1
|
Mir R, Altemani FA, Algehainy NA, Alanazi MA, Elfaki I, Alsayed BA, Mir MM, Mustafa SK, Moawadh MS, Tayeb FJ, Alfailfi J, Alatawi SM, Alhiwety MS, Ullah MF. Identification of Novel Genomic Variants in COVID-19 Patients Using Whole-Exome Sequencing: Exploring the Plausible Targets of Functional Genomics. Biochem Genet 2024:10.1007/s10528-024-10970-8. [PMID: 39557769 DOI: 10.1007/s10528-024-10970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024]
Abstract
Covid-19 caused by SARS-CoV-2 virus has emerged as an immense burden and an unparalleled global health challenge in recorded human history. The clinical characteristics and risk factors of COVID-19 exhibit considerable variability, leading to a spectrum of clinical severity. Moreover, the likelihood of exposure to the virus may differ based on comorbidity status as comorbid illnesses have mechanisms that can considerably increase mortality by reducing the body's ability to withstand injury. The mammalian target of rapamycin (mTOR) pathway is essential for orchestrating innate immune cell defense, including cytokine production and is dysregulated in severe Coronavirus Disease 2019 (COVID-19) individuals. Through genome-wide, association studies, numerous genetic variants in the human host have been identified that have a significant impact on the immune response to SARS-CoV-2. To identify potentially significant genetic variants in Covid-19 patients that could affect the risk, severity, and clinical outcome of the infection, this study has used whole-exome sequencing (WES) on the 16 COVID-19 patients with varying comorbidities and severity of the disease including fatal outcomes. Among them, 8 patients made a full recovery and were discharged, while 8 patients unfortunately did not survive due to the severity of the illness and majority of them were males. The study identified 10,204 variants in the patients. From 1120 variants, which were chosen for novel variant analysis using mutation, function prediction tools to identify deleterious variants that could affect normal gene function, 116 variants of 57 genes were found to be deleterious. These variants were further classified as likely pathogenic and variants of uncertain significance. The data showed that among the likely pathogenic variants five genes were identified in connection to immune response whereas two were related to respiratory system. The common variants associated with the covid-19 phenotype showed the top 10 significant genes identified in this study such as ERCC2, FBXO5, HTR3D, FAIM, DNAH17, MTOR, IGHMBP2, ZNF530, QSER1, and FOXRED2 with variant rs1057079 of the MTOR gene representing the highest odds ratio (1.7, p = 8.7e-04). The mammalian target of rapamycin (mTOR) pathway variant rs1057079 was reported with high odds ratio, may orchestrate innate immune cell defense, including cytokine production, and is dysregulated. This study concluded that the mTOR signaling gene variant (rs1057079) is associated with different degrees of covid-19 severity and is essential for orchestrating innate immune cell defense including cytokine production. Inhibiting mTOR and its corresponding deleterious immune responses with medicinal approaches may provide a novel avenue for treating severe COVID-19 illness. Besides the PPI network exhibited a significantly high local clustering coefficient of 0.424 (p = 0.000536), suggesting the presence of tightly knit functional modules. These findings enhance our comprehension of the intricate interactions between genetic factors and COVID-19 disease.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia.
| | - Faisal A Altemani
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Badr A Alsayed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Mohammad Muzaffar Mir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Mamdoh S Moawadh
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Faris J Tayeb
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Jaber Alfailfi
- Department of Child Health, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Sael M Alatawi
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | | | - Mohammad Fahad Ullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, King Faisel Road, 7149, Tabuk, Saudi Arabia.
| |
Collapse
|
2
|
Halama A, Zaghlool S, Thareja G, Kader S, Al Muftah W, Mook-Kanamori M, Sarwath H, Mohamoud YA, Stephan N, Ameling S, Pucic Baković M, Krumsiek J, Prehn C, Adamski J, Schwenk JM, Friedrich N, Völker U, Wuhrer M, Lauc G, Najafi-Shoushtari SH, Malek JA, Graumann J, Mook-Kanamori D, Schmidt F, Suhre K. A roadmap to the molecular human linking multiomics with population traits and diabetes subtypes. Nat Commun 2024; 15:7111. [PMID: 39160153 PMCID: PMC11333501 DOI: 10.1038/s41467-024-51134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
In-depth multiomic phenotyping provides molecular insights into complex physiological processes and their pathologies. Here, we report on integrating 18 diverse deep molecular phenotyping (omics-) technologies applied to urine, blood, and saliva samples from 391 participants of the multiethnic diabetes Qatar Metabolomics Study of Diabetes (QMDiab). Using 6,304 quantitative molecular traits with 1,221,345 genetic variants, methylation at 470,837 DNA CpG sites, and gene expression of 57,000 transcripts, we determine (1) within-platform partial correlations, (2) between-platform mutual best correlations, and (3) genome-, epigenome-, transcriptome-, and phenome-wide associations. Combined into a molecular network of > 34,000 statistically significant trait-trait links in biofluids, our study portrays "The Molecular Human". We describe the variances explained by each omics in the phenotypes (age, sex, BMI, and diabetes state), platform complementarity, and the inherent correlation structures of multiomics data. Further, we construct multi-molecular network of diabetes subtypes. Finally, we generated an open-access web interface to "The Molecular Human" ( http://comics.metabolomix.com ), providing interactive data exploration and hypotheses generation possibilities.
Collapse
Affiliation(s)
- Anna Halama
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| | - Shaza Zaghlool
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Gaurav Thareja
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Sara Kader
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Wadha Al Muftah
- Qatar Genome Program, Qatar Foundation, Qatar Science and Technology Park, Innovation Center, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | | | - Hina Sarwath
- Proteomics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | | | - Nisha Stephan
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Sabine Ameling
- German Centre for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jochen M Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Nele Friedrich
- German Centre for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - S Hani Najafi-Shoushtari
- MicroRNA Core Laboratory, Division of Research, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Joel A Malek
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
- Genomics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Johannes Graumann
- Institute of Translational Proteomics, Department of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Dennis Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Liu W, Zhou H, Lai W, Hu C, Xu R, Gu P, Luo M, Zhang R, Li G. The immunosuppressive landscape in tumor microenvironment. Immunol Res 2024; 72:566-582. [PMID: 38691319 DOI: 10.1007/s12026-024-09483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Recent advances in cancer immunotherapy, especially immune checkpoint inhibitors (ICIs), have revolutionized the clinical outcome of many cancer patients. Despite the fact that impressive progress has been made in recent decades, the response rate remains unsatisfactory, and many patients do not benefit from ICIs. Herein, we summarized advanced studies and the latest insights on immune inhibitory factors in the tumor microenvironment. Our in-depth discussion and updated landscape of tumor immunosuppressive microenvironment may provide new strategies for reversing tumor immune evasion, enhancing the efficacy of ICIs therapy, and ultimately achieving a better clinical outcome.
Collapse
Affiliation(s)
- Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Peng Gu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Menglin Luo
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| |
Collapse
|
4
|
Pasternack N, Doucet-O'Hare T, Johnson K, Paulsen O, Nath A. Endogenous retroviruses are dysregulated in ALS. iScience 2024; 27:110147. [PMID: 38989463 PMCID: PMC11233923 DOI: 10.1016/j.isci.2024.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a universally fatal neurodegenerative disease with no cure. Human endogenous retroviruses (HERVs) have been implicated in its pathogenesis but their relevance to ALS is not fully understood. We examined bulk RNA-seq data from almost 2,000 ALS and unaffected control samples derived from the cortex and spinal cord. Using different methods of feature selection, including differential expression analysis and machine learning, we discovered that transcription of HERV-K loci 1q22 and 8p23.1 were significantly upregulated in the spinal cord of individuals with ALS. Additionally, we identified a subset of ALS patients with upregulated HERV-K expression in the cortex and spinal cord. We also found the expression of HERV-K loci 19q11 and 8p23.1 was correlated with protein coding genes previously implicated in ALS and dysregulated in ALS patients in this study. These results clarify the association of HERV-K and ALS and highlight specific genes in the pathobiology of late-stage ALS.
Collapse
Affiliation(s)
- Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tara Doucet-O'Hare
- Neuro-Oncology Branch Stem Cell Team, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kory Johnson
- Bioinformatics Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
5
|
Palvair J, Farhat I, Chaintreuil M, Dal Zuffo L, Messager L, Tinel C, Lamarthée B. The Potential Role of the Leucocyte Immunoglobulin-Like Receptors in Kidney Transplant Rejection: A Mini Review. Transpl Int 2024; 37:12995. [PMID: 39010891 PMCID: PMC11247310 DOI: 10.3389/ti.2024.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Antibody-mediated rejection (ABMR) remains one of the main causes of long-term graft failure after kidney transplantation, despite the development of powerful immunosuppressive therapy. A detailed understanding of the complex interaction between recipient-derived immune cells and the allograft is therefore essential. Until recently, ABMR mechanisms were thought to be solely caused by adaptive immunity, namely, by anti-human leucocyte antigen (HLA) donor-specific antibody. However recent reports support other and/or additive mechanisms, designating monocytes/macrophages as innate immune contributors of ABMR histological lesions. In particular, in mouse models of experimental allograft rejection, monocytes/macrophages are readily able to discriminate non-self via paired immunoglobulin receptors (PIRs) and thus accelerate rejection. The human orthologs of PIRs are leukocyte immunoglobulin-like receptors (LILRs). Among those, LILRB3 has recently been reported as a potential binder of HLA class I molecules, shedding new light on LILRB3 potential as a myeloid mediator of allograft rejection. In this issue, we review the current data on the role of LILRB3 and discuss the potential mechanisms of its biological functions.
Collapse
Affiliation(s)
- Jovanne Palvair
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Imane Farhat
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Centre Hospitalier Universitaire de Dijon, Service de Néphrologie et Transplantation Rénale, Université de Bourgogne, Dijon, France
| | - Mélanie Chaintreuil
- Centre Hospitalier Universitaire de Dijon, Service de Néphrologie et Transplantation Rénale, Université de Bourgogne, Dijon, France
| | | | - Lennie Messager
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Claire Tinel
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Centre Hospitalier Universitaire de Dijon, Service de Néphrologie et Transplantation Rénale, Université de Bourgogne, Dijon, France
| | | |
Collapse
|
6
|
Gui Z, Al Moussawy M, Sanders SM, Abou-Daya KI. Innate Allorecognition in Transplantation: Ancient Mechanisms With Modern Impact. Transplantation 2024; 108:1524-1531. [PMID: 38049941 PMCID: PMC11188633 DOI: 10.1097/tp.0000000000004847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2023]
Abstract
Through the effective targeting of the adaptive immune system, solid organ transplantation became a life-saving therapy for organ failure. However, beyond 1 y of transplantation, there is little improvement in transplant outcomes. The adaptive immune response requires the activation of the innate immune system. There are no modalities for the specific targeting of the innate immune system involvement in transplant rejection. However, the recent discovery of innate allorecognition and innate immune memory presents novel targets in transplantation that will increase our understanding of organ rejection and might aid in improving transplant outcomes. In this review, we look at the latest developments in the study of innate allorecognition and innate immune memory in transplantation.
