1
|
Kennewell TL, Haidari H, Mashtoub S, Howarth GS, Wormald PJ, Cowin AJ, Vreugde S, Kopecki Z. Deferiprone and Gallium-Protoporphyrin Chitogel as an antimicrobial treatment: Preclinical studies demonstrating antimicrobial activity for S. aureus infected cutaneous wounds. Int J Biol Macromol 2024; 276:133874. [PMID: 39013511 DOI: 10.1016/j.ijbiomac.2024.133874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Staphylococcus aureus (S. aureus) is one of the most common wound pathogens with increased resistance towards currently available antimicrobials. S. aureus biofilms lead to increase wound chronicity and delayed healing. Chitosan-dextran hydrogel (Chitogel) loaded with the hydroxypyridinone-derived iron chelator Deferiprone (Def) and the heme analogue Gallium-Protoporphyrin (GaPP) have previously been shown to have antimicrobial effects in clinical sinusitis. In this study, the efficacy of Chitogel loaded with Def, GaPP and a combination of Def and GaPP, were investigated in an S. aureus biofilm infected wound murine model over 10 days of treatment. Bacterial wound burden was monitored daily showing a significant decrease in bacterial bioburden on days 6 and 8 when treated with Def-GaPP Chitogel (log10 1.0 and 1.2 reduction vs control, respectively). The current study demonstrates that the combination of Def-GaPP delivered in a Chitogel in vivo is not only effective in reducing S. aureus biofilm infection, but also improves cutaneous healing via effects on reduced inflammation, promotion of anti-inflammatory macrophage phenotype and marked early collagen deposition in the wound bed. This delivery platform presents a promising alternative non-toxic, antibacterial, wound-promoting treatment as a novel approach for the management of S. aureus wound infections that warrants further clinical investigation.
Collapse
Affiliation(s)
- T L Kennewell
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - H Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - S Mashtoub
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Department of Gastroenterology, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - G S Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - P J Wormald
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
| | - A J Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - S Vreugde
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
| | - Z Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.
| |
Collapse
|
2
|
Dong S, Li D, Shi D. Skin barrier-inflammatory pathway is a driver of the psoriasis-atopic dermatitis transition. Front Med (Lausanne) 2024; 11:1335551. [PMID: 38606161 PMCID: PMC11007107 DOI: 10.3389/fmed.2024.1335551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
As chronic inflammatory conditions driven by immune dysregulation are influenced by genetics and environment factors, psoriasis and atopic dermatitis (AD) have traditionally been considered to be distinct diseases characterized by different T cell responses. Psoriasis, associated with type 17 helper T (Th17)-mediated inflammation, presents as well-defined scaly plaques with minimal pruritus. AD, primarily linked to Th2-mediated inflammation, presents with poorly defined erythema, dry skin, and intense itching. However, psoriasis and AD may overlap or transition into one another spontaneously, independent of biological agent usage. Emerging evidence suggests that defects in skin barrier-related molecules interact with the polarization of T cells, which forms a skin barrier-inflammatory loop with them. This loop contributes to the chronicity of the primary disease or the transition between psoriasis and AD. This review aimed to elucidate the mechanisms underlying skin barrier defects in driving the overlap between psoriasis and AD. In this review, the importance of repairing the skin barrier was underscored, and the significance of tailoring biologic treatments based on individual immune status instead of solely adhering to the treatment guidelines for AD or psoriasis was emphasized.
Collapse
Affiliation(s)
- Sitan Dong
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Dongmei Shi
- Department of Dermatology/Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
3
|
Nguyen MT, Ly QK, Kim HJ, Lee W. FLII Modulates the Myogenic Differentiation of Progenitor Cells via Actin Remodeling-Mediated YAP1 Regulation. Int J Mol Sci 2023; 24:14335. [PMID: 37762638 PMCID: PMC10531566 DOI: 10.3390/ijms241814335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The dynamic rearrangement of the actin cytoskeleton plays an essential role in myogenesis, which is regulated by diverse mechanisms, such as mechanotransduction, modulation of the Hippo signaling pathway, control of cell proliferation, and the influence of morphological changes. Despite the recognized importance of actin-binding protein Flightless-1 (FLII) during actin remodeling, the role played by FLII in the differentiation of myogenic progenitor cells has not been explored. Here, we investigated the roles of FLII in the proliferation and differentiation of myoblasts. FLII was found to be enriched in C2C12 myoblasts, and its expression was stable during the early stages of differentiation but down-regulated in fully differentiated myotubes. Knockdown of FLII in C2C12 myoblasts resulted in filamentous actin (F-actin) accumulation and inhibited Yes-associated protein 1 (YAP1) phosphorylation, which triggers its nuclear translocation from the cytoplasm. Consequently, the expressions of YAP1 target genes, including PCNA, CCNB1, and CCND1, were induced, and the cell cycle and proliferation of myoblasts were promoted. Moreover, FLII knockdown significantly inhibited the expression of myogenic regulatory factors, i.e., MyoD and MyoG, thereby impairing myoblast differentiation, fusion, and myotube formation. Thus, our findings demonstrate that FLII is crucial for the differentiation of myoblasts via modulation of the F-actin/YAP1 axis and suggest that FLII is a putative novel therapeutic target for muscle wasting.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Quoc Kiet Ly
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Hyun-Jung Kim
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea
| |
Collapse
|
4
|
Ruijmbeek CW, Housley F, Idrees H, Housley MP, Pestel J, Keller L, Lai JK, van der Linde HC, Willemsen R, Piesker J, Al-Hassnan ZN, Almesned A, Dalinghaus M, van den Bersselaar LM, van Slegtenhorst MA, Tessadori F, Bakkers J, van Ham TJ, Stainier DY, Verhagen JM, Reischauer S. Biallelic variants in FLII cause pediatric cardiomyopathy by disrupting cardiomyocyte cell adhesion and myofibril organization. JCI Insight 2023; 8:e168247. [PMID: 37561591 PMCID: PMC10544232 DOI: 10.1172/jci.insight.168247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
Pediatric cardiomyopathy (CM) represents a group of rare, severe disorders that affect the myocardium. To date, the etiology and mechanisms underlying pediatric CM are incompletely understood, hampering accurate diagnosis and individualized therapy development. Here, we identified biallelic variants in the highly conserved flightless-I (FLII) gene in 3 families with idiopathic, early-onset dilated CM. We demonstrated that patient-specific FLII variants, when brought into the zebrafish genome using CRISPR/Cas9 genome editing, resulted in the manifestation of key aspects of morphological and functional abnormalities of the heart, as observed in our patients. Importantly, using these genetic animal models, complemented with in-depth loss-of-function studies, we provided insights into the function of Flii during ventricular chamber morphogenesis in vivo, including myofibril organization and cardiomyocyte cell adhesion, as well as trabeculation. In addition, we identified Flii function to be important for the regulation of Notch and Hippo signaling, crucial pathways associated with cardiac morphogenesis and function. Taken together, our data provide experimental evidence for a role for FLII in the pathogenesis of pediatric CM and report biallelic variants as a genetic cause of pediatric CM.
Collapse
Affiliation(s)
- Claudine W.B. Ruijmbeek
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Filomena Housley
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hafiza Idrees
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen/Bad Nauheim, Germany
| | - Michael P. Housley
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jenny Pestel
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Leonie Keller
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jason K.H. Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Herma C. van der Linde
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Zuhair N. Al-Hassnan
- Department of Medical Genetics, and
- Cardiovascular Genetics Program, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | - Michiel Dalinghaus
- Department of Pediatric Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lisa M. van den Bersselaar
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjon A. van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen/Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), RheinMain partner site, Bad Nauheim, Germany
| | - Judith M.A. Verhagen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen/Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), RheinMain partner site, Bad Nauheim, Germany
| |
Collapse
|
5
|
Kuwabara Y, York AJ, Lin SC, Sargent MA, Grimes KM, Pirruccello JP, Molkentin JD. A human FLII gene variant alters sarcomeric actin thin filament length and predisposes to cardiomyopathy. Proc Natl Acad Sci U S A 2023; 120:e2213696120. [PMID: 37126682 PMCID: PMC10175844 DOI: 10.1073/pnas.2213696120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
To better understand the genetic basis of heart disease, we identified a variant in the Flightless-I homolog (FLII) gene that generates a R1243H missense change and predisposes to cardiac remodeling across multiple previous human genome-wide association studies (GWAS). Since this gene is of unknown function in the mammalian heart we generated gain- and loss-of-function genetically altered mice, as well as knock-in mice with the syntenic R1245H amino acid substitution, which showed that Flii protein binds the sarcomeric actin thin filament and influences its length. Deletion of Flii from the heart, or mice with the R1245H amino acid substitution, show cardiomyopathy due to shortening of the actin thin filaments. Mechanistically, Flii is a known actin binding protein that we show associates with tropomodulin-1 (TMOD1) to regulate sarcomere thin filament length. Indeed, overexpression of leiomodin-2 in the heart, which lengthens the actin-containing thin filaments, partially rescued disease due to heart-specific deletion of Flii. Collectively, the identified FLII human variant likely increases cardiomyopathy risk through an alteration in sarcomere structure and associated contractile dynamics, like other sarcomere gene-based familial cardiomyopathies.
