1
|
Kim S, Park Y, Kim J, Kim S, Choi K, Kang T, Lee I, Lim YT, Um SH, Kim C. ProLonged Liposomal Delivery of TLR7/8 Agonist for Enhanced Cancer Vaccine. Vaccines (Basel) 2023; 11:1503. [PMID: 37766179 PMCID: PMC10538091 DOI: 10.3390/vaccines11091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Despite numerous studies on cancer treatment, cancer remains a challenging disease to cure, even after decades of research. In recent years, the cancer vaccine has emerged as a promising approach for cancer treatment, offering few unexpected side effects compared to existing therapies. However, the cancer vaccine faces obstacles to commercialization due to its low efficacy. Particularly, the Toll-like receptor (TLR) adjuvant system, specifically the TLR 7/8 agonist, has shown potential for activating Th1 immunity, which stimulates both innate and adaptive immune responses through T cells. In this study, we developed ProLNG-S, a cholesterol-conjugated form of resiquimod (R848), to enhance immune efficacy by stimulating the immune system and reducing toxicity. ProLNG-S was formulated as ProLNG-001, a positively charged liposome, and co-administered with ovalbumin (OVA) protein in the B16-OVA model. ProLNG-001 effectively targeted secondary lymphoid organs, resulting in a robust systemic anti-tumor immune response and tumor-specific T cell activation. Consequently, ProLNG-001 demonstrated potential for preventing tumor progression and improving survival compared to AS01 by enhancing anti-tumor immunity.
Collapse
Affiliation(s)
- Sehui Kim
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
- SKKU Advanced Institute of NanoTechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea;
| | - Yeji Park
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
- SKKU Advanced Institute of NanoTechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea;
| | - Jeonghun Kim
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
| | - Sohyun Kim
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
| | - Kyungmin Choi
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
| | - Taegyun Kang
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
| | - Inho Lee
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
| | - Yong Taik Lim
- SKKU Advanced Institute of NanoTechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea;
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Soong Ho Um
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
- SKKU Advanced Institute of NanoTechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea;
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi-do, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Chul Kim
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul 08380, Republic of Korea; (S.K.); (Y.P.); (J.K.); (S.K.); (K.C.); (T.K.); (I.L.); (S.H.U.)
| |
Collapse
|
2
|
Cancer Immunotherapy and Application of Nanoparticles in Cancers Immunotherapy as the Delivery of Immunotherapeutic Agents and as the Immunomodulators. Cancers (Basel) 2020; 12:cancers12123773. [PMID: 33333816 PMCID: PMC7765190 DOI: 10.3390/cancers12123773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cancer becomes one of the major public health problems globally and the burden is expected to be increasing. Currently, both the medical and research communities have attempted an approach to nonconventional cancer therapies that can limit damage or loss of healthy tissues and be able to fully eradicate the cancer cells. In the last few decades, cancer immunotherapy becomes an important tactic for cancer treatment. Immunotherapy of cancer must activate the host’s anti-tumor response by enhancing the innate immune system and the effector cell number, while, minimizing the host’s suppressor mechanisms. However, many immunotherapies are still limited by poor therapeutic targeting and unwanted side effects. Hence, a deeper understanding of tumor immunology and antitumor immune responses is essential for further improvement of cancer immunotherapy. In addition, effective delivery systems are required to deliver immunotherapeutic agents to the site of interest (such as: to Tumor microenvironments, to Antigen-Presenting Cells, and to the other immune systems) to enhance their efficacy by minimizing off-targeted and unwanted cytotoxicity. Abstract In the last few decades, cancer immunotherapy becomes an important tactic for cancer treatment. However, some immunotherapy shows certain limitations including poor therapeutic targeting and unwanted side effects that hinder its use in clinics. Recently, several researchers are exploring an alternative methodology to overcome the above limitations. One of the emerging tracks in this field area is nano-immunotherapy which has gone through rapid progress and revealed considerable potentials to solve limitations related to immunotherapy. Targeted and stimuli-sensitive biocompatible nanoparticles (NPs) can be synthesized to deliver immunotherapeutic agents in their native conformations to the site of interest to enhance their antitumor activity and to enhance the survival rate of cancer patients. In this review, we have discussed cancer immunotherapy and the application of NPs in cancer immunotherapy, as a carrier of immunotherapeutic agents and as a direct immunomodulator.
Collapse
|
3
|
Jardim DL, De Melo Gagliato D, Nikanjam M, Barkauskas DA, Kurzrock R. Efficacy and safety of anticancer drug combinations: a meta-analysis of randomized trials with a focus on immunotherapeutics and gene-targeted compounds. Oncoimmunology 2020; 9:1710052. [PMID: 32002305 PMCID: PMC6959453 DOI: 10.1080/2162402x.2019.1710052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/17/2019] [Accepted: 11/29/2019] [Indexed: 10/27/2022] Open
Abstract
Hundreds of trials are being conducted to evaluate combination of newer targeted drugs as well as immunotherapy. Our aim was to compare efficacy and safety of combination versus single non-cytotoxic anticancer agents. We searched PubMed (01/01/2001 to 03/06/2018) (and, for immunotherapy, ASCO and ESMO abstracts (2016 through March 2018)) for randomized clinical trials that compared a single non-cytotoxic agent (targeted, hormonal, or immunotherapy) versus a combination with another non-cytotoxic partner. Efficacy and safety endpoints were evaluated in a meta-analysis using a linear mixed-effects model (guidelines per PRISMA Report).We included 95 randomized comparisons (single vs. combination non-cytotoxic therapies) (59.4%, phase II; 41.6%, phase III trials) (29,175 patients (solid tumors)). Combinations most frequently included a hormonal agent and a targeted small molecule (23%). Compared to single non-cytotoxic agents, adding another non-cytotoxic drug increased response rate (odds ratio [OR]=1.61, 95%CI 1.40-1.84)and prolonged progression-free survival (hazard ratio [HR]=0.75, 95%CI 0.69-0.81)and overall survival (HR=0.87, 95%CI 0.81-0.94) (all p<0.001), which was most pronounced for the association between immunotherapy combinations and longer survival. Combinations also significantlyincreased the risk of high-grade toxicities (OR=2.42, 95%CI 1.98-2.97) (most notably for immunotherapy and small molecule inhibitors) and mortality at least possibly therapy related (OR: 1.33, 95%CI 1.15-1.53) (both p<0.001) (absolute mortality = 0.90% (single agent) versus 1.31% (combinations)) compared to single agents. In conclusion, combinations of non-cytotoxic drugs versus monotherapy in randomized cancer clinical trials attenuated safety, but increased efficacy, with the balance tilting in favor of combination therapy, based on the prolongation in survival.
Collapse
Affiliation(s)
- Denis L Jardim
- Department of Medical Oncology, Centro de Oncologia Hospital Sírio Libanês, São Paulo, Brazil
| | | | - Mina Nikanjam
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California, San Diego, CA, USA
| | - Donald A Barkauskas
- Biostatistics Division, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California, San Diego, CA, USA
| |
Collapse
|
4
|
Heine A, Flores C, Gevensleben H, Diehl L, Heikenwalder M, Ringelhan M, Janssen KP, Nitsche U, Garbi N, Brossart P, Knolle PA, Kurts C, Höchst B. Targeting myeloid derived suppressor cells with all-trans retinoic acid is highly time-dependent in therapeutic tumor vaccination. Oncoimmunology 2017; 6:e1338995. [PMID: 28920004 DOI: 10.1080/2162402x.2017.1338995] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/28/2017] [Accepted: 06/01/2017] [Indexed: 12/30/2022] Open
Abstract
Tumor immune escape is a critical problem which frequently accounts for the failure of therapeutic tumor vaccines. Among the most potent suppressors of tumor immunity are myeloid derived suppressor cells (MDSCs). MDSCs can be targeted by all-trans-retinoic-acid (atRA), which reduced their numbers and increased response rates in several vaccination studies. However, not much is known about the optimal administration interval between atRA and the vaccine as well as about its mode of action. Here we demonstrate in 2 different murine tumor models that mice unresponsive to a therapeutic vaccine harbored higher MDSC numbers than did responders. Application of atRA overcame MDSC-mediated immunosuppression and restored tumor control. Importantly, atRA was protective only when administered 3 d after vaccination (delayed treatment), whereas simultaneous administration even decreased the anti-tumor immune response and reduced survival. When analyzing the underlying mechanisms, we found that delayed, but not simultaneous atRA treatment with vaccination abrogated the suppressive capacity in monocytic MDSCs and instead caused them to upregulate MHC-class-II. Consistently, MDSCs from patients with colorectal carcinoma also failed to upregulate HLA-DR after ex vivo treatment with TLR-ligation. Overall, we demonstrate that atRA can convert non-responders to responders to vaccination by suppressing MDSCs function and not only by reducing their number. Moreover, we identify a novel, strictly time-dependent mode of action of atRA to be considered during immunotherapeutic protocols in the future.
