1
|
Teertam SK, Setaluri V, Ayuso JM. Advances in Microengineered Platforms for Skin Research. JID INNOVATIONS 2025; 5:100315. [PMID: 39525704 PMCID: PMC11550131 DOI: 10.1016/j.xjidi.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024] Open
Abstract
The skin plays a critical role in human physiology, acting both as a barrier to environmental insults and as a window to environmental stimuli. Disruption of this homeostasis leads to numerous skin disorders. Human and animal skin differ significantly, limiting the translational potential of animal-based investigations to advance therapeutics to human skin diseases. Hence, there is a critical need for physiologically relevant human skin models to explore novel treatment strategies. Recent advances in microfluidic technologies now allow design and generation of organ-on-chip devices that mimic critical features of tissue architecture. Skin-on-a-chip and microfluidic platforms hold promise as useful models for diverse dermatology applications. Compared with traditional in vitro models, microfluidic platforms offer improved control of fluid flow, which in turn allows precise manipulation of cell and molecular distribution. These properties enable the generation of multilayered in vitro models that mimic human skin structure while simultaneously offering superior control over nutrient and drug distribution. Researchers have used microfluidic platforms for a variety of applications in skin research, including epidermal-dermal cellular crosstalk, cell migration, mechanobiology, microbiome-immune response interactions, vascular biology, and wound healing. In this review, we comprehensively review state-of-the-art microfluidic models for skin research. We discuss the challenges and promise of current skin-on-a-chip technologies and provide a roadmap for future research in this active field.
Collapse
Affiliation(s)
- Sireesh Kumar Teertam
- Department of Dermatology, University of Wisconsin-Madison, Wisconsin, USA
- UW Carbone Cancer Center, Madison, Wisconsin, USA
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin-Madison, Wisconsin, USA
- UW Carbone Cancer Center, Madison, Wisconsin, USA
- William S. Middleton Memorial VA Hospital. Madison, Wisconsin, USA
| | - Jose M. Ayuso
- Department of Dermatology, University of Wisconsin-Madison, Wisconsin, USA
- UW Carbone Cancer Center, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
2
|
Kim YH, Lee DH, Seo HS, Eun SH, Lee DS, Choi YK, Lee SH, Kim TY. Genome-based taxonomic identification and safety assessment of an Enterococcus strain isolated from a homemade dairy product. Int Microbiol 2024; 27:1513-1525. [PMID: 38466360 DOI: 10.1007/s10123-024-00496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to explore the taxonomic identification and evaluate the safety of a bacterium, Enterococcus lactis IDCC 2105, isolated from homemade cheese in Korea, using whole genome sequence (WGS) analysis. It sought to identify the species level of this Enterococcus spp., assess its antibiotic resistance, and evaluate its virulence potential. WGS analysis confirmed the bacterial strain IDCC 2105 as E. lactis and identified genes responsible for resistance to erythromycin and clindamycin, specifically msrC, and eatAv, which are chromosomally located, indicating a minimal risk for horizontal gene transfer. The absence of plasmids in E. lactis IDCC 2105 further diminishes the likelihood of resistance gene dissemination. Additionally, our investigation into seven virulence factors, including hemolysis, platelet aggregation, biofilm formation, hyaluronidase, gelatinase, ammonia production, and β-glucuronidase activity, revealed no detectable virulence traits. Although bioinformatic analysis suggested the presence of collagen adhesion genes acm and scm, these were not corroborated by phenotypic virulence assays. Based on these findings, E. lactis IDCC 2105 presents as a safe strain for potential applications, contributing valuable information on its taxonomy, antibiotic resistance profile, and lack of virulence factors, supporting its use in food products.
Collapse
Affiliation(s)
- Young-Hoo Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | | | - Han Sol Seo
- Yunovia Co., Ltd, Hwaseong, 18449, South Korea
| | | | - Do Sup Lee
- Yunovia Co., Ltd, Hwaseong, 18449, South Korea
| | | | - Sang Hyun Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Tae-Yoon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
3
|
Sachs D, Jakob R, Restivo G, Hafner J, Lindenblatt N, Ehret AE, Mazza E. A quadriphasic mechanical model of the human dermis. Biomech Model Mechanobiol 2024; 23:1121-1136. [PMID: 38489079 DOI: 10.1007/s10237-024-01827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
The present study investigates the multiphasic nature of the mechanical behavior of human dermis. Motivated by experimental observations and by consideration of its composition, a quadriphasic model of the dermis is proposed, distinguishing solid matrix components, interstitial fluid and charged constituents moving within the fluid, i.e., anions and cations. Compression and tensile experiments with and without change of osmolarity of the bath are performed to characterize the chemo-mechanical coupling in the dermis. Model parameters are determined through inverse analysis. The computations predict a dominant role of the permeability in the determination of the temporal evolution of the mechanical response of the tissue. In line with the previous studies on other tissues, the analysis shows that an ideal model based on Donnan's equilibrium overestimates the osmotic pressure in skin for the case of very dilute solutions. The quadriphasic model is applied to predict changes in dermal cell environment and therefore alterations in what is called the "mechanome," associated with skin stretch. The simulations indicate that skin deformation causes a variation in several local variables, including in particular the electric field associated with a deformation-induced non-homogeneous distribution of fixed charges.
Collapse
Affiliation(s)
- David Sachs
- Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland.
| | - Raphael Jakob
- Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zürich, Zurich, Switzerland
| | - Jürg Hafner
- Department of Dermatology, University Hospital Zürich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zürich, Zurich, Switzerland
| | - Alexander E Ehret
- Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland.
- Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, Switzerland.
| |
Collapse
|
4
|
Ismayilzada N, Tarar C, Dabbagh SR, Tokyay BK, Dilmani SA, Sokullu E, Abaci HE, Tasoglu S. Skin-on-a-chip technologies towards clinical translation and commercialization. Biofabrication 2024; 16:042001. [PMID: 38964314 DOI: 10.1088/1758-5090/ad5f55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Skin is the largest organ of the human body which plays a critical role in thermoregulation, metabolism (e.g. synthesis of vitamin D), and protection of other organs from environmental threats, such as infections, microorganisms, ultraviolet radiation, and physical damage. Even though skin diseases are considered to be less fatal, the ubiquity of skin diseases and irritation caused by them highlights the importance of skin studies. Furthermore, skin is a promising means for transdermal drug delivery, which requires a thorough understanding of human skin structure. Current animal andin vitrotwo/three-dimensional skin models provide a platform for disease studies and drug testing, whereas they face challenges in the complete recapitulation of the dynamic and complex structure of actual skin tissue. One of the most effective methods for testing pharmaceuticals and modeling skin diseases are skin-on-a-chip (SoC) platforms. SoC technologies provide a non-invasive approach for examining 3D skin layers and artificially creating disease models in order to develop diagnostic or therapeutic methods. In addition, SoC models enable dynamic perfusion of culture medium with nutrients and facilitate the continuous removal of cellular waste to further mimic thein vivocondition. Here, the article reviews the most recent advances in the design and applications of SoC platforms for disease modeling as well as the analysis of drugs and cosmetics. By examining the contributions of different patents to the physiological relevance of skin models, the review underscores the significant shift towards more ethical and efficient alternatives to animal testing. Furthermore, it explores the market dynamics ofin vitroskin models and organ-on-a-chip platforms, discussing the impact of legislative changes and market demand on the development and adoption of these advanced research tools. This article also identifies the existing obstacles that hinder the advancement of SoC platforms, proposing directions for future improvements, particularly focusing on the journey towards clinical adoption.
Collapse
Affiliation(s)
- Nilufar Ismayilzada
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Ceren Tarar
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Begüm Kübra Tokyay
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Sara Asghari Dilmani
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Emel Sokullu
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University, New York City, NY, United States of America
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
5
|
Mikimoto D, Mori M, Toyoda A, Yo K, Oda H, Takeuchi S. Culture insert device with perfusable microchannels enhances in vitroskin model development and barrier function assessment. Biofabrication 2024; 16:035006. [PMID: 38569494 DOI: 10.1088/1758-5090/ad3a15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
The ever-stricter regulations on animal experiments in the field of cosmetic testing have prompted a surge in skin-related research with a special focus on recapitulation of thein vivoskin structurein vitro. In vitrohuman skin models are seen as an important tool for skin research, which in recent years attracted a lot of attention and effort, with researchers moving from the simplest 2-layered models (dermis with epidermis) to models that incorporate other vital skin structures such as hypodermis, vascular structures, and skin appendages. In this study, we designed a microfluidic device with a reverse flange-shaped anchor that allows culturing of anin vitroskin model in a conventional 6-well plate and assessing its barrier function without transferring the skin model to another device or using additional contraptions. Perfusion of the skin model through vascular-like channels improved the morphogenesis of the epidermis compared with skin models cultured under static conditions. This also allowed us to assess the percutaneous penetration of the tested caffeine permeation and vascular absorption, which is one of the key metrics for systemic drug exposure evaluation.