Collapse
Affiliation(s)
- Yasuhide Kuwabara
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Allen J. York
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Suh-Chin Lin
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Michelle A. Sargent
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Kelly M. Grimes
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - James P. Pirruccello
- Division of Cardiology, University of California San Francisco, San Francisco, CA94158
| | - Jeffery D. Molkentin
- Department of Pediatrics, Cincinnati Children’s Hospital and the University of Cincinnati, Cincinnati, OH45229
| |
Collapse
|
6
|
Lipid Liquid Crystal Nanoparticles: Promising Photosensitizer Carriers for the Treatment of Infected Cutaneous Wounds. Pharmaceutics 2023; 15:pharmaceutics15020305. [PMID: 36839628 PMCID: PMC9964009 DOI: 10.3390/pharmaceutics15020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Cutaneous chronic wounds impose a silent pandemic that affects the lives of millions worldwide. The delayed healing process is usually complicated by opportunistic bacteria that infect wounds. Staphylococcus aureus is one of the most prevalent bacteria in infected cutaneous wounds, with the ability to form antibiotic-resistant biofilms. Recently, we have demonstrated the potential of gallium protoporphyrin lipid liquid crystalline nanoparticles (GaPP-LCNP) as a photosensitizer against S. aureus biofilms in vitro. Herein, we investigate the potential of GaPP-LCNP using a pre-clinical model of infected cutaneous wounds. GaPP-LCNP showed superior antibacterial activity compared to unformulated GaPP, reducing biofilm bacterial viability by 5.5 log10 compared to 2.5 log10 in an ex vivo model, and reducing bacterial viability by 1 log10 in vivo, while unformulated GaPP failed to reduce bacterial burden. Furthermore, GaPP-LCNP significantly promoted wound healing through reduction in the bacterial burden and improved early collagen deposition. These findings pave the way for future pre-clinical investigation and treatment optimizations to translate GaPP-LCNP towards clinical application.
Collapse
|
7
|
Ahangar P, Strudwick XL, Cowin AJ. Wound Healing from an Actin Cytoskeletal Perspective. Cold Spring Harb Perspect Biol 2022; 14:a041235. [PMID: 35074864 PMCID: PMC9341468 DOI: 10.1101/cshperspect.a041235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound healing requires a complex cascade of highly controlled and conserved cellular and molecular processes. These involve numerous cell types and extracellular matrix molecules regulated by the actin cytoskeleton. This microscopic network of filaments is present within the cytoplasm of all cells and provides the shape and mechanical support required for cell movement and proliferation. Here, an overview of the processes of wound healing are described from the perspective of the cell in relation to the actin cytoskeleton. Key points of discussion include the role of actin, its binding proteins, signaling pathways, and events that play significant roles in the phases of wound healing. The identification of cytoskeletal targets that can be used to manipulate and improve wound healing is included as an emerging area of focus that may inform future therapeutic approaches to improve healing of complex wounds.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Allison J Cowin
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| |
Collapse
|
8
|
Thorn CR, Wignall A, Kopecki Z, Kral A, Prestidge CA, Thomas N. Liquid Crystal Nanoparticles Enhance Tobramycin Efficacy in a Murine Model of Pseudomonas aeruginosa Biofilm Wound Infection. ACS Infect Dis 2022; 8:841-854. [PMID: 35255215 DOI: 10.1021/acsinfecdis.1c00606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic Pseudomonas aeruginosa wound infections are highly prevalent and often untreatable due to biofilm formation, resulting in high antimicrobial tolerance. Standard antibiotic therapy for P. aeruginosa infections involves tobramycin, yet it is highly ineffective as monotherapy as tobramycin cannot penetrate the biofilm to elicit its antimicrobial effect. Lipid liquid crystal nanoparticles (LCNPs) have previously been shown to increase the antimicrobial efficacy and penetration of tobramycin against P. aeruginosa biofilms in vitro and ex vivo. Here, for the first time, we have developed a chronic P. aeruginosa biofilm infection in full-thickness wounds in mice to examine the potential of LCNPs to improve the effect of tobramycin, preclinically. After three doses, administered once a day, tobramycin-LCNPs significantly reduced the P. aeruginosa bacterial load in murine wounds 1000-fold more than unformulated tobramycin, which in turn showed no significant difference to the saline control treatment. Consistent with the improved P. aeruginosa eradication, the tobramycin-LCNPs promoted wound healing. In comparison to previous in vitro and ex vivo data, we show a strong in vitro-in vivo correlation between P. aeruginosa biofilm infection models. The enhanced activity of tobramycin-LCNPs in vivo in the preclinical murine model demonstrates the strong potential of LCNPs as a next-generation formulation approach to improve the efficacy of tobramycin against P. aeruginosa biofilm wound infections.
Collapse
Affiliation(s)
- Chelsea R. Thorn
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
- Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA 5000, Australia
| | - Anthony Wignall
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
| | - Zlatko Kopecki
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
- Future Industries Institute, UniSA, Mawson Lakes, SA 5095, Australia
| | - Anita Kral
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
- Centre for Cancer Biology, S.A. Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Clive A. Prestidge
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
| | - Nicky Thomas
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
- Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA 5000, Australia
| |
Collapse
|
9
|
Yang GN, Strudwick XL, Bonder CS, Kopecki Z, Cowin AJ. Increased Expression of Flightless I in Cutaneous Squamous Cell Carcinoma Affects Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2021; 22:ijms222413203. [PMID: 34948000 PMCID: PMC8703548 DOI: 10.3390/ijms222413203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) accounts for 25% of cutaneous malignancies diagnosed in Caucasian populations. Surgical removal in combination with radiation and chemotherapy are effective treatments for cSCC. Nevertheless, the aggressive metastatic forms of cSCC still have a relatively poor patient outcome. Studies have linked actin cytoskeletal dynamics and the Wnt/β-catenin signaling pathway as important modulators of cSCC pathogenesis. Previous studies have also shown that the actin-remodeling protein Flightless (Flii) is a negative regulator of cSCC. The aim of this study was to investigate if the functional effects of Flii on cSCC involve the Wnt/β-catenin signaling pathway. Flii knockdown was performed using siRNA in a human late stage aggressive metastatic cSCC cell line (MET-1) alongside analysis of Flii genetic murine models of 3-methylcholanthrene induced cSCC. Flii was increased in a MET-1 cSCC cell line and reducing Flii expression led to fewer PCNA positive cells and a concomitant reduction in cellular proliferation and symmetrical division. Knockdown of Flii led to decreased β-catenin and a decrease in the expression of the downstream effector of β-catenin signaling protein SOX9. 3-Methylcholanthrene (MCA)-induced cSCC in Flii overexpressing mice showed increased markers of cancer metastasis including talin and keratin-14 and a significant increase in SOX9 alongside a reduction in Flii associated protein (Flap-1). Taken together, this study demonstrates a role for Flii in regulating proteins involved in cSCC proliferation and tumor progression and suggests a potential role for Flii in aggressive metastatic cSCC.
Collapse
Affiliation(s)
- Gink N. Yang
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia; (G.N.Y.); (X.L.S.); (Z.K.)
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5000, Australia;
| | - Xanthe L. Strudwick
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia; (G.N.Y.); (X.L.S.); (Z.K.)
| | - Claudine S. Bonder
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5000, Australia;
- Adelaide Medical School, University of Adelaide, Adelaide 5000, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia; (G.N.Y.); (X.L.S.); (Z.K.)
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia; (G.N.Y.); (X.L.S.); (Z.K.)
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-8-83025018
| |
Collapse
|
10
|
Te Molder L, de Pereda JM, Sonnenberg A. Regulation of hemidesmosome dynamics and cell signaling by integrin α6β4. J Cell Sci 2021; 134:272177. [PMID: 34523678 DOI: 10.1242/jcs.259004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hemidesmosomes (HDs) are specialized multiprotein complexes that connect the keratin cytoskeleton of epithelial cells to the extracellular matrix (ECM). In the skin, these complexes provide stable adhesion of basal keratinocytes to the underlying basement membrane. Integrin α6β4 is a receptor for laminins and plays a vital role in mediating cell adhesion by initiating the assembly of HDs. In addition, α6β4 has been implicated in signal transduction events that regulate diverse cellular processes, including proliferation and survival. In this Review, we detail the role of α6β4 in HD assembly and beyond, and we discuss the molecular mechanisms that regulate its function.
Collapse
Affiliation(s)
- Lisa Te Molder
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jose M de Pereda
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
11
|
Haidari H, Bright R, Garg S, Vasilev K, Cowin AJ, Kopecki Z. Eradication of Mature Bacterial Biofilms with Concurrent Improvement in Chronic Wound Healing Using Silver Nanoparticle Hydrogel Treatment. Biomedicines 2021; 9:1182. [PMID: 34572368 PMCID: PMC8470956 DOI: 10.3390/biomedicines9091182] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Biofilm-associated infections are a major cause of impaired wound healing. Despite the broad spectrum of anti-bacterial benefits provided by silver nanoparticles (AgNPs), these materials still cause controversy due to cytotoxicity and a lack of efficacy against mature biofilms. Herein, highly potent ultrasmall AgNPs were combined with a biocompatible hydrogel with integrated synergistic functionalities to facilitate elimination of clinically relevant mature biofilms in-vivo combined with improved wound healing capacity. The delivery platform showed a superior release mechanism, reflected by high biocompatibility, hemocompatibility, and extended antibacterial efficacy. In vivo studies using the S. aureus wound biofilm model showed that the AgNP hydrogel (200 µg/g) was highly effective in eliminating biofilm infection and promoting wound repair compared to the controls, including silver sulfadiazine (Ag SD). Treatment of infected wounds with the AgNP hydrogel resulted in faster wound closure (46% closure compared to 20% for Ag SD) and accelerated wound re-epithelization (60% for AgNP), as well as improved early collagen deposition. The AgNP hydrogel did not show any toxicity to tissue and/or organs. These findings suggest that the developed AgNP hydrogel has the potential to be a safe wound treatment capable of eliminating infection and providing a safe yet effective strategy for the treatment of infected wounds.