Collapse
Affiliation(s)
- Zeping Gui
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Mouhamad Al Moussawy
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Steven M. Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Khodor I. Abou-Daya
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
7
|
Vianou B, Royo J, Dechavanne S, Bertin GI, Yessoufou A, Houze S, Faucher JF, Aubouy A. Monocytes, particularly nonclassical ones, lose their opsonic and nonopsonic phagocytosis capacity during pediatric cerebral malaria. Front Immunol 2024; 15:1358853. [PMID: 38835780 PMCID: PMC11148436 DOI: 10.3389/fimmu.2024.1358853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Innate immunity is crucial to reducing parasite burden and contributing to survival in severe malaria. Monocytes are key actors in the innate response and, like macrophages, are plastic cells whose function and phenotype are regulated by the signals from the microenvironment. In the context of cerebral malaria (CM), monocyte response constitutes an important issue to understand. We previously demonstrated that decreased percentages of nonclassical monocytes were associated with death outcomes in CM children. In the current study, we postulated that monocyte phagocytosis function is impacted by the severity of malaria infection. Methods To study this hypothesis, we compared the opsonic and nonopsonic phagocytosis capacity of circulant monocytes from Beninese children with uncomplicated malaria (UM) and CM. For the CM group, samples were obtained at inclusion (D0) and 3 and 30 days after treatment (D3, D30). The phagocytosis capacity of monocytes and their subsets was characterized by flow cytometry and transcriptional profiling by studying genes known for their functional implication in infected-red blood cell (iRBC) elimination or immune escape. Results Our results confirm our hypothesis and highlight the higher capacity of nonclassical monocytes to phagocyte iRBC. We also confirm that a low number of nonclassical monocytes is associated with CM outcome when compared to UM, suggesting a mobilization of this subpopulation to the cerebral inflammatory site. Finally, our results suggest the implication of the inhibitory receptors LILRB1, LILRB2, and Tim3 in phagocytosis control. Discussion Taken together, these data provide a better understanding of the interplay between monocytes and malaria infection in the pathogenicity of CM.
Collapse
Affiliation(s)
- Bertin Vianou
- UMR152 PHARMADEV, IRD, UPS, Toulouse University, Toulouse, France
- Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin
| | - Jade Royo
- UMR152 PHARMADEV, IRD, UPS, Toulouse University, Toulouse, France
| | - Sébastien Dechavanne
- UMR261 Mère et Enfant en Milieu tropical (MERIT), Université Paris Cité, IRD, Paris, France
| | - Gwladys I Bertin
- UMR261 Mère et Enfant en Milieu tropical (MERIT), Université Paris Cité, IRD, Paris, France
| | - Akadiri Yessoufou
- Cell Biology and Physiology Laboratory, Abomey Calavi University (UAC), Abomey Calavi, Benin
| | - Sandrine Houze
- UMR261 Mère et Enfant en Milieu tropical (MERIT), Université Paris Cité, IRD, Paris, France
- French Malaria Reference Center, Assistance Publique - Hôpitaux de Paris (APHP), Bichat Hospital, Paris, France
- Parasitology Laboratory, Assistance Publique - Hôpitaux de Paris (APHP), Bichat-Claude-Bernard Hospital, Paris, France
| | - Jean-François Faucher
- Infectious Diseases and Tropical Medicine Department, Limoges University Hospital, Limoges, France
- Unité Mixte de Recherche (UMR) 1094 EpiMaCT, Inserm, Limoges University Hospital, Limoges University, Limoges, France
| | - Agnes Aubouy
- UMR152 PHARMADEV, IRD, UPS, Toulouse University, Toulouse, France
- Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin
| |
Collapse
|
8
|
Hirayasu K, Khor SS, Kawai Y, Shimada M, Omae Y, Hasegawa G, Hashikawa Y, Tanimoto H, Ohashi J, Hosomichi K, Tajima A, Nakamura H, Nakamura M, Tokunaga K, Hanayama R, Nagasaki M. Identification of the hybrid gene LILRB5-3 by long-read sequencing and implication of its novel signaling function. Front Immunol 2024; 15:1398935. [PMID: 38807600 PMCID: PMC11130398 DOI: 10.3389/fimmu.2024.1398935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
Leukocyte immunoglobulin (Ig)-like receptors (LILRs) on human chromosome 19q13.4 encode 11 immunoglobulin superfamily receptors, exhibiting genetic diversity within and between human populations. Among the LILR genes, the genomic region surrounding LILRB3 and LILRA6 has yet to be fully characterized due to their significant sequence homology, which makes it difficult to differentiate between them. To examine the LILRB3 and LILRA6 genomic region, a tool named JoGo-LILR CN Caller, which can call copy number from short-read whole genome sequencing (srWGS) data, was applied to an extensive international srWGS dataset comprising 2,504 samples. During this process, a previously unreported loss of both LILRB3 and LILRA6 was detected in three samples. Using long-read sequencing of these samples, we have discovered a novel large deletion (33,692 bp) in the LILRB3 and LILRA6 genomic regions in the Japanese population. This deletion spanned three genes, LILRB3, LILRA6, and LILRB5, resulting in LILRB3 exons 12-13 being located immediately downstream of LILRB5 exons 1-12 with the loss of LILRA6, suggesting the potential expression of a hybrid gene between LILRB5 and LILRB3 (LILRB5-3). Transcription and subsequent translation of the LILRB5-3 hybrid gene were also verified. The hybrid junction was located within the intracellular domain, resulting in an LILRB5 extracellular domain fused to a partial LILRB3 intracellular domain with three immunoreceptor tyrosine-based inhibitory motifs (ITIMs), suggesting that LILRB5-3 acquired a novel signaling function. Further application of the JoGo-LILR tool to srWGS samples suggested the presence of the LILRB5-3 hybrid gene in the CEU population. Our findings provide insight into the genetic and functional diversity of the LILR family.
Collapse
Affiliation(s)
- Kouyuki Hirayasu
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
- Department of Evolutionary Immunology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Immunology, School of Medical and Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yosuke Kawai
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mihoko Shimada
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Gen Hasegawa
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuko Hashikawa
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Hiromu Tanimoto
- Department of Immunology, School of Medical and Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
- Headquarters of Primary Biliary Cholangitis (PBC) Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Rikinari Hanayama
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Immunology, School of Medical and Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Huang R, Liu X, Kim J, Deng H, Deng M, Gui X, Chen H, Wu G, Xiong W, Xie J, Lewis C, Homsi J, Yang X, Zhang C, He Y, Lou Q, Smith C, John S, Zhang N, An Z, Zhang CC. LILRB3 Supports Immunosuppressive Activity of Myeloid Cells and Tumor Development. Cancer Immunol Res 2024; 12:350-362. [PMID: 38113030 PMCID: PMC10932818 DOI: 10.1158/2326-6066.cir-23-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
The existing T cell-centered immune checkpoint blockade therapies have been successful in treating some but not all patients with cancer. Immunosuppressive myeloid cells, including myeloid-derived suppressor cells (MDSC), that inhibit antitumor immunity and support multiple steps of tumor development are recognized as one of the major obstacles in cancer treatment. Leukocyte Ig-like receptor subfamily B3 (LILRB3), an immune inhibitory receptor containing tyrosine-based inhibitory motifs (ITIM), is expressed solely on myeloid cells. However, it is unknown whether LILRB3 is a critical checkpoint receptor in regulating the activity of immunosuppressive myeloid cells, and whether LILRB3 signaling can be blocked to activate the immune system to treat solid tumors. Here, we report that galectin-4 and galectin-7 induce activation of LILRB3 and that LILRB3 is functionally expressed on immunosuppressive myeloid cells. In some samples from patients with solid cancers, blockade of LILRB3 signaling by an antagonistic antibody inhibited the activity of immunosuppressive myeloid cells. Anti-LILRB3 also impeded tumor development in myeloid-specific LILRB3 transgenic mice through a T cell-dependent manner. LILRB3 blockade may prove to be a novel approach for immunotherapy of solid cancers.
Collapse
Affiliation(s)
- Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- These authors contributed equally
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- These authors contributed equally
| | - Jaehyup Kim
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Xun Gui
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jade Homsi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Xing Yang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chengcheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Qi Lou
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Caroline Smith
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Djurišić M. Immune receptors and aging brain. Biosci Rep 2024; 44:BSR20222267. [PMID: 38299364 PMCID: PMC10866841 DOI: 10.1042/bsr20222267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Aging brings about a myriad of degenerative processes throughout the body. A decrease in cognitive abilities is one of the hallmark phenotypes of aging, underpinned by neuroinflammation and neurodegeneration occurring in the brain. This review focuses on the role of different immune receptors expressed in cells of the central and peripheral nervous systems. We will discuss how immune receptors in the brain act as sentinels and effectors of the age-dependent shift in ligand composition. Within this 'old-age-ligand soup,' some immune receptors contribute directly to excessive synaptic weakening from within the neuronal compartment, while others amplify the damaging inflammatory environment in the brain. Ultimately, chronic inflammation sets up a positive feedback loop that increases the impact of immune ligand-receptor interactions in the brain, leading to permanent synaptic and neuronal loss.
Collapse
Affiliation(s)
- Maja Djurišić
- Departments of Biology, Neurobiology, and Bio-X, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
11
|
Xiang Z, Yin X, Wei L, Peng M, Zhu Q, Lu X, Guo J, Zhang J, Li X, Zou Y. LILRB4 Checkpoint for Immunotherapy: Structure, Mechanism and Disease Targets. Biomolecules 2024; 14:187. [PMID: 38397424 PMCID: PMC10887124 DOI: 10.3390/biom14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
LILRB4, a myeloid inhibitory receptor belonging to the family of leukocyte immunoglobulin-like receptors (LILRs/LIRs), plays a pivotal role in the regulation of immune tolerance. LILRB4 primarily mediates suppressive immune responses by transmitting inhibitory signals through immunoreceptor tyrosine-based inhibitory motifs (ITIMs). This immune checkpoint molecule has gained considerable attention due to its potent regulatory functions. Its ability to induce effector T cell dysfunction and promote T suppressor cell differentiation has been demonstrated, indicating the therapeutic potential of LILRB4 for modulating excessive immune responses, particularly in autoimmune diseases or the induction of transplant tolerance. Additionally, through intervening with LILRB4 molecules, immune system responsiveness can be adjusted, representing significant value in areas such as cancer treatment. Thus, LILRB4 has emerged as a key player in addressing autoimmune diseases, transplant tolerance induction, and other medical issues. In this review, we provide a comprehensive overview of LILRB4, encompassing its structure, expression, and ligand molecules as well as its role as a tolerance receptor. By exploring the involvement of LILRB4 in various diseases, its significance in disease progression is emphasized. Furthermore, we propose that the manipulation of LILRB4 represents a promising immunotherapeutic strategy and highlight its potential in disease prevention, treatment and diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (Z.X.); (X.Y.); (L.W.); (M.P.); (Q.Z.); (X.L.); (J.G.); (J.Z.); (X.L.)
| |
Collapse
|
12
|
Shen Y, Zhang R, Jiang X, Yang J. Generation of a blockage monoclonal antibody of LILRB1 against HLA-G. Protein Expr Purif 2024; 213:106363. [PMID: 37683901 DOI: 10.1016/j.pep.2023.106363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Leukocyte immunoglobulin like receptor B1 (LILRB1) is widely expressed in immune cells as an immunosuppressive receptor. Tumor cells highly express the ligand HLA-G, which inhibits the function of immune cells by binding to LILRB1, to achieve immune escape. LILRB1 is a potential immunotherapeutic target. This study developed a monoclonal antibody named B1M023 (B1M023 mAb) that could bind LILRB1 with high affinity at both protein and cellular levels, while not bind to other leukocyte immunoglobulin like receptors (LILRs). Moreover, B1M023 mAb could block the binding of LILRB1 to HLA-G, promote activation and IFN-γ secretion of T cells. These results indicate that B1M023 mAb has potential applications in concomitant diagnosis and tumor immunotherapy.