Collapse
Affiliation(s)
| | - Masahito Mori
- Research Center for Beauty and Health Care Product Development Department, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Akemi Toyoda
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Kazuyuki Yo
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | | | | |
Collapse
|
6
|
Fernandez-Carro E, Remacha AR, Orera I, Lattanzio G, Garcia-Barrios A, del Barrio J, Alcaine C, Ciriza J. Human Dermal Decellularized ECM Hydrogels as Scaffolds for 3D In Vitro Skin Aging Models. Int J Mol Sci 2024; 25:4020. [PMID: 38612828 PMCID: PMC11011913 DOI: 10.3390/ijms25074020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Biomaterials play an important role in the development of advancing three dimensional (3D) in vitro skin models, providing valuable insights for drug testing and tissue-specific modeling. Commercial materials, such as collagen, fibrin or alginate, have been widely used in skin modeling. However, they do not adequately represent the molecular complexity of skin components. On this regard, the development of novel biomaterials that represent the complexity of tissues is becoming more important in the design of advanced models. In this study, we have obtained aged human decellularized dermal extracellular matrix (dECM) hydrogels extracted from cadaveric human skin and demonstrated their potential as scaffold for advanced skin models. These dECM hydrogels effectively reproduce the complex fibrillar structure of other common scaffolds, exhibiting similar mechanical properties, while preserving the molecular composition of the native dermis. It is worth noting that fibroblasts embedded within human dECM hydrogels exhibit a behavior more representative of natural skin compared to commercial collagen hydrogels, where uncontrolled cell proliferation leads to material shrinkage. The described human dECM hydrogel is able to be used as scaffold for dermal fibroblasts in a skin aging-on-a-chip model. These results demonstrate that dECM hydrogels preserve essential components of the native human dermis making them a suitable option for the development of 3D skin aging models that accurately represent the cellular microenvironment, improving existing in vitro skin models and allowing for more reliable results in dermatopathological studies.
Collapse
Affiliation(s)
- Estibaliz Fernandez-Carro
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Ana Rosa Remacha
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
| | - Irene Orera
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; (I.O.)
| | - Giuseppe Lattanzio
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; (I.O.)
| | - Alberto Garcia-Barrios
- Department of Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Jesús del Barrio
- Departamento de Química Orgánica, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Clara Alcaine
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
- Department of Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
7
|
Steiglitz BM, Maher RJ, Gratz KR, Schlosser S, Foster J, Pradhan-Bhatt S, Comer AR, Allen-Hoffmann BL. The viable bioengineered allogeneic cellularized construct StrataGraft® synthesizes, deposits, and organizes human extracellular matrix proteins into tissue type-specific structures and secretes soluble factors associated with wound healing. Burns 2024; 50:424-432. [PMID: 38087659 DOI: 10.1016/j.burns.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND StrataGraft® (allogeneic cultured keratinocytes and dermal fibroblasts in murine collagen-dsat) is an FDA-approved viable bioengineered allogeneic cellularized construct for adult patients with deep partial-thickness burns requiring surgery. We characterized the structural and functional properties of StrataGraft to improve product understanding by evaluating extracellular matrix (ECM) molecule distribution and secreted protein factor expression in vitro. METHODS ECM protein expression was determined using indirect immunofluorescence on construct cross sections using commercial antibodies against collagen III, IV, VI, laminin-332, and decorin. Human collagen I expression was verified by enzyme-linked immunosorbent assay (ELISA) for collagen I C-terminal propeptide. Soluble protein factor secretion was quantified by multiplex biomarker assays and singleplex ELISA in conditioned media from meshed constructs. RESULTS StrataGraft cellular components produced collagen I, collagen III, collagen VI, and decorin in patterns indicating an organized ECM. Distributions of collagen IV and laminin-332 indicated formation of basement membranes and dermal-epidermal junctions. Soluble protein factors were observed in the pg/cm2/h range from 1 h to the experiment end at 168 h. CONCLUSIONS The organization of the ECM proteins was like human skin and the viable cellular components provided sustained secretion of soluble wound healing factors, making StrataGraft an attractive option for treating severe burns.
Collapse
Affiliation(s)
| | | | | | | | - Jenna Foster
- Mallinckrodt Pharmaceuticals, Bridgewater, NJ, USA
| | | | - Allen R Comer
- Stratatech, a Mallinckrodt Company, Madison, WI, USA
| | - B Lynn Allen-Hoffmann
- Department of Pathology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
8
|
Simion L, Petrescu I, Chitoran E, Rotaru V, Cirimbei C, Ionescu SO, Stefan DC, Luca D, Stanculeanu DL, Gheorghe AS, Doran H, Dogaru IM. Breast Reconstruction following Mastectomy for Breast Cancer or Prophylactic Mastectomy: Therapeutic Options and Results. Life (Basel) 2024; 14:138. [PMID: 38255753 PMCID: PMC10821438 DOI: 10.3390/life14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Importance of problem: Breast cancer accounted for 685,000 deaths globally in 2020, and half of all cases occur in women with no specific risk factor besides gender and age group. During the last four decades, we have seen a 40% reduction in age-standardized breast cancer mortality and have also witnessed a reduction in the medium age at diagnosis, which in turn means that the number of mastectomies performed for younger women increased, raising the need for adequate breast reconstructive surgery. Advances in oncological treatment have made it possible to limit the extent of what represents radical surgery for breast cancer, yet in the past decade, we have seen a marked trend toward mastectomies in breast-conserving surgery-eligible patients. Prophylactic mastectomies have also registered an upward trend. This trend together with new uses for breast reconstruction like chest feminization in transgender patients has increased the need for breast reconstruction surgery. (2) Purpose: The purpose of this study is to analyze the types of reconstructive procedures, their indications, their limitations, their functional results, and their safety profiles when used during the integrated treatment plan of the oncologic patient. (3) Methods: We conducted an extensive literature review of the main reconstructive techniques, especially the autologous procedures; summarized the findings; and presented a few cases from our own experience for exemplification of the usage of breast reconstruction in oncologic patients. (4) Conclusions: Breast reconstruction has become a necessary step in the treatment of most breast cancers, and many reconstructive techniques are now routinely practiced. Microsurgical techniques are considered the "gold standard", but they are not accessible to all services, from a technical or financial point of view, so pediculated flaps remain the safe and reliable option, along with alloplastic procedures, to improve the quality of life of these patients.
Collapse
Affiliation(s)
- Laurentiu Simion
- Department of General Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.S.); (V.R.); (S.-O.I.); (D.L.); (H.D.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | | | - Elena Chitoran
- Department of General Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.S.); (V.R.); (S.-O.I.); (D.L.); (H.D.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Vlad Rotaru
- Department of General Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.S.); (V.R.); (S.-O.I.); (D.L.); (H.D.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Ciprian Cirimbei
- Department of General Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.S.); (V.R.); (S.-O.I.); (D.L.); (H.D.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Sinziana-Octavia Ionescu
- Department of General Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.S.); (V.R.); (S.-O.I.); (D.L.); (H.D.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Daniela-Cristina Stefan
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.-C.S.); (D.L.S.); (A.S.G.)
| | - Dan Luca
- Department of General Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.S.); (V.R.); (S.-O.I.); (D.L.); (H.D.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Dana Lucia Stanculeanu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.-C.S.); (D.L.S.); (A.S.G.)
- Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Adelina Silvana Gheorghe
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.-C.S.); (D.L.S.); (A.S.G.)
- Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Horia Doran
- Department of General Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.S.); (V.R.); (S.-O.I.); (D.L.); (H.D.)
- Surgical Clinic I, Clinical Hospital Dr. I. Cantacuzino, 030167 Bucharest, Romania
| | - Ioana Mihaela Dogaru
- Department of Plastic Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Plastic Surgery, Emergency University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
9
|
Himmelsbach S, Steinberg T, Tomakidi P, Garcia-Käufer M, Hellwig E, Polydorou O. Effect of dental composite dust on human gingival keratinocytes. Dent Mater 2023; 39:994-1003. [PMID: 37730495 DOI: 10.1016/j.dental.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE The aim was to investigate the effect of particles released during grinding of dental composites on human gingival keratinocytes (HGK). METHODS Specimens from Filtek™ Supreme XTE and ceram.x® universal were prepared and ground to dust. The dust was filtered (≤ 5 µm) and the particle size distribution was examined using NANO-flex®-180° dynamic light scattering (DLS). Suspensions at five concentrations (3, 10, 30, 100 and 300 µg/mL) were prepared using keratinocyte growth medium (KGM). These suspensions, as well as a positive (CuO) and a negative control (KGM) were added to HGK. The cells treated with Filtek™ Supreme XTE suspensions were analyzed by real-time monitoring using RTCA iCELLigence™. In addition, light and scanning electron microscopic images of the exposed cells were taken. Indirect immunofluorescence staining was performed to detect the extracellular matrix protein fibronectin. RESULTS In distilled water, DLS showed similar particles' range (171.9 nm- 2.7 µm) for both composites. In saliva, larger particles were detected (Filtek™ Supreme XTE: 243 nm-6,5 µm; ceram.x® universal: 204 nm- 4,6 µm). iCELLigence™ revealed similar results of cell growth parameters for HGK incubated with composite dust (≤ 5 µm) at different concentrations. The microscopic images indicated unaltered cell structures and formation of large agglomerates with high particle concentration (> 100 µg/mL). Exposure to composite dust resulted in upregulation of fibronectin expression. SIGNIFICANCE Grinding of dental composite materials generates dust particles of different sizes. The particle size distribution seems to be more influenced by the suspending medium than the material itself. While cell growth of HGK seem not to be affected by the particles, an upregulation of fibronectin in the intercellular space concomitant by increasing particle concentration may indicate an increase of cell migration/mobility.