Collapse
Affiliation(s)
- Annkristin Heine
- Medical Clinic III for Oncology, Hematology and Rheumatology, University Hospital Bonn, Germany.,Institute of Experimental Immunology, University Bonn, Germany
| | - Chrystel Flores
- Medical Clinic III for Oncology, Hematology and Rheumatology, University Hospital Bonn, Germany.,Institute of Experimental Immunology, University Bonn, Germany
| | | | - Linda Diehl
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Germany.,Institute of Molecular Medicine, University Bonn, Germany
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München.,Division of Chronic Inflammation and Cancer, German Cancer Research Center, DKFZ, Germany
| | - Marc Ringelhan
- Department for Internal Medicine 2, Klinikum rechts der Isar, Technische Universität München, Germany
| | | | - Ulrich Nitsche
- Department of Surgery, Technische Universität München, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, University Bonn, Germany
| | - Peter Brossart
- Medical Clinic III for Oncology, Hematology and Rheumatology, University Hospital Bonn, Germany
| | - Percy A Knolle
- Institute of Molecular Medicine, University Bonn, Germany.,Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Bonn, Germany
| | - Bastian Höchst
- Institute of Molecular Medicine, University Bonn, Germany.,Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Germany
| |
Collapse
|
5
|
Shields B, Shalin SC, Tackett AJ. Microscopes and Mass Spectrometers. ACTA ACUST UNITED AC 2016; 9. [PMID: 29910559 PMCID: PMC5998814 DOI: 10.4172/jpb.s10-e001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteomics is a relatively young discipline while pathology is one of the oldest forms of scientific inquiry. These two fields have different methods and aims, but have many areas of overlap and shared interests. Cultivation of synergistic projects between physicians who study static images of disease and biologists who study the dynamic environment that produces disease states will help further biomedical research providing new diagnostic, prognostic, and therapeutic approaches. Here, a pathologist and a proteomic scientist share their views on recent collaborations among the fields.
Collapse
Affiliation(s)
- Bradley Shields
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Sara C Shalin
- Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA.,Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| |
Collapse
|
6
|
Chan IH, Wu V, McCauley S, Grimm EA, Mumm JB. IL-10: Expanding the Immune Oncology Horizon. RECEPTORS & CLINICAL INVESTIGATION 2015; 2:1041. [PMID: 26661378 PMCID: PMC4675350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent advances in immunoncology have dramatically changed the treatment options available to cancer patients. However, the fundamental challenges with this therapeutic modality are not new and still persist with the current wave of immunoncology compounds. These challenges are centered on the activation and expansion, induction of intratumoral infiltration and persistence of highly activated, cytotoxic, tumor antigen specific CD8+ T cells. We have investigated the anti-tumor mechanism of action of pegylated recombinant interleukin-10, (PEG-rIL-10) both pre-clinically with murine (PEG-rMuIL-10) and now clinically (AM0010) with human pegylated interleukin-10. The preponderance of data suggest that IL-10's engagement of its receptor on CD8+ T cells enhances their activation status leading to antigen specific expansion. Quantitation of CD8+ T cell tumor infiltration reveals that treatment of both humans and mice with pegylated rIL-10 results in 3-4 fold increases of intratumoral, cytotoxic, CD8+ T cells. In addition, mice cured of their tumors with PEG-rMuIL-10 exhibit long term immunological protection from tumor re-challenge and long term treatment of cancer patients with AM0010 results in the persistence of highly activated CD8+ T cells. Cumulatively, these data suggest the IL-10 represents an emerging therapeutic that specifically addresses the fundamental challenges of the current wave of immunoncology assets.
Collapse
Affiliation(s)
- Ivan H. Chan
- ARMO BioSciences 575 Chesapeake Drive Redwood City, CA 94063
| | - Victoria Wu
- ARMO BioSciences 575 Chesapeake Drive Redwood City, CA 94063
| | - Scott McCauley
- ARMO BioSciences 575 Chesapeake Drive Redwood City, CA 94063
| | - Elizabeth A. Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Box 421, 1515 Holcombe Blvd., Houston, TX 77030
| | - John B. Mumm
- ARMO BioSciences 575 Chesapeake Drive Redwood City, CA 94063
| |
Collapse
|
7
|
Michielin O, Hoeller C. Gaining momentum: New options and opportunities for the treatment of advanced melanoma. Cancer Treat Rev 2015; 41:660-70. [DOI: 10.1016/j.ctrv.2015.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
|
8
|
Powell KL, Stephens AS, Ralph SJ. Development of a potent melanoma vaccine capable of stimulating CD8(+) T-cells independently of dendritic cells in a mouse model. Cancer Immunol Immunother 2015; 64:861-72. [PMID: 25893808 PMCID: PMC11028525 DOI: 10.1007/s00262-015-1695-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
At present, there are no vaccines approved for the prevention or treatment of malignant melanoma, despite the amount of time and resources that has been invested. In this study, we aimed to develop a self-contained vaccine capable of directly stimulating anticancer CD8(+) T-cell immune responses. To achieve this, three whole-cell melanoma vaccines were developed expressing 4-1BBL or B7.1 T-cell co-stimulatory molecules individually or in combination. The ability of engineered vaccine cell lines to stimulate potent anticancer immune responses in C57BL/6 mice was assessed. Mice vaccinated with cells overexpressing both 4-1BBL and B7.1 (B16-F10-4-1BBL-B7.1-IFNγ/β anticancer vaccine) displayed the greatest increases in CD8(+) T-cell populations (1.9-fold increase versus control within spleens), which were efficiently activated following antigenic stimulation, resulting in a 10.7-fold increase in cancer cell cytotoxicity relative to control. The enhanced immune responses in B16-F10-4-1BBL-B7.1-IFNγ/β-vaccinated mice translated into highly efficient rejection of live tumour burdens and conferred long-term protection against repeated tumour challenges, which were likely due to enhanced effector memory T-cell populations. Similar results were observed when dendritic cell (DC)-deficient LTα(-/-) mice were treated with the B16-F10-4-1BBL-B7.1-IFNγ/β anticancer vaccine, suggesting that the vaccine can directly stimulate CD8(+) T-cell responses in the context of severely reduced DCs. This study shows that the B16-F10-4-1BBL-B7.1-IFNγ/β anticancer vaccine acted as a highly effective antigen-presenting cell and is likely to be able to directly stimulate CD8(+) T-cells, without requiring co-stimulatory signals from either CD4(+) T-cells or DCs, and warrants translation of this technology into the clinical setting.
Collapse
Affiliation(s)
- Katie L Powell
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia,
| | | | | |
Collapse
|
9
|
Planska D, Burocziova M, Strnadel J, Horak V. Immunohistochemical Analysis of Collagen IV and Laminin Expression in Spontaneous Melanoma Regression in the Melanoma-Bearing Libechov Minipig. Acta Histochem Cytochem 2015; 48:15-26. [PMID: 25861134 PMCID: PMC4387259 DOI: 10.1267/ahc.14020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 01/05/2015] [Indexed: 01/24/2023] Open
Abstract
Spontaneous regression (SR) of human melanoma is a rare, well-documented phenomenon that is not still fully understood. Its detailed study cannot be performed in patients due to ethical reasons. Using the Melanoma-bearing Libechov Minipig (MeLiM) animals of various ages (from 3 weeks to 8 months) we implemented a long-term monitoring of melanoma growth and SR. We focused on immunohistochemical detection of two important extracellular matrix proteins, collagen IV and laminin, which are associated with cancer. We showed that SR of melanoma is a highly dynamic process. The expression of collagen IV and laminin correlated with changes in population of melanoma cells. Tumours of 3-week-old animals consisted primarily of melanoma cells with a granular expression of collagen IV and laminin around them. Thereafter, melanoma cells were gradually destroyed and tumour tissue was rebuilt into the connective tissue. Collagen IV expression slightly increased in tumours of 10-week-old pigs showing extracellular fibrous appearance. In tumours of older animals, areas lacking melanoma cells demonstrated a low expression and areas still containing melanoma cells a high expression of both proteins. We considered the age of 10 weeks as a turning point in the transition between tumour growth and SR of the MeLiM melanoma.
Collapse
Affiliation(s)
- Daniela Planska
- Laboratory of Tumor Biology, Institute of Animal Physiology and Genetics AS CR, v.v.i
- Faculty of Science, Charles University
- Department of Immunology, Third Faculty of Medicine, Charles University
| | - Monika Burocziova
- Laboratory of Natural Immunity, Institute of Microbiology AS CR, v.v.i
| | - Jan Strnadel
- Laboratory of Tumor Biology, Institute of Animal Physiology and Genetics AS CR, v.v.i
| | - Vratislav Horak
- Laboratory of Tumor Biology, Institute of Animal Physiology and Genetics AS CR, v.v.i
| |
Collapse
|
10
|
Hu Y, Xu B, Xu J, Shou D, Liu E, Gao J, Liang W, Huang Y. Microneedle-assisted dendritic cell-targeted nanoparticles for transcutaneous DNA immunization. Polym Chem 2015. [DOI: 10.1039/c4py01394h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transcutaneous DNA immunization with microneedle-assisted dendritic cell-targeted nanoparticles is an attractive strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Ying Hu
- Zhejiang Pharmaceutical College
- Ningbo
- China
- College of Pharmaceutical Sciences
- Zhejiang University
| | - Beihua Xu
- Zhejiang Pharmaceutical College
- Ningbo
- China
| | - Jiaojiao Xu
- Zhejiang Pharmaceutical College
- Ningbo
- China
- Department of Medicine
- Wenzhou Medical University
| | - Dan Shou
- Department of Medicine
- Zhejiang Academy of Traditional Chinese Medicine
- Hangzhou
- China
| | - Ergang Liu
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Jianqing Gao
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Wenquan Liang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
11
|
Sahu RP, Ocana JA, Harrison KA, Ferracini M, Touloukian CE, Al-Hassani M, Sun L, Loesch M, Murphy RC, Althouse SK, Perkins SM, Speicher PJ, Tyler DS, Konger RL, Travers JB. Chemotherapeutic agents subvert tumor immunity by generating agonists of platelet-activating factor. Cancer Res 2014; 74:7069-78. [PMID: 25304264 DOI: 10.1158/0008-5472.can-14-2043] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress suppresses host immunity by generating oxidized lipid agonists of the platelet-activating factor receptor (PAF-R). Because many classical chemotherapeutic drugs induce reactive oxygen species (ROS), we investigated whether these drugs might subvert host immunity by activating PAF-R. Here, we show that PAF-R agonists are produced in melanoma cells by chemotherapy that is administered in vitro, in vivo, or in human subjects. Structural characterization of the PAF-R agonists induced revealed multiple oxidized glycerophosphocholines that are generated nonenzymatically. In a murine model of melanoma, chemotherapeutic administration could augment tumor growth by a PAF-R-dependent process that could be blocked by treatment with antioxidants or COX-2 inhibitors or by depletion of regulatory T cells. Our findings reveal how PAF-R agonists induced by chemotherapy treatment can promote treatment failure. Furthermore, they offer new insights into how to improve the efficacy of chemotherapy by blocking its heretofore unknown impact on PAF-R activation.
