1
|
Mosiichuk N, Enggren G, Da Silva ZL, Morén AK, Hansson H, Engblom J, Ruzgas T. Antibacterial activity of propylene glycol against Staphylococcus aureus and Staphylococcus epidermidis in neutral and mild acidic conditions. J Antimicrob Chemother 2025:dkaf153. [PMID: 40415523 DOI: 10.1093/jac/dkaf153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/06/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Staphylococcus aureus and Staphylococcus epidermidis normally coexist on the skin of healthy individuals. Their ratio and pathogenicity, however, change with different skin diseases and thus, the ability to control bacterial growth on the skin is important. Propylene glycol (PG), a widely used component in topical formulations, has been proved to have antimicrobial activity. OBJECTIVES To investigate the concentration-dependent antimicrobial properties of PG against S. aureus and S. epidermidis skin isolates in mono- and co-culture at neutral (pH 7.4) and mildly acidic (pH 5) conditions. RESULTS AND DISCUSSION The minimum inhibitory concentration of PG was 12.5% at both pH 5 and pH 7.4 for the selected bacterial strains. The viability of S. aureus exposed to 12.5% PG was lower at pH 5 than at pH 7.4, and post-treatment regrowth of S. aureus occurred slowly at acidic pH. When both bacterial strains were incubated in media containing 12.5% PG at pH 5 for 48 hours, S. epidermidis retained significantly higher viability, while at pH 7.4, the results were opposite. CONCLUSIONS Under the acidic conditions of healthy skin, pathogenic S. aureus is more suppressed by 12.5% PG than commensal S. epidermidis.
Collapse
Affiliation(s)
- Nadiia Mosiichuk
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms Research Centre for Biointerfaces, Malmö University, Malmö, Sweden
| | - Gabriela Enggren
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms Research Centre for Biointerfaces, Malmö University, Malmö, Sweden
| | - Zita Lopes Da Silva
- Biofilms Research Centre for Biointerfaces, Malmö University, Malmö, Sweden
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | | | | | - Johan Engblom
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms Research Centre for Biointerfaces, Malmö University, Malmö, Sweden
| | - Tautgirdas Ruzgas
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms Research Centre for Biointerfaces, Malmö University, Malmö, Sweden
| |
Collapse
|
2
|
Díaz GY, da Silva VA, Kalantarnia F, Scheck K, Tschofen SA, Tuffs SW, Willerth SM. Using Three-Dimensional Bioprinting to Generate Realistic Models of Wound Healing. Adv Wound Care (New Rochelle) 2025. [PMID: 40040420 DOI: 10.1089/wound.2024.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Significance: The skin serves as the primary defense against external stimuli, making it vulnerable to damage. Injuries can cause a dysregulated environment, resulting in chronic inflammation and inhibition of cell proliferation and migration, which delays recovery. Innovative approaches, such as three-dimensional (3D) bioprinting, can foster a controlled healing environment by promoting synergy between the skin microbiome and cells. Recent Advances: Traditional approaches to wound healing have focused on fostering an environment conducive to the interplay between cells, extracellular proteins, and growth factors. 3D bioprinting, a manufacturing technology with applications in tissue engineering, deposits biomaterial-based bioink containing living cells to fabricate custom-designed tissue scaffolds in a layer-by-layer fashion. This process controls the architecture and composition of a construct, producing multilayered and complex structures such as skin. Critical Issues: The selection of biomaterials for scaffolds has been a challenge when 3D skin tissue engineering. While prioritizing mechanical properties, current biomaterials often lack the ability to interact with environmental stimuli such as pH, temperature, or oxygen levels. Employing smart biomaterials that integrate bioactive molecules and adapt to external conditions could overcome these limitations. This innovation would enable scaffolds to create a sustainable wound-healing environment, fostering microbiome balance, reducing inflammation, and facilitating cellular recovery and tissue restoration, addressing critical gaps in existing wound care solutions. Future Directions: Novel bioink formulations for skin injury recovery are focused on improving long-term cell viability, proliferation, vascularization, and immune integration. Efficient recovery of the skin microbiome using bioactive molecules has the potential to create microenriched environments that support the recovery of the skin microbiome and restore immune regulation. This promising direction for future research aims to improve patient outcomes in wound care.