Collapse
Affiliation(s)
- Yunlong Shen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ruirui Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
14
|
Lima K, Ribas GT, Riella LV, Borges TJ. Inhibitory innate receptors and their potential role in transplantation. Transplant Rev (Orlando) 2023; 37:100776. [PMID: 37451057 DOI: 10.1016/j.trre.2023.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The regulatory arm of the immune system plays a crucial role in maintaining immune tolerance and preventing excessive immune responses. Immune regulation comprises various regulatory cells and molecules that work together to suppress or regulate immune responses. The programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) are examples of inhibitory receptors that counteract activating signals and fine-tune immune responses. While most of the discoveries of immune regulation have been related to T cells and the adaptive immune system, the innate arm of the immune system also has a range of inhibitory receptors that can counteract activating signals and suppress the effector immune responses. Targeting these innate inhibitory receptors may provide a complementary therapeutic approach in several immune-related conditions, including transplantation. In this review, we will explore the potential role of innate inhibitory receptors in controlling alloimmunity during solid organ transplantation.
Collapse
Affiliation(s)
- Karina Lima
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guilherme T Ribas
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Li L, Li J. Dimerization of Transmembrane Proteins in Cancer Immunotherapy. MEMBRANES 2023; 13:393. [PMID: 37103820 PMCID: PMC10143916 DOI: 10.3390/membranes13040393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Transmembrane proteins (TMEMs) are integrated membrane proteins that span the entire lipid bilayer and are permanently anchored to it. TMEMs participate in various cellular processes. Some TMEMs usually exist and perform their physiological functions as dimers rather than monomers. TMEM dimerization is associated with various physiological functions, such as the regulation of enzyme activity, signal transduction, and cancer immunotherapy. In this review, we focus on the dimerization of transmembrane proteins in cancer immunotherapy. This review is divided into three parts. First, the structures and functions of several TMEMs related to tumor immunity are introduced. Second, the characteristics and functions of several typical TMEM dimerization processes are analyzed. Finally, the application of the regulation of TMEM dimerization in cancer immunotherapy is introduced.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingying Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
16
|
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8:110. [PMID: 36906586 PMCID: PMC10008588 DOI: 10.1038/s41392-023-01377-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The activation of host's innate and adaptive immune systems can lead to acute and chronic graft rejection, which seriously impacts graft survival. Thus, it is particularly significant to clarify the immune signals, which are critical to the initiation and maintenance of rejection generated after transplantation. The initiation of response to graft is dependent on sensing of danger and stranger molecules. The ischemia and reperfusion of grafts lead to cell stress or death, followed by releasing a variety of damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) of host immune cells to activate intracellular immune signals and induce sterile inflammation. In addition to DAMPs, the graft exposed to 'non-self' antigens (stranger molecules) are recognized by the host immune system, stimulating a more intense immune response and further aggravating the graft damage. The polymorphism of MHC genes between different individuals is the key for host or donor immune cells to identify heterologous 'non-self' components in allogeneic and xenogeneic organ transplantation. The recognition of 'non-self' antigen by immune cells mediates the activation of immune signals between donor and host, resulting in adaptive memory immunity and innate trained immunity to the graft, which poses a challenge to the long-term survival of the graft. This review focuses on innate and adaptive immune cells receptor recognition of damage-associated molecular patterns, alloantigens and xenoantigens, which is described as danger model and stranger model. In this review, we also discuss the innate trained immunity in organ transplantation.
Collapse
Affiliation(s)
- Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
17
|
Hu Y, Lu X, Qiu W, Liu H, Wang Q, Chen Y, Liu W, Feng F, Sun H. The Role of Leukocyte Immunoglobulin-Like Receptors Focusing on the Therapeutic Implications of the Subfamily B2. Curr Drug Targets 2022; 23:1430-1452. [PMID: 36017847 DOI: 10.2174/1389450123666220822201605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
The leukocyte immunoglobulin (Ig)-like receptors (LILRs) are constituted by five inhibitory subpopulations (LILRB1-5) and six stimulatory subpopulations (LILRA1-6). The LILR populations substantially reside in immune cells, especially myeloid cells, functioning as a regulator in immunosuppressive and immunostimulatory responses, during which the nonclassical major histocompatibility complex (MHC) class I molecules are widely involved. In addition, LILRs are also distributed in certain tumor cells, implicated in the malignancy progression. Collectively, the suppressive Ig-like LILRB2 is relatively well-studied to date. Herein, we summarized the whole family of LILRs and their biologic function in various diseases upon ligation to the critical ligands, therefore providing more information on their potential roles in these pathological processes and giving the clinical significance of strategies targeting LILRs.
Collapse
Affiliation(s)
- Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Weimin Qiu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Hui Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinghua Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, 223005, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
18
|
Oliveira MLG, Castelli EC, Veiga‐Castelli LC, Pereira ALE, Marcorin L, Carratto TMT, Souza AS, Andrade HS, Simões AL, Donadi EA, Courtin D, Sabbagh A, Giuliatti S, Mendes‐Junior CT. Genetic diversity of the
LILRB1
and
LILRB2
coding regions in an admixed Brazilian population sample. HLA 2022; 100:325-348. [DOI: 10.1111/tan.14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/27/2022]
Affiliation(s)
| | - Erick C. Castelli
- Pathology Department, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
| | - Luciana C. Veiga‐Castelli
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Alison Luis E. Pereira
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Letícia Marcorin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Thássia M. T. Carratto
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Andreia S. Souza
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
| | - Heloisa S. Andrade
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
| | - Aguinaldo L. Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Eduardo A. Donadi
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | | | | | - Silvana Giuliatti
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Celso Teixeira Mendes‐Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| |
Collapse
|
19
|
Dechavanne C, Nouatin O, Adamou R, Edslev S, Hansen A, Meurisse F, Sadissou I, Gbaguidi E, Milet J, Cottrell G, Gineau L, Sabbagh A, Massougbodji A, Moutairou K, Donadi EA, Carosella ED, Moreau P, Remarque E, Theisen M, Rouas-Freiss N, Garcia A, Favier B, Courtin D. Placental Malaria is Associated with Higher LILRB2 Expression in Monocyte Subsets and Lower Anti-Malarial IgG Antibodies During Infancy. Front Immunol 2022; 13:909831. [PMID: 35911674 PMCID: PMC9326509 DOI: 10.3389/fimmu.2022.909831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background Placental malaria (PM) is associated with a higher susceptibility of infants to Plasmodium falciparum (Pf) malaria. A hypothesis of immune tolerance has been suggested but no clear explanation has been provided so far. Our goal was to investigate the involvement of inhibitory receptors LILRB1 and LILRB2, known to drive immune evasion upon ligation with pathogen and/or host ligands, in PM-induced immune tolerance. Method Infants of women with or without PM were enrolled in Allada, southern Benin, and followed-up for 24 months. Antibodies with specificity for five blood stage parasite antigens were quantified by ELISA, and the frequency of immune cell subsets was quantified by flow cytometry. LILRB1 or LILRB2 expression was assessed on cells collected at 18 and 24 months of age. Findings Infants born to women with PM had a higher risk of developing symptomatic malaria than those born to women without PM (IRR=1.53, p=0.040), and such infants displayed a lower frequency of non-classical monocytes (OR=0.74, p=0.01) that overexpressed LILRB2 (OR=1.36, p=0.002). Moreover, infants born to women with PM had lower levels of cytophilic IgG and higher levels of IL-10 during active infection. Interpretation Modulation of IgG and IL-10 levels could impair monocyte functions (opsonisation/phagocytosis) in infants born to women with PM, possibly contributing to their higher susceptibility to malaria. The long-lasting effect of PM on infants’ monocytes was notable, raising questions about the capacity of ligands such as Rifins or HLA-I molecules to bind to LILRB1 and LILRB2 and to modulate immune responses, and about the reprogramming of neonatal monocytes/macrophages.
Collapse
Affiliation(s)
- Celia Dechavanne
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Odilon Nouatin
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Rafiou Adamou
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Sofie Edslev
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anita Hansen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Florian Meurisse
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Ibrahim Sadissou
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Erasme Gbaguidi
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Jacqueline Milet
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Gilles Cottrell
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Laure Gineau
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Audrey Sabbagh
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Achille Massougbodji
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Kabirou Moutairou
- Laboratoire de Biologie et Physiologie Cellulaires, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Benin
| | - Eduardo A. Donadi
- Laboratory of Clinical Immunology, Ribeirão Preto Medicine School, University of São Paulo, Ribeirão Preto, Brazil
| | - Edgardo D. Carosella
- CEAA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Philippe Moreau
- CEAA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Ed Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Nathalie Rouas-Freiss
- CEAA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - André Garcia
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Benoit Favier
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - David Courtin
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- *Correspondence: David Courtin,
| |
Collapse
|
20
|
Rossi F, Fredericks N, Snowden A, Allegrezza MJ, Moreno-Nieves UY. Next Generation Natural Killer Cells for Cancer Immunotherapy. Front Immunol 2022; 13:886429. [PMID: 35720306 PMCID: PMC9202478 DOI: 10.3389/fimmu.2022.886429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, immunotherapy for cancer has become mainstream with several products now authorized for therapeutic use in the clinic and are becoming the standard of care for some malignancies. Chimeric antigen receptor (CAR)-T cell therapies have demonstrated substantial efficacy for the treatment of hematological malignancies; however, they are complex and currently expensive to manufacture, and they can generate life-threatening adverse events such as cytokine release syndrome (CRS). The limitations of current CAR-T cells therapies have spurred an interest in alternative immunotherapy approaches with safer risk profiles and with less restrictive manufacturing constraints. Natural killer (NK) cells are a population of immune effector cells with potent anti-viral and anti-tumor activity; they have the capacity to swiftly recognize and kill cancer cells without the need of prior stimulation. Although NK cells are naturally equipped with cytotoxic potential, a growing body of evidence shows the added benefit of engineering them to better target tumor cells, persist longer in the host, and be fitter to resist the hostile tumor microenvironment (TME). NK-cell-based immunotherapies allow for the development of allogeneic off-the-shelf products, which have the potential to be less expensive and readily available for patients in need. In this review, we will focus on the advances in the development of engineering of NK cells for cancer immunotherapy. We will discuss the sourcing of NK cells, the technologies available to engineer NK cells, current clinical trials utilizing engineered NK cells, advances on the engineering of receptors adapted for NK cells, and stealth approaches to avoid recipient immune responses. We will conclude with comments regarding the next generation of NK cell products, i.e., armored NK cells with enhanced functionality, fitness, tumor-infiltration potential, and with the ability to overcome tumor heterogeneity and immune evasion.