Collapse
Affiliation(s)
- Ravi P Sahu
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana. Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jesus A Ocana
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana. Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kathleen A Harrison
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, Colorado
| | - Matheus Ferracini
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Mohammed Al-Hassani
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Louis Sun
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mathew Loesch
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, Colorado
| | - Sandra K Althouse
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan M Perkins
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul J Speicher
- The Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Douglas S Tyler
- The Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Raymond L Konger
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana. Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jeffrey B Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana. Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana. The Richard L. Roudebush V.A. Medical Center, Indianapolis, Indiana.
| |
Collapse
|
12
|
Trefzer U, Gutzmer R, Wilhelm T, Schenck F, Kähler KC, Jacobi V, Witthohn K, Lentzen H, Mohr P. Treatment of unresectable stage IV metastatic melanoma with aviscumine after anti-neoplastic treatment failure: a phase II, multi-centre study. J Immunother Cancer 2014; 2:27. [PMID: 25324973 PMCID: PMC4198912 DOI: 10.1186/s40425-014-0027-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background Aviscumine, a recombinant plant protein, is an immune modulator that induces ribotoxic stress at the 28S ribosomal RNA subunit. In this way cytokine release and T-cell responses are enhanced. This phase II trial was conducted to test the efficacy and safety of aviscumine in patients with systemically pre-treated metastatic melanoma stage IV. Methods A total of 32 patients with progressive stage IV melanoma after failure of standard therapy were enrolled onto a single-arm, multi-centre, open-label, phase II trial. All patients had an ECOG performance status of 0 or 1. Patients received 350 ng aviscumine twice weekly by subcutaneous injection until progression. The primary end points were progression-free survival (PFS) and overall survival (OS). Safety was assessed as adverse events (AEs). Tumor response was assessed every eight weeks and survival of patients was followed up to one year after the end of therapy. Thirty one patients (intent-to-treat population (ITT)) were assessed for efficacy; safety was assessed in the whole population. Results One patient achieved a partial response (PR) and 10 patients showed stable disease/no change (SD). The median progression-free survival (mPFS) was 63 days (95% CI 57–85) and median overall survival (mOS) was 335 days (95% CI 210–604). In total 210 treatment-emergent adverse events were recorded. Grade 1 or 2 AEs occurred in 72% of patients and were mostly application-site effects such as pruritus Grade 3–4 treatment-emergent drug-related adverse events occurred in 9% of patients. Conclusion These results suggest that aviscumine may have a clinical impact in patients with previously treated metastatic melanoma and provide rationale for further clinical evaluation of this agent. In the light of effective new immune checkpoint blockers it might be a candidate for combinations with these agents. Trial registration ClinicalTrials.gov: NCT00658437
Collapse
Affiliation(s)
| | - Ralf Gutzmer
- Klinik für Dermatologie, Allergologie und Venerologie, Hauttumorzentrum Hannover (HTZH), Hannover, Germany
| | - Tabea Wilhelm
- Charité- Universitätsmedizin Berlin, Hauttumorcentrum Charité (HTCC), Klinik für Dermatologie, Venerologie und Allergologie, Berlin, Germany
| | | | - Katharina C Kähler
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Schleswig-Holstein -Campus Kiel-, Kiel, Germany
| | - Volkmar Jacobi
- Institut für Diagnostische Radiologie, Klinikum der Johann-Wolfgang-Goethe-Universität, Frankfurt/Main, Germany
| | | | | | - Peter Mohr
- Elbe-Klinikum Buxtehude, Dermatologisches Zentrum, Buxtehude, Germany
| |
Collapse
|
13
|
Chung JS, Tamura K, Cruz PD, Ariizumi K. DC-HIL-expressing myelomonocytic cells are critical promoters of melanoma growth. J Invest Dermatol 2014; 134:2784-2794. [PMID: 24936834 PMCID: PMC4199867 DOI: 10.1038/jid.2014.254] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/18/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022]
Abstract
A major barrier to successful cancer immunotherapy is the tumor’s ability to induce T-cell tolerance by exploiting host regulatory mechanisms. Having discovered the DC-HIL receptor, which inhibits T-cell responses by binding to syndecan-4 on effector T-cells, we posited the DC-HIL/syndecan-4 pathway to play an important role in cancer promotion. Among DC-HIL+ myelomonocytic cells, during growth of implanted mouse melanoma, CD11b+Gr1+ cells were the most expanded population and the most potent at suppressing T-cell activation. Deletion of the DC-HIL gene or infusion of anti-DC-HIL mAb abrogated these cells’ suppressor function and expansion, and markedly diminished melanoma growth and metastasis. IL-1β and IFN-γ were elevated in mice bearing melanoma, and concurrent exposure to both cytokines optimally induced DC-HIL expression by tumor-infiltrating CD11b+Gr1+ cells. Ligation of DCHIL transduced phosphorylation of its intracellular immunoreceptor tyrosine-based activation motif (ITAM), that in turn induced intracellular expression of IFN-γ and inducible nitric oxide synthase (iNOS), known to mediate T-cell suppression by CD11b+Gr1+ cells. Thus DC-HIL is the critical mediator of these cells’ suppressor function in melanoma-bearing mice and a potential target for improving melanoma immunotherapy.
Collapse
Affiliation(s)
- Jin-Sung Chung
- Department of Dermatology, The University of Texas Southwestern Medical Center and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, Texas, USA
| | - Kyoichi Tamura
- Department of Dermatology, The University of Texas Southwestern Medical Center and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, Texas, USA
| | - Ponciano D Cruz
- Department of Dermatology, The University of Texas Southwestern Medical Center and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, Texas, USA
| | - Kiyoshi Ariizumi
- Department of Dermatology, The University of Texas Southwestern Medical Center and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, Texas, USA.
| |
Collapse
|
14
|
Fujiyama T, Oze I, Yagi H, Hashizume H, Matsuo K, Hino R, Kamo R, Imayama S, Hirakawa S, Ito T, Takigawa M, Tokura Y. Induction of cytotoxic T cells as a novel independent survival factor in malignant melanoma with percutaneous peptide immunization. J Dermatol Sci 2014; 75:43-8. [PMID: 24802712 DOI: 10.1016/j.jdermsci.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Malignant melanoma (MM) often shows multiple chemo-resistance, leading to poor prognosis of the patients. Therapeutic anti-cancer vaccination may be a feasible way to prolong the survival of patients. We have demonstrated that application of antigenic peptides via the tape-stripped, horny layer-removed skin, known as percutaneous peptide immunization (PPI), induces tumor cell-specific cytotoxic T lymphocytes (CTLs) in rodents and humans. OBJECTIVE To evaluate clinical significance of PPI in advanced MM patients. METHODS We performed PPI in 59 patients undergoing advanced MM with Melan-A, tyrosinase, MAGE-2, MAGE-3 and gp-100 peptides based on HLA typing in individuals. The induction of CTLs was assessed by the tetramer or pentamer flow cytometry in 35 patients. Patients showing positive CTL responses to all antigens were defined as complete responder (n=18), and those showing negative responses to at least one applied antigen were classified as incomplete responder (n=17). The primary endpoint of the study was overall survival (OS). For statistical analysis, log-rank test, univariate and multivariate Cox proportional hazard model were used. RESULTS OS of the complete responders was longer than that of the incomplete responders (median survival time: 55.8 vs 20.3 months, log rank P=0.089). A hazard ratio for the complete responders relative to the incomplete responders was 0.23 (95% confidence interval: 0.06-0.93, P=0.039) in a multivariate Cox proportional hazard model. CONCLUSION The induction of CTLs was a novel independent survival factor, and the induction of peptide-specific CTLs by PPI contributes to the prolonged survival and represents an impact on therapeutic approaches in MM. Unique trial number: UMIN000005706.