Collapse
Affiliation(s)
- Giselle Y Díaz
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Victor A da Silva
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | | | | | - Silken A Tschofen
- Department of Biochemistry and Microbiology, University of Victoria Faculty of Science, Victoria, Canada
| | - Stephen W Tuffs
- Department of Biochemistry and Microbiology, University of Victoria Faculty of Science, Victoria, Canada
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Axolotl Biosciences, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, Canada
- Biomedical Engineering Program, University of Victoria, Victoria, Canada
- Centre for Advanced Materials and Technology, University of Victoria, Victoria, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Napolitano M, Esposito M, Fargnoli MC, Girolomoni G, Romita P, Nicoli E, Matruglio P, Foti C. Infections in Patients with Atopic Dermatitis and the Influence of Treatment. Am J Clin Dermatol 2025; 26:183-197. [PMID: 39915363 PMCID: PMC11850493 DOI: 10.1007/s40257-025-00917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 02/25/2025]
Abstract
Atopic dermatitis (AD) is a T helper 2-mediated chronic inflammatory skin disease that affects children and adults. Patients with AD are prone to recurrent infections of the skin and other organs, which can severely worsen the disease course. This review summarises the current evidence on the aetiology, pathogenesis, treatment and prevention of infections in patients with AD. PubMed was searched for English-language research articles, systematic reviews, meta-analyses and guidelines published until February 2023 using the key term "atopic dermatitis" and terms relevant to infections. Patients with AD have an increased risk of bacterial, viral and fungal infections of the skin, mainly due to impaired barrier function, altered immune response and frequent scratching. The most common pathogens are Staphylococcus aureus and herpes simplex virus, which can cause impetigo, folliculitis, abscesses, eczema herpeticum and other complications. They also appear to increase susceptibility to systemic infections, including respiratory and urinary tract infections and sepsis. Certain systemic treatments for AD, such as mycophenolate mofetil and Janus kinase inhibitors, increase the risk of viral infections. Prevention and treatment of recurrent infections in patients with AD require a multifaceted approach that includes topical and systemic antimicrobials, skin care and effective control of AD symptoms (to break the itch-scratch cycle). Preventing and limiting the development of infections are important considerations in choosing an AD treatment.
Collapse
Affiliation(s)
- Maddalena Napolitano
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Esposito
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy
- UOSD General and Oncological Dermatology, Ospedale San Salvatore, L'Aquila, Italy
| | | | - Giampiero Girolomoni
- Department of Medicine, Section of Dermatology, University of Verona, Verona, Italy
| | - Paolo Romita
- Department of Precision Medicine and Regeneration and Ionian Area, Unit of Dermatology, University of Bari Aldo Moro, Bari, Italy
| | | | | | - Caterina Foti
- Department of Precision Medicine and Regeneration and Ionian Area, Unit of Dermatology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Faccin M, O'Neill AM, Lawhon SD, Worthing KA, Wiener DJ, Gallo RL, Hoffmann AR. Staphylococcus felis C4 exhibits in vitro antimicrobial activity against methicillin-resistant Staphylococcus pseudintermedius in a novel canine skin explant model. Vet Dermatol 2025; 36:24-33. [PMID: 39450713 DOI: 10.1111/vde.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Canine superficial pyoderma is a common bacterial skin infection of dogs, generally caused by Staphylococcus pseudintermedius. The C4 strain of Staphylococcus felis was recently discovered to have strong antimicrobial activity against S. pseudintermedius in mice. OBJECTIVES We aimed to evaluate in vitro if this antimicrobial activity was maintained using a novel canine skin explant model. MATERIALS AND METHODS Punch biopsies (8 mm) of skin from recently euthanised dogs were collected and placed into six-well plates on top of an agarose pedestal. RESULTS Histological examination of the skin explants showed an intact dermal-epidermal organisation and a stratum corneum that was successfully colonised by S. pseudintermedius after topical application. The number of colony forming units of S. pseudintermedius showed a 2 log increase after 24 h colonisation, indicating that the explant supported bacterial growth. By contrast, co-treatment with S. felis C4 live bacteria and its sterile protein product significantly reduced the growth of a methicillin-susceptible (ST540, p = 0.0357) and a methicillin-resistant (MR) strain (ST71, p = 0.0143) of S. pseudintermedius. No detectable bacteria were recovered from or visualised on skin 24 h posttreatment with the S. felis C4 sterile protein product. CONCLUSIONS AND CLINICAL RELEVANCE Using a novel canine explant model, we demonstrate that the S. felis C4 strain inhibits the growth of S. pseudintermedius and that it is a promising candidate for a new probiotic therapy to treat cutaneous infections caused by S. pseudintermedius, including MR strains.
