstrated that TrkB.T1 is predominately expressed in astrocytes, and appears critical for astrocyte morphological maturation. Given the critical role of BDNF/TrkB pathway in healthy brain development and mature CNS function, we aimed to identify molecular underpinnings of cell-type specific expression of each TrkB isoform. Using Nanopore sequencing which enables direct, long read sequencing of native DNA, we profiled DNA methylation patterns of the entire TrkB gene, Ntrk2, in both neurons and astrocytes. Here, we identified robust differences in cell-type specific isoform expression associated with significantly different methylation patterns of the Ntrk2 gene in each cell type. Notably, astrocytes demonstrated lower 5mC methylation, and higher 5hmC across the entire gene when compared to neurons, including differentially methylated sites (DMSs) found in regions flanking the unique TrkB.T1 protein coding sequence (CDS). These data suggest DNA methylation patterns may provide instruction for isoform specific TrkB expression across unique CNS cell types.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Jack L. Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Michelle L. Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Bai L, Wang K, Liu D, Wu S. Potential Early Effect Biomarkers for Ambient Air Pollution Related Mental Disorders. TOXICS 2024; 12:454. [PMID: 39058106 PMCID: PMC11280925 DOI: 10.3390/toxics12070454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Air pollution is one of the greatest environmental risks to health, with 99% of the world's population living where the World Health Organization's air quality guidelines were not met. In addition to the respiratory and cardiovascular systems, the brain is another potential target of air pollution. Population- and experiment-based studies have shown that air pollution may affect mental health through direct or indirect biological pathways. The evidence for mental hazards associated with air pollution has been well documented. However, previous reviews mainly focused on epidemiological associations of air pollution with some specific mental disorders or possible biological mechanisms. A systematic review is absent for early effect biomarkers for characterizing mental health hazards associated with ambient air pollution, which can be used for early warning of related mental disorders and identifying susceptible populations at high risk. This review summarizes possible biomarkers involved in oxidative stress, inflammation, and epigenetic changes linking air pollution and mental disorders, as well as genetic susceptibility biomarkers. These biomarkers may provide a better understanding of air pollution's adverse effects on mental disorders and provide future research direction in this arena.
Collapse
Affiliation(s)
- Lijun Bai
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| | - Dandan Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| |
Collapse
|
6
|
Nazzari S, Grumi S, Mambretti F, Villa M, Giorda R, Bordoni M, Pansarasa O, Borgatti R, Provenzi L. Sex-dimorphic pathways in the associations between maternal trait anxiety, infant BDNF methylation, and negative emotionality. Dev Psychopathol 2024; 36:908-918. [PMID: 36855816 DOI: 10.1017/s0954579423000172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Maternal antenatal anxiety is an emerging risk factor for child emotional development. Both sex and epigenetic mechanisms, such as DNA methylation, may contribute to the embedding of maternal distress into emotional outcomes. Here, we investigated sex-dependent patterns in the association between antenatal maternal trait anxiety, methylation of the brain-derived neurotrophic factor gene (BDNF DNAm), and infant negative emotionality (NE). Mother-infant dyads (N = 276) were recruited at delivery. Maternal trait anxiety, as a marker of antenatal chronic stress exposure, was assessed soon after delivery using the Stait-Trait Anxiety Inventory (STAI-Y). Infants' BDNF DNAm at birth was assessed in 11 CpG sites in buccal cells whereas infants' NE was assessed at 3 (N = 225) and 6 months (N = 189) using the Infant Behavior Questionnaire-Revised (IBQ-R). Hierarchical linear analyses showed that higher maternal antenatal anxiety was associated with greater 6-month-olds' NE. Furthermore, maternal antenatal anxiety predicted greater infants' BDNF DNAm in five CpG sites in males but not in females. Higher methylation at these sites was associated with greater 3-to-6-month NE increase, independently of infants' sex. Maternal antenatal anxiety emerged as a risk factor for infant's NE. BDNF DNAm might mediate this effect in males. These results may inform the development of strategies to promote mothers and infants' emotional well-being.
Collapse
Affiliation(s)
- Sarah Nazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Serena Grumi
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabiana Mambretti
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Marco Villa
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
7
|
Ping J, Wan J, Luo J, Du B, Liu X, Jiang T, Zhang J. The interaction of RELN-DNMT genes involving in neurotrophin signaling pathway contributes to schizophrenia susceptibility. Int J Dev Neurosci 2024; 84:154-159. [PMID: 38296839 DOI: 10.1002/jdn.10316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
OBJECTIVE Schizophrenia belongs to a severe mental illness with complicated clinical presentations, an ill-defined pathogenesis, and no known cause. Many genetic studies imply that polygenic interaction is important in the development of schizophrenia. The main mechanism of the RELN-BDNF-CREB-DNMT signaling pathway in neurodevelopment involves RELN, brain-derived neurotrophic factor (BDNF), transcription factor cyclic adenosine monophosphate response element binding protein (CREB), DNA methyltransferase 1 (DNMT1), as well as DNA methyltransferase 3B (DNMT3B). An early case-control research on 15 polymorphisms in the RELN, CREB, BDNF, DNMT1, and DNMT3B genes was done. A single gene variation has little effect on the pathogenesis of schizophrenia, but the combination of intergenic variation loci has a bigger impact because schizophrenia is a complex polygenic disorder. The objective of the current study sought to explore the impact of genetic interactions between RELN, BDNF, CREB, DNMT1, and DNMT3B on schizophrenia in order to further highlight the genetic factors influencing the risk of schizophrenia. METHODS Taking the case-control study design, with the Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) to be the evaluation norm, 134 individuals suffering from schizophrenia hospitalized in the Third People's Hospital of Zhongshan City within January 2018 to April 2020 (case group) were selected, and 64 healthy individuals (control group) from the same geographical area had been chosen as well. MassArray identified DNMT1 gene single nucleotide polymorphisms (rs2114724 and rs2228611) and DNMT3B gene SNPs (rs2424932, rs1569686, rs6119954, and rs2424908). Using the generalized multifactor dimensionality reduction (GMDR), the RELN-BDNF-CREB-DNMT pathway's gene interactions were examined for their impact on schizophrenia. RESULTS GMDR analysis showed that the three-order interaction model RELN (rs2073559, rs2229864)-DNMT3B (rs2424908) was the optimal model (p = 0.001), with the consistency of cross-validation of 10/10 and the test accuracy of 0.8711. CONCLUSION The interaction between the RELN (rs2073559, rs2229864)-DNMT3B (rs2424908) may be related to schizophrenia, and large sample sizes should be verified in different population.
Collapse
Affiliation(s)
- Junjiao Ping
- Department of Psychiatry, Third People's Hospital of Zhongshan City, Zhongshan, China
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, China
| | - Jing Wan
- Department of Early Intervention, Third People's Hospital of Zhongshan City, Zhongshan, China
| | - Jiali Luo
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, China
| | - Baoguo Du
- Department of Clinical Psychology, The Third People's Hospital of Zhongshan City, Zhongshan, China
| | - Xinxia Liu
- Department of Psychiatry, Third People's Hospital of Zhongshan City, Zhongshan, China
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, China
| | - Tingyun Jiang
- Department of Psychiatry, Third People's Hospital of Zhongshan City, Zhongshan, China
| | - Jie Zhang
- Department of Psychiatry, Third People's Hospital of Zhongshan City, Zhongshan, China
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, China
| |
Collapse
|
8
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Bai I, Keyser C, Zhang Z, Rosolia B, Hwang JY, Zukin RS, Yan J. Epigenetic regulation of autophagy in neuroinflammation and synaptic plasticity. Front Immunol 2024; 15:1322842. [PMID: 38455054 PMCID: PMC10918468 DOI: 10.3389/fimmu.2024.1322842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Autophagy is a conserved cellular mechanism that enables the degradation and recycling of cellular organelles and proteins via the lysosomal pathway. In neurodevelopment and maintenance of neuronal homeostasis, autophagy is required to regulate presynaptic functions, synapse remodeling, and synaptic plasticity. Deficiency of autophagy has been shown to underlie the synaptic and behavioral deficits of many neurological diseases such as autism, psychiatric diseases, and neurodegenerative disorders. Recent evidence reveals that dysregulated autophagy plays an important role in the initiation and progression of neuroinflammation, a common pathological feature in many neurological disorders leading to defective synaptic morphology and plasticity. In this review, we will discuss the regulation of autophagy and its effects on synapses and neuroinflammation, with emphasis on how autophagy is regulated by epigenetic mechanisms under healthy and diseased conditions.
Collapse
Affiliation(s)
- Isaac Bai
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Cameron Keyser
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Ziyan Zhang
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Breandan Rosolia
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Jee-Yeon Hwang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - R. Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Jingqi Yan
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
10
|
Mallick R, Duttaroy AK. Epigenetic modification impacting brain functions: Effects of physical activity, micronutrients, caffeine, toxins, and addictive substances. Neurochem Int 2023; 171:105627. [PMID: 37827244 DOI: 10.1016/j.neuint.2023.105627] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Changes in gene expression are involved in many brain functions. Epigenetic processes modulate gene expression by histone modification and DNA methylation or RNA-mediated processes, which is important for brain function. Consequently, epigenetic changes are also a part of brain diseases such as mental illness and addiction. Understanding the role of different factors on the brain epigenome may help us understand the function of the brain. This review discussed the effects of caffeine, lipids, addictive substances, physical activity, and pollutants on the epigenetic changes in the brain and their modulatory effects on brain function.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046 Blindern, Oslo, Norway.
| |
Collapse
|
11
|
Bhattacharya S, MacCallum PE, Dayma M, McGrath-Janes A, King B, Dawson L, Bambico FR, Berry MD, Yuan Q, Martin GM, Preisser EL, Blundell JJ. A short pre-conception bout of predation risk affects both children and grandchildren. Sci Rep 2023; 13:10886. [PMID: 37407623 PMCID: PMC10322924 DOI: 10.1038/s41598-023-37455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Traumatic events that affect physiology and behavior in the current generation may also impact future generations. We demonstrate that an ecologically realistic degree of predation risk prior to conception causes lasting changes in the first filial (F1) and second filial (F2) generations. We exposed male and female mice to a live rat (predator stress) or control (non-predator) condition for 5 min. Ten days later, stressed males and females were bred together as were control males and females. Adult F1 offspring from preconception-stressed parents responded to a mild stressor with more anxiety-like behavior and hyperarousal than offspring from control parents. Exposing these F1 offspring to the mild stressor increased neuronal activity (cFOS) in the hippocampus and altered glucocorticoid system function peripherally (plasma corticosterone levels). Even without the mild stressor, F1 offspring from preconception-stressed parents still exhibited more anxiety-like behaviors than controls. Cross-fostering studies confirmed that preconception stress, not maternal social environment, determined offspring behavioral phenotype. The effects of preconception parental stress were also unexpectedly persistent and produced similar behavioral phenotypes in the F2 offspring. Our data illustrate that a surprisingly small amount of preconception predator stress alters the brain, physiology, and behavior of future generations. A better understanding of the 'long shadow' cast by fearful events is critical for understanding the adaptive costs and benefits of transgenerational plasticity. It also suggests the intriguing possibility that similar risk-induced changes are the rule rather than the exception in free-living organisms, and that such multigenerational impacts are as ubiquitous as they are cryptic.