Collapse
Affiliation(s)
- Toshiharu Fujiyama
- Department of Dermatology, Hamamatsu University School of Medicine, Japan.
| | - Isao Oze
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Japan
| | - Hiroaki Yagi
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Hideo Hashizume
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Keitaro Matsuo
- Department of Preventive Medicine, Kyusyu University, Japan
| | - Ryosuke Hino
- Department of Dermatology, University of Occupational and Environmental Health, Japan
| | - Riei Kamo
- Department of Dermatology, Osaka City University Graduate School of Medicine, Japan
| | | | - Satoshi Hirakawa
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Taisuke Ito
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Masahiro Takigawa
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| |
Collapse
|
15
|
Bouwer AL, Saunderson SC, Caldwell FJ, Damani TT, Pelham SJ, Dunn AC, Jack RW, Stoitzner P, McLellan AD. NK Cells Are Required for Dendritic Cell–Based Immunotherapy at the Time of Tumor Challenge. THE JOURNAL OF IMMUNOLOGY 2014; 192:2514-21. [DOI: 10.4049/jimmunol.1202797] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Ridolfi L, Ridolfi R. Anti-CTLA-4 therapy in melanoma: role of ipilimumab (MDX-010). ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Norell H, Moretta A, Silva-Santos B, Moretta L. At the Bench: Preclinical rationale for exploiting NK cells and γδ T lymphocytes for the treatment of high-risk leukemias. J Leukoc Biol 2013; 94:1123-39. [PMID: 24108703 DOI: 10.1189/jlb.0613312] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NK cells and γδ T lymphocytes display potent cytolytic activity against leukemias and CMV-infected cells and are thus, promising immune effector cells in the context of allo-HSCT. NK cells express HLA class I-specific inhibitory receptors and preferentially kill HLA class I(low) tumors or virus-infected cells. Killing occurs upon engagement of activating NKRs with ligands that are up-regulated on tumors and infected cells. A similar activating receptor/ligand interaction strategy is used by γδ T cells, which in addition, use their TCRs for recognition of phosphorylated antigens and still largely undefined ligands on tumor cells. In the haploidentical allo-HSCT setting, alloreactive NK cells, derived from donor HSCs, can exert potent antileukemia activity and kill residual patient DCs and T cells, thus preventing GvHD and graft rejection. However, generation of KIR(+) alloreactive NK cells from HSCs requires many weeks, during which leukemia relapses, and life-threatening infections may occur. Importantly, mature NK cells and γδ T cells can control certain infectious agents efficiently, in particular, limit CMV reactivation, and infusion of such donor cells at the time of HSCT has been implemented. Development of novel, cell-based immunotherapies, allowing improved trafficking and better targeting, will endow NK cells and γδ T lymphocytes with enhanced anti-tumor activity, also making them key reagents for therapies against solid tumors. The clinical aspects of using NK cells and γδ T lymphocytes against hematological malignancies, including the allo-HSCT context, are reviewed in the related side-by-side paper by Locatelli and colleagues [1].
Collapse
|
18
|
Tarhini AA. Tremelimumab: a review of development to date in solid tumors. Immunotherapy 2013; 5:215-29. [PMID: 23444951 DOI: 10.2217/imt.13.9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tremelimumab is an investigational, fully human IgG monoclonal antibody directed against CTLA-4, a coinhibitory receptor that represses effector T-cell activity in cancer. Tremelimumab has produced promising anticancer responses in early clinical trials. However, a phase III trial of tremelimumab monotherapy versus chemotherapy in advanced melanoma was stopped early when no statistically significant difference in overall survival was observed between the two interventions. This article describes tremelimumab's putative mechanism of action, its preclinical pharmacology and clinical results to date across a range of cancer settings as monotherapy, as well as in combination with other therapies. The failure of the Phase III trial in melanoma is examined and factors affecting the possible future clinical development of tremelimumab are also explored.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- University of Pittsburgh Cancer Institute, University of Pittsburgh Medical Center Cancer Pavilion, 5150 Centre Avenue, Fifth Floor, Pittsburgh, PA 15232, USA.
| |
Collapse
|
19
|
Tumor vessel-injuring ability improves antitumor effect of cytotoxic T lymphocytes in adoptive immunotherapy. Cancer Gene Ther 2012; 20:57-64. [PMID: 23175243 PMCID: PMC3534155 DOI: 10.1038/cgt.2012.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Angiogenesis is required for normal physiologic processes, but it is also involved in tumor growth, progression and metastasis. Here, we report the development of an immune-based antiangiogenic strategy based on the generation of T lymphocytes that possess killing specificity for cells expressing vascular endothelial growth factor receptor 2 (VEGFR2). To target VEGFR2-expressing cells, we engineered cytotoxic T lymphocyte (CTL) expressing chimeric T-cell receptors (cTCR-CTL) comprised of a single-chain variable fragment (scFv) against VEGFR2 linked to an intracellular signaling sequence derived from the CD3ζ chain of the TCR and CD28 by retroviral gene transduction methods. The cTCR-CTL exhibited efficient killing specificity against VEGFR2 and a tumor-targeting function in vitro and in vivo. Reflecting such abilities, we confirmed that the cTCR-CTL strongly inhibited the growth of a variety of syngeneic tumors after adoptive transfer into tumor-bearing mice without consequent damage to normal tissue. In addition, CTL expressing both cTCR and tumor-specific TCR induced complete tumor regression due to enhanced tumor infiltration by the CTL and long-term antigen-specific function. These findings provide evidence that the tumor vessel-injuring ability improved the antitumor effect of CTLs in adoptive immunotherapy for a broad range of cancers by inducing immune-mediated destruction of the tumor neovasculature.
Collapse
|
20
|
Eiró N, Ovies C, Fernandez-Garcia B, Álvarez-Cuesta CC, González L, González LO, Vizoso FJ. Expression of TLR3, 4, 7 and 9 in cutaneous malignant melanoma: relationship with clinicopathological characteristics and prognosis. Arch Dermatol Res 2012. [PMID: 23179584 DOI: 10.1007/s00403-012-1300-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Toll-like receptors (TLRs) have achieved an extraordinary amount of interest in cancer research due to their role in tumor progression. The aim of this study was to investigate the expression and clinical relevance of TLR3, 4, 7 and 9 in cutaneous malignant melanoma (CMM). The expression levels of TLR3, 4, 7 and 9 were analyzed in tumors from 30 patients with CMM. The analysis was performed by immunohistochemistry, and the results were correlated with various clinicopathological findings and with relapse-free survival. Our results indicate that there was a wide variability in the immunostaining score values for each receptor. Positive staining for TLRs was generally found in tumor cells, especially for TLR4 and TLR9. Nevertheless, a significant percentage of tumors also showed TLR4 expression in mononuclear inflammatory cells (62.1 %) and in fibroblast-like cells (34.5 %). Our results showed no significant association between score values for each TLR and clinicopathological characteristics of patients. However, our results demonstrated that high TLR4 expression was significantly associated with a shortened relapse-free survival (p = 0.001). Therefore, TLR4 expression may be a new prognostic factor of unfavorable evolution in cutaneous malignant melanoma.
Collapse
Affiliation(s)
- N Eiró
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, Gijón, 33920, Asturias, Spain
| | - C Ovies
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, Gijón, 33920, Asturias, Spain
| | - B Fernandez-Garcia
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, Gijón, 33920, Asturias, Spain
| | | | - L González
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, Gijón, 33920, Asturias, Spain
| | - L O González
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, Gijón, 33920, Asturias, Spain.,Servicio de Anatomía Patológica, Fundación Hospital de Jove, Gijón, Spain
| | - F J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, Gijón, 33920, Asturias, Spain. .,Servicio de Cirugía General, Fundación Hospital de Jove, Gijón, Spain.
| |
Collapse
|
21
|
Muccioli M, Longstaff C, Benencia F. Absence of CD4 T-cell help provides a robust CD8 T-cell response while inducing effective memory in a preclinical model of melanoma. Immunotherapy 2012; 4:477-81. [PMID: 22642330 DOI: 10.2217/imt.12.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy strategies for cancer are focused on inducing effective and specific cytotoxic responses mediated by CD8 T cells. On the other hand, immunosuppressive mechanisms induced by the tumor, such as the generation of tumor-specific CD4(+)CD25(+)FoxP3(+) Tregs, conspire against the efficacy of immunotherapies. It has been considered that, similar to what has been observed in the context of immunological responses towards microbes, CD4 help is indispensable for the development of a successful and long-lasting (memory) CD8 immune response. In the recent article, Côté et al. reported that, in a mouse model of melanoma, total ablation of CD4 help does not hamper the development of a specific antitumor memory CD8 response. In addition, ablation of CD4 was more successful than strategies to deplete CD25 Tregs in generating memory CD8 T cells. These data opens the door for therapies destined to induce effective antitumor immune responses by ablation of whole CD4 T-cell populations.
Collapse
Affiliation(s)
- Maria Muccioli
- Molecular & Cell Biology Program, Ohio University, OH, USA
| | | | | |
Collapse
|
22
|
Montinaro A, Forte G, Sorrentino R, Luciano A, Palma G, Arra C, Adcock IM, Pinto A, Morello S. Adoptive immunotherapy with Cl-IB-MECA-treated CD8+ T cells reduces melanoma growth in mice. PLoS One 2012; 7:e45401. [PMID: 23028986 PMCID: PMC3454429 DOI: 10.1371/journal.pone.0045401] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022] Open
Abstract
Cl-IB-MECA is a selective A3 adenosine receptor agonist, which plays a crucial role in limiting tumor progression. In mice, Cl-IB-MECA administration enhances the anti-tumor T cell-mediated response. However, little is known about the activity of Cl-IB-MECA on CD8+ T cells. The aim of this study was to investigate the effect of ex vivo Cl-IB-MECA treatment of CD8+ T cells, adoptively transferred in melanoma-bearing mice. Adoptive transfer of Cl-IB-MECA-treated CD8+ T cells or a single administration of Cl-IB-MECA (20 ng/mouse) inhibited tumor growth compared with the control group and significantly improved mouse survival. This was associated with the release of Th1-type cytokines and a greater influx of mature Langerin+ dendritic cells (LCs) into the tumor microenvironment. CD8+ T cells treated with Cl-IB-MECA released TNF-α which plays a critical role in the therapeutic efficacy of these cells when injected to mice. Indeed, neutralization of TNF-α by a specific monoclonal Ab significantly blocked the anti-tumor activity of Cl-IB-MECA-treated T cells. This was due to the reduction in levels of cytotoxic cytokines and the presence of fewer LCs. In conclusion, these studies reveal that ex vivo treatment with Cl-IB-MECA improves CD8+ T cell adoptive immunotherapy for melanoma in a TNF-α-dependent manner.