Collapse
Affiliation(s)
- Fiorella Rossi
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Nathaniel Fredericks
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Andrew Snowden
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Michael J Allegrezza
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Uriel Y Moreno-Nieves
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| |
Collapse
|
21
|
De Louche CD, Roghanian A. Human inhibitory leukocyte Ig-like receptors: from immunotolerance to immunotherapy. JCI Insight 2022; 7:151553. [PMID: 35076022 PMCID: PMC8855791 DOI: 10.1172/jci.insight.151553] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
22
|
Al-Moussawy M, Abdelsamed HA, Lakkis FG. Immunoglobulin-like receptors and the generation of innate immune memory. Immunogenetics 2022; 74:179-195. [PMID: 35034136 PMCID: PMC10074160 DOI: 10.1007/s00251-021-01240-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022]
Abstract
Host immunity is classically divided into "innate" and "adaptive." While the former has always been regarded as the first, rapid, and antigen-nonspecific reaction to invading pathogens, the latter represents the more sophisticated and antigen-specific response that has the potential to persist and generate memory. Recent work however has challenged this dogma, where murine studies have successfully demonstrated the ability of innate immune cells (monocytes and macrophages) to acquire antigen-specific memory to allogeneic major histocompatibility complex (MHC) molecules. The immunoreceptors so far identified that mediate innate immune memory are the paired immunoglobulin-like receptors (PIRs) in mice, which are orthologous to human leukocyte immunoglobulin-like receptors (LILRs). These receptor families are mainly expressed by the myelomonocytic cell lineage, suggesting an important role in the innate immune response. In this review, we will discuss the role of immunoglobulin-like receptors in the development of innate immune memory across species.
Collapse
Affiliation(s)
- Mouhamad Al-Moussawy
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
| | - Hossam A Abdelsamed
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA. .,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
| | - Fadi G Lakkis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA. .,Department of Immunology, University of Pittsburgh, Pittsburgh, USA. .,Department of Medicine, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
23
|
Abstract
Mycoplasmas are small, genome-reduced bacteria. They are obligate parasites that can be found in a wide range of host species, including the majority of livestock animals and humans. Colonization of the host can result in a wide spectrum of outcomes. In many cases, these successful parasites are considered commensal, as they are found in the microbiota of asymptomatic carriers. Conversely, mycoplasmas can also be pathogenic, as they are associated with a range of both acute and chronic inflammatory diseases which are problematic in veterinary and human medicine. The chronicity of mycoplasma infections and the ability of these bacteria to infect even recently vaccinated individuals clearly indicate that they are able to successfully evade their host’s humoral immune response. Over the years, multiple strategies of immune evasion have been identified in mycoplasmas, with a number of them aimed at generating important antigenic diversity. More recently, mycoplasma-specific anti-immunoglobulin strategies have also been characterized. Through the expression of the immunoglobulin-binding proteins protein M or mycoplasma immunoglobulin binding (MIB), mycoplasmas have the ability to target the host’s antibodies and to prevent them from interacting with their cognate antigens. In this review, we discuss how these discoveries shed new light on the relationship between mycoplasmas and their host’s immune system. We also propose that these strategies should be taken into consideration for future studies, as they are key to our understanding of mycoplasma diseases' chronic and inflammatory nature and are probably a contributing factor to reduce vaccine efficacy.
Collapse
|
24
|
De Battista D, Zamboni F, Gerstein H, Sato S, Markowitz TE, Lack J, Engle RE, Farci P. Molecular Signature and Immune Landscape of HCV-Associated Hepatocellular Carcinoma (HCC): Differences and Similarities with HBV-HCC. J Hepatocell Carcinoma 2021; 8:1399-1413. [PMID: 34849372 PMCID: PMC8615147 DOI: 10.2147/jhc.s325959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction HCC is the third leading cause of cancer-related death worldwide, with chronic viral hepatitis accounting for more than 70% of the cases. Therapeutic options are limited and ineffective. The increasing use of immune-based therapies in solid tumors highlights the need to expand our knowledge on the immunologic microenvironment of HCC. Methods Access to liver samples from 20 well-characterized patients with HCC associated with HCV (n = 9) or HBV (n = 11) gave us the opportunity to study the immunologic landscape in these tumors. For each patient, RNA-sequencing was performed on the tumor and surrounding nontumorous tissue. Results We found that both HCV- and HBV-HCC are associated with a predominance of downregulated genes (74% and 67%, respectively). Analysis of the immune landscape using a curated gene list showed 216 of 2481 (9%) immune genes in HCV-HCC and 164 of 2560 (6%) in HBV-HCC. However, only 8 immune genes (4%) were upregulated in HCV-HCC and 27 (16.5%) in HBV-HCC. HCV-HCC was characterized by an enrichment of downregulated genes related to T-cell activation and oxidative stress. The dramatic downregulation of immune genes related to T-cell activation in HCV-HCC prompted us to perform an extensive immunohistochemistry analysis on paraffin-embedded liver specimen. Interestingly, we found a significant reduction of immune-cell infiltration (CD3, CD8 and CD20 positive cells) within the tumor. Moreover, we observed that HCV-HCC is characterized by an enrichment of M2-like CD68-positive cells. These data are consistent with the dramatic downregulation of immune-cell infiltration seen in HCV-HCC. Conversely, HBV-HCC was characterized by upregulation of genes related to monocyte/macrophage activation and cell cycle control, and downregulation of genes involved in various cell metabolisms. Conclusion This study demonstrates a distinctive molecular signature and immune landscape in HCC of different viral etiology, which could provide new insights into pathogenesis and lead to the development of novel immune-based therapies.
Collapse
Affiliation(s)
- Davide De Battista
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fausto Zamboni
- Liver Transplantation Center, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Hannah Gerstein
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shinya Sato
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tovah E Markowitz
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Ronald E Engle
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
25
|
Thorin-Trescases N, Labbé P, Mury P, Lambert M, Thorin E. Angptl2 is a Marker of Cellular Senescence: The Physiological and Pathophysiological Impact of Angptl2-Related Senescence. Int J Mol Sci 2021; 22:12232. [PMID: 34830112 PMCID: PMC8624568 DOI: 10.3390/ijms222212232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a cell fate primarily induced by DNA damage, characterized by irreversible growth arrest in an attempt to stop the damage. Senescence is a cellular response to a stressor and is observed with aging, but also during wound healing and in embryogenic developmental processes. Senescent cells are metabolically active and secrete a multitude of molecules gathered in the senescence-associated secretory phenotype (SASP). The SASP includes inflammatory cytokines, chemokines, growth factors and metalloproteinases, with autocrine and paracrine activities. Among hundreds of molecules, angiopoietin-like 2 (angptl2) is an interesting, although understudied, SASP member identified in various types of senescent cells. Angptl2 is a circulatory protein, and plasma angptl2 levels increase with age and with various chronic inflammatory diseases such as cancer, atherosclerosis, diabetes, heart failure and a multitude of age-related diseases. In this review, we will examine in which context angptl2 was identified as a SASP factor, describe the experimental evidence showing that angptl2 is a marker of senescence in vitro and in vivo, and discuss the impact of angptl2-related senescence in both physiological and pathological conditions. Future work is needed to demonstrate whether the senescence marker angptl2 is a potential clinical biomarker of age-related diseases.
Collapse
Affiliation(s)
- Nathalie Thorin-Trescases
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
| | - Pauline Labbé
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Pauline Mury
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Eric Thorin
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
26
|
Storm L, Bruijnesteijn J, de Groot NG, Bontrop RE. The Genomic Organization of the LILR Region Remained Largely Conserved Throughout Primate Evolution: Implications for Health And Disease. Front Immunol 2021; 12:716289. [PMID: 34737739 PMCID: PMC8562567 DOI: 10.3389/fimmu.2021.716289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
The genes of the leukocyte immunoglobulin-like receptor (LILR) family map to the leukocyte receptor complex (LRC) on chromosome 19, and consist of both activating and inhibiting entities. These receptors are often involved in regulating immune responses, and are considered to play a role in health and disease. The human LILR region and evolutionary equivalents in some rodent and bird species have been thoroughly characterized. In non-human primates, the LILR region is annotated, but a thorough comparison between humans and non-human primates has not yet been documented. Therefore, it was decided to undertake a comprehensive comparison of the human and non-human primate LILR region at the genomic level. During primate evolution the organization of the LILR region remained largely conserved. One major exception, however, is provided by the common marmoset, a New World monkey species, which seems to feature a substantial contraction of the number of LILR genes in both the centromeric and the telomeric region. Furthermore, genomic analysis revealed that the killer-cell immunoglobulin-like receptor gene KIR3DX1, which maps in the LILR region, features one copy in humans and great ape species. A second copy, which might have been introduced by a duplication event, was observed in the lesser apes, and in Old and New World monkey species. The highly conserved gene organization allowed us to standardize the LILR gene nomenclature for non-human primate species, and implies that most of the receptors encoded by these genes likely fulfill highly preserved functions.
Collapse
Affiliation(s)
- Lisanne Storm
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
27
|
Wu G, Xu Y, Schultz RD, Chen H, Xie J, Deng M, Liu X, Gui X, John S, Lu Z, Arase H, Zhang N, An Z, Zhang CC. LILRB3 supports acute myeloid leukemia development and regulates T-cell antitumor immune responses through the TRAF2-cFLIP-NF-κB signaling axis. NATURE CANCER 2021; 2:1170-1184. [PMID: 35122056 PMCID: PMC8809885 DOI: 10.1038/s43018-021-00262-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
Leukocyte immunoglobulin-like receptor B (LILRB), a family of immune checkpoint receptors, contributes to acute myeloid leukemia (AML) development, but the specific mechanisms triggered by activation or inhibition of these immune checkpoints in cancer is largely unknown. Here we demonstrate that the intracellular domain of LILRB3 is constitutively associated with the adaptor protein TRAF2. Activated LILRB3 in AML cells leads to recruitment of cFLIP and subsequent NF-κB upregulation, resulting in enhanced leukemic cell survival and inhibition of T-cell-mediated anti-tumor activity. Hyperactivation of NF-κB induces a negative regulatory feedback loop mediated by A20, which disrupts the interaction of LILRB3 and TRAF2; consequently the SHP-1/2-mediated inhibitory activity of LILRB3 becomes dominant. Finally, we show that blockade of LILRB3 signaling with antagonizing antibodies hampers AML progression. LILRB3 thus exerts context-dependent activating and inhibitory functions, and targeting LILRB3 may become a potential therapeutic strategy for AML treatment.