Collapse
Affiliation(s)
- Sriya Bhattacharya
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
- Northwestern Polytechnic, Grande Prairie, AB, T8V 4C4, Canada
| | - Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Mrunal Dayma
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Andrea McGrath-Janes
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Brianna King
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Laura Dawson
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Francis R Bambico
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Mark D Berry
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Gerard M Martin
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Jacqueline J Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
12
|
Nain N, Singh A, Khan S, Kukreti S. G-quadruplex formation at human DAT1 gene promoter: Effect of cytosine methylation. Biochem Biophys Rep 2023; 34:101464. [PMID: 37096205 PMCID: PMC10121379 DOI: 10.1016/j.bbrep.2023.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
The dopamine transporter gene (DAT1), a recognized genetic risk factor for attention deficit hyperactivity disorder (ADHD) is principally responsible for the regulation of dopamine synaptic levels and serves as a key target in many psychostimulants drugs. DAT1 gene methylation has been considered an epigenetic marker in ADHD. The identification of G-rich sequence motifs potential to form G-quadruplexes is correlated with functionally important genomic regions. Herein, biophysical and biochemical techniques are employed to investigate the structural polymorphism along with the effect of cytosine methylation on a 26-nt G-rich sequence present in the promoter region of the DAT1 gene. The gel electrophoresis, circular dichroism spectroscopy, and UV-thermal melting data are well correlated and conclude the formation of a parallel (bimolecular), as well as antiparallel (tetramolecular) G-quadruplex in Na+ solution. Interestingly, the existence of uni-, bi-, tri-, and tetramolecular quadruplex structures in K+ solution exhibited only the parallel type G-quadruplex. The results demonstrate that in presence of either cation (Na+ or K+) the cytosine methylation reserved the structural topologies unaltered. However, methylation lowers the thermal stability of G-quadruplexes and the duplex structures, as well. These findings provide insights to understand the regulatory mechanisms underlying the formation of the G-quadruplex structure induced by DNA methylation.
Collapse
Affiliation(s)
- Nishu Nain
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Anju Singh
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Shoaib Khan
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Corresponding author.
| |
Collapse
|
13
|
van den Oord EJCG, Xie LY, Zhao M, Campbell TL, Turecki G, Kähler AK, Dean B, Mors O, Hultman CM, Staunstrup NH, Aberg KA. Genes implicated by a methylome-wide schizophrenia study in neonatal blood show differential expression in adult brain samples. Mol Psychiatry 2023; 28:2088-2094. [PMID: 37106120 DOI: 10.1038/s41380-023-02080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Schizophrenia is a disabling disorder involving genetic predisposition in combination with environmental influences that likely act via dynamic alterations of the epigenome and the transcriptome but its detailed pathophysiology is largely unknown. We performed cell-type specific methylome-wide association study of neonatal blood (N = 333) from individuals who later in life developed schizophrenia and controls. Suggestively significant associations (P < 1.0 × 10-6) were detected in all cell-types and in whole blood with methylome-wide significant associations in monocytes (P = 2.85 × 10-9-4.87 × 10-9), natural killer cells (P = 1.72 × 10-9-7.82 × 10-9) and B cells (P = 3.8 × 10-9). Validation of methylation findings in post-mortem brains (N = 596) from independent schizophrenia cases and controls showed significant enrichment of transcriptional differences (enrichment ratio = 1.98-3.23, P = 2.3 × 10-3-1.0 × 10-5), with specific highly significant differential expression for, for example, BDNF (t = -6.11, P = 1.90 × 10-9). In addition, expression difference in brain significantly predicted schizophrenia (multiple correlation = 0.15-0.22, P = 3.6 × 10-4-4.5 × 10-8). In summary, using a unique design combining pre-disease onset (neonatal) blood methylomic data and post-disease onset (post-mortem) brain transcriptional data, we have identified genes of likely functional relevance that are associated with schizophrenia susceptibility, rather than confounding disease associated artifacts. The identified loci may be of clinical value as a methylation-based biomarker for early detection of increased schizophrenia susceptibility.
Collapse
Affiliation(s)
- Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lin Y Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas L Campbell
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Gustavo Turecki
- Douglas Mental Health University Institute and McGill University, Montréal, Québec, Canada
| | - Anna K Kähler
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Brian Dean
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Risskov, Denmark
- Center for Genomics and Personalized Medicine, University of Aarhus, Aarhus, Denmark
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicklas H Staunstrup
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, University of Aarhus, Aarhus, Denmark
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
14
|
Alece Arantes Moreno I, Rodrigues de Oliveira D, Ribeiro Borçoi A, Fungaro Rissatti L, Vitorino Freitas F, Arantes LMRB, Oliveira Mendes S, dos Santos Vieira T, Risse Quaioto B, Cerbino Doblas P, Sgrancio Olinda A, Ribeiro Cunha E, Gasparini dos Santos J, Assis Pinheiro J, Pereira Sorroche B, Madeira Alvares da Silva A. Methylation of BDNF gene in association with episodic memory in women. Front Neurosci 2023; 17:1092406. [PMID: 37008217 PMCID: PMC10060857 DOI: 10.3389/fnins.2023.1092406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) gene regulation plays an important role in long-term memory formation, and the DNA methylation (DNAm) level of BDNF promoters has been associated with episodic memory deficits. Our aim was to explore the association between DNAm levels in BDNF promoter IV with verbal learning and memory performance in healthy women. We conducted a cross-sectional study by recruiting 53 individuals. Episodic memory was assessed by using the Rey Auditory Verbal Learning Test (RAVLT). Clinical interviews, RAVLT, and blood sample collection were assessed in all participants. DNAm was measured on DNA from whole peripheral blood using pyrosequencing. According to generalized linear model (GzLM) analyses, cytosine guanine dinucleotide (CpG) site 5 showed significant associations between learning capacity (LC, p < 0.035), that is, every 1% of DNA methylation at CpG site 5 results in a 0.068 reduction in verbal learning performance. To the best of our knowledge, the current study is the first to show that BDNF DNAm plays an important role in episodic memory.
Collapse
Affiliation(s)
- Ivana Alece Arantes Moreno
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
- *Correspondence: Daniela Rodrigues de Oliveira ;
| | - Daniela Rodrigues de Oliveira
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
- Ivana Alece Arantes Moreno
| | - Aline Ribeiro Borçoi
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | - Flávia Vitorino Freitas
- Departamento de Farmácia e Nutrição, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | | | | | - Tamires dos Santos Vieira
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Bárbara Risse Quaioto
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Paola Cerbino Doblas
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Amanda Sgrancio Olinda
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Ester Ribeiro Cunha
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | - Júlia Assis Pinheiro
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Adriana Madeira Alvares da Silva
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
- Departamento de Morfologia, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
15
|
DNA Methylation of the Dopamine Transporter DAT1 Gene—Bliss Seekers in the Light of Epigenetics. Int J Mol Sci 2023; 24:ijms24065265. [PMID: 36982343 PMCID: PMC10049030 DOI: 10.3390/ijms24065265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
DNA methylation (leading to gene silencing) is one of the best-studied epigenetic mechanisms. It is also essential in regulating the dynamics of dopamine release in the synaptic cleft. This regulation relates to the expression of the dopamine transporter gene (DAT1). We examined 137 people addicted to nicotine, 274 addicted subjects, 105 sports subjects and 290 people from the control group. After applying the Bonferroni correction, our results show that as many as 24 out of 33 examined CpG islands had statistically significantly higher methylation in the nicotine-dependent subjects and athletes groups compared to the control group. Analysis of total DAT1 methylation revealed a statistically significant increase in the number of total methylated CpG islands in addicted subjects (40.94%), nicotine-dependent subjects (62.84%) and sports subjects (65.71%) compared to controls (42.36%). The analysis of the methylation status of individual CpG sites revealed a new direction of research on the biological aspects of regulating dopamine release in people addicted to nicotine, people practicing sports and people addicted to psychoactive substances.
Collapse
|
16
|
Quaioto BR, Borçoi AR, Mendes SO, Doblas PC, Dos Santos Vieira T, Arantes Moreno IA, Dos Santos JG, Hollais AW, Olinda AS, de Souza MLM, Freitas FV, Pinheiro JA, Cunha ER, Sorroche BP, Arantes LMRB, Álvares-da-Silva AM. Tobacco use modify exon IV BDNF gene methylation levels in depression. J Psychiatr Res 2023; 159:240-248. [PMID: 36753898 DOI: 10.1016/j.jpsychires.2023.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
This study aimed to investigate BDNF gene methylation in individuals with depression based on tobacco use. Therefore, 384 adults from southeastern Brazil were recruited to assess depression, socioeconomic status, lifestyle, and methylation by pyrosequencing exon IV promoter region of the BDNF gene. The Generalized Linear Model (GzLM) was used to check the effect of depression, tobacco, and the interaction between depression and tobacco use in methylation levels. In addition, the Kruskal-Wallis test, followed by Dunn's post hoc test, was used to compare methylation levels. Interaction between depression and tobacco use was significant at levels of BDNF methylation in the CpG 5 (p = 0.045), 8 (p = 0.016), 9 (p = 0.042), 10 (p = 0.026) and mean 5-11 (p < 0.001). Dunn's post hoc test showed that individuals with depression and tobacco use compared to those with or without depression who did not use tobacco had lower levels of BDNF methylation in CpG 5, 6, 7, 8, 9, 11, and mean 5-11. Therefore, we suggest that tobacco use appears to interfere with BDNF gene methylation in depressed individuals.