Collapse
Affiliation(s)
- Sabrina Himmelsbach
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; Department of Oral Biotechnology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Manuel Garcia-Käufer
- Department of Environmental Health Sciences and Hygiene, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 115B, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Olga Polydorou
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| |
Collapse
|
10
|
Gawronska-Kozak B, Kopcewicz M, Machcinska-Zielinska S, Walendzik K, Wisniewska J, Drukała J, Wasniewski T, Rutkowska J, Malinowski P, Pulinski M. Gender Differences in Post-Operative Human Skin. Biomedicines 2023; 11:2653. [PMID: 37893027 PMCID: PMC10604277 DOI: 10.3390/biomedicines11102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Although the impact of age, gender, and obesity on the skin wound healing process has been extensively studied, the data related to gender differences in aspects of skin scarring are limited. The present study performed on abdominal human intact and scar skin focused on determining gender differences in extracellular matrix (ECM) composition, dermal white adipose tissue (dWAT) accumulation, and Foxn1 expression as a part of the skin response to injury. Scar skin of men showed highly increased levels of COLLAGEN 1A1, COLLAGEN 6A3, and ELASTIN mRNA expression, the accumulation of thick collagen I-positive fibers, and the accumulation of α-SMA-positive cells in comparison to the scar skin of women. However, post-injured skin of women displayed an increase (in comparison to post-injured men's skin) in collagen III accumulation in the scar area. On the contrary, women's skin samples showed a tendency towards higher levels of adipogenic-related genes (PPARγ, FABP4, LEPTIN) than men, regardless of intact or scar skin. Intact skin of women showed six times higher levels of LEPTIN mRNA expression in comparison to men intact (p < 0.05), men post-injured (p < 0.05), or women post-injured scar (p < 0.05) skin. Higher levels of FOXN1 mRNA and protein were also detected in women than in men's skin. In conclusion, the present data confirm and extend (dWAT layer) the data related to the presence of differences between men and women in the skin, particularly in scar tissues, which may contribute to the more effective and gender-tailored improvement of skin care interventions.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Sylwia Machcinska-Zielinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Joanna Wisniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Justyna Drukała
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Tomasz Wasniewski
- Department of Obstetrics, Perinatology and Gynecology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Joanna Rutkowska
- Department of Internal Medicine, Clinic of Endocrinology, Diabetology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Piotr Malinowski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Michał Pulinski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
11
|
Faghihi F, Larijani G, Mohebbi L, Ketabforoush AHME, Amini N, Mardasi KG. Efficacy of fibroblast transplantation in the healing of cutaneous leishmaniasis scar: A case report. SAGE Open Med Case Rep 2023; 11:2050313X231181171. [PMID: 37342423 PMCID: PMC10278424 DOI: 10.1177/2050313x231181171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/01/2023] [Indexed: 06/22/2023] Open
Abstract
Autologous fibroblast transplantation has been proven to be a promising method in wound healing with no side effects. This is the first study aimed to determine the efficacy and safety of autologous fibroblast cell injection to the atrophic scar caused by cutaneous leishmaniasis as an endemic disease in many middle-eastern countries. It causes chronic skin lesions and permanently disfiguring scars. Autologous fibroblasts were obtained from the patient's ear skin and were injected intradermally twice at 2-month intervals. Outcomes were measured using ultrasonography, VisioFace, and Cutometer. No adverse reaction was observed. The results showed improvements in epidermal thickness and density, melanin level, and skin lightening. Moreover, the skin elasticity in the scar area increased after the second transplantation. No improvement was observed in dermal thickness and density. A longer follow-up with more patients is recommended to investigate the effectiveness of fibroblast transplantation better.
Collapse
Affiliation(s)
- Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Larijani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Lena Mohebbi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
12
|
Khoury J, Zhang T, Earle DB, Forrest ML. Accelerated neutral atom beam (ANAB) and gas clustered ion beam (GCIB) treatment of implantable device polymers leads to decreased bacterial attachment in vitro and decreased inflammation in vivo. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
13
|
Amano S, Yoshikawa T, Ito C, Mabuchi I, Kikuchi K, Ooguri M, Yasuda C. Prediction and association analyses of skin phenotypes in Japanese females using genetic, environmental, and physical features. Skin Res Technol 2023; 29:e13231. [PMID: 36437544 PMCID: PMC9838785 DOI: 10.1111/srt.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Skin characteristics show great variation from person to person and are affected by multiple factors, including genetic, environmental, and physical factors, but details of the involvement and contributions of these factors remain unclear. OBJECTIVES We aimed to characterize genetic, environmental, and physical factors affecting 16 skin features by developing models to predict personal skin characteristics. METHODS We analyzed the associations of skin phenotypes with genetic, environmental, and physical features in 1472 Japanese females aged 20-80 years. We focused on 16 skin characteristics, including melanin, brightness/lightness, yellowness, pigmented spots, wrinkles, resilience, moisture, barrier function, texture, and sebum amount. As genetic factors, we selected 74 single-nucleotide polymorphisms of genes related to skin color, vitamin level, hormones, circulation, extracellular matrix (ECM) components and ECM-degrading enzymes, inflammation, and antioxidants. Histories of ultraviolet (UV) exposure and smoking as environmental factors and age, height, and weight as physical factors were acquired by means of a questionnaire. RESULTS A linear association with age was prominent for increase in the area of crow's feet, increase in number of pigmented spots, decrease in forehead sebum, and increase in VISIA wrinkle parameters. Associations were analyzed by constructing linear regression models for skin feature changes and logistic regression models to predict whether subjects show lower or higher skin measurement values in the same age groups. Multiple genetic factors, history of UV exposure and smoking, and body mass index were statistically selected for each skin characteristic. The most important association found for skin spots, such as lentigines and wrinkles, was adolescent sun exposure. CONCLUSION Genetic, environmental, and physical factors associated with interindividual differences of the selected skin features were identified. The developed models should be useful to predict the skin characteristics of individuals and their age-related changes.
Collapse
Affiliation(s)
- Satoshi Amano
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| | - Tatsuya Yoshikawa
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| | - Chiaki Ito
- DYNACOM Co. Ltd., World Business Garden, Mihama-ku, Chiba, Japan
| | - Ikumi Mabuchi
- DYNACOM Co. Ltd., World Business Garden, Mihama-ku, Chiba, Japan
| | - Kumiko Kikuchi
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| | - Motoki Ooguri
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| | - Chie Yasuda
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| |
Collapse
|
14
|
Jeon EY, Sorrells L, Abaci HE. Biomaterials and bioengineering to guide tissue morphogenesis in epithelial organoids. Front Bioeng Biotechnol 2022; 10:1038277. [PMID: 36466337 PMCID: PMC9712807 DOI: 10.3389/fbioe.2022.1038277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 09/27/2024] Open
Abstract
Organoids are self-organized and miniatured in vitro models of organs and recapitulate key aspects of organ architecture and function, leading to rapid progress in understanding tissue development and disease. However, current organoid culture systems lack accurate spatiotemporal control over biochemical and physical cues that occur during in vivo organogenesis and fail to recapitulate the complexity of organ development, causing the generation of immature organoids partially resembling tissues in vivo. Recent advances in biomaterials and microengineering technologies paved the way for better recapitulation of organ morphogenesis and the generation of anatomically-relevant organoids. For this, understanding the native ECM components and organization of a target organ is essential in providing rational design of extracellular scaffolds that support organoid growth and maturation similarly to the in vivo microenvironment. In this review, we focus on epithelial organoids that resemble the spatial distinct structure and function of organs lined with epithelial cells including intestine, skin, lung, liver, and kidney. We first discuss the ECM diversity and organization found in epithelial organs and provide an overview of developing hydrogel systems for epithelial organoid culture emphasizing their key parameters to determine cell fates. Finally, we review the recent advances in tissue engineering and microfabrication technologies including bioprinting and microfluidics to overcome the limitations of traditional organoid cultures. The integration of engineering methodologies with the organoid systems provides a novel approach for instructing organoid morphogenesis via precise spatiotemporal modulation of bioactive cues and the establishment of high-throughput screening platforms.