Collapse
Affiliation(s)
- Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Yixiang Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Robbie D Schultz
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Xun Gui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Samuel John
- Division of Pediatric Hematology- Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Zhigang Lu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
Protein Arginine Methyltransferase 5 Promotes the Migration of AML Cells by Regulating the Expression of Leukocyte Immunoglobulin-Like Receptor B4. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7329072. [PMID: 34712735 PMCID: PMC8548104 DOI: 10.1155/2021/7329072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults with poor prognosis. Especially for AML-M5 type, due to the strong cell migration ability, the possibility of extramedullary invasion is large and widespread, which leads to poor therapeutic effect. Previous studies have found that protein arginine methyltransferase 5 (PRMT5) could promote the proliferation and differentiation of leukemic cells in AML, but its regulation on the invasive ability of AML cells remains unclear. This study was designed to explore the role of PRMT5 in regulating the invasion of AML cells and to investigate the mechanisms. Patient samples were collected for detection of PRMT5 expression level. AML cells were used for exploring the function of PRMT5. The results of clinical samples showed that the expression of PRMT5 was significantly increased in newly diagnosed and recurrent AML patients, and the expression of leukocyte immunoglobulin-like receptor B4 (LILRB4) was positively correlated with the level of PRMT5. In the cell experiment in vitro, we found that when PRMT5 was knocked down, the invasion, migration, and adhesion capacities of MV-4-11 cells and THP-1 cells were decreased, and the mRNA and protein levels of LILRB4 were also decreased. Moreover, we screened related signaling pathways and found that PRMT5 affected the expression of downstream LILRB4 by activating mTOR pathway, which in turn enhanced the invasive ability of AML cells. Taken together, PRMT5 plays an important role in the invasion of AML, which acts via regulating the expression of LILRB4. PRMT5 could act as a potential therapeutic candidate for AML.
Collapse
|
29
|
Romine KA, Nechiporuk T, Bottomly D, Jeng S, McWeeney SK, Kaempf A, Corces MR, Majeti R, Tyner JW. Monocytic differentiation and AHR signaling as Primary Nodes of BET Inhibitor Response in Acute Myeloid Leukemia. Blood Cancer Discov 2021; 2:518-531. [PMID: 34568834 DOI: 10.1158/2643-3230.bcd-21-0012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To understand mechanisms of response to BET inhibitors (BETi), we mined the Beat AML functional genomic dataset and performed genome-wide CRISPR screens on BETi- sensitive and BETi- resistant AML cells. Both strategies revealed regulators of monocytic differentiation, SPI1, JUNB, FOS, and aryl-hydrocarbon receptor signaling (AHR/ARNT), as determinants of BETi response. AHR activation synergized with BETi while inhibition antagonized BETi-mediated cytotoxicity. Consistent with BETi sensitivity dependence on monocytic differentiation, ex vivo sensitivity to BETi in primary AML patient samples correlated with higher expression of monocytic markers CSF1R, LILRs, and VCAN. In addition, HL-60 cell line differentiation enhanced its sensitivity to BETi. Further, screens to rescue BETi sensitivity identified BCL2 and CDK6 as druggable vulnerabilities. Finally, monocytic AML patient samples refractory to venetoclax ex vivo were significantly more sensitive to combined BETi + venetoclax. Together, our work highlights mechanisms that could predict BETi response and identifies combination strategies to overcome resistance.
Collapse
Affiliation(s)
- Kyle A Romine
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Tamilla Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Portland, OR, USA
| | - Sophia Jeng
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Oregon Clinical and Translational Research Institute, Portland, OR, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Portland, OR, USA.,Oregon Clinical and Translational Research Institute, Portland, OR, USA
| | - Andy Kaempf
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Biostatistics Shared Resource, Portland, OR, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.,Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
30
|
Kadoba K, Watanabe R, Iwasaki T, Nakajima T, Kitagori K, Akizuki S, Murakami K, Nakashima R, Hashimoto M, Tanaka M, Ohmura K, Morinobu A, Terao C, Yoshifuji H. A susceptibility locus in the IL12B but not LILRA3 region is associated with vascular damage in Takayasu arteritis. Sci Rep 2021; 11:13667. [PMID: 34211061 PMCID: PMC8249518 DOI: 10.1038/s41598-021-93213-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
HLA-B*52 is an established genetic factor in Takayasu arteritis (TAK). Recently, single nucleotide polymorphisms (SNPs) in IL12B (rs6871626) and LILRA3 (rs103294) were newly identified as non-HLA susceptibility loci in TAK. Here, we examined how these SNPs contribute to clinical characteristics and vascular damage in TAK. We retrospectively reviewed the medical records of 99 TAK patients enrolled in our previous genome-wide association study, and whose genotypes for IL12B rs6871626, LILRA3 rs103294, and HLA-B*52 were available. Incidence of aortic regurgitation (AR) was significantly associated with the A allele (risk allele) of IL12B rs6871626 (CC 42%, AC 61%, AA 81%; p = 0.0052; odds ratio [OR] 2.45), as well as with the incidence of hypertension (p = 0.049; OR 1.82) and the proportion of patients who underwent aortic valve replacement (p = 0.023; OR 3.64). Regarding vascular damage, there was positive correlation between the Takayasu Arteritis Damage Score and the A allele of IL12B rs6871626 (CC 3.42 ± 2.71, AC 4.06 ± 3.25, AA 6.00 ± 2.81; p = 0.0035; β = 1.35) and between the Vasculitis Damage Index and the A allele (CC 3.47 ± 1.98, AC 4.33 ± 2.40, AA 5.37 ± 2.22; p = 0.0054; β = 0.96). Contrarily, no correlation was found between LILRA3 rs103294 and vascular damage. In the present study, IL12B rs6871626 was associated with vascular damage in TAK, whereas LILRA3 rs103294 was not. Genotyping of IL12B rs6871626 may help to identify patients at risk of disease progression.
Collapse
Affiliation(s)
- Keiichiro Kadoba
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryu Watanabe
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Takeshi Iwasaki
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiki Nakajima
- Department of Clinical Immunology and Rheumatology, The Tazuke-Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Koji Kitagori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuji Akizuki
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ran Nakashima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motomu Hashimoto
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chikashi Terao
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.,The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
31
|
Sakoguchi A, Saito F, Hirayasu K, Shida K, Matsuoka S, Itagaki S, Nakai W, Kohyama M, Suenaga T, Iwanaga S, Horii T, Arase H. Plasmodium falciparum RIFIN is a novel ligand for inhibitory immune receptor LILRB2. Biochem Biophys Res Commun 2021; 548:167-173. [PMID: 33647792 DOI: 10.1016/j.bbrc.2021.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022]
Abstract
Plasmodium falciparum causes the most severe form of malaria. Acquired immunity against P. falciparum provides insufficient protection even after repeated infections. Therefore, P. falciparum parasites might exploit inhibitory receptors for immune evasion. P. falciparum RIFINs are products of a multigene family consisting of 150-200 genes. Previously, we demonstrated that some RIFINs downregulate the immune response through the leukocyte immunoglobulin-like receptor (LILR) family inhibitory receptor, LILRB1, and leukocyte-associated immunoglobulin-like receptor 1, LAIR1. In this study, we further analyzed the expression of inhibitory receptor ligands on P. falciparum-infected erythrocytes and found that P. falciparum-infected erythrocytes expressed ligands for another LILR family inhibitory receptor, LILRB2, that recognizes HLA class I molecules as a host ligand. Furthermore, we identified that a specific RIFIN was a ligand for LILRB2 by using a newly developed RIFIN expression library. In addition, the domain 3 of LILRB2 was involved in RIFIN binding, whereas the domains 1 and 2 of LILRB2 were involved in the binding to HLA class I molecules. These results suggest that inhibitory receptor LILRB2 is also targeted by RIFIN for immune evasion of P. falciparum similar to LILRB1 and LAIR1.
Collapse
Affiliation(s)
- Akihito Sakoguchi
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumiji Saito
- Department of Immunology, Kanazawa Medical University, Japan
| | - Kouyuki Hirayasu
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kyoko Shida
- Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sumiko Matsuoka
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sawako Itagaki
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Wataru Nakai
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masako Kohyama
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadahiro Suenaga
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Microbiology, School of Medicine, Fukushima Medical University, Japan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
32
|
Wojtowicz WM, Vielmetter J, Fernandes RA, Siepe DH, Eastman CL, Chisholm GB, Cox S, Klock H, Anderson PW, Rue SM, Miller JJ, Glaser SM, Bragstad ML, Vance J, Lam AW, Lesley SA, Zinn K, Garcia KC. A Human IgSF Cell-Surface Interactome Reveals a Complex Network of Protein-Protein Interactions. Cell 2021; 182:1027-1043.e17. [PMID: 32822567 PMCID: PMC7440162 DOI: 10.1016/j.cell.2020.07.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/19/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
Cell-surface protein-protein interactions (PPIs) mediate cell-cell communication, recognition, and responses. We executed an interactome screen of 564 human cell-surface and secreted proteins, most of which are immunoglobulin superfamily (IgSF) proteins, using a high-throughput, automated ELISA-based screening platform employing a pooled-protein strategy to test all 318,096 PPI combinations. Screen results, augmented by phylogenetic homology analysis, revealed ∼380 previously unreported PPIs. We validated a subset using surface plasmon resonance and cell binding assays. Observed PPIs reveal a large and complex network of interactions both within and across biological systems. We identified new PPIs for receptors with well-characterized ligands and binding partners for “orphan” receptors. New PPIs include proteins expressed on multiple cell types and involved in diverse processes including immune and nervous system development and function, differentiation/proliferation, metabolism, vascularization, and reproduction. These PPIs provide a resource for further biological investigation into their functional relevance and may offer new therapeutic drug targets. Human IgSF interactome reveals complex network of cell-surface protein interactions Phylogenetic homology analysis predicts protein-protein interactions ∼380 previously unknown protein-protein interactions identified Deorphanization of receptors and new binding partners for well-studied receptors
Collapse
Affiliation(s)
- Woj M Wojtowicz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ricardo A Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dirk H Siepe
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catharine L Eastman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gregory B Chisholm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarah Cox
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Heath Klock
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Paul W Anderson
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Sarah M Rue
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Jessica J Miller
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Scott M Glaser
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Melisa L Bragstad
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Julie Vance
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Annie W Lam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Scott A Lesley
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Yu H, Liu H, Zhao Y, Wang H, Liu C, Qi W, Liu Z, Sun Y, Gao S, Tao J, Fu R, Shao Z. Upregulated expression of leukocyte immunoglobulin-like receptor A3 in patients with severe aplastic anemia. Exp Ther Med 2021; 21:346. [PMID: 33732319 PMCID: PMC7903422 DOI: 10.3892/etm.2021.9777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/03/2020] [Indexed: 01/19/2023] Open
Abstract
Severe aplastic anemia (SAA) is a rare and potentially life-threatening disease characterized by pancytopenia and bone marrow (BM) hypoplasia. In a previous study by our group, increased expression of leukocyte immunoglobulin-like receptors A (LILRA), LILRA3 in myeloid dendritic cells (mDCs) and LILRA5 in CD34+ cells in SAA was detected using proteomics techniques, highlighting their potential role in disease pathogenesis. In the present study, the expression of LILRA1-6 mRNA was assessed in the BM mononuclear cells of patients with SAA using reverse transcription-quantitative (RT-q)PCR. The expression of homogenic LILRA3 and LILRA5 isoform on mDCs, as well as CD34+, CD3+CD8+, CD19+ and CD14+ cells, was detected using flow cytometry. mDCs were then induced, cultured and sorted. The expression of LILRA3 was confirmed using RT-qPCR and western blot analyses. The serum levels of soluble LILRA3 were measured using ELISA. Furthermore, the relationship between LILRA3 expression and disease severity was assessed. The results indicated increased LILRA3 mRNA expression in patients with SAA. The percentage of LILRA3+ in BM mDCs and CD34+ cells was increased. Compared with controls, the relative LILRA3 mRNA expression and the relative protein intensity were highly increased in SAA mDCs. The serum LILRA3 levels in patients with SAA were also increased. The proportion of LILRA3+CD11C+ human leukocyte antigen (HLA)-DR+/CD11C+HLA-DR+ cells was positively correlated with the ratio of LILRA3+CD34+/CD34+ cells and the expression of LILRA3 mRNA. Taken together, the expression of LILRA3 on mDCs of patients with SAA was increased, which may affect the function of mDCs. LILRA3 may have a significant role in the immune pathogenesis of SAA.