Collapse
Affiliation(s)
- Bárbara Risse Quaioto
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil.
| | - Aline Ribeiro Borçoi
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Suzanny Oliveira Mendes
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Paola Cerbino Doblas
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Tamires Dos Santos Vieira
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ivana Alece Arantes Moreno
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Joaquim Gasparini Dos Santos
- ICESP, Center for Translational Research in Oncology, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Multiprofessional Residency Program in Adult Oncology Care, Comissão de Residência Multiprofissional/Hospital Das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - André Willian Hollais
- Department of Physiological Sciences, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Amanda Sgrancio Olinda
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Flávia Vitorino Freitas
- Department of Pharmacy and Nutrition, Universidade Federal Do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Júlia Assis Pinheiro
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ester Ribeiro Cunha
- Department of Morphology, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Hospital Do Câncer de Barretos, Barretos, São Paulo, Brazil
| | | | - Adriana Madeira Álvares-da-Silva
- Biotechnology Postgraduate Program/RENORBIO, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil; Department of Morphology, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
17
|
Johnston KJ, Huckins LM. Chronic Pain and Psychiatric Conditions. Complex Psychiatry 2023; 9:24-43. [PMID: 37034825 PMCID: PMC10080192 DOI: 10.1159/000527041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Chronic pain is a common condition with high socioeconomic and public health burden. A wide range of psychiatric conditions are often comorbid with chronic pain and chronic pain conditions, negatively impacting successful treatment of either condition. The psychiatric condition receiving most attention in the past with regard to chronic pain comorbidity has been major depressive disorder, despite the fact that many other psychiatric conditions also demonstrate epidemiological and genetic overlap with chronic pain. Further understanding potential mechanisms involved in psychiatric and chronic pain comorbidity could lead to new treatment strategies both for each type of disorder in isolation and in scenarios of comorbidity. Methods This article provides an overview of relationships between DSM-5 psychiatric diagnoses and chronic pain, with particular focus on PTSD, ADHD, and BPD, disorders which are less commonly studied in conjunction with chronic pain. We also discuss potential mechanisms that may drive comorbidity, and present new findings on the genetic overlap of chronic pain and ADHD, and chronic pain and BPD using linkage disequilibrium score regression analyses. Results Almost all psychiatric conditions listed in the DSM-5 are associated with increased rates of chronic pain. ADHD and BPD are significantly genetically correlated with chronic pain. Psychiatric conditions aside from major depression are often under-researched with respect to their relationship with chronic pain. Conclusion Further understanding relationships between psychiatric conditions other than major depression (such as ADHD, BPD, and PTSD as exemplified here) and chronic pain can positively impact understanding of these disorders, and treatment of both psychiatric conditions and chronic pain.
Collapse
Affiliation(s)
- Keira J.A. Johnston
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Pathak H, Borchert A, Garaali S, Burkert A, Frieling H. BDNF exon IV promoter methylation and antidepressant action: a complex interplay. Clin Epigenetics 2022; 14:187. [PMID: 36572893 PMCID: PMC9793565 DOI: 10.1186/s13148-022-01415-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND BDNF exon IV promoter methylation is a potential biomarker for treatment response to antidepressants in MDD. We have previously shown CpG-87 methylation as a successful biomarker for the prediction of non-response to monoaminergic antidepressants like the SSRI Fluoxetine or the SNRI Venlafaxine. This study aimed to dissect the biological evidence and mechanisms for the functionality of CpG-87 methylation in a cell culture model. RESULTS We observed a significant interaction between methylation and antidepressant-mediated transcriptional activity in BDNF exon IV promoter. In addition, antidepressant treatment increased the promoter methylation in a concentration-dependent manner. Further single CpG methylation of -87 did not change the promoter activity, but methylation of CREB domain CpG-39 increased the transcriptional activity in an antidepressant-dependent manner. Interestingly, DNMT3a overexpression also increases the BDNF exon IV transcription and more so in Venlafaxine-treated cells. CONCLUSIONS The study strengthens the previously reported association between antidepressant treatment and BDNF exon IV promoter methylation as well as hints toward the mechanism of action. We argue that potential CpG methylation biomarkers display a complex synergy with the molecular changes at the neighboring CpG positions, thus highlighting the importance of epiallele analyses.
Collapse
Affiliation(s)
- Hansi Pathak
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Anton Borchert
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Sara Garaali
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Alexandra Burkert
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Helge Frieling
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| |
Collapse
|
19
|
Frank D, Gruenbaum BF, Zlotnik A, Semyonov M, Frenkel A, Boyko M. Pathophysiology and Current Drug Treatments for Post-Stroke Depression: A Review. Int J Mol Sci 2022; 23:ijms232315114. [PMID: 36499434 PMCID: PMC9738261 DOI: 10.3390/ijms232315114] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Post-stroke depression (PSD) is a biopsychosocial disorder that affects individuals who have suffered a stroke at any point. PSD has a 20 to 60 percent reported prevalence among stroke survivors. Its effects are usually adverse, can lead to disability, and may increase mortality if not managed or treated early. PSD is linked to several other medical conditions, including anxiety, hyper-locomotor activity, and poor functional recovery. Despite significant awareness of its adverse impacts, understanding the pathogenesis of PSD has proved challenging. The exact pathophysiology of PSD is unknown, yet its complexity has been definitively shown, involving mechanisms such as dysfunction of monoamine, the glutamatergic systems, the gut-brain axis, and neuroinflammation. The current effectiveness of PSD treatment is about 30-40 percent of all cases. In this review, we examined different pathophysiological mechanisms and current pharmacological and non-pharmacological approaches for the treatment of PSD.
Collapse
Affiliation(s)
- Dmitry Frank
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
- Correspondence: or
| | - Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Michael Semyonov
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Amit Frenkel
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
20
|
Li W, Wang W, Lai W, Li X, Zhu L, Shi J, Teopiz KM, McIntyre RS, Guo L, Lu C. The association of FKBP5 gene methylation, adolescents' sex, and depressive symptoms among Chinese adolescents: a nested case-control study. BMC Psychiatry 2022; 22:749. [PMID: 36451133 PMCID: PMC9710023 DOI: 10.1186/s12888-022-04392-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Depressive symptoms among adolescents are a serious health concern around the world. Altered DNA methylation in the FK506 binding protein 5 (FKBP5) gene has been reported to regulate stress response, which has been reported to be closely associated with depressive symptoms. However, most of the contributing studies have been conducted among adults and relatively few studies have considered the effect of disparate social influences and sex differences on the DNA methylation of FKBP5 in persons with depressive symptoms. The present study aimed to test the associations of FKBP5 DNA methylation and depressive symptoms among adolescents and explore possible sex differences in the foregoing associations. METHODS This study was conducted using a nested case-control design within a longitudinal cohort study from January 2019 to December 2019. Adolescents aged 12 to 17 years from 69 classes in 10 public high schools located in Guangdong province of China participated in this research. Students with persistent depressive symptoms that reported having depressive symptoms at both baseline and follow-up were treated as the case group, and those without depressive symptoms were randomly selected as the control group. Our study finally included 87 cases and 151 controls. Quantitative methylation analyses of the selected gene were carried out by MassARRAY platform System. RESULTS The overall DNA methylation trend of FKBP5 CpG sites in the case group was lower in comparison to the control group. Compared to healthy controls, lower methylation percentage of FKBP5-12 CpG 1 was observed in adolescents with persistent depressive symptoms after adjusting for covariates (case: 0.94 ± 2.00, control: 0.47 ± 0.92; F = 5.41, P = 0.021), although the statistical significance of the difference was lost after false discovery rate correction (q > 0.05). In addition, the hypomethylation of FKBP5-12 CpG 1 was approaching significance after adjustment for social-environmental factors (aOR = 0.77; P = 0.055), which indicated that no independent association was detected between hypomethylation of FKBP5 CpG sites and persistent depressive symptoms. Furthermore, in the present study, we were unable to identify sex differences in the association of FKBP5 gene methylation with depressive symptoms. CONCLUSION The decreased methylation level of FKBP5 was observed in adolescents with persistent depressive symptoms, albeit non-significant after correction for multiple testing. Our results presented here are preliminary and underscore the complex gene-environment interactions relevant to the risk for depressive symptoms.
Collapse
Affiliation(s)
- Wenyan Li
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Wanxin Wang
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Wenjian Lai
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Xiuwen Li
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Liwan Zhu
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Jingman Shi
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Kayla M. Teopiz
- grid.231844.80000 0004 0474 0428Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON Canada
| | - Roger S. McIntyre
- grid.231844.80000 0004 0474 0428Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080, Guangzhou, China.
| | - Ciyong Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080, Guangzhou, China.
| |
Collapse
|
21
|
Exploring Effect of Postdischarge Developmental Support Program on Preterm Infant Neurodevelopment and BDNF Gene DNA Methylation. Adv Neonatal Care 2022; 23:E50-E58. [PMID: 36409665 DOI: 10.1097/anc.0000000000001046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although developmental supportive care is an effective approach to improve the long-term psychomotor and/or neurobehavioral function of preterm infants, very limited studies have focused on the impact of after-discharge developmental support. The underlying epigenetic changes are unclear. PURPOSE This study aimed to explore the preliminary effect of an evidence-based Postdischarge Developmental Support Program (PDSP) on preterm infant neurodevelopment and underlying epigenetic changes, including brain-derived neurotrophic factor (BDNF) gene-related DNA methylation and expression. METHODS In this randomized controlled pilot trial, the preterm infant-parent dyads were randomized into either the intervention group/PDSP group (n = 22) or the control group/usual care group (n = 22). The neurodevelopmental outcomes of preterm infants were measured by Ages & Stages Questionnaires. Urine BDNF concentration level was tested by the enzyme-linked immunosorbent assay. Infant saliva specimens were collected to analyze the methylation level of BDNF gene promoter I at pre- and postintervention test. RESULTS After PDSP intervention, the total neurodevelopmental and the 5 domain scores of the PDSP group were all significantly higher than those of the control group ( P < .05). The BDNF levels decreased significantly only within control group ( P = .01). The difference in BDNF concentration and methylation levels between groups was not statistically significant. IMPLICATIONS FOR PRACTICE AND RESEARCH Postdischarge Developmental Support Program may promote the neurodevelopment of preterm infants but has no effect on BDNF's expression and gene methylation level at 3 months of corrected age. The epigenetic mechanism of PDSP needs further study using a larger sample and longer follow-up.
Collapse
|
22
|
Fernandes V, Sood A, Preeti K, Khatri DK, Singh SB. Neuroepigenetic alterations in the prefrontal cortex of type 2 diabetic mice through DNA hypermethylation. Mol Biol Rep 2022; 49:12017-12028. [DOI: 10.1007/s11033-022-08018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
|
23
|
Govender P, Ghai M, Okpeku M. Sex-specific DNA methylation: impact on human health and development. Mol Genet Genomics 2022; 297:1451-1466. [PMID: 35969270 DOI: 10.1007/s00438-022-01935-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Abstract
Human evolution has shaped gender differences between males and females. Over the years, scientific studies have proposed that epigenetic modifications significantly influence sex-specific differences. The evolution of sex chromosomes with epigenetics as the driving force may have led to one sex being more adaptable than the other when exposed to various factors over time. Identifying and understanding sex-specific differences, particularly in DNA methylation, will help determine how each gender responds to factors, such as disease susceptibility, environmental exposure, brain development and neurodegeneration. From a medicine and health standpoint, sex-specific methylation studies have shed light on human disease severity, progression, and response to therapeutic intervention. Interesting findings in gender incongruent individuals highlight the role of genetic makeup in influencing DNA methylation differences. Sex-specific DNA methylation studies will empower the biotechnology and pharmaceutical industry with more knowledge to identify biomarkers, design and develop sex bias drugs leading to better treatment in men and women based on their response to different diseases.