Collapse
Affiliation(s)
- Hanif Haidari
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (S.G.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Sanjay Garg
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (S.G.)
| | - Krasimir Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Allison J. Cowin
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (S.G.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Zlatko Kopecki
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (S.G.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| |
Collapse
|
12
|
Overexpression of Flii during Murine Embryonic Development Increases Symmetrical Division of Epidermal Progenitor Cells. Int J Mol Sci 2021; 22:ijms22158235. [PMID: 34361001 PMCID: PMC8348627 DOI: 10.3390/ijms22158235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/24/2023] Open
Abstract
Epidermal progenitor cells divide symmetrically and asymmetrically to form stratified epidermis and hair follicles during late embryonic development. Flightless I (Flii), an actin remodelling protein, is implicated in Wnt/β-cat and integrin signalling pathways that govern cell division. This study investigated the effect of altering Flii on the divisional orientation of epidermal progenitor cells (EpSCs) in the basal layer during late murine embryonic development and early adolescence. The effect of altering Flii expression on asymmetric vs. symmetric division was assessed in vitro in adult human primary keratinocytes and in vivo at late embryonic development stages (E16, E17 and E19) as well as adolescence (P21 day-old) in mice with altered Flii expression (Flii knockdown: Flii+/−, wild type: WT, transgenic Flii overexpressing: FliiTg/Tg) using Western blot and immunohistochemistry. Flii+/− embryonic skin showed increased asymmetrical cell division of EpSCs with an increase in epidermal stratification and elevated talin, activated-Itgb1 and Par3 expression. FliiTg/Tg led to increased symmetrical cell division of EpSCs with increased cell proliferation rate, an elevated epidermal SOX9, Flap1 and β-cat expression, a thinner epidermis, but increased hair follicle number and depth. Flii promotes symmetric division of epidermal progenitor cells during murine embryonic development.
Collapse
|
13
|
Haidari H, Bright R, Strudwick XL, Garg S, Vasilev K, Cowin AJ, Kopecki Z. Multifunctional ultrasmall AgNP hydrogel accelerates healing of S. aureus infected wounds. Acta Biomater 2021; 128:420-434. [PMID: 33857695 DOI: 10.1016/j.actbio.2021.04.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The increasing emergence of antibiotic resistance coupled with the limited effectiveness of current treatments highlights the need for the development of new treatment modalities. Silver nanoparticles (AgNPs) are a promising alternative with broad-spectrum antibacterial activity. However, the clinical translation of AgNPs have been hampered primarily due to the delivery of unsafe levels of silver ions (Ag+) resulting in cellular toxicity and their susceptibility to aggregation resulting in loss of efficacy. Here, we describe a safe and effective, thermo-responsive AgNP hydrogel that provides antibacterial effects in conjunction with wound promoting properties. Using a murine model of wound infection, we demonstrate that the applied AgNP hydrogel to the wound (12 µg silver) not only provides superior bactericidal activity but also reduces inflammation leading to accelerated wound closure when compared to industry-standard silver sulfadiazine (302 µg silver). The AgNP hydrogel-treatment significantly accelerated wound closure at day 4 post-infection (56 closure) compared to both blank hydrogel or Ag SD (74% and 91% closure respectively) with a concurrent increase in PCNA-positive proliferating cells corresponding with a significant 32% improvement in wound re-epithelization compared to the blank hydrogel. Treatment of infected wounds with AgNP hydrogel also decreased neutrophil infiltration, increased anti-inflammatory Ym-1 positive M2 macrophages, and reduced the number of caspase-1 positive apoptotic cells. Therefore, this novel multifunctional AgNP thermo-responsive hydrogel is potentially a safe and effective treatment at much lower concentration for the treatment of wound infections. STATEMENT OF SIGNIFICANCE: In this study, we describe the development of a multifunctional thermo-responsive hydrogel of ultrasmall silver nanoparticles (AgNPs) for controlled and optimized delivery of silver to infected wounds. The in vivo biological effects of the developed hydrogel showed significant S. aureus elimination from infected mouse wounds compared to a commercial antibacterial formulation. The developed AgNP hydrogel optimally regulates inflammatory responses to promote wound healing as indicated by increased cell proliferation and wound re-epithelization. Additionally, AgNP hydrogel shows significant potential in regulating neutrophil infiltration while increasing levels of anti-inflammatory M2 macrophages and reduces the number of apoptotic cells. Therefore, the multifunctional properties of the developed AgNP thermo-responsive hydrogel offers great clinical potential to control bacterial infections and promote wound healing.
Collapse
|
14
|
Strudwick XL, Cowin AJ. Multifunctional Roles of the Actin-Binding Protein Flightless I in Inflammation, Cancer and Wound Healing. Front Cell Dev Biol 2020; 8:603508. [PMID: 33330501 PMCID: PMC7732498 DOI: 10.3389/fcell.2020.603508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
Flightless I is an actin-binding member of the gelsolin family of actin-remodeling proteins that inhibits actin polymerization but does not possess actin severing ability. Flightless I functions as a regulator of many cellular processes including proliferation, differentiation, apoptosis, and migration all of which are important for many physiological processes including wound repair, cancer progression and inflammation. More than simply facilitating cytoskeletal rearrangements, Flightless I has other important roles in the regulation of gene transcription within the nucleus where it interacts with nuclear hormone receptors to modulate cellular activities. In conjunction with key binding partners Leucine rich repeat in the Flightless I interaction proteins (LRRFIP)1/2, Flightless I acts both synergistically and competitively to regulate a wide range of cellular signaling including interacting with two of the most important inflammatory pathways, the NLRP3 inflammasome and the MyD88-TLR4 pathways. In this review we outline the current knowledge about this important cytoskeletal protein and describe its many functions across a range of health conditions and pathologies. We provide perspectives for future development of Flightless I as a potential target for clinical translation and insights into potential therapeutic approaches to manipulate Flightless I functions.
Collapse
Affiliation(s)
- Xanthe L Strudwick
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| |
Collapse
|
15
|
Mohammadi L, Mosayyebi B, Imani M, Rahmati M. Dexamethasone Reduces Cell Adhesion and Migration of T47D Breast Cancer Cell Line. Anticancer Agents Med Chem 2020; 22:2494-2501. [PMID: 33319693 DOI: 10.2174/1871520621666201214150427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aberrant expression of cell adhesion molecules and matrix metalloproteinase (MMPs) plays a pivotal role in tumor biological processes including progression and metastasis of cancer cells. Targeting these processes and detailed understanding of their underlying molecular mechanism is an essential step in cancer treatment. Dexamethasone (Dex) is a type of synthetic corticosteroid hormone used as adjuvant therapy in combination with current cancer treatments such as chemotherapy in order to alleviate its side effects like acute nausea and vomiting. Recent evidences have suggested that Dex may have antitumor characteristics. OBJECTIVE Dex affects the migration and adhesion of T47D breast cancer cells as well as cell adhesion molecules e.g., cadherin and integrin, and MMPs by regulating the expression levels of associated genes. METHODS In this study, we evaluated the cytotoxicity of Dex on the T47D breast cancer cell line through MTT assay. Cell adhesion assay and wound healing assay were performed to determine the impact of Dex on cell adhesion and cell migration, respectively. Moreover, real-time PCR was used to measure the levels of α and β integrin, E-cadherin, N-cadherin, MMP-2, and MMP-9. RESULTS Dex decreased the viability of T47D cells in a time and dose-dependent manner. Cell adhesion and migration of T47D cells were reduced upon Dex treatment. The expression of α and β integrin, E-cadherin, N-cadherin, MMP-2, and MMP-9 were altered in response to the Dex treatment. CONCLUSION Our findings demonstrated that Dex may have a role in the prevention of metastasis in this cell line.
Collapse
Affiliation(s)
- Leila Mohammadi
- Student Research Committee, Tabriz University of Medical Science, Tabriz. Iran
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mahsa Imani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz. Iran
| |
Collapse
|
16
|
Jackson JE, Kopecki Z, Anderson PJ, Cowin AJ. Increasing the level of cytoskeletal protein Flightless I reduces adhesion formation in a murine digital flexor tendon model. J Orthop Surg Res 2020; 15:362. [PMID: 32854733 PMCID: PMC7450967 DOI: 10.1186/s13018-020-01889-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022] Open
Abstract
Background Surgical repair of tendons is common, but function is often limited due to the formation of flexor tendon adhesions which reduce the mobility and use of the affected digit and hand. The severity of adhesion formation is dependent on numerous cellular processes many of which involve the actin cytoskeleton. Flightless I (Flii) is a highly conserved cytoskeletal protein, which has previously been identified as a potential target for improved healing of tendon injuries. Using human in vitro cell studies in conjunction with a murine model of partial laceration of the digital flexor tendon, we investigated the effect of modulating Flii levels on tenocyte function and formation of adhesions. Methods Human tenocyte proliferation and migration was determined using WST-1 and scratch wound assays following Flii knockdown by siRNA in vitro. Additionally, mice with normal and increased levels of Flii were subjected to a partial laceration of the digital flexor tendon in conjunction with a full tenotomy to immobilise the paw. Resulting adhesions were assessed using histology and immunohistochemistry for collagen I, III, TGF-β1and -β3 Results Flii knockdown significantly reduced human tenocyte proliferation and migration in vitro. Increasing the expression of Flii significantly reduced digital tendon adhesion formation in vivo which was confirmed through significantly smaller adhesion scores based on collagen fibre orientation, thickness, proximity to other fibres and crimping. Reduced adhesion formation was accompanied with significantly decreased deposition of type I collagen and increased expression of TGF-β1 in vivo. Conclusions These findings suggest that increasing the level of Flii in an injured tendon may be beneficial for decreasing tendon adhesion formation.
Collapse
Affiliation(s)
- Jessica E Jackson
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Peter J Anderson
- Faculty of Medicine and Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
17
|
Jackson JE, Kopecki Z, Anderson PJ, Cowin AJ. In vitro analysis of the effect of Flightless I on murine tenocyte cellular functions. J Orthop Surg Res 2020; 15:170. [PMID: 32398080 PMCID: PMC7216515 DOI: 10.1186/s13018-020-01692-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Healing of tendons after injury involves the proliferation of tenocytes and the production of extracellular matrix; however, their capacity to heal is limited by poor cell density and limited growth factor activity. Flightless I (Flii) has previously been identified as an important regulator of cellular proliferation and migration, and the purpose of this study was to evaluate the effect of differential Flii gene expression on tenocyte function in vitro. METHODS The role of Flii on tenocyte proliferation, migration, and contraction was assessed using established assays. Tenocytes from Flii+/-, wild-type, and Flii overexpressing mice were obtained and the effect of differential Flii expression on migration, proliferation, contraction, and collagen synthesis determined in vitro. Statistical differences were determined using unpaired Student's t test and statistical outliers were identified using the Grubbs' test. RESULTS Flii overexpressing tenocytes showed significantly improved migration and proliferation as well as increased collagen I secretion. Explanted tendons from Flii overexpressing mice also showed significantly elevated tenocyte outgrowth compared to Flii+/- mice. In contrast to its role in dermal wound repair, Flii positively affects cellular processes in tendons. CONCLUSIONS These findings suggest that Flii could be a novel target for modulating tenocyte activity and improving tendon repair. This could have significant clinical implications as novel therapeutic targets for improved healing of tendon injuries are urgently needed.