Collapse
Affiliation(s)
- Antonella Montinaro
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Giovanni Forte
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Rosalinda Sorrentino
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Antonio Luciano
- National Cancer Institute “G. Pascale” Naples, Naples, Italy
| | - Giuseppe Palma
- National Cancer Institute “G. Pascale” Naples, Naples, Italy
| | - Claudio Arra
- National Cancer Institute “G. Pascale” Naples, Naples, Italy
| | - Ian M. Adcock
- NHLI, Imperial College of London, London, United Kingdom
| | - Aldo Pinto
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Silvana Morello
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| |
Collapse
|
23
|
Chornoguz O, Gapeev A, O'Neill MC, Ostrand-Rosenberg S. Major histocompatibility complex class II+ invariant chain negative breast cancer cells present unique peptides that activate tumor-specific T cells from breast cancer patients. Mol Cell Proteomics 2012; 11:1457-67. [PMID: 22942358 DOI: 10.1074/mcp.m112.019232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major histocompatibility complex (MHC) class II-associated Invariant chain (Ii) is present in professional antigen presenting cells where it regulates peptide loading onto MHC class II molecules and the peptidome presented to CD4+ T lymphocytes. Because Ii prevents peptide loading in neutral subcellular compartments, we reasoned that Ii- cells may present peptides not presented by Ii+ cells. Based on the hypothesis that patients are tolerant to MHC II-restricted tumor peptides presented by Ii+ cells, but will not be tolerant to novel peptides presented by Ii- cells, we generated MHC II vaccines to activate cancer patients' T cells. The vaccines are Ii- tumor cells expressing syngeneic HLA-DR and the costimulatory molecule CD80. We used liquid chromatography coupled with mass spectrometry to sequence MHC II-restricted peptides from Ii+ and Ii- MCF10 human breast cancer cells transfected with HLA-DR7 or the MHC Class II transactivator CIITA to determine if Ii- cells present novel peptides. Ii expression was induced in the HLA-DR7 transfectants by transfection of Ii, and inhibited in the CIITA transfectants by RNA interference. Peptides were analyzed and binding affinity predicted by artificial neural net analysis. HLA-DR7-restricted peptides from Ii- and Ii+ cells do not differ in size or in subcellular location of their source proteins; however, a subset of HLA-DR7-restricted peptides of Ii- cells are not presented by Ii+ cells, and are derived from source proteins not used by Ii+ cells. Peptides from Ii- cells with the highest predicted HLA-DR7 binding affinity were synthesized, and activated tumor-specific HLA-DR7+ human T cells from healthy donors and breast cancer patients, demonstrating that the MS-identified peptides are bonafide tumor antigens. These results demonstrate that Ii regulates the repertoire of tumor peptides presented by MHC class II+ breast cancer cells and identify novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.
Collapse
Affiliation(s)
- Olesya Chornoguz
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
24
|
Sahu RP, Turner MJ, DaSilva SC, Rashid BM, Ocana JA, Perkins SM, Konger RL, Touloukian CE, Kaplan MH, Travers JB. The environmental stressor ultraviolet B radiation inhibits murine antitumor immunity through its ability to generate platelet-activating factor agonists. Carcinogenesis 2012; 33:1360-7. [PMID: 22542595 PMCID: PMC3405652 DOI: 10.1093/carcin/bgs152] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/26/2012] [Accepted: 04/14/2012] [Indexed: 11/12/2022] Open
Abstract
Ubiquitous pro-oxidative stressor ultraviolet B radiation (UVB) to human or mouse skin generates platelet-activating factor (PAF) and novel oxidatively modified glycerophosphocholines (Ox-GPCs) with PAF-receptor (PAF-R) agonistic activity. These lipids mediate systemic immunosuppression in a process involving IL-10. The current studies sought to determine the functional significance of UVB-mediated systemic immunosuppression in an established model of murine melanoma. We show that UVB irradiation augments B16F10 tumor growth and is dependent on host, but not melanoma cell; PAF-R-expression as UVB or the PAF-R agonist, carbamoyl PAF (CPAF), both promote B16F10 tumor growth in wild-type (WT) mice, independent of whether B16F10 cells express PAF-Rs, but do not augment tumor growth in Pafr -/- mice. UVB-mediated augmentation of experimental murine tumor growth was inhibited with antioxidants, demonstrating the importance of Ox-GPC PAF-R agonists produced non-enzymatically. Host immune cells are required as CPAF-induced augmentation of tumor growth which is not seen in immunodeficient NOD SCID mice. Finally, depleting antibodies against IL-10 in WT mice or depletion of CD25-positive cells in FoxP3(EGFP) transgenic mice block UVB and/or CPAF-induced tumor growth supporting a requirement for IL-10 and Tregs in this process. These findings indicate that UVB-generated Ox-GPCs with PAF-R agonistic activity enhance experimental murine melanoma tumor growth through targeting host immune cells, most notably Tregs, to mediate systemic immunosuppression.
Collapse
Affiliation(s)
- Ravi P. Sahu
- Department of Dermatology
- Department of Pathology and Laboratory Medicine
| | | | | | | | | | | | - Raymond L. Konger
- Department of Dermatology
- Department of Pathology and Laboratory Medicine
| | | | - Mark H. Kaplan
- Department of Microbiology and Immunology
- H.B. Wells Center for Pediatric Research, Department of Pediatrics
| | - Jeffrey B. Travers
- Department of Dermatology
- H.B. Wells Center for Pediatric Research, Department of Pediatrics
- Department of Pharmacology and Toxicology
- The Richard L. Roudebush V.A. Medical Center, Indiana University School of Medicine, 1044 Walnut St. Rm. 202, Indianapolis, IN 46202, USA
| |
Collapse
|
25
|
Moschetta M, Pretto F, Berndt A, Galler K, Richter P, Bassi A, Oliva P, Micotti E, Valbusa G, Schwager K, Kaspar M, Trachsel E, Kosmehl H, Bani MR, Neri D, Giavazzi R. Paclitaxel Enhances Therapeutic Efficacy of the F8-IL2 Immunocytokine to EDA-Fibronectin–Positive Metastatic Human Melanoma Xenografts. Cancer Res 2012; 72:1814-24. [DOI: 10.1158/0008-5472.can-11-1919] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Pietra G, Manzini C, Rivara S, Vitale M, Cantoni C, Petretto A, Balsamo M, Conte R, Benelli R, Minghelli S, Solari N, Gualco M, Queirolo P, Moretta L, Mingari MC. Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Res 2012; 72:1407-15. [PMID: 22258454 DOI: 10.1158/0008-5472.can-11-2544] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells play a key role in tumor immune surveillance. However, adoptive immunotherapy protocols using NK cells have shown limited clinical efficacy to date, possibly due to tumor escape mechanisms that inhibit NK cell function. In this study, we analyzed the effect of coculturing melanoma cells and NK cells on their phenotype and function. We found that melanoma cells inhibited the expression of major NK receptors that trigger their immune function, including NKp30, NKp44, and NKG2D, with consequent impairment of NK cell-mediated cytolytic activity against various melanoma cell lines. This inhibitory effect was primarily mediated by indoleamine 2,3-dioxygenase (IDO) and prostaglandin E2 (PGE2). Together, our findings suggest that immunosuppressive barriers erected by tumors greatly hamper the antitumor activity of human NK cells, thereby favoring tumor outgrowth and progression.
Collapse
Affiliation(s)
- Gabriella Pietra
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica Università degli Studi di Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dimberu PM, Leonhardt RM. Cancer immunotherapy takes a multi-faceted approach to kick the immune system into gear. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2011; 84:371-380. [PMID: 22180675 PMCID: PMC3238317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cancer accounts for about every fourth death in the United States, with approximately 1,500 people dying each day as a result of this disease. Despite some progress in the last decades, these numbers alone undoubtedly demonstrate the urgent need for new and more efficient treatments. Immunotherapy aims to activate an efficient immune response against tumors or even prevent cancers from occurring in the first place. It is a growing field currently flourishing with several successful trials, some of which have led to the recent approval of new anti-cancer drugs by the Food and Drug Administration (FDA). This review addresses the manifold strategies that immunotherapy has taken in the past and discusses the most recent achievements in the field.
Collapse
Affiliation(s)
- Peniel M Dimberu
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06519, USA.
| | | |
Collapse
|
28
|
Enhancing the immunogenicity of tumour lysate-loaded dendritic cell vaccines by conjugation to virus-like particles. Br J Cancer 2011; 106:92-8. [PMID: 22134504 PMCID: PMC3251873 DOI: 10.1038/bjc.2011.538] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background: Tumour cell lysates are an excellent source of many defined and undefined tumour antigens and have been used clinically in immunotherapeutic regimes but with limited success. Methods: We conjugated Mel888 melanoma lysates to rabbit haemorrhagic disease virus virus-like particles (VLP), which can act as vehicles to deliver multiple tumour epitopes to dendritic cells (DC) to effectively activate antitumour responses. Results: Virus-like particles did not stimulate the phenotypic maturation of DC although, the conjugation of lysates to VLP (VLP-lysate) did overcome lysate-induced suppression of DC activation. Lysate-conjugated VLP enhanced delivery of antigenic proteins to DC, while the co-delivery of VLP-lysates with OK432 resulted in cross-priming of naïve T cells, with expansion of a MART1+ population of CD8+ T cells and generation of a specific cytotoxic response against Mel888 tumour cell targets. The responses generated with VLP-lysate and OK432 were superior to those stimulated by unconjugated lysate with OK432. Conclusion: Collectively, these results show that the combination of VLP-lysate with OK432 delivered to DC overcomes the suppressive effects of lysates, and enables priming of naïve T cells with superior ability to specifically kill their target tumour cells.