Collapse
Affiliation(s)
- Hong Yu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Weiwei Qi
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yingying Sun
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shan Gao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jinglian Tao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
34
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
35
|
Hirayasu K, Sun J, Hasegawa G, Hashikawa Y, Hosomichi K, Tajima A, Tokunaga K, Ohashi J, Hanayama R. Characterization of LILRB3 and LILRA6 allelic variants in the Japanese population. J Hum Genet 2021; 66:739-748. [PMID: 33526815 DOI: 10.1038/s10038-021-00906-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 11/09/2022]
Abstract
Leukocyte immunoglobulin (Ig)-like receptors (LILRs) are encoded by members of a human multigene family, comprising 11 protein-coding genes and two pseudogenes. Among the LILRs, LILRB3 and LILRA6 show the highest homology with each other, along with high allelic and copy number variations. Therefore, it has been difficult to discriminate between them, both genetically and functionally, precluding disease association studies of LILRB3 and LILRA6. In this study, we carefully performed variant screening of LILRB3 and LILRA6 by cDNA cloning from Japanese individuals and identified four allelic lineages showing significantly high non-synonymous-to-synonymous ratios in pairwise comparisons. Furthermore, the extracellular domains of the LILRB3*JP6 and LILRA6*JP1 alleles were identical at the DNA level, suggesting that gene conversion-like events diversified LILRB3 and LILRA6. To determine the four allelic lineages from genomic DNA, we established a lineage typing method that accurately estimated the four allelic lineages in addition to specific common alleles from genomic DNA. Analysis of LILRA6 copy number variation revealed one, two, and three copies of LILRA6 in the Japanese-in-Tokyo (JPT) population. Flow cytometric analysis showed that an anti-LILRB3 antibody did not recognize the second most common lineage in the Japanese population, indicating significant amino acid differences across the allelic lineages. Taken together, our findings indicate that our lineage typing is useful for classifying the lineage-specific functions of LILRB3 and LILRA6, serving as the basis for disease association studies.
Collapse
Affiliation(s)
- Kouyuki Hirayasu
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Ishikawa, Japan. .,Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.
| | - Jinwen Sun
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Gen Hasegawa
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Yuko Hashikawa
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Ishikawa, Japan
| | - Kazuyoshi Hosomichi
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Ishikawa, Japan.,Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Atsushi Tajima
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Ishikawa, Japan.,Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rikinari Hanayama
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Ishikawa, Japan.,Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.,WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kakuma, Kanazawa, Ishikawa, Japan
| |
Collapse
|
36
|
Yabe R, Chung SH, Murayama MA, Kubo S, Shimizu K, Akahori Y, Maruhashi T, Seno A, Kaifu T, Saijo S, Iwakura Y. TARM1 contributes to development of arthritis by activating dendritic cells through recognition of collagens. Nat Commun 2021; 12:94. [PMID: 33397982 PMCID: PMC7782728 DOI: 10.1038/s41467-020-20307-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/20/2020] [Indexed: 12/29/2022] Open
Abstract
TARM1 is a member of the leukocyte immunoglobulin-like receptor family and stimulates macrophages and neutrophils in vitro by associating with FcRγ. However, the function of this molecule in the regulation of the immune system is unclear. Here, we show that Tarm1 expression is elevated in the joints of rheumatoid arthritis mouse models, and the development of collagen-induced arthritis (CIA) is suppressed in Tarm1-/- mice. T cell priming against type 2 collagen is suppressed in Tarm1-/- mice and antigen-presenting ability of GM-CSF-induced dendritic cells (GM-DCs) from Tarm1-/- mouse bone marrow cells is impaired. We show that type 2 collagen is a functional ligand for TARM1 on GM-DCs and promotes DC maturation. Furthermore, soluble TARM1-Fc and TARM1-Flag inhibit DC maturation and administration of TARM1-Fc blocks the progression of CIA in mice. These results indicate that TARM1 is an important stimulating factor of dendritic cell maturation and could be a good target for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Rikio Yabe
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan
| | - Soo-Hyun Chung
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Masanori A Murayama
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Sachiko Kubo
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Kenji Shimizu
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Yukiko Akahori
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan
| | - Takumi Maruhashi
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Akimasa Seno
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Tomonori Kaifu
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Shinobu Saijo
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan.
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan.
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan.
| |
Collapse
|
37
|
Liu L, Wang L, Zhao L, He C, Wang G. The Role of HLA-G in Tumor Escape: Manipulating the Phenotype and Function of Immune Cells. Front Oncol 2020; 10:597468. [PMID: 33425752 PMCID: PMC7786297 DOI: 10.3389/fonc.2020.597468] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical major histocompatibility complex class I (MHC I) molecule, and under physiological conditions, its expression is strictly restricted to the maternal–fetal interface and immune-privileged organs where HLA-G is expected to contribute to establishment and maintenance of immune tolerance. However, the expression of HLA-G has been found in various types of tumors, and the level of its expression frequently correlates with high-grade histology and poor prognosis, raising the possibility that it may play a negative role in tumor immunity. ILT2 and ILT4, present on a broad of immune cells, have been identified as the main receptors engaging HLA-G, and their interactions have been found to allow the conversion of effectors like NK cells and T cells to anergic or unresponsive state, activated DCs to tolerogenic state, and to drive the differentiation of T cells toward suppressive phenotype. Therefore, tumors can employ HLA-G to modulate the phenotype and function of immune cells, allowing them to escape immune attack. In this review, we discuss the mechanism underlying HLA-G expression and function, its role played in each step of the tumor-immunity cycle, as well as the potential to target it for therapeutic benefit.
Collapse
Affiliation(s)
- Lu Liu
- Department of Gastroenterology, Center for Digestive Diseases, People's Hospital of Baoan District, The 8th People's Hospital of Shenzhen, Shenzhen, China.,Department of Critical Care Medicine, People's Hospital of Baoan District, The 8th People's Hospital of Shenzhen, Shenzhen, China
| | - Lijun Wang
- Department of Critical Care Medicine, People's Hospital of Baoan District, The 8th People's Hospital of Shenzhen, Shenzhen, China
| | - Lihong Zhao
- Department of Spine Surgery, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chen He
- Department of Ophthalmology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ganlu Wang
- Department of Gastroenterology, Center for Digestive Diseases, People's Hospital of Baoan District, The 8th People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
38
|
Attia JVD, Dessens CE, van de Water R, Houvast RD, Kuppen PJK, Krijgsman D. The Molecular and Functional Characteristics of HLA-G and the Interaction with Its Receptors: Where to Intervene for Cancer Immunotherapy? Int J Mol Sci 2020; 21:ijms21228678. [PMID: 33213057 PMCID: PMC7698525 DOI: 10.3390/ijms21228678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Human leukocyte antigen G (HLA-G) mediates maternal-fetal immune tolerance. It is also considered an immune checkpoint in cancer since it may mediate immune evasion and thus promote tumor growth. HLA-G is, therefore, a potential target for immunotherapy. However, existing monoclonal antibodies directed against HLA-G lack sufficient specificity and are not suitable for immune checkpoint inhibition in a clinical setting. For this reason, it is essential that alternative approaches are explored to block the interaction between HLA-G and its receptors. In this review, we discuss the structure and peptide presentation of HLA-G, and its interaction with the receptors Ig-like transcript (ILT) 2, ILT4, and Killer cell immunoglobulin-like receptor 2DL4 (KIR2DL4). Based on our findings, we propose three alternative strategies to block the interaction between HLA-G and its receptors in cancer immunotherapy: (1) prevention of HLA-G dimerization, (2) targeting the peptide-binding groove of HLA-G, and (3) targeting the HLA-G receptors. These strategies should be an important focus of future studies that aim to develop immune checkpoint inhibitors to block the interaction between HLA-G and its receptors for the treatment of cancer.