Collapse
Affiliation(s)
- Mayane Faccin
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alan M O'Neill
- Evotec (UK) Ltd., In Vitro Biology, Abingdon, Oxfordshire, UK
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Kate A Worthing
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
- The University of Sydney Institute of Infectious Diseases, Sydney, New South Wales, Australia
| | - Dominique J Wiener
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Richard L Gallo
- Department of Dermatology, University of California-San Diego, San Diego, California, USA
| | - Aline Rodrigues Hoffmann
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Nie W, Fu H, Zhang Y, Yang H, Liu B. Chinese Herbal Medicine and Their Active Ingredients Involved in the Treatment of Atopic Dermatitis Related Signaling Pathways. Phytother Res 2025; 39:1190-1237. [PMID: 39764710 DOI: 10.1002/ptr.8409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 02/19/2025]
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatitis of the skin and poses therapeutic challenges due to the adverse reactions and high costs associated with available treatments. In Eastern Asian countries, a plethora of herbal remedies is extensively employed for the alleviation of AD. Many of these botanicals are renowned for their formidable anti-inflammatory properties, contributing to AD management. Chinese herbal medicine (CHM) and its active ingredients exhibit both prophylactic and therapeutic promise against AD by modulating inflammatory response, orchestrating immune system functions, and enhancing antioxidant activities. A comprehensive exploration of the underlying mechanisms involved in CHM treatment can enhance the comprehension of AD pathogenesis and facilitate the development of innovative drugs for AD. This study aims to elucidate the signaling pathways and potential targets implicated in CHM-based treatment of AD, providing a systematic theoretical framework for its application in therapy while serving as a valuable reference for developing more effective and safer AD therapeutic agents.
Collapse
Affiliation(s)
- Wenkai Nie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hao Fu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiwen Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Zhou H, Tan X, Chen G, Liu X, Feng A, Liu Z, Liu W. Extracellular Vesicles of Commensal Skin Microbiota Alleviate Cutaneous Inflammation in Atopic Dermatitis Mouse Model by Re-Establishing Skin Homeostasis. J Invest Dermatol 2025; 145:312-322.e9. [PMID: 36907322 DOI: 10.1016/j.jid.2023.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory cutaneous disorder in which the skin is affected by microbial dysbiosis. The role of commensal skin microbiota in AD is of great interest. Extracellular vesicles (EVs) are important regulators of skin homeostasis and pathology. The mechanism of preventing AD pathogenesis through commensal skin microbiota-derived EVs remains poorly understood. In this study, we investigated the role of commensal skin bacterium Staphylococcus epidermidis-derived EVs (SE-EVs). We showed that SE-EVs significantly decreased the expression of proinflammatory genes (TNFα, IL1β, IL6, IL8, and iNOS) through lipoteichoic acid and increased the proliferation and migration of calcipotriene (MC903)-treated HaCaT keratinocytes. Furthermore, SE-EVs increased the expression of human β-defensins 2 and 3 in MC903-treated HaCaT cells through toll-like receptor 2, enhancing resistance to S. aureus growth. In addition, topical SE-EV application remarkably attenuated inflammatory cell infiltration (CD4+ T cells and Gr1+ cells), T helper 2 cytokine gene expression (Il4, Il13, and Tlsp), and IgE levels in MC903-induced AD-like dermatitis mice. Intriguingly, SE-EVs induced IL-17A+ CD8+ T-cell accumulation in the epidermis, which may represent heterologous protection. Taken together, our findings showed that SE-EVs reduced AD-like skin inflammation in mice and may potentially be a bioactive nanocarrier for the treatment of AD.