Collapse
|
29
|
Abstract
BACKGROUND Immunotherapy for cutaneous malignancy involves manipulating the immune system to treat and prevent skin cancer. Although initial efforts were fraught with low success rates and technical challenges, more-recent endeavors have yielded response rates approaching 50% for treating metastatic melanoma. Many of these advances are a result of increasing knowledge of the immune system's intricacies and continued progress in laboratory techniques. OBJECTIVE To review our current understanding of the skin immune system and discuss how these factors contribute to the host response to malignancy and to report the current state of immunotherapeutic techniques. MATERIALS AND METHODS An extensive PubMed literature search was conducted in topics involving immunotherapy with specific relevance to cutaneous malignancy using the MeSH terms "immunotherapy" and "skin cancer." RESULTS Despite initially poor patient responses to these treatment modalities, recent gains in scientific knowledge and clinical intervention protocols have brought immunotherapy to the forefront of prospective skin cancer therapeutics, particularly for advanced melanoma. CONCLUSIONS Current treatment options for advanced cutaneous malignancies such as melanoma are low in efficacy. Immunotherapies have the potential to provide novel approaches to address this, particularly when used in combination. The authors have indicated no significant interest with commercial supporters.
Collapse
Affiliation(s)
- Sherrif F Ibrahim
- Division of Dermatologic Surgery, Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14623, USA.
| | | | | |
Collapse
|
30
|
di Pietro A, Tosti G, Ferrucci PF, Testori A. The immunological era in melanoma treatment: new challenges for heat shock protein-based vaccine in the advanced disease. Expert Opin Biol Ther 2011; 11:1395-407. [PMID: 21801084 DOI: 10.1517/14712598.2011.605353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tumor-derived heat shock protein (HSP)-peptide complexes (HSPPCs) induced immunity against malignancies in preclinical trials, working across tumor types and bypassing the need to identify single immunogenic peptides. These results paved the way for the use of human gp96 obtained from autologous tumor samples as an anti-cancer vaccine. AREAS COVERED Autologous tumor-derived HSP gp96 peptide complex (HSPPC-96) vaccine is emerging as a tumor- and patient-specific cancer vaccine, with confirmed activity in several malignancies. It has been tested in Phase III clinical trials in advanced melanoma and kidney cancer with evidence for efficacy in patients with earlier stage disease. HSPPC-96-based vaccine demonstrated an excellent safety profile, thus emerging as a novel therapeutic approach with a suggestive role in cancer therapy. This review summarizes work on the use of HSPPC-96 as an autologous anti-tumor vaccine in advanced melanoma. Data were retrieved by PubMed and Medline research and using the authors' personal experience. EXPERT OPINION Further investigations are needed to understand the biological basis of immune functions in order to improve the clinical outcome of HSP-based cancer therapy. In the near future, the combination of HSP-based vaccines with other biological compounds might represent a successful strategy in the therapy of advanced melanoma.
Collapse
Affiliation(s)
- Alessandra di Pietro
- IEO, European Institute of Oncology, Melanoma Division, Via G. Ripamonti 435, 20141 Milan, Italy
| | | | | | | |
Collapse
|
31
|
Frey K, Fiechter M, Schwager K, Belloni B, Barysch MJ, Neri D, Dummer R. Different patterns of fibronectin and tenascin-C splice variants expression in primary and metastatic melanoma lesions. Exp Dermatol 2011; 20:685-8. [PMID: 21649738 DOI: 10.1111/j.1600-0625.2011.01314.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated the staining patterns of primary and metastatic melanoma lesions using F8, L19 and F16. These three clinical-stage antibodies are currently being studied in clinical trials for the pharmacodelivery of cytokines or therapeutic radionuclides to neoplastic sites in patients with cancer. Frozen sections of 24 primary and 29 metastatic melanoma lesions were stained, using immunofluorescence procedures, with biotinylated preparations of the F8, L19 and F16 antibodies, which are specific to the alternatively spliced extra domain A and extra domain B domains of fibronectin and A1 domain of tenascin-C, respectively. Blood vessels were costained using von Willebrand factor-specific antibodies. In primary cutaneous melanoma lesions, F16 and F8 (but not L19) strongly stained the basal lamina at the interface between epidermis and dermis, with a strikingly complementary pattern. By contrast, metastatic melanoma lesions displayed a strong and diffuse pattern of immunoreactivity with all three antibodies. It was found that the extracellular matrix in melanoma undergoes extensive remodelling during the transition from primary to metastatic lesions. The intense staining of metastatic melanoma lesions by the F8, L19 and F16 antibodies provides a strong rationale for the use of these antibodies and their derivatives for the treatment of melanoma patients and possibly for the personalized choice of the best performing antibody in individual patients.
Collapse
Affiliation(s)
- Katharina Frey
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Zuliani T, David J, Bercegeay S, Pandolfino MC, Rodde-Astier I, Khammari A, Coissac C, Delorme B, Saïagh S, Dréno B. Value of large scale expansion of tumor infiltrating lymphocytes in a compartmentalised gas-permeable bag: interests for adoptive immunotherapy. J Transl Med 2011; 9:63. [PMID: 21575188 PMCID: PMC3125220 DOI: 10.1186/1479-5876-9-63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 05/16/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) has emerged as an effective treatment for patients with metastatic melanoma. However, there are several logistical and safety concerns associated with large-scale ex vivo expansion of tumour-specific T lymphocytes for widespread availability of ACT for cancer patients. To address these problems we developed a specific compartmentalised bag allowing efficient expansion of tumour-specific T lymphocytes in an easy handling, closed system. METHODS Starting from lymph nodes from eight melanoma patients, we performed a side-by-side comparison of Tumour-Infiltrating Lymphocytes (TIL) produced after expansion in the compartmentalised bag versus TIL produced using the standard process in plates. Proliferation yield, viability, phenotype and IFNγ secretion were comparatively studied. RESULTS We found no differences in proliferation yield and cell viability between both TIL production systems. Moreover, each of the cell products complied with our defined release criteria before being administered to the patient. The phenotype analysis indicated that the compartmentalised bag favours the expansion of CD8+ cells. Finally, we found that TIL stimulated in bags were enriched in reactive CD8+ T cells when co-cultured with the autologous melanoma cell line. CONCLUSIONS The stimulation of TIL with feeder cells in the specifically designed compartmentalised bag can advantageously replace the conventional protocol using plates. In particular, the higher expansion rate of reactive CD8+ T cells could have a significant impact for ACT.
Collapse
Affiliation(s)
- Thomas Zuliani
- Cell and Gene Therapy Unit (UTCG): CIC biotherapy INSERM 0503 Hôtel-Dieu University Hospital 44093 Nantes cedex 01 France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Ko JM, Fisher DE. A new era: melanoma genetics and therapeutics. J Pathol 2010; 223:241-50. [PMID: 21125678 DOI: 10.1002/path.2804] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 12/19/2022]
Abstract
We have recently witnessed an explosion in our understanding of melanoma. Knowledge of the molecular basis of melanoma and the successes of targeted therapies have pushed melanoma care to the precipice of a new era. Identification of significant pathways and oncogenes has translated to the development of targeted therapies, some of which have produced major clinical responses. In this review, we provide an overview of selected key pathways and melanoma oncogenes as well as the targeted agents and therapeutic approaches whose successes suggest the promise of a new era in melanoma and cancer therapy. Despite these advances, the conversion of transient remissions to stable cures remains a vital challenge. Continued progress towards a better understanding about the complexity and redundancy responsible for melanoma progression may provide direction for anti-cancer drug development.
Collapse
Affiliation(s)
- Justin M Ko
- Department of Dermatology, Harvard Medical School; Boston, MA 02114, USA
| | | |
Collapse
|
35
|
Moretti RM, Mai S, Montagnani Marelli M, Bani MR, Ghilardi C, Giavazzi R, Taylor DM, Martini PGV, Limonta P. Dual targeting of tumor and endothelial cells by gonadotropin-releasing hormone agonists to reduce melanoma angiogenesis. Endocrinology 2010; 151:4643-53. [PMID: 20685877 DOI: 10.1210/en.2010-0163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We showed previously that GnRH receptors are expressed in melanoma cells; their activation reduces cell growth and metastatic behavior. Here, we investigated whether GnRH agonists might affect the expression of genes involved in melanoma progression. By genome-wide transcriptomic and real-time PCR analysis, we first observed that GnRH agonists decrease the expression of the pro-angiogenic factor vascular endothelial growth factor (VEGF) (all isoforms) in BLM melanoma cells. Then, we demonstrated that GnRH agonists specifically decrease the expression of the VEGF165 isoform as well as its secretion from BLM cells. These data suggested that activation of GnRH receptors might reduce the pro-angiogenic behavior of melanoma cells. To verify this hypothesis, we treated BLM cells with a GnRH agonist; the conditioned medium from these cells was tested to assess its capability to stimulate human umbilical vein endothelial cell (HUVEC) motility. The migration of HUVECs towards the conditioned medium of GnRH agonist-treated BLM cells was significantly lower than the migration of HUVECs toward the conditioned medium of untreated cells. Thus, GnRH agonists reduce the pro-angiogenic behavior of melanoma cells through a decreased production of bioactive VEGF. We then found that GnRH receptors are also expressed on HUVECs and that GnRH agonists reduce their ability to proliferate and to form capillary-like tubes when stimulated by VEGF. These findings suggest that GnRH agonists exert an anti-angiogenic activity indirectly by decreasing VEGF secretion from tumor cells and directly by counteracting the pro-angiogenic activity of the growth factor. These data might lead to the development of novel targeted approaches for melanoma.