Collapse
Affiliation(s)
- Priyanka Govender
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| |
Collapse
|
24
|
DNA Methylation Profiles of the DRD2 and NR3C1 Genes in Patients with Recent-Onset Psychosis. DISEASE MARKERS 2022; 2022:2172564. [PMID: 35968502 PMCID: PMC9365600 DOI: 10.1155/2022/2172564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/25/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023]
Abstract
Objectives Dopamine receptor D2 gene (DRD2) and glucocorticoid receptor gene (NR3C1) are implicated in the development of psychosis. We investigated methylation levels of DRD2 and NR3C1 in peripheral blood of patients with recent-onset (RO) psychosis using bisulfite pyrosequencing as well as its association with childhood trauma and rumination. Methods In all, 51 individuals with RO psychosis and 47 healthy controls were recruited. DNA methylation levels in the targeted regions of two genes were analyzed and compared. Childhood trauma and rumination were evaluated using the Early Trauma Inventory Self-Report Short Form (ETI-SF) and Brooding Scale (BS), respectively. Correlations between the scores of the ETI-SF and BS and methylation levels were explored. Results For DRD2, we found no significant differences between groups in terms of methylation level or association with childhood trauma or rumination. For NR3C1, we found a trend level significance for average value of all CpG sites and significant hypermethylation or hypomethylation at specific sites. There was also a significant positive correlation between the methylation level at the CpG8 site of NR3C1 exon 1F and negative symptom subscale score of the PANSS (PANSS-N). Conclusion Epigenetic alterations of NR3C1 are associated with the pathophysiology of psychosis. Further epigenetic studies will elucidate the molecular mechanisms underpinning the pathophysiology of psychosis.
Collapse
|
25
|
Alachkar A, Lee J, Asthana K, Vakil Monfared R, Chen J, Alhassen S, Samad M, Wood M, Mayer EA, Baldi P. The hidden link between circadian entropy and mental health disorders. Transl Psychiatry 2022; 12:281. [PMID: 35835742 PMCID: PMC9283542 DOI: 10.1038/s41398-022-02028-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
The high overlapping nature of various features across multiple mental health disorders suggests the existence of common psychopathology factor(s) (p-factors) that mediate similar phenotypic presentations across distinct but relatable disorders. In this perspective, we argue that circadian rhythm disruption (CRD) is a common underlying p-factor that bridges across mental health disorders within their age and sex contexts. We present and analyze evidence from the literature for the critical roles circadian rhythmicity plays in regulating mental, emotional, and behavioral functions throughout the lifespan. A review of the literature shows that coarse CRD, such as sleep disruption, is prevalent in all mental health disorders at the level of etiological and pathophysiological mechanisms and clinical phenotypical manifestations. Finally, we discuss the subtle interplay of CRD with sex in relation to these disorders across different stages of life. Our perspective highlights the need to shift investigations towards molecular levels, for instance, by using spatiotemporal circadian "omic" studies in animal models to identify the complex and causal relationships between CRD and mental health disorders.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA. .,Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
| | - Justine Lee
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Kalyani Asthana
- grid.266093.80000 0001 0668 7243Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA USA
| | - Roudabeh Vakil Monfared
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Jiaqi Chen
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Sammy Alhassen
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Muntaha Samad
- grid.266093.80000 0001 0668 7243Institute for Genomics and Bioinformatics, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA USA
| | - Marcelo Wood
- grid.266093.80000 0001 0668 7243Institute for Genomics and Bioinformatics, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA USA
| | - Emeran A. Mayer
- grid.266093.80000 0001 0668 7243Institute for Genomics and Bioinformatics, University of California, Irvine, CA USA ,grid.19006.3e0000 0000 9632 6718G. Oppenheimer Center of Neurobiology of Stress & Resilience and Goldman Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, CA USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA. .,Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
26
|
Mahmood D, Alenezi SK, Anwar MJ, Azam F, Qureshi KA, Jaremko M. New Paradigms of Old Psychedelics in Schizophrenia. Pharmaceuticals (Basel) 2022; 15:ph15050640. [PMID: 35631466 PMCID: PMC9147282 DOI: 10.3390/ph15050640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Psychedelics such as lysergic acid diethylamide (LSD), psilocybin (magic mushrooms), and mescaline exhibit intense effects on the human brain and behaviour. In recent years, there has been a surge in studies investigating these drugs because clinical studies have shown that these once banned drugs are well tolerated and efficacious in medically supervised low doses called microdosing. Psychedelics have demonstrated efficacy in treating neuropsychiatric maladies such as difficult to treat anxiety, depression, mood disorders, obsessive compulsive disorders, suicidal ideation, posttraumatic stress disorder, and also in treating substance use disorders. The primary mode of action of psychedelics is activation of serotonin 5-HT2A receptors affecting cognition and brain connectivity through the modulation of several downstream signalling pathways via complex molecular mechanisms. Some atypical antipsychotic drugs (APDs) primarily exhibit pharmacological actions through 5-HT2A receptors, which are also the target of psychedelic drugs. Psychedelic drugs including the newer second generation along with the glutamatergic APDs are thought to mediate pharmacological actions through a common pathway, i.e., a complex serotonin-glutamate receptor interaction in cortical neurons of pyramidal origin. Furthermore, psychedelic drugs have been reported to act via a complex interplay between 5HT2A, mGlu2/3, and NMDA receptors to mediate neurobehavioral and pharmacological actions. Findings from recent studies have suggested that serotoninergic and glutamatergic neurotransmissions are very closely connected in producing pharmacological responses to psychedelics and antipsychotic medication. Emerging hypotheses suggest that psychedelics work through brain resetting mechanisms. Hence, there is a need to dig deeply into psychedelic neurobiology to uncover how psychedelics could best be used as scientific tools to benefit psychiatric disorders including schizophrenia.
Collapse
Affiliation(s)
- Danish Mahmood
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia; (S.K.A.); (M.J.A.)
- Correspondence: or
| | - Sattam K. Alenezi
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia; (S.K.A.); (M.J.A.)
| | - Md. Jamir Anwar
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia; (S.K.A.); (M.J.A.)
| | - Faizul Azam
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| |
Collapse
|
27
|
Mustieles V, Rodríguez-Carrillo A, Vela-Soria F, D'Cruz SC, David A, Smagulova F, Mundo-López A, Olivas-Martínez A, Reina-Pérez I, Olea N, Freire C, Arrebola JP, Fernández MF. BDNF as a potential mediator between childhood BPA exposure and behavioral function in adolescent boys from the INMA-Granada cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150014. [PMID: 34788942 DOI: 10.1016/j.scitotenv.2021.150014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to altered behavior in children. Within the European Human Biomonitoring Initiative (HBM4EU), an adverse outcome pathway (AOP) network was constructed supporting the mechanistic link between BPA exposure and brain-derived neurotrophic factor (BDNF). OBJECTIVE To test this toxicologically-based hypothesis in the prospective INMA-Granada birth cohort (Spain). METHODS BPA concentrations were quantified by LC-MS/MS in spot urine samples from boys aged 9-11 years, normalized by creatinine and log-2 transformed. At adolescence (15-17 years), blood and urine specimens were collected, and serum and urinary BDNF protein levels were measured using immunoassays. DNA methylation levels at 6 CpGs in Exon IV of the BDNF gene were also assessed in peripheral blood using bisulfite-pyrosequencing. Adolescent's behavior was parent-rated using the Child Behavior Checklist (CBCL/6-18) in 148 boys. Adjusted linear regression and mediation models were fit. RESULTS Childhood urinary BPA concentrations were longitudinally and positively associated with thought problems (β = 0.76; 95% CI: 0.02, 1.49) and somatic complaints (β = 0.80; 95% CI: -0.16, 1.75) at adolescence. BPA concentrations were positively associated with BDNF DNA methylation at CpG6 (β = 0.21; 95% CI: 0.06, 0.36) and mean CpG methylation (β = 0.10; 95% CI: 0.01, 0.18), but not with total serum or urinary BDNF protein levels. When independent variables were categorized in tertiles, positive dose-response associations were observed between BPA-thought problems (p-trend = 0.08), BPA-CpG6 (p-trend ≤ 0.01), and CpG6-thought problems (p-trend ≤ 0.01). A significant mediated effect by CpG6 DNA methylation was observed (β = 0.23; 95% CI: 0.01, 0.57), accounting for up to 34% of the BPA-thought problems association. CONCLUSIONS In line with toxicological studies, BPA exposure was longitudinally associated with increased BDNF DNA methylation, supporting the biological plausibility of BPA-behavior relationships previously described in the epidemiological literature. Given its novelty and preliminary nature, this effect biomarker approach should be replicated in larger birth cohorts.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | | | | | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Fatima Smagulova
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | | | | | | | - Nicolás Olea
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Carmen Freire
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
28
|
Abdelkhalek K, Rhein M, Deest M, Buchholz V, Bleich S, Lichtinghagen R, Vyssoki B, Frieling H, Muschler M, Proskynitopoulos PJ, Glahn A. Dysregulated Methylation Patterns in Exon IV of the Brain-Derived Neurotrophic Factor (BDNF) Gene in Nicotine Dependence and Changes in BDNF Plasma Levels During Smoking Cessation. Front Psychiatry 2022; 13:897801. [PMID: 35836661 PMCID: PMC9273814 DOI: 10.3389/fpsyt.2022.897801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Several studies reported dysregulated protein levels of brain-derived neurotrophic factor (BDNF) in smokers and during cessation. However, the epigenetic regulation of the BDNF gene has not yet been investigated. We measured the plasma levels of BDNF and the epigenetic regulation of exon IV of the BDNF gene in smokers compared to healthy controls over a cessation period of 14 days. METHOD We measured BDNF plasma levels and BDNF promoter methylation in 49 smokers and 51 non-smokers at baseline, day 7, and day 14 of smoking cessation. Mean methylation levels of 11 Cytosine Guanosine dinucleotides of exon IV of the BDNF gene were determined via bisulfite sequencing. RESULTS BDNF plasma and methylation levels were significantly lower in healthy controls when compared with smokers across all time points. BDNF levels for smokers decreased significantly during the cessation period. Comparing the sexes, female smokers showed significantly lower plasma BDNF levels than healthy controls at baseline and over 14 days of cessation. Male and female smokers showed significantly higher mean methylation rates than non-smokers at baseline. In male smokers, mean methylation levels decreased significantly during the cessation period. CONCLUSION Our findings replicate the findings of previous studies that BDNF plasma levels are altered in smokers. Furthermore, BDNF expression and gene methylation are altered during the first 14 days of cessation. Our novel findings of dysregulated methylation patterns in exon IV of the BDNF gene further support the thesis that BDNF plays a role in nicotine dependence.