Collapse
Affiliation(s)
- Hong Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Tan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiping Feng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Licht P, Mailänder V. Multi-Omic Data Integration Suggests Putative Microbial Drivers of Aetiopathogenesis in Mycosis Fungoides. Cancers (Basel) 2024; 16:3947. [PMID: 39682136 DOI: 10.3390/cancers16233947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Mycosis fungoides (MF) represents the most prevalent entity of cutaneous T cell lymphoma (CTCL). The MF aetiopathogenesis is incompletely understood, due to significant transcriptomic heterogeneity and conflicting views on whether oncologic transformation originates in early thymocytes or mature effector memory T cells. Recently, using clinical specimens, our group showed that the skin microbiome aggravates disease course, mainly driven by an outgrowing, pathogenic S. aureus strain carrying the virulence factor spa, which was shown by others to activate the T cell signalling pathway NF-κB. METHODS To explore the role of the skin microbiome in MF aetiopathogenesis, we here performed RNA sequencing, multi-omic data integration of the skin microbiome and skin transcriptome using Multi-Omic Factor Analysis (MOFA), virome profiling, and T cell receptor (TCR) sequencing in 10 MF patients from our previous study group. RESULTS We observed that inter-patient transcriptional heterogeneity may be largely attributed to differential activation of T cell signalling pathways. Notably, the MOFA model resolved the heterogenous activation pattern of T cell signalling after denoising the transcriptome from microbial influence. The MOFA model suggested that the outgrowing S. aureus strain evoked signalling by non-canonical NF-κB and IL-1B, which in turn may have fuelled the aggravated disease course. Further, the MOFA model indicated aberrant pathways of early thymopoiesis alongside enrichment of antiviral innate immunity. In line with this, viral prevalence, particularly of Epstein-Barr virus (EBV), trended higher in both lesional skin and the blood compared to nonlesional skin. Additionally, TCRs in both MF skin lesions and the blood were significantly more likely to recognize EBV peptides involved in latent infection. CONCLUSIONS First, our findings suggest that S. aureus with its virulence factor spa fuels MF progression through non-canonical NF-κB and IL-1B signalling. Second, our data provide insights into the potential role of viruses in MF aetiology. Last, we propose a model of microbiome-driven MF aetiopathogenesis: Thymocytes undergo initial oncologic transformation, potentially caused by viruses. After maturation and skin infiltration, an outgrowing, pathogenic S. aureus strain evokes activation and maturation into effector memory T cells, resulting in aggressive disease. Further studies are warranted to verify and extend our data, which are based on computational analyses.
Collapse
Affiliation(s)
- Philipp Licht
- Department of Dermatology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Centre Mainz, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
8
|
Nguyen UT, Salamzade R, Sandstrom S, Swaney MH, Townsend L, Wu SY, Cheong JA, Sardina JA, Ludwikoski I, Rybolt M, Wan H, Carlson C, Zarnowski R, Andes D, Currie C, Kalan L. Large-scale investigation for antimicrobial activity reveals novel defensive species across the healthy skin microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621544. [PMID: 39574598 PMCID: PMC11580923 DOI: 10.1101/2024.11.04.621544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The human skin microbiome constitutes a dynamic barrier that can impede pathogen invasion by producing antimicrobial natural products. Gene clusters encoding for production of secondary metabolites, biosynthetic gene clusters (BGCs), that are enriched in the human skin microbiome relative to other ecological settings, position this niche as a promising source for new natural product mining. Here, we introduce a new human microbiome isolate collection, the EPithelial Isolate Collection (EPIC). It includes a large phylogenetically diverse set of human skin-derived bacterial strains from eight body sites. This skin collection, consisting of 980 strains is larger and more diverse than existing resources, includes hundreds of rare and low-abundance strains, and hundreds of unique BGCs. Using a large-scale co-culture screen to assess 8,756 pairwise interactions between skin-associated bacteria and potential pathogens, we reveal broad antifungal activity by skin microbiome members. Integrating 287 whole isolate genomes and 268 metagenomes from sampling sites demonstrates that while the distribution of BGC types is stable across body sites, specific gene cluster families (GCFs), each predicted to encode for a distinct secondary metabolite, can substantially vary. Sites that are dry or rarely moist harbor the greatest potential for discovery of novel bioactive metabolites. Among our discoveries are four novel bacterial species, three of which exert significant and broad-spectrum antifungal activity. This comprehensive isolate collection advances our understanding of the skin microbiomes biosynthetic capabilities and pathogen-fighting mechanisms, opening new avenues towards antimicrobial drug discovery and microbiome engineering.