Collapse
Affiliation(s)
- Eun Young Jeon
- Dermatology Department, Columbia University Medical Center, New York, NY, United States
| | - Leila Sorrells
- Biomedical Engineering Department, Columbia University, New York, New York, United States
| | - Hasan Erbil Abaci
- Dermatology Department, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
15
|
The Role of the Extracellular Matrix (ECM) in Wound Healing: A Review. Biomimetics (Basel) 2022; 7:biomimetics7030087. [PMID: 35892357 PMCID: PMC9326521 DOI: 10.3390/biomimetics7030087] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix (ECM) is a 3-dimensional structure and an essential component in all human tissues. It is comprised of varying proteins, including collagens, elastin, and smaller quantities of structural proteins. Studies have demonstrated the ECM aids in cellular adherence, tissue anchoring, cellular signaling, and recruitment of cells. During times of integumentary injury or damage, either acute or chronic, the ECM is damaged. Through a series of overlapping events called the wound healing phases—hemostasis, inflammation, proliferation, and remodeling—the ECM is synthesized and ideally returned to its native state. This article synthesizes current and historical literature to demonstrate the involvement of the ECM in the varying phases of the wound healing cascade.
Collapse
|
16
|
Hu W, Feng P, Zhang M, Tian T, Wang S, Zhao B, Li Y, Wang S, Wu C. Endotoxins Induced ECM-Receptor Interaction Pathway Signal Effect on the Function of MUC2 in Caco2/HT29 Co-Culture Cells. Front Immunol 2022; 13:916933. [PMID: 35757703 PMCID: PMC9226665 DOI: 10.3389/fimmu.2022.916933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Endotoxins are toxic substances that widely exist in the environment and can enter the intestine with food and other substances. Intestinal epithelial cells are protected by a mucus layer that contains MUC2 as its main structural component. However, a detailed understanding of the mechanisms involved in the function of the mucus barrier in endotoxin penetration is lacking. Here, we established the most suitable proportion of Caco-2/HT-29 co-culture cells as a powerful tool to evaluate the intestinal mucus layer. Our findings significantly advance current knowledge as focal adhesion and ECM-receptor interaction were identified as the two most significantly implicated pathways in MUC2 small interfering RNA (siRNA)-transfected Caco-2/HT-29 co-culture cells after 24 h of LPS stimulation. When the mucus layer was not intact, LPS was found to damage the tight junctions of Caco-2/HT29 co-cultured cells. Furthermore, LPS was demonstrated to inhibit the integrin-mediated focal adhesion structure and damage the matrix network structure of the extracellular and actin microfilament skeletons. Ultimately, LPS inhibited the interactive communication between the extracellular matrix and the cytoskeleton for 24 h in the siMUC2 group compared with the LPS(+) and LPS(-) groups. Overall, we recognized the potential of MUC2 as a tool for barrier function in several intestinal bacterial diseases.
Collapse
Affiliation(s)
- Wenxiang Hu
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Ping Feng
- College of Life Sciences, Yulin University, Yulin, China
| | - Mingming Zhang
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Tian Tian
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Shengxiang Wang
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Baoyu Zhao
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Yajie Li
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Shuo Wang
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Chenchen Wu
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| |
Collapse
|
17
|
Evaluation of the Efficacy of an Elastin-Inducing Composition Containing Amino Acids, Copper, and Hyaluronic Acid: Results of an Open Single-Center Clinical Trial Study. COSMETICS 2022. [DOI: 10.3390/cosmetics9030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The degradation and reduction in number of extracellular matrix (ECM) proteins are representative biological changes associated with decreased elasticity resulting in various skin problems. Elastin is an ECM protein that plays an important role in maintaining the skin’s structure. It is highly elastic and helps the tissue regain its shape after stretching or contracting. We aimed to evaluate the efficacy of the product containing amino acids, copper, and hyaluronic acid on the improvement of skin aging. A small open single-center study involved four treatments performed on five subjects at 1-week intervals with Elastic Lab®. As a result, eye wrinkles, skin moisture, inner elasticity, thickness, and density were improved 1 week after the last treatment in all subjects compared to the baseline. Among all evaluation items, skin elasticity, thickness, and density showed significant increases. Therefore, by using a composition containing amino acids, minerals, and hyaluronic acid, the biosynthesis of elastin and collagen in the skin increases, restoring skin elasticity and improving various skin problems.
Collapse
|
18
|
Mirastschijski U, Jiang D, Rinkevich Y. Genital Wound Repair and Scarring. Med Sci (Basel) 2022; 10:23. [PMID: 35466231 PMCID: PMC9036227 DOI: 10.3390/medsci10020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Skin wound repair has been the central focus of clinicians and scientists for almost a century. Insights into acute and chronic wound healing as well as scarring have influenced and ameliorated wound treatment. Our knowledge of normal skin notwithstanding, little is known of acute and chronic wound repair of genital skin. In contrast to extra-genital skin, hypertrophic scarring is uncommon in genital tissue. Chronic wound healing disorders of the genitals are mostly confined to mucosal tissue diseases. This article will provide insights into the differences between extra-genital and genital skin with regard to anatomy, physiology and aberrant wound repair. In light of fundamental differences between genital and normal skin, it is recommended that reconstructive and esthetic surgery should exclusively be performed by specialists with profound expertise in genital wound repair.
Collapse
Affiliation(s)
- Ursula Mirastschijski
- Mira-Beau Gender Esthetics Berlin, 10777 Berlin, Germany
- Wound Repair Unit, CBIB, Department of Biology and Biochemistry, University of Bremen, 28359 Bremen, Germany
| | - Dongsheng Jiang
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 81377 München, Germany; (D.J.); (Y.R.)
| | - Yuval Rinkevich
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 81377 München, Germany; (D.J.); (Y.R.)
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377 München, Germany
| |
Collapse
|
19
|
PARK JH, SHIN JY, CHO BO, HAO S, WANG F, LIM YT, SHIN DJ, JANG SI. Pectinase halophyte complex extract protects hairless mice skin damaged by UV-irradiation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.72121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - Feng WANG
- Jeonju University, Republic of Korea
| | - Yi Teak LIM
- Jinandang Agricultural Corp., Republic of Korea
| | - Da Jeong SHIN
- Research Institute, Ato Q&A Co., LTD, Republic of Korea
| | - Seon Il JANG
- Jeonju University, Republic of Korea; Jeonju University, Republic of Korea
| |
Collapse
|
20
|
Gupta S, Dutta P, Acharya V, Prasad P, Roy A, Bit A. Accelerating skin barrier repair using novel bioactive magnesium-doped nanofibers of non-mulberry silk fibroin during wound healing. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211061737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Novel magnesium doped non-mulberry silk fibroin nanofibers with ability to enhance skin barrier function were successfully fabricated using electrospinning technique for wound healing applications. Magnesium nanoparticles incorporated in the electrospun nanofibers releases Mg2+ ions at the site of implementation. The effect of Mg2+ is of considerable concern in wound healing due to its skin barrier repair ability and its role in blood coagulation. The physicochemical characterization of the scaffold was investigated by determining the morphology and secondary structure confirmation. The effects of Mg2+ ions in silk fibroin microenvironment have been evaluated using SEM, XRD, and FTIR to confirm the incorporation of magnesium in the film. The aim of this study is to see the effect of doped Mg on the structural, physical, and biological properties of non-mulberry silk fibroin (NSF) film. The magnesium doped nanofibrous film exhibited enhanced mechanical property, satisfactory blood clotting ability, and good in vitro degradability. This silk fibroin-based film mimicking extracellular matrix for skin regeneration were constructed using electrospinning technique. The wound healing efficiency of prepared nanofibers were evaluated in full-thickness wound models of rat. The Mg doped silk fibroin film exhibited faster wound healing activity (14 days) among all experimental group. The study indicates the potential of magnesium-doped silk /PVA film as skin substitute film.