Collapse
Affiliation(s)
- Kerim Abdelkhalek
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Mathias Rhein
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Maximilian Deest
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Vanessa Buchholz
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Ralf Lichtinghagen
- Department of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Benjamin Vyssoki
- Board of Trustees for Psychosocial Services in Vienna, Vienna, Austria
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Marc Muschler
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | | | - Alexander Glahn
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Pan L, Cao Z, Chen L, Qian M, Yan Y. Association of BDNF and MMP-9 single-nucleotide polymorphisms with the clinical phenotype of schizophrenia. Front Psychiatry 2022; 13:941973. [PMID: 36325525 PMCID: PMC9619044 DOI: 10.3389/fpsyt.2022.941973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Schizophrenia is a highly polygenic psychiatric disorder; however, the complex genetic architecture underlying the pathogenesis remains elusive. Brain-derived neurotrophic factor (BDNF), a neurotrophin, and matrix metalloproteinase 9 (MMP-9), a gelatinase B, are the promising candidate genes for schizophrenia. To shed new light on the relationship between the single-nucleotide polymorphisms (SNPs) of BDNF and MMP-9 and the clinical variability of schizophrenia phenotype, this study aims to evaluate the relationship, and provide more definitive evidence for the relationship with various clinical features of schizophrenia. METHODS A case-control association study was performed, and one hundred and five subjects of Chinese Han population were enrolled, including 55 schizophrenia patients (SP) and 50 healthy controls (HC). The BDNF rs6265 196 G > A and MMP-9 rs3918242 -1562C > T SNPs were genotyped using PCR-RFLP assay. The Positive and Negative Syndrome Scale (PANSS) was used to assess the clinical symptoms of patients with schizophrenia. RESULTS Compared with HC, the frequency of SP carrying BDNF rs6265 GG/GA genotype was significantly higher than HC, and the frequency of SP carrying BDNF rs6265 AA genotype was significantly lower than HC (p < 0.01). With regards to MMP-9 rs3918242 -1562C > T SNP, no significant difference was observed between the control and SP. BDNF GG genotype showed significantly higher PANSS and positive symptoms score than GA and AA genotypes (P < 0.01). MMP-9 CC genotype showed significantly higher PANSS and general score than CT and TT genotypes (P < 0.05). CONCLUSION BDNF rs6265 196 G > A and MMP-9 rs3918242-1562C > T SNPs are related to the clinical features of schizophrenia and could be a useful biomarker for the changes, remission or deterioration of clinical status of schizophrenia.
Collapse
Affiliation(s)
- Lihong Pan
- Pudong Nanhui Mental Health Center, Shanghai, China
| | - Zhonghai Cao
- People's Hospital of Datong County, Datong, China
| | - Lianghu Chen
- Pudong Nanhui Mental Health Center, Shanghai, China
| | - Min Qian
- Pudong Nanhui Mental Health Center, Shanghai, China
| | - Yuzhong Yan
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
30
|
Hamdaoui Q, Zekri Y, Richard S, Aubert D, Guyot R, Markossian S, Gauthier K, Gaie-Levrel F, Bencsik A, Flamant F. Prenatal exposure to paraquat and nanoscaled TiO 2 aerosols alters the gene expression of the developing brain. CHEMOSPHERE 2022; 287:132253. [PMID: 34543901 DOI: 10.1016/j.chemosphere.2021.132253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Nanopesticides are innovative pesticides involving engineered nanomaterials in their formulation to increase the efficiency of plant protection products, while mitigating their environmental impact. Despite the predicted growth of the nanopesticide use, no data is available on their inhalation toxicity and the potential cocktail effects between their components. In particular, the neurodevelopmental toxicity caused by prenatal exposures might have long lasting consequences. In the present study, we repeatedly exposed gestating mice in a whole-body exposure chamber to three aerosols, involving the paraquat herbicide, nanoscaled titanium dioxide particles (nTiO2), or a mixture of both. Particle number concentrations and total mass concentrations were followed to enable a metrological follow-up of the exposure sessions. Based on the aerosols characteristics, the alveolar deposited dose in mice was then estimated. RNA-seq was used to highlight dysregulations in the striatum of pups in response to the in utero exposure. Modifications in gene expression were identified at post-natal day 14, which might reflect neurodevelopmental alterations in this key brain area. The data suggest an alteration in the mitochondrial function following paraquat exposure, which is reminiscent of the pathological process leading to Parkinson disease. Markers of different cell lineages were dysregulated, showing effects, which were not limited to dopaminergic neurons. Exposure to the nTiO2 aerosol modulated the regulation of cytokines and neurotransmitters pathways, perhaps reflecting a minor neuroinflammation. No synergy was found between paraquat and nTiO2. Instead, the neurodevelopmental effects were surprisingly lower than the one measured for each substance separately.
Collapse
Affiliation(s)
- Quentin Hamdaoui
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France; Laboratoire National de Métrologie et D'essais (LNE), Paris, France
| | - Yanis Zekri
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France
| | - Sabine Richard
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France
| | - Denise Aubert
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France
| | - Romain Guyot
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France
| | - Suzy Markossian
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France
| | - Karine Gauthier
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France
| | | | - Anna Bencsik
- Université Claude Bernard Lyon 1, ANSES, Laboratoire de Lyon, France
| | - Frédéric Flamant
- IGFL, Functional Genomics of Thyroid Hormone Signaling Group, Lyon, France.
| |
Collapse
|
31
|
Jun R, Zhang W, Beacher NJ, Zhang Y, Li Y, Lin DT. Dysbindin-1, BDNF, and GABAergic Transmission in Schizophrenia. Front Psychiatry 2022; 13:876749. [PMID: 35815020 PMCID: PMC9258742 DOI: 10.3389/fpsyt.2022.876749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a psychiatric disorder characterized by hallucinations, anhedonia, disordered thinking, and cognitive impairments. Both genetic and environmental factors contribute to schizophrenia. Dysbindin-1 (DTNBP1) and brain-derived neurotrophic factor (BDNF) are both genetic factors associated with schizophrenia. Mice lacking Dtnbp1 showed behavioral deficits similar to human patients suffering from schizophrenia. DTNBP1 plays important functions in synapse formation and maintenance, receptor trafficking, and neurotransmitter release. DTNBP1 is co-assembled with 7 other proteins into a large protein complex, known as the biogenesis of lysosome-related organelles complex-1 (BLOC-1). Large dense-core vesicles (LDCVs) are involved in the secretion of hormones and neuropeptides, including BDNF. BDNF plays important roles in neuronal development, survival, and synaptic plasticity. BDNF is also critical in maintaining GABAergic inhibitory transmission in the brain. Two studies independently showed that DTNBP1 mediated activity-dependent BDNF secretion to maintain inhibitory transmission. Imbalance of excitatory and inhibitory neural activities is thought to contribute to schizophrenia. In this mini-review, we will discuss a potential pathogenetic mechanism for schizophrenia involving DTNBP1, BDNF, and inhibitory transmission. We will also discuss how these processes are interrelated and associated with a higher risk of schizophrenia development.
Collapse
Affiliation(s)
- Rachel Jun
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Nicholas J Beacher
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
32
|
Velásquez MM, Gómez-Maquet Y, Ferro E, Cárdenas W, González-Nieves S, Lattig MC. Multidimensional Analysis of Major Depression: Association Between BDNF Methylation, Psychosocial and Cognitive Domains. Front Psychiatry 2021; 12:768680. [PMID: 34970165 PMCID: PMC8712447 DOI: 10.3389/fpsyt.2021.768680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Major Depression is a complex disorder with a growing incidence worldwide and multiple variables have been associated with its etiology. Nonetheless, its diagnosis is continually changing and the need to understand it from a multidimensional perspective is clear. The purpose of this study was to identify risk factors for depression in a case-control study with 100 depressive inpatients and 87 healthy controls. A multivariate logistic regression analysis was performed including psychosocial factors, cognitive maladaptive schema domains, and specific epigenetic marks (BDNF methylation levels at five CpG sites in promoter IV). A family history of depression, the cognitive schemas of impaired autonomy/performance, impaired limits, other-directedness, and the methylation level of a specific CpG site were identified as predictors. Interestingly, we found a mediating effect of those cognitive schemas in the relationship between childhood maltreatment and depression. Also, we found that depressive patients exhibited hypomethylation in a CpG site of BDNF promoter IV, which adds to the current discussion about the role of methylation in depression. We highlight that determining the methylation of a specific region of a single gene offers the possibility of accessing a highly informative an easily measurable variable, which represents benefits for diagnosis. Following complete replication and validation on larger samples, models like ours could be applicable as additional diagnostic tools in the clinical context.
Collapse
Affiliation(s)
- María Marcela Velásquez
- Centro de Investigaciones Genéticas en Enfermedades Humanas, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | | | - Eugenio Ferro
- Instituto Colombiano del Sistema Nervioso, Clínica Montserrat, Bogotá, Colombia
| | - Wilmer Cárdenas
- Centro de Investigaciones Genéticas en Enfermedades Humanas, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Silvia González-Nieves
- Centro de Investigaciones Genéticas en Enfermedades Humanas, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - María Claudia Lattig
- Centro de Investigaciones Genéticas en Enfermedades Humanas, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
- SIGEN alianza Universidad de los Andes – Fundación Santa Fe de Bogotá, Bogotá, Colombia
| |
Collapse
|
33
|
Lead (Pb) and neurodevelopment: A review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. Int J Hyg Environ Health 2021; 238:113855. [PMID: 34655857 DOI: 10.1016/j.ijheh.2021.113855] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Lead (Pb) is a ubiquitous environmental pollutant and a potent toxic compound. Humans are exposed to Pb through inhalation, ingestion, and skin contact via food, water, tobacco smoke, air, dust, and soil. Pb accumulates in bones, brain, liver and kidney. Fetal exposure occurs via transplacental transmission. The most critical health effects are developmental neurotoxicity in infants and cardiovascular effects and nephrotoxicity in adults. Pb exposure has been steadily decreasing over the past decades, but there are few recent exposure data from the general European population; moreover, no safe Pb limit has been set. Sensitive biomarkers of exposure, effect and susceptibility, that reliably and timely indicate Pb-associated toxicity are required to assess human exposure-health relationships in a situation of low to moderate exposure. Therefore, a systematic literature review based on PubMed entries published before July 2019 that addressed Pb exposure and biomarkers of effect and susceptibility, neurodevelopmental toxicity, epigenetic modifications, and transcriptomics was conducted. Finally included were 58 original papers on Pb exposure and 17 studies on biomarkers. The biomarkers that are linked to Pb exposure and neurodevelopment were grouped into effect biomarkers (serum brain-derived neurotrophic factor (BDNF) and serum/saliva cortisol), susceptibility markers (epigenetic markers and gene sequence variants) and other biomarkers (serum high-density lipoprotein (HDL), maternal iron (Fe) and calcium (Ca) status). Serum BDNF and plasma HDL are potential candidates to be further validated as effect markers for routine use in HBM studies of Pb, complemented by markers of Fe and Ca status to also address nutritional interactions related to neurodevelopmental disorders. For several markers, a causal relationship with Pb-induced neurodevelopmental toxicity is likely. Results on BDNF are discussed in relation to Adverse Outcome Pathway (AOP) 13 ("Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities") of the AOP-Wiki. Further studies are needed to validate sensitive, reliable, and timely effect biomarkers, especially for low to moderate Pb exposure scenarios.