Collapse
Affiliation(s)
- Uyen Thy Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, University of Wisconsin-Madison, Madison, USA
- David Braley Centre for Antibiotic Discovery, University of Wisconsin-Madison, Madison, USA
| | - Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Liz Townsend
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sherrie Y. Wu
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J.Z. Alex Cheong
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph A. Sardina
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, USA
| | - Isabelle Ludwikoski
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mackinnley Rybolt
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hanxiao Wan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caitlin Carlson
- Department of Bacteriology, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, USA
| | - Robert Zarnowski
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Andes
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cameron Currie
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, University of Wisconsin-Madison, Madison, USA
- David Braley Centre for Antibiotic Discovery, University of Wisconsin-Madison, Madison, USA
- Department of Bacteriology, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, USA
| | - Lindsay Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, University of Wisconsin-Madison, Madison, USA
- David Braley Centre for Antibiotic Discovery, University of Wisconsin-Madison, Madison, USA
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Kumari A, Sharma A, Kumari L, Pawar SV, Singh R. Antibiofilm activity of truncated Staphylococcus aureus phenol soluble modulin α2 (SaΔ1Δ2PSMα2) against Candida auris in vitro and in an animal model of catheter-associated infection. Microb Pathog 2024; 196:106943. [PMID: 39288824 DOI: 10.1016/j.micpath.2024.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Candida auris has emerged as a major multidrug-resistant nosocomial pathogen. The organism exhibits a persistent colonising phenotype, and causes recalcitrant infections often strongly linked to biofilm formation. Alternate strategies are urgently needed to combat this yeast and its biofilm-associated phenotype. This work aimed to evaluate the efficacy of select staphylococcal phenol soluble modulins (PSMs), namely, a truncated version of Staphylococcus aureus PSMα2 shortened by two amino acids at the N-terminal (SaΔ1Δ2PSMα2) and Staphylococcus epidermidis PSMδ against C. auris in vitro and in vivo. The antifungal and antibiofilm activity was tested by broth microdilution and XTT dye reduction assay. Combination effect with antifungal drugs was determined by fractional inhibitory concentration test. The efficacy of combination therapy using SaΔ1Δ2PSMα2 with amphotericin B or caspofungin was evaluated in murine model of C. auris catheter-associated infection. Based on antifungal activity, antibiofilm activity and cytotoxicity data, SaΔ1Δ2PSMα2 exhibited promising activity against C. auris biofilms. Nearly 50 % inhibition in biofilm formation was noted with 0.5-2 μM of the peptide against multiple clinical and C. auris colonizing isolates. It was synergistic with amphotericin B (ΣFIC = 0.281) and caspofungin (ΣFIC = 0.047) in vitro, and improved the activity of voriconazole in voriconazole-resistant C. auris. Combination therapy using amphotericin B or caspofungin (1 μg/ml) with SaΔ1Δ2PSMα2 resulted in 99.5 % reduction in C. auris biofilm in murine model, even when the peptide was used at a concentration that was neither fungicidal nor antibiofilm (0.125 μM; ≈0.26 μg/ml). The study provides insight into the potential utility of SaΔ1Δ2PSMα2-antifungal drug combination against C. auris biofilm-associated infections.