Collapse
Affiliation(s)
- Sharda Gupta
- National Institute of Technology Raipur, Raipur, India
| | - Pallab Dutta
- Indian Institute of Engineering Science and Technology, Shibpur, India
- National Institute of Pharmaceutical Education and Research Kolkata, India
| | - Veena Acharya
- Indian Institute of Engineering Science and Technology, Shibpur, India
| | | | - Amit Roy
- Columbia Institute of Pharmacy, Raipur, India
| | - Arindam Bit
- National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
21
|
Hosseini M, Shafiee A. Engineering Bioactive Scaffolds for Skin Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101384. [PMID: 34313003 DOI: 10.1002/smll.202101384] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Indexed: 06/13/2023]
Abstract
Large skin wounds pose a major clinical challenge. Scarcity of donor site and postsurgical scarring contribute to the incomplete or partial loss of function and aesthetic concerns in skin wound patients. Currently, a wide variety of skin grafts are being applied in clinical settings. Scaffolds are used to overcome the issues related to the misaligned architecture of the repaired skin tissues. The current review summarizes the contribution of biomaterials to wound healing and skin regeneration and addresses the existing limitations in skin grafting. Then, the clinically approved biologic and synthetic skin substitutes are extensively reviewed. Next, the techniques for modification of skin grafts aiming for enhanced tissue regeneration are outlined, and a summary of different growth factor delivery systems using biomaterials is presented. Considering the significant progress in biomaterial science and manufacturing technologies, the idea of biomaterial-based skin grafts with the ability for scarless wound healing and reconstructing full skin organ is more achievable than ever.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
22
|
Kornmuller A, Flynn LE. Development and characterization of matrix-derived microcarriers from decellularized tissues using electrospraying techniques. J Biomed Mater Res A 2021; 110:559-575. [PMID: 34581474 DOI: 10.1002/jbm.a.37306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022]
Abstract
Stirred bioreactor systems integrating microcarriers represent a promising approach for therapeutic cell manufacturing. While a variety of microcarriers are commercially available, current options do not integrate the tissue-specific composition of the extracellular matrix (ECM), which can play critical roles in directing cell function. The current study sought to generate microcarriers comprised exclusively of ECM from multiple tissue sources. More specifically, porcine decellularized dermis, porcine decellularized myocardium, and human decellularized adipose tissue were digested with α-amylase to obtain ECM suspensions that could be electrosprayed into liquid nitrogen to generate 3D microcarriers that were stable over a range of ECM concentrations without the need for chemical crosslinking or other additives. Characterization studies confirmed that all three microcarrier types had similar soft and compliant mechanical properties and were of a similar size range, but that their composition varied depending on the native tissue source. In vivo testing in immunocompetent mice revealed that the microcarriers integrated into the host tissues, supporting the infiltration of host cells including macrophages and endothelial cells at 2 weeks post-implantation. In vitro cell culture studies validated that the novel microcarriers supported the attachment of tissue-specific stromal cell populations under dynamic culture conditions within spinner flasks, with a significant increase in live cell numbers observed over 1 week on the dermal- and adipose-derived microcarriers. Overall, the findings demonstrate the versatility of the electrospraying methods and support the further development of the microcarriers as cell culture and delivery platforms.
Collapse
Affiliation(s)
- Anna Kornmuller
- School of Biomedical Engineering, Amit Chakma Engineering Building, The University of Western Ontario, London, Ontario, Canada
| | - Lauren E Flynn
- School of Biomedical Engineering, Amit Chakma Engineering Building, The University of Western Ontario, London, Ontario, Canada.,Department of Chemical & Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
23
|
Pfisterer K, Shaw LE, Symmank D, Weninger W. The Extracellular Matrix in Skin Inflammation and Infection. Front Cell Dev Biol 2021; 9:682414. [PMID: 34295891 PMCID: PMC8290172 DOI: 10.3389/fcell.2021.682414] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is an integral component of all organs and plays a pivotal role in tissue homeostasis and repair. While the ECM was long thought to mostly have passive functions by providing physical stability to tissues, detailed characterization of its physical structure and biochemical properties have uncovered an unprecedented broad spectrum of functions. It is now clear that the ECM not only comprises the essential building block of tissues but also actively supports and maintains the dynamic interplay between tissue compartments as well as embedded resident and recruited inflammatory cells in response to pathologic stimuli. On the other hand, certain pathogens such as bacteria and viruses have evolved strategies that exploit ECM structures for infection of cells and tissues, and mutations in ECM proteins can give rise to a variety of genetic conditions. Here, we review the composition, structure and function of the ECM in cutaneous homeostasis, inflammatory skin diseases such as psoriasis and atopic dermatitis as well as infections as a paradigm for understanding its wider role in human health.
Collapse
Affiliation(s)
- Karin Pfisterer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
One-step electrospun scaffold of dual-sized gelatin/poly-3-hydroxybutyrate nano/microfibers for skin regeneration in diabetic wound. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111602. [PMID: 33321646 DOI: 10.1016/j.msec.2020.111602] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022]
Abstract
This work aimed to implement an electrospinning protocol that allows simultaneous production of micro- and nanofibers in a single scaffold to mimic the extracellular matrix (ECM) combining biodegradable polymers and proteins, and to evaluate its capability to manage diabetic wounds. Poly-3-hydroxybutyrate (PHB) and gelatin (Ge) were chosen to prepare micro- and nanofibers, respectively. Electrospinning conditions were optimized testing various polymer concentrations, voltages, and flow rates. One-step dual-size fibers were obtained from 8%w/v PHB in chloroform (microfibers, 1.25 ± 0.17 μm) and 30%w/v gelatin in acetic acid (75%w/v) (nanofibers, 0.20 ± 0.04 μm), at 0.5 mL/h and 25 kV. A chemical characterization, swelling, hydrophilicity of scaffolds made of PHB-microfibers, Ge-nanofibers and their combination (Ge-PHB) were evaluated before and after crosslinking with genipin. All scaffolds showed excellent fibroblasts viability and attachment after incubation for 1, 3, and 7 days, and low levels of hemolysis. In vivo wound healing was evaluated in diabetic rats for 21 days. Ge-containing scaffolds promoted faster healing. The wounds treated with the Ge-PHB scaffolds proved to be in a late proliferative stage showing higher content of hair follicles and sweat glands and lower content in fibroblast compared with the control wounds.
Collapse
|
25
|
Ngo HTT, Hwang E, Seo SA, Yang JE, Nguyen QTN, Do NQ, Yi TH. Mixture of enzyme-processed Panax ginseng and Gastrodia elata extract prevents UVB-induced decrease of procollagen type 1 and increase of MMP-1 and IL-6 in human dermal fibroblasts. Biosci Biotechnol Biochem 2020; 84:2327-2336. [PMID: 32698696 DOI: 10.1080/09168451.2020.1793657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
According to the previously described anti-photoaging effect of the enzyme-processed Panax ginseng extract and Gastrodia elata extract, we hypothesized that the combination of the two extracts would have superior effect to protect human skin from UVB radiation. Besides, the mixture of active components isolated from herbal extracts, ginsenoside F2, and α-gastrodin was investigated on the photo-protective capability. The expression of aging-related markers including matrix metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), and procollagen type 1 was evaluated using ELISA kits. It was reported that the herbal extract at a Panax ginseng extract to Gastrodia elata extract ratio of 1:10 (w/w) and the compound mixture with equal proportion of ginsenoside F2 and α-gastrodin exhibited significant inhibition of MMP-1 and IL-6 production, and marked upregulation of procollagen type 1 formation. Thus, the combination of either the enzyme-processed herbal extracts or their active components would enhance the properties of prevention and treatment of UVB-induced skin damage.
Collapse
Affiliation(s)
- Hien T T Ngo
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| | - Eunson Hwang
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| | - Seul A Seo
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| | - Jung-Eun Yang
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| | - Quynh T N Nguyen
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| | - Nhung Quynh Do
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| | - Tae Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| |
Collapse
|
26
|
Stone R, Jockheck-Clark AR, Natesan S, Rizzo JA, Wienandt NA, Scott LL, Larson DA, Wall JT, Holik MA, Shaffer LJ, Park N, Jovanovic A, Tetens S, Roche ED, Shi L, Christy RJ. Enzymatic Debridement of Porcine Burn Wounds via a Novel Protease, SN514. J Burn Care Res 2020; 41:1015-1028. [PMID: 32615590 DOI: 10.1093/jbcr/iraa111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Necrotic tissue generated by a thermal injury is typically removed via surgical debridement. However, this procedure is commonly associated with blood loss and the removal of viable healthy tissue. For some patients and contexts such as extended care on the battlefield, it would be preferable to remove devitalized tissue with a nonsurgical debridement agent. In this paper, a proprietary debridement gel (SN514) was evaluated for the ability to debride both deep-partial thickness (DPT) and full-thickness burn wounds using an established porcine thermal injury model. Burn wounds were treated daily for 4 days and visualized with both digital imaging and laser speckle imaging. Strip biopsies were taken at the end of the procedure. Histological analyses confirmed a greater debridement of the porcine burn wounds by SN514 than the vehicle-treated controls. Laser speckle imaging detected significant increases in the perfusion status after 4 days of SN514 treatment on DPT wounds. Importantly, histological analyses and clinical observations suggest that SN514 gel treatment did not damage uninjured tissue as no edema, erythema, or inflammation was observed on intact skin surrounding the treated wounds. A blinded evaluation of the digital images by a burn surgeon indicated that SN514 debrided more necrotic tissue than the control groups after 1, 2, and 3 days of treatment. Additionally, SN514 gel was evaluated using an in vitro burn model that used human discarded skin. Treatment of human burned tissue with SN514 gel resulted in greater than 80% weight reduction compared with untreated samples. Together, these data demonstrate that SN514 gel is capable of debriding necrotic tissue and suggest that SN514 gel could be a useful option for austere conditions, such as military multi-domain operations and prolonged field care scenarios.