Collapse
|
34
|
Exploring the Role of Nutraceuticals in Major Depressive Disorder (MDD): Rationale, State of the Art and Future Prospects. Pharmaceuticals (Basel) 2021; 14:ph14080821. [PMID: 34451918 PMCID: PMC8399392 DOI: 10.3390/ph14080821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and common disorder, with many factors involved in its onset and development. The clinical management of this condition is frequently based on the use of some pharmacological antidepressant agents, together with psychotherapy and other alternatives in most severe cases. However, an important percentage of depressed patients fail to respond to the use of conventional therapies. This has created the urgency of finding novel approaches to help in the clinical management of those individuals. Nutraceuticals are natural compounds contained in food with proven benefits either in health promotion or disease prevention and therapy. A growing interest and economical sources are being placed in the development and understanding of multiple nutraceutical products. Here, we summarize some of the most relevant nutraceutical agents evaluated in preclinical and clinical models of depression. In addition, we will also explore less frequent but interest nutraceutical products which are starting to be tested, also evaluating future roads to cover in order to maximize the benefits of nutraceuticals in MDD.
Collapse
|
35
|
Treble-Barna A, Heinsberg LW, Puccio AM, Shaffer JR, Okonkwo DO, Beers SR, Weeks DE, Conley YP. Acute Brain-Derived Neurotrophic Factor DNA Methylation Trajectories in Cerebrospinal Fluid and Associations With Outcomes Following Severe Traumatic Brain Injury in Adults. Neurorehabil Neural Repair 2021; 35:790-800. [PMID: 34167372 DOI: 10.1177/15459683211028245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background. Epigenetic biomarkers have the potential to explain outcome heterogeneity following traumatic brain injury (TBI) but are largely unexplored. Objective. This exploratory pilot study characterized brain-derived neurotrophic factor (BDNF) DNA methylation trajectories following severe TBI. Methods. Brain-derived neurotrophic factor DNA methylation trajectories in cerebrospinal fluid (CSF) over the first 5 days following severe TBI in 112 adults were examined in association with 3- and 12-month outcomes. Results. Group-based trajectory analysis revealed low and high DNA methylation groups at two BDNF cytosine-phosphate-guanine (CpG) targets that showed suggestive associations (P < .05) with outcomes. Membership in the high DNA methylation groups was associated with better outcomes after controlling for age, sex, and injury severity. Associations of age × trajectory group interactions with outcomes at a third CpG site revealed a pattern of the same or better outcomes with higher ages in the high DNA methylation group and worse outcomes with higher ages in the low DNA methylation group. Conclusions. Although no observed associations met the empirical significance threshold after correcting for multiple comparisons, suggestive associations of the main effect models were consistent in their direction of effect and were observed across two CpG sites and two outcome time points. Results suggest that higher acute CSF BDNF DNA methylation may promote recovery following severe TBI in adults, and this effect may be more robust with higher age. While the results require replication in larger and racially diverse independent samples, BDNF DNA methylation may serve as an early postinjury biomarker helping to explain outcome heterogeneity following TBI.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine & Rehabilitation, 12317University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lacey W Heinsberg
- Department of Human Genetics, 51303University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.,Division of Internal Medicine, 12317University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ava M Puccio
- Department of Neurological Surgery, 12317University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John R Shaffer
- Department of Human Genetics, 51303University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.,Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - David O Okonkwo
- Department of Neurological Surgery, 12317University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sue R Beers
- Department of Psychiatry, 12317University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel E Weeks
- Department of Human Genetics, 51303University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.,Department of Biostatistics, 12317University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Yvette P Conley
- Department of Human Genetics, 51303University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.,Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Iamjan SA, Thanoi S, Watiktinkorn P, Fachim H, Dalton CF, Nudmamud-Thanoi S, Reynolds GP. Changes of BDNF exon IV DNA methylation are associated with methamphetamine dependence. Epigenomics 2021; 13:953-965. [PMID: 34008409 DOI: 10.2217/epi-2020-0463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: We investigated DNA methylation of BDNF in methamphetamine (METH) dependence in humans and an animal model. Materials & methods: BDNF methylation at exon IV was determined by pyrosequencing of blood DNA from METH-dependent and control subjects, and from rat brain following an escalating dose of METH or vehicle. Bdnf expression was determined in rat brain. Results: BDNF methylation was increased in human METH dependence, greatest in subjects with psychosis and in prefrontal cortex of METH-administered rats; rat hippocampus showed reduced Bdnf methylation and increased gene expression. Conclusion: BDNF methylation is abnormal in human METH dependence, especially METH-dependent psychosis, and in METH-administered rats. This may influence BDNF expression and contribute to the neurotoxic effects of METH exposure.
Collapse
Affiliation(s)
- Sri-Arun Iamjan
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand.,Department of Biomedical Sciences, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | | | - Helene Fachim
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK.,Department of Endocrinology and Metabolism, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Gavin P Reynolds
- Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
37
|
Dong E, Pandey SC. Prenatal stress induced chromatin remodeling and risk of psychopathology in adulthood. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:185-215. [PMID: 33461663 PMCID: PMC7864549 DOI: 10.1016/bs.irn.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New insights into the pathophysiology of psychiatric disorders suggest the existence of a complex interplay between genetics and environment. This notion is supported by evidence suggesting that exposure to stress during pregnancy exerts profound effects on the neurodevelopment and behavior of the offspring and predisposes them to psychiatric disorders later in life. Accumulated evidence suggests that vulnerability to psychiatric disorders may result from permanent negative effects of long-term changes in synaptic plasticity due to altered epigenetic mechanisms (histone modifications and DNA methylation) that lead to condensed chromatin architecture, thereby decreasing the expression of candidate genes during early brain development. In this chapter, we have summarized the literature of clinical studies on psychiatric disorders induced by maternal stress during pregnancy. We also discussed the epigenetic alterations of gene regulations induced by prenatal stress. Because the clinical manifestations of psychiatric disorders are complex, it is obvious that the biological progression of these diseases cannot be studied only in postmortem brains of patients and the use of animal models is required. Therefore, in this chapter, we have introduced a well-established mouse model of prenatal stress (PRS) generated in restrained pregnant dams. The behavioral phenotypes of the offspring (PRS mice) born to the stressed dam and underlying epigenetic changes in key molecules related to synaptic activity were described and highlighted. PRS mice may serve as a useful model for investigating the pathogenesis of psychiatric disorders and may be a useful tool for screening for the potential compounds that may normalize aberrant epigenetic mechanisms induced by prenatal stress.
Collapse
Affiliation(s)
- Erbo Dong
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
38
|
Aarons T, Bradburn S, Robinson A, Payton A, Pendleton N, Murgatroyd C. Dysregulation of BDNF in Prefrontal Cortex in Alzheimer's Disease. J Alzheimers Dis 2020; 69:1089-1097. [PMID: 31127785 DOI: 10.3233/jad-190049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is essential for neurogenesis and has been implicated in Alzheimer's disease (AD). However, few studies have investigated together the epigenetic, transcriptional, and translational regulation of this peptide in the brain in relation to AD. OBJECTIVE To investigate mechanisms underlying how BDNF is possibly dysregulated in the brain in relation to aging and AD neuropathology. METHODS Prefrontal cortex tissues were acquired from the Manchester Brain Bank (N = 67). BDNF exon I, and exon IV-containing transcripts and total long 3' transcript gene expression were determined by quantitative PCR and bisulfite pyrosequencing was used to quantify DNA methylation within promoters I and IV. Protein concentrations were quantified via ELISA. RESULTS BDNF exon IV and total long 3' isoform gene expression levels negatively associated with donor's age at death (IV: r = -0.291, p = 0.020; total: r = -0.354, p = 0.004). Expression of BDNF exon I- containing isoform was significantly higher in Met-carriers of the rs6265 variant, compared to Val-homozygotes, when accounting for donor ages (F = 6.455, p = 0.014). BDNF total long 3' transcript expression was significantly lower in those with early AD neuropathology, compared to those without any neuropathology (p = 0.021). There were no associations between BDNF promoter I and IV methylation or protein levels with ages, rs6265 genotype or AD neuropathology status. CONCLUSION Prefrontal cortex BDNF gene expression is associated with aging, rs6265 carrier status, and AD neuropathology in a variant-specific manner that seems to be independent of DNA methylation influences.
Collapse
Affiliation(s)
- Toby Aarons
- Bioscience Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Steven Bradburn
- Bioscience Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Andrew Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, University of Manchester, Salford Royal Hospital, Salford, UK
| | - Antony Payton
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Neil Pendleton
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, University of Manchester, Salford Royal Hospital, Salford, UK
| | - Chris Murgatroyd
- Bioscience Research Centre, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
39
|
Zhou Y, Zhang M, Liu W, Li Y, Qin Y, Xu Y. Transgenerational transmission of neurodevelopmental disorders induced by maternal exposure to PM2.5. CHEMOSPHERE 2020; 255:126920. [PMID: 32387734 DOI: 10.1016/j.chemosphere.2020.126920] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The pathological traits or diseases susceptibility caused by maternal exposure to environmental adverse insults (infection, malnutrition, environmental toxicants) could be transmitted across generations. It remains uncertain, however, whether the neurodevelopmental disturbances of offspring induced by maternal exposure to PM2.5 during early life can be inherited by subsequent generations without further exposure. In the current study, using transgenerational animal models, we found that F1 female showed poorer performance in Morris Water Maze (MWM), and the deficits in spatial learning and memory similarly presented in F2-F3 female. The transgenerationally-transmitted neurobehavioral disorders were mediated both via maternal and paternal lineage. Since the epigenetic modifications have been reported to be involved in the disturbed neurodevelopment induced by maternal exposure to detrimental environmental factors during early life, we further explored the possible epigenetic mechanism of the transgenerational effects. Intriguingly, the results displayed the significant increase in expression of Dnmt3a in F1 female offspring. And the hypermethylation of Bdnf promoter Ⅳ and downregulated expression of Bdnf in hippocampus were stably transmitted across the generations until the third generation. There was another interesting finding that the transgenerational effects were sex-specific and only emerged in female offspring. Together, our study indicated for the first time that maternal exposure to PM2.5 during early life could detrimentally affect neurobehaviors in multiple generations, and the declined expression of Bdnf induced by hypermethylation of Bdnf promoter Ⅳ mediated by Dnmts might be the potential molecular mechanism.