Collapse
Affiliation(s)
- Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Anayata Sharma
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
10
|
Piazzesi A, Scanu M, Ciprandi G, Putignani L. Modulations of the skin microbiome in skin disorders: A narrative review from a wound care perspective. Int Wound J 2024; 21:e70087. [PMID: 39379177 PMCID: PMC11461044 DOI: 10.1111/iwj.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
The cutaneous microbiome represents a highly dynamic community of bacteria, fungi and viruses. Scientific evidence, particularly from the last two decades, has revealed that these organisms are far from being inconsequential microscopic hitchhikers on the human body, nor are they all opportunistic pathogens waiting for the chance to penetrate the skin barrier and cause infection. In this review, we will describe how dermatological diseases have been found to be associated with disruptions and imbalances in the skin microbiome and how this new evidence had shaped the diagnosis and clinical practice relating to these disorders. We will identify the microbial agents which have been found to directly exacerbate skin diseases, as well as those which can ameliorate many of the symptoms associated with dermatological disorders. Furthermore, we will discuss the studies which suggest that bacteriotherapy, either by topical use of probiotics or by bacteria-derived compounds, can rectify skin microbial imbalances, thereby offering a promising alternative to antibiotic treatment and reducing the risks of antibiotic resistance.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Guido Ciprandi
- Research Institute Division of Plastic and Maxillofacial Surgery, Department of SurgeryBambino Gesu' Children's Hospital, IRCCSRomeItaly
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics; and Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| |
Collapse
|
11
|
Licht P, Dominelli N, Kleemann J, Pastore S, Müller ES, Haist M, Hartmann KS, Stege H, Bros M, Meissner M, Grabbe S, Heermann R, Mailänder V. The skin microbiome stratifies patients with cutaneous T cell lymphoma and determines event-free survival. NPJ Biofilms Microbiomes 2024; 10:74. [PMID: 39198450 PMCID: PMC11358159 DOI: 10.1038/s41522-024-00542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Mycosis fungoides (MF) is the most common entity of Cutaneous T cell lymphomas (CTCL) and is characterized by the presence of clonal malignant T cells in the skin. The role of the skin microbiome for MF development and progression are currently poorly understood. Using shotgun metagenomic profiling, real-time qPCR, and T cell receptor sequencing, we compared lesional and nonlesional skin of 20 MF patients with early and advanced MF. Additionally, we isolated Staphylococcus aureus and other bacteria from MF skin for functional profiling and to study the S. aureus virulence factor spa. We identified a subgroup of MF patients with substantial dysbiosis on MF lesions and concomitant outgrowth of S. aureus on plaque-staged lesions, while the other MF patients had a balanced microbiome on lesional skin. Dysbiosis and S. aureus outgrowth were accompanied by ectopic levels of cutaneous antimicrobial peptides (AMPs), including adaptation of the plaque-derived S. aureus strain. Furthermore, the plaque-derived S. aureus strain showed a reduced susceptibility towards antibiotics and an upregulation of the virulence factor spa, which may activate the NF-κB pathway. Remarkably, patients with dysbiosis on MF lesions had a restricted T cell receptor repertoire and significantly lower event-free survival. Our study highlights the potential for microbiome-modulating treatments targeting S. aureus to prevent MF progression.
Collapse
Affiliation(s)
- Philipp Licht
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
| | - Nazzareno Dominelli
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Johannes Kleemann
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stefan Pastore
- University Medical Centre Mainz, Institute of Human Genetics, Mainz, Germany
- Johannes Gutenberg-University, Institute of Pharmaceutical and Biomedical Sciences, Mainz, Germany
| | - Elena-Sophia Müller
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Maximilian Haist
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | | | - Henner Stege
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Matthias Bros
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Markus Meissner
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stephan Grabbe
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Ralf Heermann
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Volker Mailänder
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
12
|
MacGibeny MA, Adjei S, Pyle H, Bunick CG, Ghannoum M, Grada A, Harris-Tryon T, Tyring SK, Kong HH. The Human Skin Microbiome in Health: CME Part 1. J Am Acad Dermatol 2024:S0190-9622(24)02671-9. [PMID: 39168311 PMCID: PMC11912297 DOI: 10.1016/j.jaad.2024.07.1498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
Human skin is home to a myriad of microorganisms, including bacteria, viruses, fungi, and mites, many of which are considered commensal microbes that aid in maintaining the overall homeostasis or steady-state condition of the skin and contribute to skin health. Our understanding of the complexities of the skin's interaction with its microorganisms is evolving. This knowledge is based primarily on in vitro and animal studies, and more work is needed to understand how this knowledge relates to humans. Here, we introduce the concept of the skin microbiome and discuss skin microbial ecology, some intrinsic factors with potential influence on the human skin microbiome, and possible microbiome-host interactions. The second article of this two-part CME series describes how microbiome alterations may be associated with skin disease, how medications can affect the microbiome, and what microbiome-based therapies are under investigation.
Collapse
Affiliation(s)
| | - Susuana Adjei
- Department of Dermatology, Lake Granbury Medical Center, Dallas, TX, USA
| | - Hunter Pyle
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT, USA
| | - Mahmoud Ghannoum
- Integrated Microbiome Core and Center for Medical Mycology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Ayman Grada
- Integrated Microbiome Core and Center for Medical Mycology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Tamia Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen K Tyring
- Department of Dermatology, Lake Granbury Medical Center, Dallas, TX, USA.