Collapse
Affiliation(s)
- Randolph Stone
- Department of Burn and Soft Tissue Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Angela R Jockheck-Clark
- Department of Burn and Soft Tissue Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Shanmugasundaram Natesan
- Department of Burn and Soft Tissue Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Julie A Rizzo
- US Army Burn Center, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Nathan A Wienandt
- Comparative Pathology, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Laura L Scott
- Epidemiology and Biostatistics, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - David A Larson
- Department of Burn and Soft Tissue Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - John T Wall
- Department of Burn and Soft Tissue Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Michelle A Holik
- Department of Burn and Soft Tissue Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Lucy J Shaffer
- Department of Burn and Soft Tissue Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Nancy Park
- Department of Burn and Soft Tissue Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Aleksa Jovanovic
- US Army Burn Center, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Shannon Tetens
- Department of Biologics and Regenerative Medicine, Sam Houston, Texas
| | - Eric D Roche
- Department of Biologics and Regenerative Medicine, Sam Houston, Texas
| | - Lei Shi
- Department of Biologics and Regenerative Medicine, Sam Houston, Texas
| | - Robert J Christy
- Department of Burn and Soft Tissue Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| |
Collapse
|
27
|
Abstract
The prevalence of chronic wounds remains a concern for wound care providers. Additional therapies that promote wound healing continue to be on the forefront of wound care. Selecting treatment modalities should be based on current evidence and a critical analysis of that evidence. However, evidence in wound care in the form of randomized controlled trials is lacking. This article describes collagen, its use in wound care, and current evidence for review.
Collapse
|
28
|
Lotus seedpod-inspired hydrogels as an all-in-one platform for culture and delivery of stem cell spheroids. Biomaterials 2019; 225:119534. [DOI: 10.1016/j.biomaterials.2019.119534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 09/28/2019] [Indexed: 01/01/2023]
|
29
|
El-Domyati M, Moftah NH, Nasif GA, Ragaie MH, Ibrahim MR, Ameen SW. Amniotic fluid-derived mesenchymal stem cell products combined with microneedling for acne scars: A split-face clinical, histological, and histometric study. J Cosmet Dermatol 2019; 18:1300-1306. [PMID: 31173459 DOI: 10.1111/jocd.13039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Postacne scars are still a challenge in its management. Microneedling is a popular minimally invasive technique in treatment of such scars. However, the addition of topical stem cell products after microneedling is considered a new treatment regimen for these scars. OBJECTIVE To compare efficacy of amniotic fluid-derived mesenchymal stem cell-conditioned media (AF-MSC-CM) and microneedling vs microneedling alone in management of atrophic acne scars. METHODS Ten cases with atrophic postacne scars received five sessions of microneedling, with 2-week interval on both sides of the face. Then, AF-MSC-CM was topically applied to right side of the face after microneedling. Clinical examination with histopathological and computerized histometric analysis was done 1 month after the sessions. RESULTS There was significant increase in the improvement percentage of acne scars on right side (dermaroller and AF-MSC-CM) vs left side of face (dermaroller; P < 0.001). Histologically, improvement of character of collagen and elastic fibers was noticed, especially on right side. Meanwhile, significant increase in epidermal thickness on both sides of face was detected. CONCLUSION Amniotic fluid-derived mesenchymal stem cell-conditioned media combined with microneedling is more effective in management of atrophic postacne scars than microneedling alone.
Collapse
Affiliation(s)
- Moetaz El-Domyati
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Noha H Moftah
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Ghada A Nasif
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Maha H Ragaie
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Michel R Ibrahim
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Sameh W Ameen
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| |
Collapse
|
30
|
Juhl P, Vinderslev Iversen L, Karlsmark T, Asser Karsdal M, Bay-Jensen AC, Mogensen M, Siebuhr AS. Association of metabolites reflecting type III and VI collagen formation with modified Rodnan skin score in systemic sclerosis – a cross-sectional study. Biomarkers 2019; 24:373-378. [DOI: 10.1080/1354750x.2019.1587509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pernille Juhl
- Nordic Bioscience, Biomarker and Research, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tonny Karlsmark
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | | | | | - Mette Mogensen
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | | |
Collapse
|
31
|
Carboxytherapy Versus Skin Microneedling in Treatment of Atrophic Postacne Scars: A Comparative Clinical, Histopathological, and Histometrical Study. Dermatol Surg 2018; 44:1332-1341. [PMID: 29846342 DOI: 10.1097/dss.0000000000001560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Acne scarring has been a challenge to treat. Microneedling gained popularity in treatment of such scars. Meanwhile, carboxytherapy (CXT) is considered a novel treatment modality for acne scars. OBJECTIVE To evaluate efficacy of CXT versus microneedling in treatment of acne scars. METHODS AND MATERIALS Thirty-two patients with atrophic acne scars received 6 sessions of microneedling and CXT on right and left sides of face, respectively. Clinical evaluation with histopathological and computerized morphometric analysis was performed at 2 months after treatment. RESULTS After either microneedling or CXT, there was significant decrease of total acne scars and its 3 types separately (icepicks, boxcar, and rolling) (p ≤ .001). Comparing both sides of face, there was no significant difference regarding grading response and reduction percentage of total scars and its types (p > .05). Histopathologically, there was an improvement of character and organization of collagen and elastic fibers in addition to significant increase in epidermal thickness on both sides of face, with no significant difference between them (p > .05). CONCLUSION Both CXT and microneedling are equally effective, tolerable, safe, and noninvasive treatment modalities of atrophic acne scars. Similar histopathological changes were observed after both modalities, helping in better understanding their action.
Collapse
|
32
|
Juhl P, Bay-Jensen AC, Karsdal M, Siebuhr AS, Franchimont N, Chavez J. Serum biomarkers of collagen turnover as potential diagnostic tools in diffuse systemic sclerosis: A cross-sectional study. PLoS One 2018; 13:e0207324. [PMID: 30507931 PMCID: PMC6277093 DOI: 10.1371/journal.pone.0207324] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/29/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is characterized by excessive fibrosis throughout the body. This leads to the release of extracellular matrix (ECM) fragments into circulation, where they may be quantified as biomarkers. The objectives were to investigate levels of ECM turnover biomarkers and the diagnostic power of these. METHODS Diffuse SSc patients (n = 40) fulfilling the ACR/EULAR 2013 classification criteria and asymptomatic controls were included. Patients were divided into early (<2 years of symptoms; n = 20) and late (>10 years of symptoms; n = 20) diffuse SSc. Biomarkers of type I (C1M), III (C3A, C3M), IV (C4M), V (C5M) and VI (C6M) collagen degradation and type I (PRO-C1), II (PRO-C2), III (PRO-C3), IV (PRO-C4), V (PRO-C5) and VI (PRO-C6) collagen formation were measured in serum. Repeated measures ANOVA was used to test for differences in biomarker levels and the area under the receiver operating characteristic curve (AUC) was used to investigate the ability of the biomarkers to separate groups. RESULTS In early diffuse SSc, formation biomarkers of type III, IV, V and VI collagen were significantly increased compared to asymptomatic controls (p<0.0001). Moreover, in early diffuse SSc formation biomarkers of type III, V and VI collagen were significantly increased compared to late diffuse SSc (p = 0.0006, 0.003 and 0.004, respectively). Type I (p<0.0001), III (C3M: p = 0.001, and C3A: p = 0.02), IV (p<0.0001) and VI (p<0.0001) collagen degradation biomarkers significantly increased in early diffuse SSc compared to controls. C4M, C6M, PRO-C4, PRO-C5 and PRO-C6 had an AUC of >0.85 when assessing asymptomatic controls vs. diffuse SSc. Biomarkers of type VI collagen (PRO-C6 and C6M) turnover had the best separation with an AUC's of >0.90. CONCLUSION Formation biomarkers of ECM turnover were shown to be significantly different between asymptomatic controls and diffuse SSc. This pilot study suggest that serological biomarkers of the ECM turnover is potentially applicable in SSc.
Collapse
Affiliation(s)
- Pernille Juhl
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| | | | - Morten Karsdal
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | | | - Nathalie Franchimont
- Clinical Development, Biogen, Cambridge, Massachusetts, United States of America
| | - Juan Chavez
- Clinical Development, Biogen, Cambridge, Massachusetts, United States of America
| |
Collapse
|
33
|
Sujitha P, Kavitha S, Shakilanishi S, Babu NKC, Shanthi C. Enzymatic dehairing: A comprehensive review on the mechanistic aspects with emphasis on enzyme specificity. Int J Biol Macromol 2018; 118:168-179. [DOI: 10.1016/j.ijbiomac.2018.06.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
|
34
|
Varadaraj A, Magdaleno C, Mythreye K. Deoxycholate Fractionation of Fibronectin (FN) and Biotinylation Assay to Measure Recycled FN Fibrils in Epithelial Cells. Bio Protoc 2018; 8:e2972. [PMID: 30370316 DOI: 10.21769/bioprotoc.2972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Fibronectin (FN) is an extracellular matrix protein that is secreted by many cell types and binds predominantly to the cell surface receptor Integrin α5β1. Integrin α5β1 binding initiates the step-wise assembly of FN into fibrils, a process called fibrillogenesis. We and several others have demonstrated critical effects of fibrillogenesis on cell migration and metastasis. While immunostaining and microscopy methods help visualize FN incorporation into fibrils, with each fibril being at least 3 μm in length, the first study that developed a method to biochemically fractionate FN to quantify fibril incorporated FN was published by Jean Schwarzbauer's group in 1996. Our protocol was adapted from the original publication, and has been tested on multiple cell types including as shown here in MCF10A mammary epithelial and Caki-1 renal cancer epithelial cells. Using two detergent extractions, cellular FN is separated into detergent insoluble or fibril incorporated FN and soluble FN or unincorporated fractions. To determine whether fibrillogenesis utilizes a recycled pool of FN, we have used a Biotin labeled FN (FN-Biotin) recycling assay, that has been modified from a previous study. Using a combination of the recycling assay and deoxycholate fractionation methods, one can quantitatively demonstrate the extent of fibrillogenesis in cells under different experimental conditions and determine the source of FN for fibrillogenesis.