Collapse
Affiliation(s)
- Roberta M Moretti
- Department of Endocrinology, Physiopathology, and Applied Biology, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hoos A, Ibrahim R, Korman A, Abdallah K, Berman D, Shahabi V, Chin K, Canetta R, Humphrey R. Development of Ipilimumab: Contribution to a New Paradigm for Cancer Immunotherapy. Semin Oncol 2010; 37:533-46. [DOI: 10.1053/j.seminoncol.2010.09.015] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Inoue M, Senju S, Hirata S, Ikuta Y, Hayashida Y, Irie A, Harao M, Imai K, Tomita Y, Tsunoda T, Furukawa Y, Ito T, Nakamura Y, Baba H, Nishimura Y. Identification of SPARC as a candidate target antigen for immunotherapy of various cancers. Int J Cancer 2010; 127:1393-403. [PMID: 20063317 DOI: 10.1002/ijc.25160] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To establish efficient anticancer immunotherary, it is important to identify tumor-associated antigens (TAAs) directing the immune system to attack cancer. A genome-wide cDNA microarray analysis identified that secreted protein acidic and rich in cysteine (SPARC) gene is overexpressed in the gastric, pancreatic and colorectal cancer tissues but not in their noncancerous counterparts. This study attempted to identify HLA-A24 (A*2402)-restricted and SPARC-derived CTL epitopes. We previously identified H-2K(d)-restricted and SPARC-derived CTL epitope peptides in BALB/c mice, of which H-2K(d)-binding peptide motif is comparable with that of HLA-A24 binding peptides. By using these peptides, we tried to induce HLA-A24 (A*2402)-restricted and SPARC-reactive human CTLs and demonstrated an antitumor immune response. The SPARC-A24-1(143-151) (DYIGPCKYI) and SPARC-A24-4(225-234) (MYIFPVHWQF) peptides-reactive CTLs were successfully induced from peripheral blood mononuclear cells by in vitro stimulation with these two peptides in HLA-A24 (A*2402) positive healthy donors and cancer patients, and these CTLs exhibited cytotoxicity specific to cancer cells expressing both SPARC and HLA-A24 (A*2402). Furthermore, the adoptive transfer of the SPARC-specific CTLs could inhibit the tumor growth in nonobese diabetic/severe combined immunodeficient mice bearing human cancer cells expressing both HLA-A24 (A*2402) and SPARC. These findings suggest that SPARC is a potentially useful target candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Mitsuhiro Inoue
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Toll-like receptors: role in dermatological disease. Mediators Inflamm 2010; 2010:437246. [PMID: 20847936 PMCID: PMC2933899 DOI: 10.1155/2010/437246] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/27/2010] [Accepted: 07/01/2010] [Indexed: 01/04/2023] Open
Abstract
Toll-like receptors (TLRs) are a class of conserved receptors that recognize pathogen-associated molecular patterns (PAMPs) present in microbes. In humans, at least ten TLRs have been identified, and their recognition targets range from bacterial endotoxins to lipopeptides, DNA, dsRNA, ssRNA, fungal products, and several host factors. Of dermatological interest, these receptors are expressed on several skin cells including keratinocytes, melanocytes, and Langerhans cells. TLRs are essential in identifying microbial products and are known to link the innate and adaptive immune systems. Over the years, there have been significant advances in our understanding of TLRs in skin inflammation, cutaneous malignancies, and defence mechanisms. In this paper, we will describe the association between TLRs and various skin pathologies and discuss proposed TLR therapeutics.
Collapse
|
39
|
Fine analysis of spontaneous MAGE-C1/CT7-specific immunity in melanoma patients. Proc Natl Acad Sci U S A 2010; 107:15187-92. [PMID: 20696919 DOI: 10.1073/pnas.1002155107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cancer/testis (CT) antigens represent prime candidates for immunotherapy in cancer patients, because their expression is restricted to cancer cells and germ cells of the testis. MAGE-C1/CT7 is a CT antigen that is highly expressed in several types of cancers. Spontaneous occurrence of CT7-specific antibodies was previously detected by SEREX screen in a melanoma patient. However, naturally occurring CT7-specific T-cell responses have thus far not been detected. Peripheral blood mononuclear cells (PBMCs) from 26 metastatic melanoma patients expressing CT7 in their tumor lesions (CT7(+)) were analyzed for CT7-specific T-cell responses using overlapping peptides. CT7-specific CD4(+) T-cell responses were detected in three patients (11.5%). These CT7-specific CD4(+) T-cell responses were detectable in melanoma patients' PBMCs exclusively from preexisting CD45RA(-) memory CD4(+) T-cell pool. Additional CT7-specific memory CD4(+) T-cell responses were detected in CT7(+) melanoma patients after depletion of CD4(+)CD25high Treg cells showing that Treg cells impact on CT7-specific CD4(+) T cells in melanoma patients. CT7-specific CD4(+) T-cell clones were generated and used to define minimal epitopes, restriction elements, and confirm the recognition of naturally processed antigen. Surprisingly, these clones were able to secrete perforin and exert cytotoxicity. This study shows that CT7 can induce specific cellular immunity in melanoma patients. Based on these findings, CT7 will be further explored as a potential vaccine for melanoma immunotherapy.
Collapse
|
40
|
Burke S, Lakshmikanth T, Colucci F, Carbone E. New views on natural killer cell-based immunotherapy for melanoma treatment. Trends Immunol 2010; 31:339-45. [PMID: 20655806 DOI: 10.1016/j.it.2010.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/27/2010] [Accepted: 06/08/2010] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cell-based immunotherapies treat hematopoietic malignancies, but are less effective against solid tumors. Here, we review recent data on NK cell recognition of melanoma at various stages of the disease and propose a combinatorial strategy to exploit fully the potential of NK cells. Depending on the stage of melanoma progression, NK cell-based therapies could be combined with pharmacological and T cell-based immunotherapies, to: (i) prevent lymph node metastases by redistributing cytotoxic NK cells; (ii) boost NK cell activity using chemotherapy to upregulate activating ligands on tumor cells; and (iii) target visceral metastases by transfer of autologous or allogeneic NK cells.
Collapse
Affiliation(s)
- Shannon Burke
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | |
Collapse
|
41
|
Alexandrescu DT, Ichim TE, Riordan NH, Marincola FM, Di Nardo A, Kabigting FD, Dasanu CA. Immunotherapy for melanoma: current status and perspectives. J Immunother 2010; 33:570-90. [PMID: 20551839 PMCID: PMC3517185 DOI: 10.1097/cji.0b013e3181e032e8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immunotherapy is an important modality in the therapy of patients with malignant melanoma. As our knowledge about this disease continues to expand, so does the immunotherapeutic armamentarium. Nevertheless, successful preclinical models do not always translate into clinically meaningful results. The authors give a comprehensive analysis of most recent advances in the immune anti-melanoma therapy, including interleukins, interferons, other cytokines, adoptive immunotherapy, biochemotherapy, as well as the use of different vaccines. We also present the fundamental concepts behind various immune enhancement strategies, passive immunotherapy, as well as the use of immune adjuvants. This review brings into discussion the results of newer and older clinical trials, as well as potential limitations and drawbacks seen with the utilization of various immune therapies in malignant melanoma. Development of novel therapeutic approaches, along with optimization of existing therapies, continues to hold a great promise in the field of melanoma therapy research. Use of anti-CTLA4 and anti-PD1 antibodies, realization of the importance of co-stimulatory signals, which translated into the use of agonist CD40 monoclonal antibodies, as well as activation of innate immunity through enhanced expression of co-stimulatory molecules on the surface of dendritic cells by TLR agonists are only a few items on the list of recent advances in the treatment of melanoma. The need to engineer better immune interactions and to boost positive feedback loops appear crucial for the future of melanoma therapy, which ultimately resides in our understanding of the complexity of immune responses in this disease.
Collapse
Affiliation(s)
- Doru T Alexandrescu
- Division of Dermatology, University of California at San Diego, San Diego, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Novel immunotherapies as potential therapeutic partners for traditional or targeted agents: cytotoxic T-lymphocyte antigen-4 blockade in advanced melanoma. Melanoma Res 2010; 20:1-10. [PMID: 19952852 DOI: 10.1097/cmr.0b013e328333bbc8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The successful management of advanced melanoma remains an unmet need because of a resolutely poor prognosis and therapeutic options with limited effectiveness. Dacarbazine and fotemustine are the only approved chemotherapeutic agents for advanced melanoma, yet neither alone or in combination regimens has been shown to extend survival in randomized clinical trials. The only agent to be approved for advanced melanoma in the US in more than 30 years is high-dose bolus interleukin-2, but its use is associated with high toxicity and cost, and it has also failed to show a survival benefit. Our expanding knowledge of the complex factors and pathways regulating immune function has led to the advent of novel immunotherapeutic agents. Among these are ipilimumab and tremelimumab - fully human, monoclonal antibodies directed against cytotoxic T-lymphocyte antigen-4 (CTLA-4). The pivotal role of CTLA-4 in regulating T-cell function is established, and a series of preclinical studies provided proof-of-concept evidence of the antitumor activity of anti-CLTA-4 antibodies in combination with vaccines or chemotherapy. Subsequently, anti-CTLA-4 antibodies have shown encouraging results in clinical trials in advanced melanoma. Recent progress in the understanding of melanoma genetics and tumorigenesis has led to potential new therapeutic targets. Molecular targeted agents that inhibit the proliferation and survival of metastatic melanoma cells offer potential partners for anti-CTLA-4 antibodies in combined modality regimens. Novel combinations are reviewed in the context of creating an immunosupportive environment in the host.