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Chen Y, Peng C, Zhu L, Wang J, Cao Q, Chen X, Li J. Atopic Dermatitis and Psoriasis: Similarities and Differences in Metabolism and Microbiome. Clin Rev Allergy Immunol 2024; 66:294-315. [PMID: 38954264 DOI: 10.1007/s12016-024-08995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Atopic dermatitis and psoriasis are common chronic inflammatory diseases of high incidence that share some clinical features, including symptoms of pruritus and pain, scaly lesions, and histologically, acanthosis and hyperkeratosis. Meanwhile, they are both commonly comorbid with metabolic disorders such as obesity and diabetes, indicating that both diseases may exist with significant metabolic disturbances. Metabolomics reveals that both atopic dermatitis and psoriasis have abnormalities in a variety of metabolites, including lipids, amino acids, and glucose. Meanwhile, recent studies have highlighted the importance of the microbiome and its metabolites in the pathogenesis of atopic dermatitis and psoriasis. Metabolic alterations and microbiome dysbiosis can also affect the immune, inflammatory, and epidermal barrier, thereby influencing the development of atopic dermatitis and psoriasis. Focusing on the metabolic and microbiome levels, this review is devoted to elaborating the similarities and differences between atopic dermatitis and psoriasis, thus providing insights into the intricate relationship between both conditions.
Collapse
Affiliation(s)
- Yihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Jiayi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Qiaozhi Cao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
14
|
Lee J, Mannan AA, Miyano T, Irvine AD, Tanaka RJ. In Silico Elucidation of Key Drivers of Staphyloccocus aureus- Staphyloccocus epidermidis-Induced Skin Damage in Atopic Dermatitis Lesions. JID INNOVATIONS 2024; 4:100269. [PMID: 38766490 PMCID: PMC11101946 DOI: 10.1016/j.xjidi.2024.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 05/22/2024] Open
Abstract
Staphylococcus aureus (SA) colonizes and can damage skin in atopic dermatitis lesions, despite being commonly found with Staphylococcus epidermidis (SE), a commensal that can inhibit SA's virulence and kill SA. In this study, we developed an in silico model, termed a virtual skin site, describing the dynamic interplay between SA, SE, and the skin barrier in atopic dermatitis lesions to investigate the mechanisms driving skin damage by SA and SE. We generated 106 virtual skin sites by varying model parameters to represent different skin physiologies and bacterial properties. In silico analysis revealed that virtual skin sites with no skin damage in the model were characterized by parameters representing stronger SA and SE growth attenuation than those with skin damage. This inspired an in silico treatment strategy combining SA-killing with an enhanced SA-SE growth attenuation, which was found through simulations to recover many more damaged virtual skin sites to a non-damaged state, compared with SA-killing alone. This study demonstrates that in silico modelling can help elucidate the key factors driving skin damage caused by SA-SE colonization in atopic dermatitis lesions and help propose strategies to control it, which we envision will contribute to the design of promising treatments for clinical studies.
Collapse
Affiliation(s)
- Jamie Lee
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ahmad A. Mannan
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Takuya Miyano
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Alan D. Irvine
- Clinical Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Reiko J. Tanaka
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Twomey E, O’Connor PM, Coffey A, Kiste M, Guinane CM, Hill C, Field D, Begley M. Inhibition of Clinical MRSA Isolates by Coagulase Negative Staphylococci of Human Origin. Antibiotics (Basel) 2024; 13:338. [PMID: 38667016 PMCID: PMC11047365 DOI: 10.3390/antibiotics13040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024] Open
Abstract
Staphylococcus aureus is frequently highlighted as a priority for novel drug research due to its pathogenicity and ability to develop antibiotic resistance. Coagulase-negative staphylococci (CoNS) are resident flora of the skin and nares. Previous studies have confirmed their ability to kill and prevent colonization by S. aureus through the production of bioactive substances. This study screened a bank of 37 CoNS for their ability to inhibit the growth of methicillin-resistant S. aureus (MRSA). Deferred antagonism assays, growth curves, and antibiofilm testing performed with the cell-free supernatant derived from overnight CoNS cultures indicated antimicrobial and antibiofilm effects against MRSA indicators. Whole genome sequencing and BAGEL4 analysis of 11 CoNS isolates shortlisted for the inhibitory effects they displayed against MRSA led to the identification of two strains possessing complete putative bacteriocin operons. The operons were predicted to encode a nukacin variant and a novel epilancin variant. From this point, strains Staphylococcus hominis C14 and Staphylococcus epidermidis C33 became the focus of the investigation. Through HPLC, a peptide identical to previously characterized nukacin KQU-131 and a novel epilancin variant were isolated from cultures of C14 and C33, respectively. Mass spectrometry confirmed the presence of each peptide in the active fractions. Spot-on-lawn assays demonstrated both bacteriocins could inhibit the growth of an MRSA indicator. The identification of natural products with clinically relevant activity is important in today's climate of escalating antimicrobial resistance and a depleting antibiotic pipeline. These findings also highlight the prospective role CoNS may play as a source of bioactive substances with activity against critical pathogens.