Collapse
Affiliation(s)
- Jessica E Jackson
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Peter J Anderson
- Faculty of Medicine and Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
18
|
Yang GN, Strudwick XL, Bonder C, Kopecki Z, Cowin AJ. Effect of Flightless I Expression on Epidermal Stem Cell Niche During Wound Repair. Adv Wound Care (New Rochelle) 2020; 9:161-173. [PMID: 32117580 DOI: 10.1089/wound.2018.0884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
Objective: Activation of epidermal stem cells (EpSCs) from their quiescent niche is an integral component of wound reepithelialization and involves Wnt/β-catenin (β-Cat) signaling and remodeling of the actin cytoskeleton. The aim of this study was to investigate the effect of Flightless I (Flii), a cytoskeletal protein and inhibitor of wound healing, on EpSC activation during wound repair. Approach: Genetically modified Flii mice (Flii knockdown: Flii+/- , wild type: WT, Flii overexpressing: FliiTg/Tg ) received two incisional wounds along the lateral axis of the dorsal skin. Indicators of EpSC activation (epidermal growth factor receptor 1 [EGFR1], leucine-rich repeats and immunoglobulin-like domains-1 [Lrig1], K14), Wnt/β-Cat signaling (Lgr6, Flap2, β-Cat, and axis inhibition protein 2 [Axin2]), and cell proliferation (proliferating cell nuclear antigen [PCNA]) were assessed using immunohistochemistry. β-Cat stabilization was examined using western blotting with cell cycling and differentiation of isolated CD34+ITGA6high EpSCs examined using real time-quantitative polymerase chain reaction after treatment with wound-conditioned media. Results: Flii+/- led to increased numbers of activated EpSCs expressing PCNA, elevated EGFR1, and decreased Lrig1. EpSCs in Flii+/- hair follicle niches adjacent to the wounds also showed expression of Wnt-activation markers including increased β-Cat and Lgr6, and decreased Axin2. EpSCs (CD34+ITGA6high) isolated from Flii+/- unwounded skin showed elevated expression of cell-cycling genes including ΔNp63, filaggrin (Fila), involucrin (Invo), cyclin D1 (Ccnd1), and cell-division cycle protein-20 (Cdc20); and elevated ΔNp63 and Invo after treatment with wound-conditioned media compared with WT and FliiTg/Tg counterparts. Innovation: Flii was identified as an inhibitor of EpSC activation that may explain its negative effects on wound reepithelialization. Conclusion: Flii may inhibit EpSC activation by interrupting Wnt/β-Cat signaling. Strategies that reduce Flii may increase activation of EpSCs and promote reepithelialization of wounds.
Collapse
Affiliation(s)
- Gink N. Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Xanthe L. Strudwick
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Claudine Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Allison J. Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Jiang Z, Derrick-Roberts ALK, Reichstein C, Byers S. Cell cycle progression is disrupted in murine MPS VII growth plate leading to reduced chondrocyte proliferation and transition to hypertrophy. Bone 2020; 132:115195. [PMID: 31863960 DOI: 10.1016/j.bone.2019.115195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023]
Abstract
Endochondral bone growth is abnormal in 6 of the 11 types of mucopolysaccharidoses (MPS) disorders; resulting in short stature, reduced size of the thoracic cavity and compromised manual dexterity. Current therapies for MPS have had a limited effect on bone growth and to improve these therapies or develop adjunct approaches requires an understanding of the underlying basis of abnormal bone growth in MPS. The MPS VII mouse model replicates the reduction in long bone and vertebral length observed in human MPS. Using this model we have shown that the growth plate is elongated but contains fewer chondrocytes in the proliferative and hypertrophic zones. Endochondral bone growth is in part regulated by entry and exit from the cell cycle by growth plate chondrocytes. More MPS VII chondrocytes were positive for Ki67, a marker for active phases of the cell cycle, suggesting that more MPS VII chondrocytes were in the cell cycle. The number of cells positive for phosphorylated histone H3 was significantly reduced in MPS VII chondrocytes, suggesting fewer MPS VII chondrocytes progressed to mitotic division. While MPS VII HZ chondrocytes continued to express cyclin D1 and more cells were positive for E2F1 and phos pRb than normal, fewer MPS VII HZ chondrocytes were positive for p57kip2 a marker of terminal differentiation, suggesting fewer MPS VII chondrocytes were able to exit the cell cycle. In addition, multiple markers typical of PZ to HZ transition were not downregulated in MPS VII, in particular Sox9, Pthrpr and Wnt5a. These findings are consistent with MPS VII growth plates elongating at a slower rate than normal due to a delay in progression through the cell cycle, in particular the transition between G1 and S phases, leading to both reduced cell division and transition to the hypertrophic phenotype.
Collapse
Affiliation(s)
- Zhirui Jiang
- School of Bioscience, The University of Adelaide, Adelaide, South Australia, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia.
| | - Ainslie L K Derrick-Roberts
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Clare Reichstein
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon Byers
- School of Bioscience, The University of Adelaide, Adelaide, South Australia, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Kopecki Z, Has C, Yang G, Bruckner-Tuderman L, Cowin A. Flightless I, a contributing factor to skin blistering in Kindler syndrome patients? J Cutan Pathol 2019; 47:186-189. [PMID: 31614010 DOI: 10.1111/cup.13597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Cristina Has
- Department of Dermatology, University Medical Centre of Freiburg, Freiburg, Germany
| | - Gink Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | | | - Allison Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Kopecki Z, Yang G, Treloar S, Mashtoub S, Howarth GS, Cummins AG, Cowin AJ. Flightless I exacerbation of inflammatory responses contributes to increased colonic damage in a mouse model of dextran sulphate sodium-induced ulcerative colitis. Sci Rep 2019; 9:12792. [PMID: 31488864 PMCID: PMC6728368 DOI: 10.1038/s41598-019-49129-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by cytokine driven inflammation that disrupts the mucosa and impedes intestinal structure and functions. Flightless I (Flii) is an immuno-modulatory protein is a member of the gelsolin family of actin-remodelling proteins that regulates cellular and inflammatory processes critical in tissue repair. Here we investigated its involvement in UC and show that Flii is significantly elevated in colonic tissues of patients with inflammatory bowel disease. Using an acute murine model of colitis, we characterised the contribution of Flii to UC using mice with low (Flii+/-), normal (Flii+/+) and high Flii (FliiTg/Tg). High levels of Flii resulted in significantly elevated disease severity index scores, increased rectal bleeding and degree of colon shortening whereas, low Flii expression decreased disease severity, reduced tissue inflammation and improved clinical indicators of UC. Mice with high levels of Flii had significantly increased histological disease severity and elevated mucosal damage with significantly increased inflammatory cell infiltrate and significantly higher levels of TNF-α, IFN-γ, IL-5 and IL-13 pro-inflammatory cytokines. Additionally, Flii overexpression resulted in decreased β-catenin levels, inhibited Wnt/β-catenin signalling and impaired regeneration of colonic crypts. These studies suggest that high levels of Flii, as is observed in patients with UC, may adversely affect mucosal healing via mechanisms involving Th1 and Th2 mediated tissue inflammation and Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Z Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia, Australia.