Collapse
|
39
|
Truong AD, Hong Y, Nguyen HT, Nguyen CT, Chu NT, Tran HTT, Dang HV, Lillehoj HS, Hong YH. Molecular identification and characterisation of a novel chicken leukocyte immunoglobulin-like receptor A5. Br Poult Sci 2020; 62:68-80. [PMID: 32812773 DOI: 10.1080/00071668.2020.1812524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Leukocyte immunoglobulin-like receptor A5 (LILRA5) is a key molecule that regulates the immune system. However, the LILRA5 gene has not been characterised in avian species, including chickens. The present study aimed to identify and functionally characterise LILRA5 identified from two genetically disparate chicken lines, viz., Marek's disease (MD)-resistant (R) line 6.3 and MD-susceptible (S) line 7.2. 2. Multiple sequence alignment and phylogenetic analyses confirmed that the identity and similarity homologies of amino acids of LILRA5 in chicken lines 6.3 and 7.2 ranged between 93% and 93.7%, whereas those between chicken and mammals ranged between 20.9% and 43.7% and 21.1% to 43.9%, respectively. The newly cloned LILRA5 from chicken lines 6.3 and 7.2 revealed high conservation and a close relationship with other known mammalian LILRA5 proteins. 3. The results indicated that LILRA5 from chicken lines 6.3 and 7.2 was associated with phosphorylation of Src kinases and protein tyrosine phosphatase non-receptor type 11 (SHP2), which play a regulatory role in immune functions. Moreover, the results demonstrated that LILRA5 in these lines was associated with the activation of major histocompatibility complex (MHC) class I and β2-microglobulin and induced the expression of the transporter associated with antigen processing. In addition, LILRA5 in both chicken lines activated and induced Janus kinase (JAK)-signal transducer and the activator of transcription (STAT), nuclear factor kappa B (NF-κB), phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) and the extracellular signal-regulated kinase (ERK)1/2 signalling pathways; toll-like receptors; and Th1-, Th2-, and Th17- cytokines. 4. The data suggested that LILRA5 has innate immune receptors essential for macrophage immune response and provide novel insights into the regulation of immunity and immunopathology.
Collapse
Affiliation(s)
- A D Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam.,Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| | - Y Hong
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| | - H T Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - C T Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - N T Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H T T Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H V Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H S Lillehoj
- United States Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services , Beltsville, MD, USA
| | - Y H Hong
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| |
Collapse
|
40
|
Yeboah M, Papagregoriou C, Jones DC, Chan HC, Hu G, McPartlan JS, Schiött T, Mattson U, Mockridge CI, Tornberg UC, Hambe B, Ljungars A, Mattsson M, Tews I, Glennie MJ, Thirdborough SM, Trowsdale J, Frendeus B, Chen J, Cragg MS, Roghanian A. LILRB3 (ILT5) is a myeloid cell checkpoint that elicits profound immunomodulation. JCI Insight 2020; 5:141593. [PMID: 32870822 PMCID: PMC7526549 DOI: 10.1172/jci.insight.141593] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Despite advances in identifying the key immunoregulatory roles of many of the human leukocyte immunoglobulin-like receptor (LILR) family members, the function of the inhibitory molecule LILRB3 (ILT5, CD85a, LIR3) remains unclear. Studies indicate a predominant myeloid expression; however, high homology within the LILR family and a relative paucity of reagents have hindered progress toward identifying the function of this receptor. To investigate its function and potential immunomodulatory capacity, a panel of LILRB3-specific monoclonal antibodies (mAbs) was generated. LILRB3-specific mAbs bound to discrete epitopes in Ig-like domain 2 or 4. LILRB3 ligation on primary human monocytes by an agonistic mAb resulted in phenotypic and functional changes, leading to potent inhibition of immune responses in vitro, including significant reduction in T cell proliferation. Importantly, agonizing LILRB3 in humanized mice induced tolerance and permitted efficient engraftment of allogeneic cells. Our findings reveal powerful immunosuppressive functions of LILRB3 and identify it as an important myeloid checkpoint receptor.
Collapse
Affiliation(s)
- Muchaala Yeboah
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Charys Papagregoriou
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Des C. Jones
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - H.T. Claude Chan
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Justine S. McPartlan
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | - C. Ian Mockridge
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | | | | | | | | | - Ivo Tews
- Institute for Life Sciences and
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Martin J. Glennie
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Stephen M. Thirdborough
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - John Trowsdale
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mark S. Cragg
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
41
|
A High Docosahexaenoic Acid Diet Alters the Lung Inflammatory Response to Acute Dust Exposure. Nutrients 2020; 12:nu12082334. [PMID: 32759853 PMCID: PMC7468878 DOI: 10.3390/nu12082334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Agricultural workers are at risk for the development of acute and chronic lung diseases due to their exposure to organic agricultural dusts. A diet intervention using the omega-3 fatty acid docosahexaenoic acid (DHA) has been shown to be an effective therapeutic approach for alleviating a dust-induced inflammatory response. We thus hypothesized a high-DHA diet would alter the dust-induced inflammatory response through the increased production of specialized pro-resolving mediators (SPMs). Mice were pre-treated with a DHA-rich diet 4 weeks before being intranasally challenged with a single dose of an extract made from dust collected from a concentrated swine feeding operation (HDE). This omega-3-fatty-acid-rich diet led to reduced arachidonic acid levels in the blood, enhanced macrophage recruitment, and increased the production of the DHA-derived SPM Resolvin D1 (RvD1) in the lung following HDE exposure. An assessment of transcript-level changes in the immune response demonstrated significant differences in immune pathway activation and alterations of numerous macrophage-associated genes among HDE-challenged mice fed a high DHA diet. Our data indicate that consuming a DHA-rich diet leads to the enhanced production of SPMs during an acute inflammatory challenge to dust, supporting a role for dietary DHA supplementation as a potential therapeutic strategy for reducing dust-induced lung inflammation.
Collapse
|
42
|
Dai W, Sun Y, Jiang Z, Du K, Xia N, Zhong G. Key genes associated with non-alcoholic fatty liver disease and acute myocardial infarction. Med Sci Monit 2020; 26:e922492. [PMID: 32594092 PMCID: PMC7341693 DOI: 10.12659/msm.922492] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background With increasing research on non-alcoholic fatty liver (NAFLD) and acute myocardial infarction (AMI), many studies show a tight correlation between NAFLD and AMI, but the underlying pathophysiology is still not clear. This study was performed to identify the potential hub genes and pathways related to these 2 diseases by using the bioinformatics method. Material/Methods The Gene Expression Omnibus (GEO) dataset GSE63067 of NAFLD patients and normal controls was downloaded from the GEO database. The GSE60993 and GSE66360 datasets for AMI patients and healthy controls were also obtained. Differentially expressed genes (DEGs) of NAFLD and AMI datasets and the common genes between them were obtained. Further GO and KEGG enrichment analyses for common genes were performed. To define the pathogenesis associated with both NAFLD and AMI, a protein–protein interaction (PPI) network was constructed. Finally, SPSS software was utilized to analyze the diagnostic value of hub genes in the NAFLD and AMI datasets, respectively. Results Seventy-eight common genes were obtained in NAFLD and AMI with the threshold of P-value <0.05. Thirty-one GO terms and 10 KEGG pathways were obtained. Also, the top 10 hub genes (TLR2, LILRB2, CXCL1, FPR1, TLR4, TYROBP, MMP9, FCER1G, CLEC4D, and CCR2) were selected with P<0.05. Conclusions The results of this study suggest that some novel genes play an important role in the occurrence and progression NAFLD and AMI. More experimental research and clinical trials are needed to verify our results.
Collapse
Affiliation(s)
- Weiran Dai
- Department of Cardiology Ward 1, The First Affiliated Hospital of Guangxi, Medical University, Guangxi, Nanning, China (mainland)
| | - Yue Sun
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi, Medical University, Guangxi, Nanning, China (mainland)
| | - Zhiyuan Jiang
- Department of Hypertension, The First Affiliated Hospital of Guangxi, Medical University, Guangxi, Nanning, China (mainland)
| | - Kuan Du
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi, Medical University, Guangxi, Nanning, China (mainland)
| | - Ning Xia
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi, Medical University, Guangxi, Nanning, China (mainland)
| | - Guoqiang Zhong
- Department of Cardiology Ward 1, The First Affiliated Hospital of Guangxi, Medical University, Guangxi, Nanning, China (mainland)
| |
Collapse
|
43
|
Ming S, Li M, Wu M, Zhang J, Zhong H, Chen J, Huang Y, Bai J, Huang L, Chen J, Lin Q, Liu J, Tao J, He D, Huang X. Immunoglobulin-Like Transcript 5 Inhibits Macrophage-Mediated Bacterial Killing and Antigen Presentation During Sepsis. J Infect Dis 2020; 220:1688-1699. [PMID: 31250008 DOI: 10.1093/infdis/jiz319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Immunosuppression contributes to the mortality of sepsis. However, the underlying mechanism remains unclear. METHODS In the present study, we investigated the role of inhibitory receptor immunoglobulin-like transcript 5 (ILT5) in sepsis. We first screened the expression of ILT family members, and we found that ILT5 was dramatically up-regulated in the peripheral blood mononuclear cells from sepsis patients versus healthy donors. RESULTS Knockdown of ILT5 by small interfering ribonucleic acid increased bacterial killing and reactive oxygen species production in THP-1 and RAW264.7 cells. Moreover, ILT5-expressing monocytes/macrophages exhibited lower expression of antigen-presenting molecules including major histocompatibility complex-II and CD80. In the in vitro coculture system with monocytes/macrophages, blockage of ILT5 facilitated Th1 proliferation and differentiation of CD4+ T cells. Furthermore, in vivo experiments demonstrated that pretreatment with ILT5 blocking peptide improved the survival and pulmonary pathology of septic mice. CONCLUSIONS Together, our study identified ILT5 as an immunosuppressive regulator during sepsis, which may provide potential therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Siqi Ming
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Musheng Li
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Minhao Wu
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Jianhui Zhang
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Haibo Zhong
- The Third People's Hospital of Shantou, Shantou, China
| | - Junyang Chen
- The Third People's Hospital of Shantou, Shantou, China
| | - Yaopan Huang
- The Third People's Hospital of Shantou, Shantou, China
| | - Jun Bai
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Li Huang
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Juan Chen
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Quanshi Lin
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Jiao Liu
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Jianping Tao
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Duanman He
- The Third People's Hospital of Shantou, Shantou, China
| | - Xi Huang
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| |
Collapse
|
44
|
Ribeiro RM, Graca L. Untangling the immune basis of disease susceptibility. eLife 2020; 9:e56886. [PMID: 32406819 PMCID: PMC7224693 DOI: 10.7554/elife.56886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 11/17/2022] Open
Abstract
Interactions between immune cell receptors and proteins that determine disease susceptibility shed light on how different arms of the immune system are involved in three viral infections and Crohn's disease.
Collapse
Affiliation(s)
- Ruy M Ribeiro
- Laboratório de Biomatemática, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| |
Collapse
|
45
|
Radwan J, Babik W, Kaufman J, Lenz TL, Winternitz J. Advances in the Evolutionary Understanding of MHC Polymorphism. Trends Genet 2020; 36:298-311. [DOI: 10.1016/j.tig.2020.01.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022]
|
46
|
LILRB4 ITIMs mediate the T cell suppression and infiltration of acute myeloid leukemia cells. Cell Mol Immunol 2019; 17:272-282. [PMID: 31700117 DOI: 10.1038/s41423-019-0321-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
We recently demonstrated that leukocyte Ig-like receptor 4 (LILRB4) expressed by monocytic acute myeloid leukemia (AML) cells mediates T-cell inhibition and leukemia cell infiltration via its intracellular domain. The cytoplasmic domain of LILRB4 contains three immunoreceptor tyrosine-based inhibitory motifs (ITIMs); the tyrosines at positions 360, 412, and 442 are phosphorylation sites. Here, we analyzed how the ITIMs of LILRB4 in AML cells mediate its function. Our in vitro and in vivo data show that Y412 and Y442, but not Y360, of LILRB4 are required for T-cell inhibition, and all three ITIMs are needed for leukemia cell infiltration. We constructed chimeric proteins containing the extracellular domain of LILRB4 and the intracellular domain of LILRB1 and vice versa. The intracellular domain of LILRB4, but not that of LILRB1, mediates T-cell suppression and AML cell migration. Our studies thus defined the unique signaling roles of LILRB4 ITIMs in AML cells.