Collapse
|
43
|
Missima F, Pagliarone AC, Orsatti CL, Araújo JP, Sforcin JM. The Effect of propolis on Th1/Th2 cytokine expression and production by melanoma-bearing mice submitted to stress. Phytother Res 2010; 24:1501-7. [DOI: 10.1002/ptr.3142] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Effective melanoma immunotherapy in mice by the skin-depigmenting agent monobenzone and the adjuvants imiquimod and CpG. PLoS One 2010; 5:e10626. [PMID: 20498710 PMCID: PMC2869359 DOI: 10.1371/journal.pone.0010626] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/25/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Presently melanoma still lacks adequate treatment options for metastatic disease. While melanoma is exceptionally challenging to standard regimens, it is suited for treatment with immunotherapy based on its immunogenicity. Since treatment-related skin depigmentation is considered a favourable prognostic sign during melanoma intervention, we here aimed at the reverse approach of directly inducing vitiligo as a shortcut to effective anti-melanoma immunity. METHODOLOGY AND PRINCIPAL FINDINGS We developed an effective and simple to use form of immunotherapy by combining the topical skin-bleaching agent monobenzone with immune-stimulatory imiquimod cream and cytosine-guanine oligodeoxynucleotides (CpG) injections (MIC therapy). This powerful new approach promptly induced a melanoma antigen-specific immune response, which abolished subcutaneous B16.F10 melanoma growth in up to 85% of C57BL/6 mice. Importantly, this regimen induced over 100 days of tumor-free survival in up to 60% of the mice, and forcefully suppressed tumor growth upon re-challenge either 65- or 165 days after MIC treatment cessation. CONCLUSIONS MIC therapy is effective in eradicating melanoma, by vigilantly incorporating NK-, B- and T cells in its therapeutic effect. Based on these results, the MIC regimen presents a high-yield, low-cost and simple therapy, readily applicable in the clinic.
Collapse
|
45
|
Yoshida T, Yoshida R, Ma BY, Mikolajczak S, Kelvin DJ, Ochi A. A novel mitogen fusion protein against CD40+ cells with potent vaccine adjuvant properties. Vaccine 2010; 28:3688-95. [PMID: 20359561 DOI: 10.1016/j.vaccine.2010.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 03/02/2010] [Accepted: 03/10/2010] [Indexed: 11/16/2022]
Abstract
A large number of infectious diseases caused by viral or bacterial infections are treatable and/or preventable by vaccination. In addition, ongoing research is aimed at the development of vaccines against other types of diseases, including almost all forms of cancer. The efficacy of a vaccine relies on the antigen-specific response by the entire repertoire of immune competent cells. Here, we have generated a powerful mitogen fusion protein, CD40L-FasL-IgFc, which stimulates CD40(+) cells robustly. We found that this specific cell activation is accompanied by increased expression of PRDI-BF1 (Blim-1) RNA, an indicator of terminal B-cell differentiation, in cultures stimulated with CD40L-FasL-IgFc. The addition of specific inhibitors of NF-kappaB and MEK1/2 partially suppressed the observed proliferative effects of CD40L-FasL-IgFc. When tested in vivo, the immune response to influenza HA vaccine was significantly increased by co-administration of CD40L-FasL-IgFc. Moreover, the co-administration of the cDNA expression plasmid encoding CD40L-FasL-IgFc significantly boosted the vaccine response. We now have a unique opportunity to evaluate our novel fusion protein adjuvant, and other similarly constructed fusion proteins, in both protein-based and genetic vaccines.
Collapse
Affiliation(s)
- Tetsuya Yoshida
- First Department of Internal Medicine, School of Medicine, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Ji Z, Flaherty KT, Tsao H. Molecular therapeutic approaches to melanoma. Mol Aspects Med 2010; 31:194-204. [DOI: 10.1016/j.mam.2010.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 02/16/2010] [Indexed: 02/01/2023]
|
47
|
Maio M, Mackiewicz A, Testori A, Trefzer U, Ferraresi V, Jassem J, Garbe C, Lesimple T, Guillot B, Gascon P, Gilde K, Camerini R, Cognetti F. Large randomized study of thymosin alpha 1, interferon alfa, or both in combination with dacarbazine in patients with metastatic melanoma. J Clin Oncol 2010; 28:1780-7. [PMID: 20194853 DOI: 10.1200/jco.2009.25.5208] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Thymosin alpha 1 (Talpha1) is an immunomodulatory polypeptide that enhances effector T-cell responses. In this large randomized study, we evaluated the efficacy and safety of combining Talpha1 with dacarbazine (DTIC) and interferon alfa (IFN-alpha) in patients with metastatic melanoma. PATIENTS AND METHODS Four hundred eighty-eight patients were randomly assigned to five treatment groups: DTIC+IFN-alpha+Talpha1 (1.6 mg); DTIC+IFN-alpha+Talpha1 (3.2 mg); DTIC+IFN-alpha+Talpha1 (6.4 mg); DTIC+Talpha1 (3.2 mg); DTIC+IFN-alpha (control group). The primary end point was best overall response at study end (12 months). Secondary end points included duration of response, overall survival (OS), and progression-free survival (PFS). Patients were observed for up to 24 months. RESULTS Ten and 12 tumor responses were observed in the DTIC+IFN-alpha+Talpha1 (3.2 mg) and DTIC+Talpha1 (3.2 mg) groups, respectively, versus four in the control group, which was sufficient to reject the null hypothesis that P(0) < or = .05 (expected response rate of standard therapy) in these two arms. Duration of response ranged from 1.9 to 23.2 months in patients given Talpha1 and from 4.4 to 8.4 months in the control group. Median OS was 9.4 months in patients given Talpha1 versus 6.6 months in the control group (hazard ratio = 0.80; 9% CI, 0.63 to 1.02; P = .08). An increase in PFS was observed in patients given Talpha1 versus the control group (hazard ratio = 0.80; 95% CI, 0.63 to 1.01; P = .06). Addition of Talpha1 to DTIC and IFN-alpha did not lead to any additional toxicity. CONCLUSION These results suggest Talpha1 has activity in patients with metastatic melanoma and provide rationale for further clinical evaluation of this agent.
Collapse
Affiliation(s)
- Michele Maio
- Division of Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kanagawa N, Yanagawa T, Mukai Y, Yoshioka Y, Okada N, Nakagawa S. Tumor-targeting CTL expressing a single-chain Fv specific for VEGFR2. Biochem Biophys Res Commun 2010; 394:54-8. [PMID: 20171182 DOI: 10.1016/j.bbrc.2010.02.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are critical effector cells in tumor immunity. Adoptive transfer therapy with in vitro-expanded tumor-specific CTL is a promising approach for preventing cancer metastasis and recurrence. Transferred CTL are not effective in clinical trials, however, due to inadequate tumor-infiltration. Therefore, the development of functionally modified CTL, such as tumor-targeting CTL, is widely desired. Here, we designed the tumor-targeting CTL expressing a single-chain antibody fragment (scFv-CTL) specific for vascular endothelial growth factor receptor 2 (VEGFR2/flk1) by transducing the CTL with a retroviral vector. The scFv-CTL bound to VEGFR2/flk1-expressing cells and retained their cytotoxic activity against tumor cells. In addition, adoptive transfer of scFv-CTL into tumor-bearing mice effectively suppressed tumor growth due to the augmented accumulation of the transferred CTL in the tumor tissue. These findings indicate that the creation of CTL capable of targeting tumor vascular endothelial cells by scFv-expression technique is considerably promising for improvement of efficacy in adoptive immunotherapy.
Collapse
Affiliation(s)
- Naoko Kanagawa
- Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Advocates of chimpanzee research claim the genetic similarity of humans and chimpanzees make them an indispensable research tool to combat human diseases. Given that cancer is a leading cause of human death worldwide, one might expect that if chimpanzees were needed for, or were productive in, cancer research, then they would have been widely used. This comprehensive literature analysis reveals that chimpanzees have scarcely been used in any form of cancer research, and that chimpanzee tumours are extremely rare and biologically different from human cancers. Often, chimpanzee citations described peripheral use of chimpanzee cells and genetic material in predominantly human genomic studies. Papers describing potential new cancer therapies noted significant concerns regarding the chimpanzee model. Other studies described interventions that have not been pursued clinically. Finally, available evidence indicates that chimpanzees are not essential in the development of therapeutic monoclonal antibodies. It would therefore be unscientific to claim that chimpanzees are vital to cancer research. On the contrary, it is reasonable to conclude that cancer research would not suffer, if the use of chimpanzees for this purpose were prohibited in the US. Genetic differences between humans and chimpanzees, make them an unsuitable model for cancer, as well as other human diseases.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA 02108-5100, USA.
| |
Collapse
|
50
|
Correll A, Tuettenberg A, Becker C, Jonuleit H. Increased regulatory T-cell frequencies in patients with advanced melanoma correlate with a generally impaired T-cell responsiveness and are restored after dendritic cell-based vaccination. Exp Dermatol 2009; 19:e213-21. [DOI: 10.1111/j.1600-0625.2009.01055.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|