Collapse
Affiliation(s)
- Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing, 100083, China.
| | - Minjia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing, 100083, China.
| | - Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing, 100083, China.
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing, 100083, China.
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing, 100083, China.
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, NO.38 Xueyuan Road, Beijing, 100083, China.
| |
Collapse
|
40
|
Epigenomic Dysregulation in Schizophrenia: In Search of Disease Etiology and Biomarkers. Cells 2020; 9:cells9081837. [PMID: 32764320 PMCID: PMC7463953 DOI: 10.3390/cells9081837] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a severe psychiatric disorder with a complex array of signs and symptoms that causes very significant disability in young people. While schizophrenia has a strong genetic component, with heritability around 80%, there is also a very significant range of environmental exposures and stressors that have been implicated in disease development and neuropathology, such as maternal immune infection, obstetric complications, childhood trauma and cannabis exposure. It is postulated that epigenetic factors, as well as regulatory non-coding RNAs, mediate the effects of these environmental stressors. In this review, we explore the most well-known epigenetic marks, including DNA methylation and histone modification, along with emerging RNA mediators of epigenomic state, including miRNAs and lncRNAs, and discuss their collective potential for involvement in the pathophysiology of schizophrenia implicated through the postmortem analysis of brain tissue. Given that peripheral tissues, such as blood, saliva, and olfactory epithelium have the same genetic composition and are exposed to many of the same environmental exposures, we also examine some studies supporting the application of peripheral tissues for epigenomic biomarker discovery in schizophrenia. Finally, we provide some perspective on how these biomarkers may be utilized to capture a signature of past events that informs future treatment.
Collapse
|
41
|
Aberg KA, Dean B, Shabalin AA, Chan RF, Han LK, Zhao M, van Grootheest G, Xie LY, Milaneschi Y, Clark SL, Turecki G, Penninx BW, van den Oord EJ. Methylome-wide association findings for major depressive disorder overlap in blood and brain and replicate in independent brain samples. Mol Psychiatry 2020; 25:1344-1354. [PMID: 30242228 PMCID: PMC6428621 DOI: 10.1038/s41380-018-0247-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/26/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022]
Abstract
We present the first large-scale methylome-wide association studies (MWAS) for major depressive disorder (MDD) to identify sites of potential importance for MDD etiology. Using a sequencing-based approach that provides near-complete coverage of all 28 million common CpGs in the human genome, we assay methylation in MDD cases and controls from both blood (N = 1132) and postmortem brain tissues (N = 61 samples from Brodmann Area 10, BA10). The MWAS for blood identified several loci with P ranging from 1.91 × 10-8 to 4.39 × 10-8 and a resampling approach showed that the cumulative association was significant (P = 4.03 × 10-10) with the signal coming from the top 25,000 MWAS markers. Furthermore, a permutation-based analysis showed significant overlap (P = 5.4 × 10-3) between the MWAS findings in blood and brain (BA10). This overlap was significantly enriched for a number of features including being in eQTLs in blood and the frontal cortex, CpG islands and shores, and exons. The overlapping sites were also enriched for active chromatin states in brain including genic enhancers and active transcription start sites. Furthermore, three loci located in GABBR2, RUFY3, and in an intergenic region on chromosome 2 replicated with the same direction of effect in the second brain tissue (BA25, N = 60) from the same individuals and in two independent brain collections (BA10, N = 81 and 64). GABBR2 inhibits neuronal activity through G protein-coupled second-messenger systems and RUFY3 is implicated in the establishment of neuronal polarity and axon elongation. In conclusion, we identified and replicated methylated loci associated with MDD that are involved in biological functions of likely importance to MDD etiology.
Collapse
Affiliation(s)
- Karolina A. Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA,Correspondence should be addressed to: Karolina A. Aberg, P.O. Box 980533, Richmond, VA 23298, Phone: (804) 628-3023, Fax: (804) 628-3991,
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia,Centre for Mental Health, Swinburne University, Hawthorn, Victoria, Australia
| | - Andrey A. Shabalin
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Robin F. Chan
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Laura K.M. Han
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam, The Netherlands
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Gerard van Grootheest
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam, The Netherlands
| | - Lin Y. Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam, The Netherlands
| | - Shaunna L. Clark
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Gustavo Turecki
- Douglas Mental Health University Institute and McGill University, Montréal, Québec, Canada
| | - Brenda W.J.H. Penninx
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam, The Netherlands
| | - Edwin J.C.G. van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
42
|
Lin CC, Huang TL. Brain-derived neurotrophic factor and mental disorders. Biomed J 2020; 43:134-142. [PMID: 32386841 PMCID: PMC7283564 DOI: 10.1016/j.bj.2020.01.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that modulates neuroplasticity in the brain, and is one of the most widely investigated molecule in psychiatric disorders. The researches of BDNF emcompassed the advance of investigative techniques of past decades. BDNF researches ranged from protein quantilization, to RNA expression measurements, to DNA sequencing, and lately but not lastly, epigenetic studies. In this review, we will briefly address findings on BDNF protein levels, mRNA expression, Val66Met polymorphism, and epigenetic modifications, in schizophrenia, major depressive disorder (MDD), and bipolar disorder.
Collapse
Affiliation(s)
- Chin-Chuen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
43
|
Snyder MA, Gao WJ. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr Res 2020; 217:60-70. [PMID: 30979669 PMCID: PMC7258307 DOI: 10.1016/j.schres.2019.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with cognitive deficits manifesting during early stages of the disease. Evidence suggests that genetic factors in combination with environmental insults lead to complex changes to glutamatergic, GABAergic, and dopaminergic systems. In particular, the N-methyl-d-aspartate receptor (NMDAR), a major glutamate receptor subtype, is implicated in both the disease progression and symptoms of SZ. NMDARs are critical for synaptic plasticity and cortical maturation, as well as learning and memory processes. In fact, any deviation from normal NMDAR expression and function can have devastating consequences. Surprisingly, there is little evidence from human patients that direct mutations of NMDAR genes contribute to SZ. One intriguing hypothesis is that epigenetic changes, which could result from early insults, alter protein expression and contribute to the NMDAR hypofunction found in SZ. Epigenetics is referred to as modifications that alter gene transcription without changing the DNA sequence itself. In this review, we first discuss how epigenetic changes to NMDAR genes could contribute to NMDAR hypofunction. We then explore how NMDAR hypofunction may contribute to epigenetic changes in other proteins or genes that lead to synaptic dysfunction and symptoms in SZ. We argue that NMDAR hypofunction occurs in early stage of the disease, and it may consequentially initiate GABA and dopamine deficits. Therefore, targeting NMDAR dysfunction during the early stages would be a promising avenue for prevention and therapeutic intervention of cognitive and social deficits that remain untreatable. Finally, we discuss potential questions regarding the epigenetic of SZ and future directions for research.
Collapse
Affiliation(s)
- Melissa A. Snyder
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8M5,Correspondence: Wen-Jun Gao, M.D., Ph.D., Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, Phone: (215) 991-8907, Fax: (215) 843-9802, ; Melissa A. Snyder, Ph.D.,
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| |
Collapse
|
44
|
Cuomo A, Beccarini Crescenzi B, Bolognesi S, Goracci A, Koukouna D, Rossi R, Fagiolini A. S-Adenosylmethionine (SAMe) in major depressive disorder (MDD): a clinician-oriented systematic review. Ann Gen Psychiatry 2020; 19:50. [PMID: 32939220 PMCID: PMC7487540 DOI: 10.1186/s12991-020-00298-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a recurrent illness with high rates of chronicity, treatment-resistance, and significant economic impact. S-Adenosylmethionine (SAMe), a molecule that is formed naturally in the human body, has shown antidepressant effects and may expand the available options for treating MDD. This systematic review examines the evidence concerning the efficacy of SAMe as monotherapy or in combination with antidepressants. METHODS A systematic search in Medline, Psychinfo, AMED, and Cochrane Controlled Trials Register was conducted for any reference recorded up to March 2020. Double-blind, randomised controlled trials, comparing the antidepressant efficacy of SAMe to placebo or/and to other antidepressants, were selected. Two authors evaluated each study independently and then, reconciled findings. RESULTS Eight trials, with a total of 11 arms and 1011 subjects, evaluating the efficacy of SAMe used as monotherapy or as adjunctive therapy (512 individuals), were included in this review. The study duration ranged between 2 and 12 weeks and the daily dose of SAMe varied from 200 to 3200 mg. Five comparisons evaluated the differences between SAMe and placebo and SAMe resulted significantly better than placebo in three of these studies. Four comparisons evaluated the differences between SAMe and other antidepressants (imipramine or escitalopram) and showed no significant difference. One study showed that SAMe was significantly better than placebo in accelerating the response to imipramine from day 4 to day 12, but the mean scores were not statistically different at the day 14 endpoint. One study showed that SAMe combined with serotonin reuptake inhibitors (SSRI) was better than PBO combined with SSRI. The studies reported only mild, transient or non-clinically relevant side effects. CONCLUSIONS The existing trials of SAMe, used as monotherapy or add on to another antidepressants, have shown encouraging and generally positive results. However, more evidence is necessary before definitive conclusions can be drawn. Larger, double-blind randomised controlled studies are warranted to confirm the antidepressant effectiveness of SAMe.