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | - G Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia, Australia
| | - S Treloar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Adelaide, South Australia, Australia
| | - S Mashtoub
- Department of Gastroenterology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - G S Howarth
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - A G Cummins
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, Adelaide, South Australia, Australia
| | - A J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Tieu T, Alba M, Elnathan R, Cifuentes‐Rius A, Voelcker NH. Advances in Porous Silicon–Based Nanomaterials for Diagnostic and Therapeutic Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800095] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
| | - Anna Cifuentes‐Rius
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- Prof. N. H. Voelcker Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| |
Collapse
|
23
|
Kopecki Z, Stevens NE, Chong HT, Yang GN, Cowin AJ. Flightless I Alters the Inflammatory Response and Autoantibody Profile in an OVA-Induced Atopic Dermatitis Skin-Like Disease. Front Immunol 2018; 9:1833. [PMID: 30147695 PMCID: PMC6095979 DOI: 10.3389/fimmu.2018.01833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/25/2018] [Indexed: 01/14/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic pruritic inflammatory skin disease characterized by excessive inflammation and disrupted skin barrier function. Although the etiology of AD is not completely understood, clinical and basic studies suggest increasing involvement of autoantibodies against intracellular proteins. An actin remodeling protein, Flightless I (Flii), has been shown to promote development of inflammatory mediated skin conditions and impairment of skin barrier development and function. Here, we sought to determine the effect of altering Flii expression on the development of AD and its contribution to autoimmune aspects of inflammatory skin conditions. Ovalbumin (OVA)-induced AD skin-like disease was induced in Flii heterozygous (Flii+/−), wild-type (Flii+/+), and Flii transgenic (FliiTg/Tg) mice by epicutaneous exposure to OVA for 3 weeks; each week was separated by 2-week resting period. Reduced Flii expression resulted in decreased disease severity and tissue inflammation as determined by histology, lymphocytic, and mast cell infiltrate and increased anti-inflammatory IL-10 cytokine levels and a marked IFN-γ Th1 response. In contrast, Flii over-expression lead to a Th2 skewed response characterized by increased pro-inflammatory TNF-α cytokine production, Th2 chemokine levels, and Th2 cell numbers. Sera from OVA-induced AD skin-like disease Flii+/− mice showed a decreased level of autoreactivity while sera from FliiTg/Tg mice counterparts showed an altered autoantibody profile with strong nuclear localization favoring development of a more severe disease. These findings demonstrate autoimmune responses in this model of OVA-induced AD-like skin disease and suggest that Flii is a novel target, whose manipulation could be a potential approach for the treatment of patients with AD.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Natalie E Stevens
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Heng T Chong
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Gink N Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
24
|
Kopecki Z, Stevens NE, Yang GN, Melville E, Cowin AJ. Recombinant Leucine-Rich Repeat Flightless-Interacting Protein-1 Improves Healing of Acute Wounds through Its Effects on Proliferation Inflammation and Collagen Deposition. Int J Mol Sci 2018; 19:ijms19072014. [PMID: 29996558 PMCID: PMC6073877 DOI: 10.3390/ijms19072014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/04/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
Wound healing is an increasing clinical problem involving substantial morbidity, mortality, and rising health care costs. Leucine-rich repeat flightless-interacting protein-1 (LRRFIP-1) regulates toll-like receptor (TLR)-mediated inflammation, suggesting a potential role in the healing of wounds. We sought to determine the role of LRRFIP-1 in wound repair and whether the exogenous addition of recombinant LRRFIP-1 (rLRRFIP-1) affected healing responses. Using a model of full-thickness incisional acute wounds in BALB/c mice, we investigated the effect of wounding on LRRFIP-1 expression. The effect of rLRRFIP-1 on cellular proliferation, inflammation, and collagen deposition was also investigated. LRRFIP-1 was upregulated in response to wounding, was found to directly associate with flightless I (Flii), and significantly increased cellular proliferation both in vitro and in vivo. rLRRFIP-1 reduced Flii expression in wounds in vivo and resulted in significantly improved healing with a concurrent dampening of TLR4-mediated inflammation and improved collagen deposition. Additionally, decreased levels of TGF-β1 and increased levels of TGF-β3 were observed in rLRRFIP-1-treated wounds suggesting a possible antiscarring effect of rLRRFIP-1. Further studies are required to elucidate if the mechanisms behind LRRFIP-1 action in wound repair are independent of Flii. However, these results identify rLRRFIP-1 as a possible treatment modality for improved healing of acute wounds.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide SA 5095, Australia.
| | - Natalie E Stevens
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide SA 5095, Australia.
| | - Gink N Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide SA 5095, Australia.
| | - Elizabeth Melville
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide SA 5095, Australia.
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide SA 5095, Australia.
| |
Collapse
|
25
|
Park JE, Lee EJ, Kim JK, Song Y, Choi JH, Kang MJ. Flightless-I Controls Fat Storage in Drosophila. Mol Cells 2018; 41:603-611. [PMID: 29890821 PMCID: PMC6030243 DOI: 10.14348/molcells.2018.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/04/2018] [Accepted: 05/21/2018] [Indexed: 01/24/2023] Open
Abstract
Triglyceride homeostasis is a key process of normal development and is essential for the maintenance of energy metabolism. Dysregulation of this process leads to metabolic disorders such as obesity and hyperlipidemia. Here, we report a novel function of the Drosophila flightless-I (fliI) gene in lipid metabolism. Drosophila fliI mutants were resistant to starvation and showed increased levels of triglycerides in the fat body and intestine, whereas fliI overexpression decreased triglyceride levels. These flies suffered from metabolic stress indicated by increased levels of trehalose in hemolymph and enhanced phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α). Moreover, upregulation of triglycerides via a knockdown of fliI was reversed by a knockdown of desat1 in the fat body of flies. These results indicate that fliI suppresses the expression of desat1, thereby inhibiting the development of obesity; fliI may, thus, serve as a novel therapeutic target in obesity and metabolic diseases.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Eun Ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Jung Kwan Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919,
Korea
| | - Youngsup Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Jang Hyun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919,
Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505,
Korea
| |
Collapse
|
26
|
Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, Komorowski L, Luo J, Cabral-Marques O, Hammers CM, Lindstrom JM, Lamprecht P, Fischer A, Riemekasten G, Tersteeg C, Sondermann P, Rapoport B, Wandinger KP, Probst C, El Beidaq A, Schmidt E, Verkman A, Manz RA, Nimmerjahn F. Mechanisms of Autoantibody-Induced Pathology. Front Immunol 2017; 8:603. [PMID: 28620373 PMCID: PMC5449453 DOI: 10.3389/fimmu.2017.00603] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies are frequently observed in healthy individuals. In a minority of these individuals, they lead to manifestation of autoimmune diseases, such as rheumatoid arthritis or Graves' disease. Overall, more than 2.5% of the population is affected by autoantibody-driven autoimmune disease. Pathways leading to autoantibody-induced pathology greatly differ among different diseases, and autoantibodies directed against the same antigen, depending on the targeted epitope, can have diverse effects. To foster knowledge in autoantibody-induced pathology and to encourage development of urgently needed novel therapeutic strategies, we here categorized autoantibodies according to their effects. According to our algorithm, autoantibodies can be classified into the following categories: (1) mimic receptor stimulation, (2) blocking of neural transmission, (3) induction of altered signaling, triggering uncontrolled (4) microthrombosis, (5) cell lysis, (6) neutrophil activation, and (7) induction of inflammation. These mechanisms in relation to disease, as well as principles of autoantibody generation and detection, are reviewed herein.
Collapse
Affiliation(s)
- Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University of Kiel, Kiel, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Lars Komorowski
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | | | | | - Jon M. Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | - Peter Lamprecht
- Department of Rheumatology, University of Lübeck, Lübeck, Germany
| | - Andrea Fischer
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Klaus-Peter Wandinger
- Department of Neurology, Institute of Clinical Chemistry, University Medical-Centre Schleswig-Holstein, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Asmaa El Beidaq
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Alan Verkman
- Department of Medicine, University of California, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, CA, United States
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
27
|
Jin HL, Yang L, Jeong KW. Flightless-I homolog regulates glucocorticoid receptor-mediated transcription via direct interaction of the leucine-rich repeat domain. Mol Biol Rep 2017; 44:243-250. [PMID: 28455686 DOI: 10.1007/s11033-017-4106-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 04/26/2017] [Indexed: 01/22/2023]
Abstract
Flightless-I homolog (FLII) is a member of the gelsolin family of proteins, and has been identified as a coactivator of estrogen receptor-mediated transcription. Here, we investigate the role of FLII in the glucocorticoid receptor (GR) signaling pathway. Reporter gene assay and real-time quantitative PCR in A549 were performed to investigate the function of FLII in the expression of GR target genes. Co-immunoprecipitation assay and in vitro binding assay were used to identify binding domain of FLII. Chromatin immunoprecipitation assay were carried out with FLII-depleted A549 cells to determine the role of FLII at GR binding sites. We demonstrate that FLII potentiates GR-mediated reporter gene activity synergistically with CARM1 and p300 to enhance GR transcriptional activity in the presence of dexamethasone (Dex) in A549 cells. Depletion of endogenous FLII inhibited the expression of Dex-regulated GR target genes in A549 cells, indicating that FLII is required for GR-mediated transcription. Further, we observed that FLII binds to GR via its N-terminal leucine-rich repeat (LRR) region, suggesting that the enhancement of GR activation may occur through the interaction of GR and FLII. Moreover, chromatin immunoprecipitation analysis demonstrated that FLII is recruited to the GR binding sites. In addition, depletion of endogenous FLII decreased the recruitment of p300, and subsequently RNA polymerase II, to specific sites of GR target genes. Taken together, these studies reveal a functional involvement of FLII in activating transcription of GR target genes, suggesting a physiological role for FLII in the GR signaling pathway.
Collapse
Affiliation(s)
- Hong Lan Jin
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Liu Yang
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
28
|
Marei H, Malliri A. GEFs: Dual regulation of Rac1 signaling. Small GTPases 2017; 8:90-99. [PMID: 27314616 PMCID: PMC5464116 DOI: 10.1080/21541248.2016.1202635] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022] Open
Abstract
GEFs play a critical role in regulating Rac1 signaling. They serve as signaling nodes converting upstream signals into downstream Rac1-driven cellular responses. Through associating with membrane-bound Rac1, GEFs facilitate the exchange of GDP for GTP, thereby activating Rac1. As a result, Rac1 undergoes conformational changes that mediate its interaction with downstream effectors, linking Rac1 to a multitude of physiological and pathological processes. Interestingly, there are at least 20 GEFs involved in Rac1 activation, suggesting a more complex role of GEFs in regulating Rac1 signaling apart from promoting the exchange of GDP for GTP. Indeed, accumulating evidence implicates GEFs in directing the specificity of Rac1-driven signaling cascades, although the underlying mechanisms were poorly defined. Recently, through conducting a comparative study, we highlighted the role of 2 Rac-specific GEFs, Tiam1 and P-Rex1, in dictating the biological outcome downstream of Rac1. Importantly, further proteomic analysis uncovered a GEF activity-independent function for both GEFs in modulating the Rac1 interactome, which results in the stimulation of GEF-specific signaling cascades. Here, we provide an overview of our recent findings and discuss the role of GEFs as master regulators of Rac1 signaling with a particular focus on GEF-mediated modulation of cell migration following Rac1 activation.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Haidari H, Zhang Q, Melville E, Kopecki Z, Song Y, Cowin AJ, Garg S. Development of Topical Delivery Systems for Flightless Neutralizing Antibody. J Pharm Sci 2017; 106:1795-1804. [PMID: 28336300 DOI: 10.1016/j.xphs.2017.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
Abstract
Flightless I (Flii) is an actin remodeling protein important for cytoskeletal regulation and cellular processes including migration, proliferation, and adhesion. Previous studies have clearly identified Flii as a novel therapeutical target for improved wound repair and have demonstrated Flii regulation using Flii neutralizing antibodies (FnAb) in different models of wound healing in vivo. Here we describe the development of an optimized topical delivery system that can neutralize Flii activity in the epidermis. Topical delivery of FnAb is an attractive approach as it provides a convenient application, sustained release, localized effect, and reduced dosage. Three successful formulations were developed, and their physical and chemical stability examined. The in vitro release revealed prolonged and sustained release of FnAb in all the tested formulations. Additionally, penetration studies using intact porcine skin showed that FnAb penetrated the epidermis and upper papillary dermis. The penetrated FnAb significantly reduced Flii expression compared to dosed matched IgG controls. This study has successfully developed a topical delivery system for FnAb that could serve as a potential platform for future localized wound treatments.