Collapse
Affiliation(s)
- Archana Varadaraj
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, USA
| | - Carina Magdaleno
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, USA
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, USA.,Department of Drug Chemistry and Biochemistry, University of South Carolina, Columbia, USA
| |
Collapse
|
35
|
Hsiao CT, Cheng HW, Huang CM, Li HR, Ou MH, Huang JR, Khoo KH, Yu HW, Chen YQ, Wang YK, Chiou A, Kuo JC. Fibronectin in cell adhesion and migration via N-glycosylation. Oncotarget 2017; 8:70653-70668. [PMID: 29050309 PMCID: PMC5642584 DOI: 10.18632/oncotarget.19969] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
Directed cell migration is an important step in effective wound healing and requires the dynamic control of the formation of cell-extracellular matrix interactions. Plasma fibronectin is an extracellular matrix glycoprotein present in blood plasma that plays crucial roles in modulating cellular adhesion and migration and thereby helping to mediate all steps of wound healing. In order to seek safe sources of plasma fibronectin for its practical use in wound dressing, we isolated fibronectin from human (homo) and porcine plasma and demonstrated that both have a similar ability as a suitable substrate for the stimulation of cell adhesion and for directing cell migration. In addition, we also defined the N-glycosylation sites and N-glycans present on homo and porcine plasma fibronectin. These N-glycosylation modifications of the plasma fibronectin synergistically support the integrin-mediated signals to bring about mediating cellular adhesion and directed cell migration. This study not only determines the important function of N-glycans in both homo and porcine plasma fibronectin-mediated cell adhesion and directed cell migration, but also reveals the potential applications of porcine plasma fibronectin if it was applied as a material for clinical wound healing and tissue repair.
Collapse
Affiliation(s)
- Cheng-Te Hsiao
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Hung-Wei Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chi-Ming Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Hao-Ru Li
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Meng-Hsin Ou
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Helen Wenshin Yu
- Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yin-Quan Chen
- Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan 70101, Taiwan
| | - Arthur Chiou
- Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei 11221, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei 11221, Taiwan.,Proteomics Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
36
|
Prevention of postoperative scars in dark skin types using a fractional carbon dioxide laser. JOURNAL OF THE EGYPTIAN WOMENʼS DERMATOLOGIC SOCIETY 2017. [DOI: 10.1097/01.ewx.0000508418.56653.5e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Shirshin EA, Gurfinkel YI, Priezzhev AV, Fadeev VV, Lademann J, Darvin ME. Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization. Sci Rep 2017; 7:1171. [PMID: 28446767 PMCID: PMC5430894 DOI: 10.1038/s41598-017-01238-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 11/27/2022] Open
Abstract
The papillary dermis of human skin is responsible for its biomechanical properties and for supply of epidermis with chemicals. Dermis is mainly composed of structural protein molecules, including collagen and elastin, and contains blood capillaries. Connective tissue diseases, as well as cardiovascular complications have manifestations on the molecular level in the papillary dermis (e.g. alteration of collagen I and III content) and in the capillary structure. In this paper we assessed the molecular structure of internal and external regions of skin capillaries using two-photon fluorescence lifetime imaging (FLIM) of endogenous compounds. It was shown that the capillaries are characterized by a fast fluorescence decay, which is originated from red blood cells and blood plasma. Using the second harmonic generation signal, FLIM segmentation was performed, which provided for spatial localization and fluorescence decay parameters distribution of collagen I and elastin in the dermal papillae. It was demonstrated that the lifetime distribution was different for the inner area of dermal papillae around the capillary loop that was suggested to be due to collagen III. Hence, we propose a generalized approach to two-photon imaging of the papillary dermis components, which extends the capabilities of this technique in skin diagnosis.
Collapse
Affiliation(s)
- Evgeny A Shirshin
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
| | - Yury I Gurfinkel
- Research Clinical Center of JSC "Russian Railways", Moscow, Russia
| | | | - Victor V Fadeev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Juergen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité -Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
38
|
Levengood SL, Erickson AE, Chang FC, Zhang M. Chitosan-Poly(caprolactone) Nanofibers for Skin Repair. J Mater Chem B 2017; 5:1822-1833. [PMID: 28529754 PMCID: PMC5433941 DOI: 10.1039/c6tb03223k] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dermal wounds, both acute and chronic, represent a significant clinical challenge and therefore the development of novel biomaterial-based skin substitutes to promote skin repair is essential. Nanofibers have garnered attention as materials to promote skin regeneration due to the similarities in morphology and dimensionality between nanofibers and native extracellular matrix proteins, which are critical in guiding cutaneous wound healing. Electrospun chitosan-poly(caprolactone) (CPCL) nanofiber scaffolds, which combine the important intrinsic biological properties of chitosan and the mechanical integrity and stability of PCL, were evaluated as skin tissue engineering scaffolds using a mouse cutaneous excisional skin defect model. Gross assessment of wound size and measurement of defect recovery over time as well as histological evaluation of wound healing showed that CPCL nanofiber scaffolds increased wound healing rate and promoted more complete wound closure as compared with Tegaderm, a commercially available occlusive dressing. CPCL nanofiber scaffolds represent a biomimetic approach to skin repair by serving as an immediately available provisional matrix to promote wound closure. These nanofiber scaffolds may have significant potential as a skin substitute or as the basis for more complex skin tissue engineering constructs involving integration with biologics.
Collapse
Affiliation(s)
- Sheeny Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Ariane E. Erickson
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Fei-chien Chang
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
39
|
Chen H, Peng Y, Wu S, Tan LP. Electrospun 3D Fibrous Scaffolds for Chronic Wound Repair. MATERIALS 2016; 9:ma9040272. [PMID: 28773394 PMCID: PMC5502965 DOI: 10.3390/ma9040272] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/16/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022]
Abstract
Chronic wounds are difficult to heal spontaneously largely due to the corrupted extracellular matrix (ECM) where cell ingrowth is obstructed. Thus, the objective of this study was to develop a three-dimensional (3D) biodegradable scaffold mimicking native ECM to replace the missing or dysfunctional ECM, which may be an essential strategy for wound healing. The 3D fibrous scaffolds of poly(lactic acid-co-glycolic acid) (PLGA) were successfully fabricated by liquid-collecting electrospinning, with 5~20 µm interconnected pores. Surface modification with the native ECM component aims at providing biological recognition for cell growth. Human dermal fibroblasts (HDFs) successfully infiltrated into scaffolds at a depth of ~1400 µm after seven days of culturing, and showed significant progressive proliferation on scaffolds immobilized with collagen type I. In vivo models showed that chronic wounds treated with scaffolds had a faster healing rate. These results indicate that the 3D fibrous scaffolds may be a potential wound dressing for chronic wound repair.
Collapse
Affiliation(s)
- Huizhi Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Yan Peng
- School of Mechanical Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore.
| | - Shucheng Wu
- School of Mechanical Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore.
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
40
|
Abstract
SummaryPatients with difficult venous access or oral intolerance and clinical situations with inadequate response to oral therapy have generated the need for alternative routes of delivery for drugs and fluids.The purpose of this study was to conduct a systematic review examining the evidence for subcutaneous (SC) administration of drugs and/or fluids.We used a broad search strategy using electronic databases CINAHL, EMBASE, PubMed and Cochrane library, key terms and ‘Medical Subject Headings’ (MeSH) such as ‘subcutaneous route’, ‘hypodermoclysis’ and the name/group of the most used drugs via this route (e.g. ‘ketorolac, morphine, ceftriaxone’, ‘analgesics, opioids, antibiotics’).We conclude that the SC route is an effective alternative for rehydration in patients with mild–moderate dehydration and offers a number of potential advantages in appropriately selected scenarios. Experience of administering drugs by this route suggests that it is well tolerated and is associated with minimal side-effects.