Collapse
Affiliation(s)
- Alessandro Cuomo
- Division of Psychiatry, Department of Molecular Medicine, University of Siena, Siena, Italy
| | | | - Simone Bolognesi
- Division of Psychiatry, Department of Molecular Medicine, University of Siena, Siena, Italy
| | - Arianna Goracci
- Division of Psychiatry, Department of Molecular Medicine, University of Siena, Siena, Italy
| | - Despoina Koukouna
- Division of Psychiatry, Department of Molecular Medicine, University of Siena, Siena, Italy
| | - Rodolfo Rossi
- Department of Systems Medicine, University of Rome tor Vergata, Rome, Italy
| | - Andrea Fagiolini
- Division of Psychiatry, Department of Molecular Medicine, University of Siena, Siena, Italy
| |
Collapse
|
45
|
García-Gutiérrez MS, Navarrete F, Sala F, Gasparyan A, Austrich-Olivares A, Manzanares J. Biomarkers in Psychiatry: Concept, Definition, Types and Relevance to the Clinical Reality. Front Psychiatry 2020; 11:432. [PMID: 32499729 PMCID: PMC7243207 DOI: 10.3389/fpsyt.2020.00432] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
During the last years, an extraordinary effort has been made to identify biomarkers as potential tools for improving prevention, diagnosis, drug response and drug development in psychiatric disorders. Contrary to other diseases, mental illnesses are classified by diagnostic categories with a broad variety list of symptoms. Consequently, patients diagnosed from the same psychiatric illness present a great heterogeneity in their clinical presentation. This fact together with the incomplete knowledge of the neurochemical alterations underlying mental disorders, contribute to the limited efficacy of current pharmacological options. In this respect, the identification of biomarkers in psychiatry is becoming essential to facilitate diagnosis through the developing of markers that allow to stratify groups within the syndrome, which in turn may lead to more focused treatment options. In order to shed light on this issue, this review summarizes the concept and types of biomarkers including an operational definition for therapeutic development. Besides, the advances in this field were summarized and sorted into five categories, which include genetics, transcriptomics, proteomics, metabolomics, and epigenetics. While promising results were achieved, there is a lack of biomarker investigations especially related to treatment response to psychiatric conditions. This review includes a final conclusion remarking the future challenges required to reach the goal of developing valid, reliable and broadly-usable biomarkers for psychiatric disorders and their treatment. The identification of factors predicting treatment response will reduce trial-and-error switches of medications facilitating the discovery of new effective treatments, being a crucial step towards the establishment of greater personalized medicine.
Collapse
Affiliation(s)
- Maria Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Francisco Sala
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
46
|
Fu X, Wang J, Du J, Sun J, Baranova A, Zhang F. BDNF Gene's Role in Schizophrenia: From Risk Allele to Methylation Implications. Front Psychiatry 2020; 11:564277. [PMID: 33384622 PMCID: PMC7769935 DOI: 10.3389/fpsyt.2020.564277] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Schizophrenia (SZ) is a severe chronic mental disorder with complex genetic mechanisms. Brain-derived neurotrophic factor (BDNF) is one of promising candidate genes for SZ, and rs6265 is a non-synonymous single nucleotide polymorphism (SNP) in BDNF. Methods: In this study, we performed a case-control association study of rs6265 in a cohort of Han Chinese population from eastern China, including 1,407 SZ patients and 1,136 healthy controls; and carried out a cis-mQTL (Methylation Quantitative Trait Loci) analysis for BDNF rs6265. Results: We found a positive association of rs6265 with SZ (P = 0.037), with the minor allele (A) of rs6265 conferring a protecting effect for SZ (OR = 0.89). Furthermore, cis-mQTL analysis indicates that rs6265 is associated with several methylation loci surrounding BDNF. Conclusions: Together, our findings provide further evidence to support the involvement of BDNF gene in the genesis of SZ.
Collapse
Affiliation(s)
- Xiaoqian Fu
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Jun Wang
- Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Jianbin Du
- Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Jing Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States.,Research Centre for Medical Genetics, Moscow, Russia
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Jimeno B, Hau M, Gómez-Díaz E, Verhulst S. Developmental conditions modulate DNA methylation at the glucocorticoid receptor gene with cascading effects on expression and corticosterone levels in zebra finches. Sci Rep 2019; 9:15869. [PMID: 31676805 PMCID: PMC6825131 DOI: 10.1038/s41598-019-52203-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022] Open
Abstract
Developmental conditions can impact the adult phenotype via epigenetic changes that modulate gene expression. In mammals, methylation of the glucocorticoid receptor gene Nr3c1 has been implicated as mediator of long-term effects of developmental conditions, but this evidence is limited to humans and rodents, and few studies have simultaneously tested for associations between DNA methylation, gene expression and phenotype. Adverse environmental conditions during early life (large natal brood size) or adulthood (high foraging costs) exert multiple long-term phenotypic effects in zebra finches, and we here test for effects of these manipulations on DNA methylation and expression of the Nr3c1 gene in blood. Having been reared in a large brood induced higher DNA methylation of the Nr3c1 regulatory region in adulthood, and this effect persisted over years. Nr3c1 expression was negatively correlated with methylation at 2 out of 8 CpG sites, and was lower in hard foraging conditions, despite foraging conditions having no effect on Nr3c1 methylation at our target region. Nr3c1 expression also correlated with glucocorticoid traits: higher expression level was associated with lower plasma baseline corticosterone concentrations and enhanced corticosterone reactivity. Our results suggest that methylation of the Nr3c1 regulatory region can contribute to the mechanisms underlying the emergence of long-term effects of developmental conditions in birds, but in our system current adversity dominated over early life experiences with respect to receptor expression.
Collapse
Affiliation(s)
- Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
- Max Planck Institute for Ornithology, Seewiesen, Germany.
- University of Montana, Missoula, MT, United States.
| | - Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany
- University of Konstanz, Konstanz, Germany
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Granada, Spain
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
48
|
Nijs J, D'Hondt E, Clarys P, Deliens T, Polli A, Malfliet A, Coppieters I, Willaert W, Tumkaya Yilmaz S, Elma Ö, Ickmans K. Lifestyle and Chronic Pain across the Lifespan: An Inconvenient Truth? PM R 2019; 12:410-419. [PMID: 31437355 DOI: 10.1002/pmrj.12244] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022]
Abstract
Chronic pain has a tremendous personal and socioeconomic impact and remains difficult to treat. Therefore, it is important to provide an update on the current understanding regarding lifestyle factors in people with chronic pain across the lifespan. Lifestyle factors such as physical (in)activity, sedentary behavior, stress, poor sleep, unhealthy diet, and smoking are associated with chronic pain severity and sustainment. This applies to all age categories, that is, chronic pain across the lifespan. Yet current treatment options often do not or only partly address the many lifestyle factors associated with chronic pain or attempt to address them in a standard format rather than providing an individually tailored multimodal lifestyle intervention. The evidence regarding lifestyle factors is available in adults, but limited in children and older adults having chronic pain, providing important avenues for future research. In conclusion, it is proposed that treatment approaches for people with chronic pain should address all relevant lifestyle factors concomitantly in an individually-tailored multimodal intervention. Ultimately, this should lead to improved outcomes and decrease the psychological and socioeconomic burden of chronic pain. Level of Evidence: IV.
Collapse
Affiliation(s)
- Jo Nijs
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Eva D'Hondt
- Motor Skills and Didactics Research group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Clarys
- Physical Activity, Nutrition and Health Research group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom Deliens
- Physical Activity, Nutrition and Health Research group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrea Polli
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Research Foundation - Flanders (FWO), Brussels, Belgium
| | - Anneleen Malfliet
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium.,Research Foundation - Flanders (FWO), Brussels, Belgium.,Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Iris Coppieters
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Ward Willaert
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sevilay Tumkaya Yilmaz
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Physical Activity, Nutrition and Health Research group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ömer Elma
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Physical Activity, Nutrition and Health Research group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kelly Ickmans
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium.,Research Foundation - Flanders (FWO), Brussels, Belgium
| |
Collapse
|
49
|
Redlich R, Schneider I, Kerkenberg N, Opel N, Bauhaus J, Enneking V, Repple J, Leehr EJ, Grotegerd D, Kähler C, Förster K, Dohm K, Meinert S, Hahn T, Kugel H, Schwarte K, Schettler C, Domschke K, Arolt V, Heindel W, Baune BT, Zhang W, Hohoff C, Dannlowski U. The role of BDNF methylation and Val 66 Met in amygdala reactivity during emotion processing. Hum Brain Mapp 2019; 41:594-604. [PMID: 31617281 PMCID: PMC7268057 DOI: 10.1002/hbm.24825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Epigenetic alterations of the brain-derived neurotrophic factor (BDNF) gene have been associated with psychiatric disorders in humans and with differences in amygdala BDNF mRNA levels in rodents. This human study aimed to investigate the relationship between the functional BDNF-Val66 Met polymorphism, its surrounding DNA methylation in BDNF exon IX, amygdala reactivity to emotional faces, and personality traits. Healthy controls (HC, n = 189) underwent functional MRI during an emotional face-matching task. Harm avoidance, novelty seeking and reward dependence were measured using the Tridimensional Personality Questionnaire (TPQ). Individual BDNF methylation profiles were ascertained and associated with several BDNF single nucleotide polymorphisms surrounding the BDNF-Val66 Met, amygdala reactivity, novelty seeking and harm avoidance. Higher BDNF methylation was associated with higher amygdala reactivity (x = 34, y = 0, z = -26, t(166) = 3.00, TFCE = 42.39, p(FWE) = .045), whereby the BDNF-Val66 Met genotype per se did not show any significant association with brain function. Furthermore, novelty seeking was negatively associated with BDNF methylation (r = -.19, p = .015) and amygdala reactivity (r = -.17, p = .028), while harm avoidance showed a trend for a positive association with BDNF methylation (r = .14, p = .066). The study provides first insights into the relationship among BDNF methylation, BDNF genotype, amygdala reactivity and personality traits in humans, highlighting the multidimensional relations among genetics, epigenetics, and neuronal functions. The present study suggests a possible involvement of epigenetic BDNF modifications in psychiatric disorders and related brain functions, whereby high BDNF methylation might reduce BDNF mRNA expression and upregulate amygdala reactivity.
Collapse
Affiliation(s)
- Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ilona Schneider
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | | | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jonas Bauhaus
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | | | - Claas Kähler
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Kathrin Schwarte
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Katharina Domschke
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry, Melbourne Medical School and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Weiqi Zhang
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Christa Hohoff
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
50
|
Peedicayil J. Identification of Biomarkers in Neuropsychiatric Disorders Based on Systems Biology and Epigenetics. Front Genet 2019; 10:985. [PMID: 31681422 PMCID: PMC6801306 DOI: 10.3389/fgene.2019.00985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
Clinically useful biomarkers are available for some neuropsychiatric disorders like fragile X syndrome, Rett syndrome, and Huntington’s disease. Despite many decades of research on the pathogenesis of neuropsychiatric disorders like schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD), the exact pathogenesis of these disorders remains unclear, and there are no clinically useful biomarkers for these disorders. However, there is increasing evidence that abnormal epigenetic mechanisms of gene expression contribute to the pathogenesis of SZ, BD, and MDD. Both systems (or network) biology and epigenetics (a component of systems biology) attempt to make sense of biological systems that are highly dynamic and multi-compartmental. This article suggests that systems biology, emphasizing the epigenetic component of systems biology, could help identify clinically useful biomarkers in neuropsychiatric disorders like SZ, BD, and MDD.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India
| |
Collapse
|