Collapse
Affiliation(s)
- Hanif Haidari
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Qian Zhang
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Elizabeth Melville
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
30
|
Kopecki Z, Yang GN, Jackson JE, Melville EL, Calley MP, Murrell DF, Darby IA, O'Toole EA, Samuel MS, Cowin AJ. Cytoskeletal protein Flightless I inhibits apoptosis, enhances tumor cell invasion and promotes cutaneous squamous cell carcinoma progression. Oncotarget 2017; 6:36426-40. [PMID: 26497552 PMCID: PMC4742187 DOI: 10.18632/oncotarget.5536] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/09/2015] [Indexed: 01/08/2023] Open
Abstract
Flightless I (Flii) is an actin remodeling protein that affects cellular processes including adhesion, proliferation and migration. In order to determine the role of Flii during carcinogenesis, squamous cell carcinomas (SCCs) were induced in Flii heterozygous (Flii+/-), wild-type and Flii overexpressing (FliiTg/Tg) mice by intradermal injection of 3-methylcholanthrene (MCA). Flii levels were further assessed in biopsies from human SCCs and the human SCC cell line (MET-1) was used to determine the effect of Flii on cellular invasion. Flii was highly expressed in human SCC biopsies particularly by the invading cells at the tumor edge. FliiTg/Tg mice developed large, aggressive SCCs in response to MCA. In contrast Flii+/- mice had significantly smaller tumors that were less invasive. Intradermal injection of Flii neutralizing antibodies during SCC initiation and progression significantly reduced the size of the tumors and, in vitro, decreased cellular sphere formation and invasion. Analysis of the tumors from the Flii overexpressing mice showed reduced caspase I and annexin V expression suggesting Flii may negatively regulate apoptosis within these tumors. These studies therefore suggest that Flii enhances SCC tumor progression by decreasing apoptosis and enhancing tumor cell invasion. Targeting Flii may be a potential strategy for reducing the severity of SCCs.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Gink N Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Jessica E Jackson
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Elizabeth L Melville
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Matthew P Calley
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Dedee F Murrell
- Department of Dermatology, St. George Hospital and University of New South Wales, Sydney, New South Wales, Australia
| | - Ian A Darby
- School of Medical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Edel A O'Toole
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael S Samuel
- Centre for Cancer Biology, an alliance between SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
31
|
Turner CT, Hasanzadeh Kafshgari M, Melville E, Delalat B, Harding F, Mäkilä E, Salonen JJ, Cowin AJ, Voelcker NH. Delivery of Flightless I siRNA from Porous Silicon Nanoparticles Improves Wound Healing in Mice. ACS Biomater Sci Eng 2016; 2:2339-2346. [DOI: 10.1021/acsbiomaterials.6b00550] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Christopher T. Turner
- Regenerative Medicine, Future
Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Morteza Hasanzadeh Kafshgari
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Future Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Elizabeth Melville
- Regenerative Medicine, Future
Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Bahman Delalat
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Future Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Francis Harding
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Future Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Ermei Mäkilä
- Department
of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Jarno J. Salonen
- Department
of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Allison J. Cowin
- Regenerative Medicine, Future
Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Nicolas H. Voelcker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Future Industries Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
32
|
Kopecki Z, Ludwig RJ, Cowin AJ. Cytoskeletal Regulation of Inflammation and Its Impact on Skin Blistering Disease Epidermolysis Bullosa Acquisita. Int J Mol Sci 2016; 17:ijms17071116. [PMID: 27420054 PMCID: PMC4964491 DOI: 10.3390/ijms17071116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 01/10/2023] Open
Abstract
Actin remodelling proteins regulate cytoskeletal cell responses and are important in both innate and adaptive immunity. These responses play a major role in providing a fine balance in a cascade of biological events that results in either protective acute inflammation or chronic inflammation that leads to a host of diseases including autoimmune inflammation mediated epidermolysis bullosa acquisita (EBA). This review describes the role of the actin cytoskeleton and in particular the actin remodelling protein called Flightless I (Flii) in regulating cellular inflammatory responses and its subsequent effect on the autoimmune skin blistering disease EBA. It also outlines the potential of an antibody based therapy for decreasing Flii expression in vivo to ameliorate the symptoms associated with EBA.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Future Industries Institute, Regenerative Medicine, University of South Australia, Mawson Lakes 5095, Adelaide, Australia.
| | - Ralf J Ludwig
- Institute of Experimental Dermatology, University of Lubeck, Lubeck 23562, Germany.
| | - Allison J Cowin
- Future Industries Institute, Regenerative Medicine, University of South Australia, Mawson Lakes 5095, Adelaide, Australia.
| |
Collapse
|
33
|
Marei H, Carpy A, Woroniuk A, Vennin C, White G, Timpson P, Macek B, Malliri A. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration. Nat Commun 2016; 7:10664. [PMID: 26887924 PMCID: PMC4759627 DOI: 10.1038/ncomms10664] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/08/2016] [Indexed: 01/22/2023] Open
Abstract
The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Alejandro Carpy
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen 72026, Germany
| | - Anna Woroniuk
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Claire Vennin
- Invasion and Metastasis Group, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Gavin White
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Paul Timpson
- Invasion and Metastasis Group, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen 72026, Germany
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| |
Collapse
|
34
|
Cameron A, Turner C, Adams D, Jackson J, Melville E, Arkell R, Anderson P, Cowin A. Flightless I is a key regulator of the fibroproliferative process in hypertrophic scarring and a target for a novel antiscarring therapy. Br J Dermatol 2016; 174:786-94. [DOI: 10.1111/bjd.14263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 02/06/2023]
Affiliation(s)
- A.M. Cameron
- Regenerative Medicine; Future Industries Institute; University of South Australia; Mawson Lakes SA 5095 Australia
- Discipline of Surgery; School of Medicine; Faculty of Health Sciences; The University of Adelaide; Adelaide SA Australia
| | - C.T. Turner
- Regenerative Medicine; Future Industries Institute; University of South Australia; Mawson Lakes SA 5095 Australia
| | - D.H. Adams
- Regenerative Medicine; Future Industries Institute; University of South Australia; Mawson Lakes SA 5095 Australia
| | - J.E. Jackson
- Regenerative Medicine; Future Industries Institute; University of South Australia; Mawson Lakes SA 5095 Australia
| | - E. Melville
- Regenerative Medicine; Future Industries Institute; University of South Australia; Mawson Lakes SA 5095 Australia
| | - R.M. Arkell
- Research School of Biology; College of Medicine, Biology and Environment; Australian National University; Acton ACT 2601 Australia
| | - P.J. Anderson
- Discipline of Paediatrics; School of Medicine; Faculty of Health Sciences; The University of Adelaide; Adelaide SA Australia
| | - A.J. Cowin
- Regenerative Medicine; Future Industries Institute; University of South Australia; Mawson Lakes SA 5095 Australia
| |
Collapse
|
35
|
Ludwig R. Immune mechanism-targeted treatment of experimental epidermolysis bullosa acquisita. Expert Rev Clin Immunol 2015; 11:1365-78. [PMID: 26471717 DOI: 10.1586/1744666x.2015.1085801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epidermolysis bullosa acquisita (EBA) is an autoimmune bullous dermatosis characterized by chronic mucocutaneous blistering caused by autoantibodies directed against type VII collagen. EBA causes a high morbidity and is difficult to treat. Model systems have significantly broadened our understanding of EBA pathogenesis, leading to the identification of numerous therapeutic targets. Of these, so far, a few have been evaluated for their therapeutic potential in preclinical models. In mice, EBA can be induced by transfer of anti-type VII collagen antibodies or by immunization with the protein. The latter model, immunization-induced EBA, is ideal to test drugs for their therapeutic efficacy. Here, mice with already established disease can be treated for prolonged periods. Albeit time consuming, results from immunization-induced EBA will pave the way for clinical application in patients. As the key pathogenic principle, that is, autoantibody-induced, leukocyte-mediated tissue injury and inflammation, is shared by other diseases, these findings may have translational applications beyond EBA.
Collapse
Affiliation(s)
- Ralf Ludwig
- a University of Luebeck, Luebeck Institute of Experimental Dermatology, Ratzeburger Allee 160, Luebeck, Germany
| |
Collapse
|
36
|
Turner CT, Waters JM, Jackson JE, Arkell RM, Cowin AJ. Fibroblast-specific upregulation of Flightless I impairs wound healing. Exp Dermatol 2015; 24:692-7. [DOI: 10.1111/exd.12751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Christopher T. Turner
- Regenerative Medicine; Mawson Institute; University of South Australia; Adelaide SA Australia
| | - James M. Waters
- Regenerative Medicine; Mawson Institute; University of South Australia; Adelaide SA Australia
| | - Jessica E. Jackson
- Regenerative Medicine; Mawson Institute; University of South Australia; Adelaide SA Australia
| | - Ruth M. Arkell
- Research School of Biological Sciences; Australian National University; Canberra ACT Australia
| | - Allison J. Cowin
- Regenerative Medicine; Mawson Institute; University of South Australia; Adelaide SA Australia
| |
Collapse
|
37
|
Has C, Nyström A. Epidermal Basement Membrane in Health and Disease. CURRENT TOPICS IN MEMBRANES 2015; 76:117-70. [PMID: 26610913 DOI: 10.1016/bs.ctm.2015.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skin, as the organ protecting the individual from environmental aggressions, constantly meets external insults and is dependent on mechanical toughness for its preserved function. Accordingly, the epidermal basement membrane (BM) zone has adapted to enforce tissue integrity. It harbors anchoring structures created through unique organization of common BM components and expression of proteins exclusive to the epidermal BM zone. Evidence for the importance of its correct assembly and the nonredundancy of its components for skin integrity is apparent from the multiple skin blistering disorders caused by mutations in genes coding for proteins associated with the epidermal BM and from autoimmune disorders in which autoantibodies target these molecules. However, it has become clear that these proteins not only provide mechanical support but are also critically involved in tissue homeostasis, repair, and regeneration. In this chapter, we provide an overview of the unique organization and components of the epidermal BM. A special focus will be given to its function during regeneration, and in inherited and acquired diseases.