Collapse
|
47
|
Yue J, Zhang C, Shi X, Wei Y, Liu L, Liu S, Yang H. Activation of leukocyte immunoglobulin-like receptor B2 signaling pathway in cortical lesions of pediatric patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. Brain Dev 2019; 41:829-838. [PMID: 31495513 DOI: 10.1016/j.braindev.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUNDS Focal cortical dysplasia type IIb (FCD IIb) and tuberous sclerosis complex (TSC) are very frequently associated with epilepsy in pediatric patients. Human leukocyte immunoglobulin-like receptor B2 (LILRB2) participates in the process of neurite growth, synaptic plasticity, and inflammatory reaction, suggesting a potential role of LILRB2 in epilepsy. However, little is known about the distribution and expression of LILRB2 in cortical lesions of FCD IIb and cortical tubers of TSC. METHODS In this study, we have described the distribution and expression of LILRB2 signaling pathway in cortical lesions of pediatric patients with FCD IIb (n = 15) and TSC (n = 12) relative to age-matched autopsy control samples (CTX, n = 10), respectively. The protein levels of LILRB2 pathway molecules were assessed by western blotting and immunohistochemistry. The expression pattern was investigated by immunohistochemistry and double labeling experiment. Spearman correlation analysis to explore the correlation between LILRB2 protein level and seizure frequency. RESULTS The protein levels of LILRB2 and its downstream molecules POSH, SHROOM3, ROCK1, ROCK2 were increased in cortices of patients compared to CTX. Protein levels of LILRB2 negatively correlated with the frequency of seizures in FCD IIb and TSC patients, respectively. Moreover, all LILRB2 pathway molecules were strongly expressed in dysmorphic neurons, balloon cells, and giant cells, LILRB2 co-localized with neuron marker and astrocyte marker. CONCLUSION Taken together, the special expression patterns of LILRB2 signaling pathway in cortical lesions of FCD IIb and TSC implies that it may be involved in the process of epilepsy.
Collapse
Affiliation(s)
- Jiong Yue
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunqing Zhang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianjun Shi
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yujia Wei
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lihong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiyong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Yang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
48
|
Meziane EK, Potts ND, Viertlboeck BC, Løvlie H, Krupa AP, Burke TA, Brown S, Watson KA, Richardson DS, Pizzari T, Göbel TW, Kaufman J. Bi-Functional Chicken Immunoglobulin-Like Receptors With a Single Extracellular Domain (ChIR-AB1): Potential Framework Genes Among a Relatively Stable Number of Genes Per Haplotype. Front Immunol 2019; 10:2222. [PMID: 31620133 PMCID: PMC6760009 DOI: 10.3389/fimmu.2019.02222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/02/2019] [Indexed: 11/13/2022] Open
Abstract
The leukocyte receptor complex (LRC) in humans encodes many receptors with immunoglobulin-like (Ig-like) extracellular domains, including the killer Ig-like receptors (KIRs) expressed on natural killer (NK) cells among others, the leukocyte Ig-like receptors (LILRs) expressed on myeloid and B cells, and an Fc receptor (FcR), all of which have important roles in the immune response. These highly-related genes encode activating receptors with positively-charged residues in the transmembrane region, inhibitory receptors with immuno-tyrosine based motifs (ITIMs) in the cytoplasmic tail, and bi-functional receptors with both. The related chicken Ig-like receptors (ChIRs) are almost all found together on a microchromosome, with over 100 activating (A), inhibitory (B), and bi-functional (AB) genes, bearing either one or two extracellular Ig-like domains, interspersed over 500-1,000 kB in the genome of an individual chicken. Sequencing studies have suggested rapid divergence and little overlap between ChIR haplotypes, so we wished to begin to understand their genetics. We chose to use a hybridization technique, reference strand-mediated conformational analysis (RSCA), to examine the ChIR-AB1 family, with a moderate number of genes dispersed across the microchromosome. Using fluorescently-labeled references (FLR), we found that RSCA and sequencing of ChIR-AB1 extracellular exon gave two groups of peaks with mobility correlated with sequence relationship to the FLR. We used this system to examine widely-used and well-characterized experimental chicken lines, finding only one or a few simple ChIR haplotypes for each line, with similar numbers of peaks overall. We found much more complicated patterns from a broiler line from a commercial breeder and a flock of red junglefowl, but trios of parents and offspring from another commercial chicken line show that the complicated patterns are due to heterozygosity, indicating a relatively stable number of peaks within haplotypes of these birds. Some ChIR-AB1 peaks were found in all individuals from the commercial lines, and some of these were shared with red junglefowl and the experimental lines derived originally from egg-laying chickens. Overall, this analysis suggests that there are some simple features underlying the apparent complexity of the ChIR locus.
Collapse
Affiliation(s)
- El Kahina Meziane
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicola D Potts
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Birgit C Viertlboeck
- Department of Veterinary Sciences, Institute for Animal Physiology, Ludwig Maximillian University, Munich, Germany
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping, Sweden
| | - Andrew P Krupa
- Department of Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, United Kingdom
| | - Terry A Burke
- Department of Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, United Kingdom
| | | | - Kellie A Watson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, United Kingdom
| | - David S Richardson
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, University of East Anglia, Norwich, United Kingdom
| | - Tommaso Pizzari
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, United Kingdom
| | - Thomas W Göbel
- Department of Veterinary Sciences, Institute for Animal Physiology, Ludwig Maximillian University, Munich, Germany
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
49
|
Andrews JM, Schmidt JA, Carson KR, Musiek AC, Mehta-Shah N, Payton JE. Novel cell adhesion/migration pathways are predictive markers of HDAC inhibitor resistance in cutaneous T cell lymphoma. EBioMedicine 2019; 46:170-183. [PMID: 31358475 PMCID: PMC6711861 DOI: 10.1016/j.ebiom.2019.07.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 01/20/2023] Open
Abstract
Background Treatment for Cutaneous T Cell Lymphoma (CTCL) is generally not curative. Therefore, selecting therapy that is effective and tolerable is critical to clinical decision-making. Histone deacetylase inhibitors (HDACi), epigenetic modifier drugs, are commonly used but effective in only ~30% of patients. There are no predictive markers of HDACi response and the CTCL histone acetylation landscape remains unmapped. We sought to identify pre-treatment molecular markers of resistance in CTCL that progressed on HDACi therapy. Methods Purified T cells from 39 pre/post-treatment peripheral blood samples and skin biopsies from 20 patients were subjected to RNA-seq and ChIP-seq for histone acetylation marks (H3K14/9 ac, H3K27ac). We correlated significant differences in histone acetylation with gene expression in HDACi-resistant/sensitive CTCL. We extended these findings in additional CTCL patient cohorts (RNA-seq, microarray) and using ELISA in matched CTCL patient plasma. Findings Resistant CTCL exhibited high levels of histone acetylation, which correlated with increased expression of 338 genes (FDR < 0·05), including some novel to CTCL: BIRC5 (anti-apoptotic); RRM2 (cell cycle); TXNDC5, GSTM1 (redox); and CXCR4, LAIR2 (cell adhesion/migration). Several of these, including LAIR2, were elevated pre-treatment in HDACi-resistant CTCL. In CTCL patient plasma (n = 6), LAIR2 protein was also elevated (p < 0·01) compared to controls. Interpretation This study is the first to connect genome-wide differences in chromatin acetylation and gene expression to HDACi-resistance in primary CTCL. Our results identify novel markers with high pre-treatment expression, such as LAIR2, as potential prognostic and/or predictors of HDACi-resistance in CTCL. Funding NIH:CA156690, CA188286; NCATS: WU-ICTS UL1 TR000448; Siteman Cancer Center: CA091842.
Collapse
Affiliation(s)
- Jared M Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kenneth R Carson
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy C Musiek
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Neha Mehta-Shah
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
50
|
Gui X, Deng M, Song H, Chen Y, Xie J, Li Z, He L, Huang F, Xu Y, Anami Y, Yu H, Yu C, Li L, Yuan Z, Xu X, Wang Q, Chai Y, Huang T, Shi Y, Tsuchikama K, Liao XC, Xia N, Gao GF, Zhang N, Zhang CC, An Z. Disrupting LILRB4/APOE Interaction by an Efficacious Humanized Antibody Reverses T-cell Suppression and Blocks AML Development. Cancer Immunol Res 2019; 7:1244-1257. [PMID: 31213474 DOI: 10.1158/2326-6066.cir-19-0036] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/29/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022]
Abstract
Therapeutic strategies are urgently needed for patients with acute myeloid leukemia (AML). Leukocyte immunoglobulin-like receptor B4 (LILRB4), which suppresses T-cell activation and supports tissue infiltration of AML cells, represents an attractive drug target for anti-AML therapeutics. Here, we report the identification and development of an LILRB4-specific humanized mAb that blocks LILRB4 activation. This mAb, h128-3, showed potent activity in blocking the development of monocytic AML in various models including patient-derived xenograft mice and syngeneic immunocompetent AML mice. MAb h128-3 enhanced the anti-AML efficacy of chemotherapy treatment by stimulating mobilization of leukemia cells. Mechanistic studies revealed four concordant modes of action for the anti-AML activity of h128-3: (i) reversal of T-cell suppression, (ii) inhibition of monocytic AML cell tissue infiltration, (iii) antibody-dependent cellular cytotoxicity, and (iv) antibody-dependent cellular phagocytosis. Therefore, targeting LILRB4 with antibody represents an effective therapeutic strategy for treating monocytic AML.
Collapse
Affiliation(s)
- Xun Gui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yuanzhi Chen
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas.,School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Taishan Immunology Program, Basic Medicine School, Binzhou Medical University, Yantai, China
| | - Zunling Li
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Taishan Immunology Program, Basic Medicine School, Binzhou Medical University, Yantai, China
| | - Licai He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Fangfang Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Hematology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yixiang Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas
| | - Yasuaki Anami
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas
| | - Hai Yu
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Chenyi Yu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas.,School of Xiangya Medicine, Central South University, Changsha, Hunan, China
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas
| | - Zihao Yuan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas
| | - Xiaoying Xu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qihui Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas.,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tao Huang
- Immune-Onc Therapeutics, Inc., Palo Alto, California
| | - Yi Shi
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kyoji Tsuchikama
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas
| | | | - Ningshao Xia
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - George F Gao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas.
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas.
| |
Collapse
|