Collapse
|
41
|
Jeon JK, Park SK, Lee JH. Effects of high voltage pulsed current stimulation with a visible contraction intensity on expression of TGF-β1 and synthesis of type I collagen in wound-induced white rats. J Phys Ther Sci 2015; 27:1485-90. [PMID: 26157246 PMCID: PMC4483424 DOI: 10.1589/jpts.27.1485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/20/2015] [Indexed: 12/26/2022] Open
Abstract
[Purpose] This study aimed to examine the expression of transforming growth factor β1 (TGF-β1) and type I collagen by applying high voltage pulsed current stimulation (HVPCS) with a visible contraction intensity to white rats with induced wounds. [Subjects] Thirty-six white rats were used for this study. HVPCS with a non-visible contraction intensity was applied to experimental group I, and HVPCS with a visible contraction intensity was applied to experimental group II. Placebo stimulation was applied to the control group. [Methods] After wounds were triggered, the intervention appropriate for each group was applied. Changes in the size of their wounds and expression of TGF- β1 and type I collagen were measured on the third, fifth, and seventh days. [Results] Comparison of the sizes of the wounds among the groups showed that the most significant decreases were found in experimental group II on the fifth and seventh days. TGF-β1 expression comparison revealed that experimental group II had the most expression on the fifth day. [Conclusion] HVPCS with a visible contraction intensity was effective in promoting wound healing by increasing expression of TGF-β1 and synthesis of type I collagen.
Collapse
Affiliation(s)
- Jae-Keun Jeon
- Department of Physical Therapy, Hanlyo University, Republic
of Korea
| | - Seung-Kyu Park
- Department of Physical Therapy, Sehan University, Republic
of Korea
| | - Joon-Hee Lee
- Department of Physical Therapy, Cheongju University, Republic of Korea
| |
Collapse
|
42
|
Fitzpatrick LE, McDevitt TC. Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater Sci 2015; 3:12-24. [PMID: 25530850 PMCID: PMC4270054 DOI: 10.1039/c4bm00246f] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The development and application of decellularized extracellular matrices (ECM) has grown rapidly in the fields of cell biology, tissue engineering and regenerative medicine in recent years. Similar to decellularized tissues and whole organs, cell-derived matrices (CDMs) represent bioactive, biocompatible materials consisting of a complex assembly of fibrillar proteins, matrix macromolecules and associated growth factors that often recapitulate, at least to some extent, the composition and organization of native ECM microenvironments. The unique ability to engineer CDMs de novo based on cell source and culture methods makes them an attractive alternative to conventional allogeneic and xenogeneic tissue-derived matrices that are currently harvested from cadaveric sources, suffer from inherent heterogeneity, and have limited ability for customization. Although CDMs have been investigated for a number of biomedical applications, including adhesive cell culture substrates, synthetic scaffold coatings, and tissue engineered products, such as heart valves and vascular grafts, the state of the field is still at a relatively nascent stage of development. In this review, we provide an overview of the various applications of CDM and discuss successes to date, current limitations and future directions.
Collapse
Affiliation(s)
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
43
|
Orro K, Smirnova O, Arshavskaja J, Salk K, Meikas A, Pihelgas S, Rumvolt R, Kingo K, Kazarjan A, Neuman T, Spee P. Development of TAP, a non-invasive test for qualitative and quantitative measurements of biomarkers from the skin surface. Biomark Res 2014; 2:20. [PMID: 25785188 PMCID: PMC4362816 DOI: 10.1186/2050-7771-2-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/02/2014] [Indexed: 02/01/2023] Open
Abstract
Background The skin proteome contains valuable information on skin condition, but also on how skin may evolve in time and may respond to treatments. Despite the potential of measuring regulatory-, effector- and structural proteins in the skin for biomarker applications in clinical dermatology and skin care, convenient diagnostic tools are lacking. The aim of the present study was to develop a highly versatile and non-invasive diagnostic tool for multiplex measurements of protein biomarkers from the surface of skin. Results The Transdermal Analyses Patch (TAP) is a novel molecular diagnostic tool that has been developed to capture biomarkers directly from skin, which are quantitatively analyzed in spot-ELISA assays. Optimisation of protocols for TAP production and biomarker analyses makes TAP measurements highly specific and reproducible. In measurements of interleukin-1α (IL-1α), IL-1 receptor antagonist (IL-1RA) and human β-defensin (hBD-1) from healthy skin, TAP appears far more sensitive than skin lavage-based methods using ELISA. No side-effects were observed using TAP on human skin. Conclusion TAP is a practical and valuable new skin diagnostic tool for measuring protein-based biomarkers from skin, which is convenient to use for operators, with minimal burden for patients.
Collapse
Affiliation(s)
- Kadri Orro
- FibroTx LLC, Mäealuse 4, 12918 Tallinn, Estonia
| | | | | | | | - Anne Meikas
- FibroTx LLC, Mäealuse 4, 12918 Tallinn, Estonia
| | | | | | - Külli Kingo
- Dermatology Clinic, Tartu University Hospital, Raja 31, 50407 Tartu, Estonia
| | | | | | - Pieter Spee
- FibroTx LLC, Mäealuse 4, 12918 Tallinn, Estonia ; PS! Pharmaconsult, Møllemoseparken 44, 3450 Allerød, Denmark
| |
Collapse
|
44
|
5-α Reductase Inhibitory Effect and Astringent Activity of Green Apple Rind Extract on Human Keratinocytes and Fibroblast Cells. Biosci Biotechnol Biochem 2014; 77:714-21. [DOI: 10.1271/bbb.120757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Abstract
Extracellular matrix (ECM) is not only involved in the maintenance of normal physiological tissue but also in interactions with other ECM components, tissue remodeling, and modulating immune responses. The skin provides a distinctive environment characterized by rich fibroblasts producing various ECM proteins, epithelial-mesenchymal interactions, and immune responses induced by external stimuli. Recently, periostin-a matricellular protein-has been highlighted for its pivotal functions in the skin. Analysis of periostin null mice has revealed that periostin contributes to collagen fibrillogenesis, collagen cross-linking, and the formation of ECM meshwork via interactions with other ECM components. Periostin expression is enhanced by mechanical stress or skin injury; this is indicative of the physiologically protective functions of periostin, which promotes wound repair by acting on keratinocytes and fibroblasts. Along with its physiological functions, periostin plays pathogenic roles in skin fibrosis and chronic allergic inflammation. In systemic sclerosis (SSc) patients, periostin levels reflect the severity of skin fibrosis. Periostin null mice have shown reduced skin fibrosis in a bleomycin-induced SSc mouse model, indicating a key role of periostin in fibrosis. Moreover, in atopic dermatitis (AD), attenuated AD phenotype has been observed in periostin null mice in a house dust mite extract-induced AD mouse model. Th2 cytokine-induced periostin acts on keratinocytes to produce inflammatory cytokines that further enhance the Th2 response, thereby sustaining and amplifying chronic allergic inflammation. Thus, periostin is deeply involved in the pathogenesis of AD and other inflammation-related disorders affecting the skin. Understanding the dynamic actions of periostin would be key to dissecting pathogenesis of skin-related diseases and to developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
46
|
Lee BG, Kim JH, Ham SG, Lee CE. Study on Biological Activities of Extracts for Cosmeceutical Development from Lagerstroemia indica L. Branch. ACTA ACUST UNITED AC 2014. [DOI: 10.7732/kjpr.2014.27.1.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Lenselink EA. Role of fibronectin in normal wound healing. Int Wound J 2013; 12:313-6. [PMID: 23742140 DOI: 10.1111/iwj.12109] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/06/2013] [Indexed: 01/31/2023] Open
Abstract
Fibronectin is an adhesive molecule that plays a crucial role in wound healing, particularly in extracellular matrix (ECM) formation and also in reepithelialisation. Fibronectin plays many different roles in the wound healing process because of the presence of specific function domains and binding sites in its structure. Fibronectin interacts with different cell types, cytokines and the ECM. The main role of fibronectin is ECM formation. First, plasma fibronectin forms a provisional fibrin-fibronectin matrix, which will later be replaced by the mature ECM-containing tissue fibronectin.
Collapse
|
48
|
Heula AL, Sajanti J, Majamaa K. Procollagen propeptides in chronic subdural hematoma reveal sustained dural collagen synthesis after head injury. J Neurol 2009; 256:66-71. [DOI: 10.1007/s00415-009-0048-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 06/29/2008] [Accepted: 07/03/2008] [Indexed: 11/30/2022]
|
49
|
Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2008; 17 Suppl 4:467-79. [PMID: 19005702 DOI: 10.1007/s00586-008-0745-3] [Citation(s) in RCA: 841] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/09/2008] [Accepted: 07/09/2008] [Indexed: 12/19/2022]
Abstract
Scaffolds represent important components for tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. This paper aims to review the functions of scaffolds and the major scaffolding approaches as important guidelines for selecting scaffolds and discuss the tissue-specific considerations for scaffolding, using intervertebral disc as an example.
Collapse
Affiliation(s)
- B P Chan
- Medical Engineering Program, Department of Mechanical Engineering, The University of Hong Kong, Room 711, Haking Wong Building, Pokfulam Road, Hong Kong SAR, China.
| | | |
Collapse
|
50
|
Zeigler FC, Landeen L, Naughton GK, Slivka SR. Tissue-Engineered, Three-Dimensional Human Dermis to Study Extracellular Matrix Formation in Wound Healing. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569529309050147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|