Collapse
Affiliation(s)
- Cristina Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Arora PD, Wang Y, Bresnick A, Janmey PA, McCulloch CA. Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling. Mol Biol Cell 2015; 26:2279-97. [PMID: 25877872 PMCID: PMC4462945 DOI: 10.1091/mbc.e14-11-1536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/09/2015] [Indexed: 01/14/2023] Open
Abstract
The role of the actin-capping protein flightless I in collagen remodeling by mouse fibroblasts is examined. Flightless and nonmuscle myosin IIA cooperate to enable collagen phagocytosis. We examined the role of the actin-capping protein flightless I (FliI) in collagen remodeling by mouse fibroblasts. FliI-overexpressing cells exhibited reduced spreading on collagen but formed elongated protrusions that stained for myosin10 and fascin and penetrated pores of collagen-coated membranes. Inhibition of Cdc42 blocked formation of cell protrusions. In FliI-knockdown cells, transfection with constitutively active Cdc42 did not enable protrusion formation. FliI-overexpressing cells displayed increased uptake and degradation of exogenous collagen and strongly compacted collagen fibrils, which was blocked by blebbistatin. Mass spectrometry analysis of FliI immunoprecipitates showed that FliI associated with nonmuscle myosin IIA (NMMIIA), which was confirmed by immunoprecipitation. GFP-FliI colocalized with NMMIIA at cell protrusions. Purified FliI containing gelsolin-like domains (GLDs) 1–6 capped actin filaments efficiently, whereas FliI GLD 2–6 did not. Binding assays showed strong interaction of purified FliI protein (GLD 1–6) with the rod domain of NMMIIA (kD = 0.146 μM), whereas FliI GLD 2–6 showed lower binding affinity (kD = 0.8584 μM). Cells expressing FliI GLD 2–6 exhibited fewer cell extensions, did not colocalize with NMMIIA, and showed reduced collagen uptake compared with cells expressing FliI GLD 1–6. We conclude that FliI interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling in fibroblasts.
Collapse
Affiliation(s)
- Pamma D Arora
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Anne Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
39
|
Wang Y, Wang Q, Arora PD, Rajshankar D, McCulloch CA. Cell adhesion proteins: roles in periodontal physiology and discovery by proteomics. Periodontol 2000 2015; 63:48-58. [PMID: 23931053 DOI: 10.1111/prd.12026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2012] [Indexed: 12/29/2022]
Abstract
Adhesion molecules expressed by periodontal connective tissue cells are involved in cell migration, matrix remodeling and inflammatory responses to infection. Currently, the processes by which the biologic activity of these molecules are appropriately regulated in time and space to preserve tissue homeostasis, and to control inflammatory responses and tissue regeneration, are not defined. As cell adhesions are heterogeneous, dynamic, contain a complex group of interacting molecules and are strongly influenced by the type of substrate to which they adhere, we focus on how cell adhesions in periodontal connective tissues contribute to information generation and processing that regulate periodontal structure and function. We also consider how proteomic methods can be applied to discover novel cell-adhesion proteins that could potentially contribute to the form and function of periodontal tissues.
Collapse
|
40
|
Gubern C, Camós S, Hurtado O, Rodríguez R, Romera VG, Sobrado M, Cañadas R, Moro MA, Lizasoain I, Serena J, Mallolas J, Castellanos M. Characterization of Gcf2/Lrrfip1 in experimental cerebral ischemia and its role as a modulator of Akt, mTOR and β-catenin signaling pathways. Neuroscience 2014; 268:48-65. [PMID: 24637094 DOI: 10.1016/j.neuroscience.2014.02.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/03/2014] [Accepted: 02/27/2014] [Indexed: 01/27/2023]
Abstract
Leucine-rich repeat in Flightless-1 interaction protein 1 (Lrrfip1) is an up-regulated protein after cerebral ischemia whose precise role in the brain both in healthy and ischemic conditions is unclear. Different Lrrfip1 isoforms with distinct roles have been reported in human and mouse species. The present study aimed to analyze the Lrrfip1 transcriptional variants expressed in rat cortex, to characterize their expression patterns and subcellular location after ischemia, and to define their putative role in the brain. Five transcripts were identified and three of them (Lrrfip1, CRA_g and CRA_a' (Fli-I leucine-rich repeat associated protein 1 - Flap-1)) were analyzed by quantitative real-time polymerase chain reaction (qPCR). All the transcripts were up-regulated and showed differential expression patterns after in vivo and in vitro ischemia models. The main isoform, Lrrfip1, was found to be up-regulated from the acute to the late phases of ischemia in the cytoplasm of neurons and astrocytes of the peri-infarct area. This study demonstrates that Lrrfip1 activates β-catenin, Akt, and mammalian target of rapamycin (mTOR) proteins in astrocytes and positively regulates the expression of the excitatory amino acid transporter subtype 2 (GLT-1). Our findings point to Lrrfip1 as a key brain protein that regulates pro-survival pathways and proteins and encourages further studies to elucidate its role in cerebral ischemia as a potential target to prevent brain damage and promote functional recovery after stroke.
Collapse
Affiliation(s)
- C Gubern
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain.
| | - S Camós
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| | - O Hurtado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - R Rodríguez
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| | - V G Romera
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - M Sobrado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - R Cañadas
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - M A Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - I Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - J Serena
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| | - J Mallolas
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain.
| | - M Castellanos
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| |
Collapse
|
41
|
Hopkinson SB, Hamill KJ, Wu Y, Eisenberg JL, Hiroyasu S, Jones JC. Focal Contact and Hemidesmosomal Proteins in Keratinocyte Migration and Wound Repair. Adv Wound Care (New Rochelle) 2014; 3:247-263. [PMID: 24669360 DOI: 10.1089/wound.2013.0489] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/03/2013] [Indexed: 12/12/2022] Open
Abstract
Significance: During wound healing of the skin, keratinocytes should move over while still adhering to their underlying matrix. Thus, mechanistic insights into the wound-healing process require an understanding of the forms and functions of keratinocyte matrix adhesions, specifically focal contacts and hemidesmosomes, and their components. Recent Advances: Although the structure and composition of focal contacts and hemidesmosomes are relatively well defined, the functions of their components are only now being delineated using mouse genetic models and knockdown approaches in cell culture systems. Remarkably, both focal contact and hemidesmosomal proteins appear involved in determining the speed and directional migration of epidermal cells by modulating several signal transduction pathways. Critical Issues: Although many publications are centered on focal contacts, their existence in tissues such as the skin is controversial. Nonetheless, focal contact proteins are central to mechanisms that regulate skin cell motility. Conversely, hemidesmosomes have been identified in intact skin but whether hemidesmosomal components play a positive regulatory function in keratinocyte motility remains debated in the field. Future Directions: Defective wound healing is a developing problem in the aged, hospitalized and diabetic populations. Hence, deriving new insights into the molecular roles of matrix adhesion proteins in wound healing is a prerequisite to the development of novel therapeutics to enhance tissue repair and regeneration.
Collapse
Affiliation(s)
- Susan B. Hopkinson
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois
| | - Kevin J. Hamill
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois
| | - Yvonne Wu
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois
| | - Jessica L. Eisenberg
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois
| | - Sho Hiroyasu
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois
| | - Jonathan C.R. Jones
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois
| |
Collapse
|
42
|
Kopecki Z, Yang GN, Arkell RM, Jackson JE, Melville E, Iwata H, Ludwig RJ, Zillikens D, Murrell DF, Cowin AJ. Flightless I over-expression impairs skin barrier development, function and recovery following skin blistering. J Pathol 2014; 232:541-52. [PMID: 24375017 DOI: 10.1002/path.4323] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/10/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023]
Abstract
Development of an intact epidermis is critical for maintaining the integrity of the skin. Patients with epidermolysis bullosa (EB) experience multiple erosions, which breach the epidermal barrier and lead to increased microbial colocalization of wounds, infections and sepsis. The cytoskeletal protein Flightless I (Flii) is a known regulator of both development and wound healing. Using Flii(+/-), WT and Flii(Tg/Tg) mice, we investigated the effect of altering Flii levels in embryos and adult mice on the development of the epidermal barrier and, consequently, how this affects the integrity of the skin in EB. Flii over-expression resulted in delayed formation of the epidermal barrier in embryos and decreased expression of tight junction (TJ) proteins Claudin-1 and ZO-2. Increased intercellular space and transepidermal water loss was observed in Flii(Tg)(/Tg) adult mouse skin, while Flii(Tg/Tg) keratinocytes showed altered TJ protein localization and reduced transepithelial resistance. Flii is increased in the blistered skin of patients with EB, and over-expression of Flii in experimental EBA showed impaired Claudin-1 and -4 TJ protein expression and delayed recovery of functional barrier post-blistering. Immunoprecipitation confirmed Flii associated with TJ proteins and in vivo actin assays showed that the effect of Flii on actin polymerization underpinned the impaired barrier function observed in Flii(Tg/Tg) mice. These results therefore demonstrate an important role for Flii in the development and regulation of the epidermal barrier, which may contribute to the impaired healing and skin fragility of EB patients.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Centre for Regenerative Medicine, Mawson Institute, University of South Australia, Adelaide, Australia; Women's and Children's Health Research Institute, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ruzehaji N, Kopecki Z, Melville E, Appleby SL, Bonder CS, Arkell RM, Fitridge R, Cowin AJ. Attenuation of flightless I improves wound healing and enhances angiogenesis in a murine model of type 1 diabetes. Diabetologia 2014; 57:402-12. [PMID: 24292564 DOI: 10.1007/s00125-013-3107-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS Skin lesions and ulcerations are severe complications of diabetes that often result in leg amputations. In this study we investigated the function of the cytoskeletal protein flightless I (FLII) in diabetic wound healing. We hypothesised that overexpression of FLII would have a negative effect on diabetic wound closure and modulation of this protein using specific FLII-neutralising antibodies (FnAb) would enhance cellular proliferation, migration and angiogenesis within the diabetic wound. METHODS Using a streptozotocin-induced model of diabetes we investigated the effect of altered FLII levels through Flii genetic knockdown, overexpression or treatment with FnAb on wound healing. Diabetic wounds were assessed using histology, immunohistochemistry and biochemical analysis. In vitro and in vivo assays of angiogenesis were used to assess the angiogenic response. RESULTS FLII levels were elevated in the wounds of both diabetic mice and humans. Reduction in the level of FLII improved healing of murine diabetic wounds and promoted a robust pro-angiogenic response with significantly elevated von Willebrand factor (vWF) and vascular endothelial growth factor (VEGF)-positive endothelial cell infiltration. Diabetic mouse wounds treated intradermally with FnAb showed improved healing and a significantly increased rate of re-epithelialisation. FnAb improved the angiogenic response through enhanced formation of capillary tubes and functional neovasculature. Reducing the level of FLII led to increased numbers of mature blood vessels, increased recruitment of smooth muscle actin-α-positive cells and improved tight junction formation. CONCLUSIONS/INTERPRETATION Reducing the level of FLII in a wound may be a potential therapeutic approach for the treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
- Nadira Ruzehaji
- Women's and Children's Health Research Institute, Adelaide, SA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: The tail of a molecular gymnast. Cytoskeleton (Hoboken) 2013; 70:360-84. [DOI: 10.1002/cm.21117] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mårten Larsson
- Institute of Molecular and Cell Biology, A*STAR; Singapore
| | | | - Leslie D. Burtnick
- Department of Chemistry and Centre for Blood Research; Life Sciences Institute, University of British Columbia; Vancouver; British Columbia; Canada
| |
Collapse
|
45
|
Proszynski TJ, Sanes JR. Amotl2 interacts with LL5β, localizes to podosomes and regulates postsynaptic differentiation in muscle. J Cell Sci 2013; 126:2225-35. [PMID: 23525008 DOI: 10.1242/jcs.121327] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neuromuscular junctions (NMJs) in mammalian skeletal muscle undergo a postnatal topological transformation from a simple oval plaque to a complex branched structure. We previously showed that podosomes, actin-rich adhesive organelles, promote the remodeling process, and demonstrated a key role for one podosome component, LL5β. To further investigate molecular mechanisms of postsynaptic maturation, we purified LL5β-associated proteins from myotubes and showed that three regulators of the actin cytoskeleton--Amotl2, Asef2 and Flii--interact with LL5β. These and other LL5β-interacting proteins are associated with conventional podosomes in macrophages and podosome-like invadopodia in fibroblasts, strengthening the close relationship between synaptic and non-synaptic podosomes. We then focused on Amotl2, showing that it is associated with synaptic podosomes in cultured myotubes and with NMJs in vivo. Depletion of Amotl2 in myotubes leads to increased size of synaptic podosomes and corresponding alterations in postsynaptic topology. Depletion of Amotl2 from fibroblasts disrupts invadopodia in these cells. These results demonstrate a role for Amotl2 in synaptic maturation and support the involvement of podosomes in this process.
Collapse
Affiliation(s)
- Tomasz J Proszynski
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
46
|
|
47
|
Cowin AJ, Lei N, Franken L, Ruzehaji N, Offenhäuser C, Kopecki Z, Murray RZ. Lysosomal secretion of Flightless I upon injury has the potential to alter inflammation. Commun Integr Biol 2013; 5:546-9. [PMID: 23336022 PMCID: PMC3541319 DOI: 10.4161/cib.21928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Intracellular Flightless I (Flii), a gelsolin family member, has been found to have roles modulating actin regulation, transcriptional regulation and inflammation. In vivo Flii can regulate wound healing responses. We have recently shown that a pool of Flii is secreted by fibroblasts and macrophages, cells typically found in wounds, and its secretion can be upregulated upon wounding. We show that secreted Flii can bind to the bacterial cell wall component lipopolysaccharide and has the potential to regulate inflammation. We now show that secreted Flii is present in both acute and chronic wound fluid.
Collapse
Affiliation(s)
- Allison J Cowin
- Women's and Children's Health Research Institute; North Adelaide; SA Australia ; Discipline of Paediatrics; The University of Adelaide; Adelaide, SA Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Sinha C, Ren A, Arora K, Moon CS, Yarlagadda S, Zhang W, Cheepala SB, Schuetz JD, Naren AP. Multi-drug resistance protein 4 (MRP4)-mediated regulation of fibroblast cell migration reflects a dichotomous role of intracellular cyclic nucleotides. J Biol Chem 2012; 288:3786-94. [PMID: 23264633 DOI: 10.1074/jbc.m112.435925] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has long been known that cyclic nucleotides and cyclic nucleotide-dependent signaling molecules control cell migration. However, the concept that it is not just the absence or presence of cyclic nucleotides, but a highly coordinated balance between these molecules that regulates cell migration, is new and revolutionary. In this study, we used multidrug resistance protein 4 (MRP4)-expressing cell lines and MRP4 knock-out mice as model systems and wound healing assays as the experimental system to explore this unique and emerging concept. MRP4, a member of a large family of ATP binding cassette transporter proteins, localizes to the plasma membrane and functions as a nucleotide efflux transporter and thus plays a role in the regulation of intracellular cyclic nucleotide levels. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) isolated from Mrp4(-/-) mice have higher intracellular cyclic nucleotide levels and migrate faster compared with MEFs from Mrp4(+/+) mice. Using FRET-based cAMP and cGMP sensors, we show that inhibition of MRP4 with MK571 increases both cAMP and cGMP levels, which results in increased migration. In contrast to these moderate increases in cAMP and cGMP levels seen in the absence of MRP4, a robust increase in cAMP levels was observed following treatment with forskolin and isobutylmethylxanthine, which decreases fibroblast migration. In response to externally added cell-permeant cyclic nucleotides (cpt-cAMP and cpt-cGMP), MEF migration appears to be biphasic. Altogether, our studies provide the first experimental evidence supporting the novel concept that balance between cyclic nucleotides is critical for cell migration.
Collapse
Affiliation(s)
- Chandrima Sinha
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Strudwick XL, Cowin AJ. Cytoskeletal regulation of dermal regeneration. Cells 2012; 1:1313-27. [PMID: 24710556 PMCID: PMC3901152 DOI: 10.3390/cells1041313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/15/2012] [Accepted: 12/04/2012] [Indexed: 12/21/2022] Open
Abstract
Wound healing results in the repair of injured tissues however fibrosis and scar formation are, more often than not the unfortunate consequence of this process. The ability of lower order vertebrates and invertebrates to regenerate limbs and tissues has been all but lost in mammals; however, there are some instances where glimpses of mammalian regenerative capacity do exist. Here we describe the unlocked potential that exists in mammals that may help us understand the process of regeneration post-injury and highlight the potential role of the actin cytoskeleton in this process. The precise function and regulation of the cytoskeleton is critical to the success of the healing process and its manipulation may therefore facilitate regenerative healing. The gelsolin family of actin remodelling proteins in particular has been shown to have important functions in wound healing and family member Flightless I (Flii) is involved in both regeneration and repair. Understanding the interactions between different cytoskeletal proteins and their dynamic control of processes including cellular adhesion, contraction and motility may assist the development of therapeutics that will stimulate regeneration rather than repair.
Collapse
Affiliation(s)
- Xanthe L Strudwick
- Wound Healing Laboratory, Women's and Children's Health Research Institute, 72 King William Road, North Adelaide, South Australia 5006, Australia.
| | - Allison J Cowin
- Wound Healing Laboratory, Women's and Children's Health Research Institute, 72 King William Road, North Adelaide, South Australia 5006, Australia.
| |
Collapse
|
50
|
Kopecki Z, Ruzehaji N, Turner C, Iwata H, Ludwig RJ, Zillikens D, Murrell DF, Cowin AJ. Topically applied flightless I neutralizing antibodies improve healing of blistered skin in a murine model of epidermolysis bullosa acquisita. J Invest Dermatol 2012; 133:1008-16. [PMID: 23223144 DOI: 10.1038/jid.2012.457] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidermolysis bullosa (EB) is a chronic inheritable disease that leads to severe blistering and fibrosis. Previous studies have shown that the actin cytoskeletal protein flightless I (Flii) impairs wound healing associated with EB. Using a mouse model of EB acquisita (EBA), the effect of "mopping up" Flii using Flii-neutralizing antibodies (FnAbs) before, during, and after blister formation was determined. FnAbs, incorporated into a cream vehicle and applied topically to the skin, penetrated into the basal epidermis and upper papillary dermis but were not detected in serum or other organs and did not alter neutrophil or macrophage infiltration into the blistered skin. Histological assessment of blister severity showed that treatment of early-stage blisters with FnAb cream reduced their severity and improved their rate of healing. Treatment of established blisters with FnAb cream also improved healing and restored the skin's tensile strength toward that of normal skin. Repeated application of FnAbs to EBA skin before the onset of blistering reduced the severity of skin blistering. Independent of when the FnAbs were applied, skin barrier function and wound healing were improved and skin fragility was reduced, suggesting that FnAbs could potentially improve healing of patients with EB.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Women's and Children's Health Research Institute, North Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|