Collapse
Affiliation(s)
- Ellen Twomey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
| | | | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
| | - Maija Kiste
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
| | - Caitriona M. Guinane
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Des Field
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
| |
Collapse
|
16
|
Yang Y, Huang J, Zeng A, Long X, Yu N, Wang X. The role of the skin microbiome in wound healing. BURNS & TRAUMA 2024; 12:tkad059. [PMID: 38444635 PMCID: PMC10914219 DOI: 10.1093/burnst/tkad059] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 03/07/2024]
Abstract
The efficient management of skin wounds for rapid and scarless healing represents a major clinical unmet need. Nonhealing skin wounds and undesired scar formation impair quality of life and result in high healthcare expenditure worldwide. The skin-colonizing microbiota contributes to maintaining an intact skin barrier in homeostasis, but it also participates in the pathogenesis of many skin disorders, including aberrant wound healing, in many respects. This review focuses on the composition of the skin microbiome in cutaneous wounds of different types (i.e. acute and chronic) and with different outcomes (i.e. nonhealing and hypertrophic scarring), mainly based on next-generation sequencing analyses; furthermore, we discuss the mechanistic insights into host-microbe and microbe-microbe interactions during wound healing. Finally, we highlight potential therapeutic strategies that target the skin microbiome to improve healing outcomes.
Collapse
Affiliation(s)
- Yuyan Yang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Jiuzuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Ang Zeng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiaojun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| |
Collapse
|
17
|
Garrett SR, Palmer T. The role of proteinaceous toxins secreted by Staphylococcus aureus in interbacterial competition. FEMS MICROBES 2024; 5:xtae006. [PMID: 38495077 PMCID: PMC10941976 DOI: 10.1093/femsmc/xtae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Staphylococcus aureus is highly adapted to colonization of the mammalian host. In humans the primary site of colonization is the epithelium of the nasal cavity. A major barrier to colonization is the resident microbiota, which have mechanisms to exclude S. aureus. As such, S. aureus has evolved mechanisms to compete with other bacteria, one of which is through secretion of proteinaceous toxins. S. aureus strains collectively produce a number of well-characterized Class I, II, and IV bacteriocins as well as several bacteriocin-like substances, about which less is known. These bacteriocins have potent antibacterial activity against several Gram-positive organisms, with some also active against Gram-negative species. S. aureus bacteriocins characterized to date are sporadically produced, and often encoded on plasmids. More recently the type VII secretion system (T7SS) of S. aureus has also been shown to play a role in interbacterial competition. The T7SS is encoded by all S. aureus isolates and so may represent a more widespread mechanism of competition used by this species. T7SS antagonism is mediated by the secretion of large protein toxins, three of which have been characterized to date: a nuclease toxin, EsaD; a membrane depolarizing toxin, TspA; and a phospholipase toxin, TslA. Further study is required to decipher the role that these different types of secreted toxins play in interbacterial competition and colonization of the host.
Collapse
Affiliation(s)
- Stephen R Garrett
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
18
|
Glatthardt T, Lima RD, de Mattos RM, Ferreira RBR. Microbe Interactions within the Skin Microbiome. Antibiotics (Basel) 2024; 13:49. [PMID: 38247608 PMCID: PMC10812674 DOI: 10.3390/antibiotics13010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The skin is the largest human organ and is responsible for many important functions, such as temperature regulation, water transport, and protection from external insults. It is colonized by several microorganisms that interact with each other and with the host, shaping the microbial structure and community dynamics. Through these interactions, the skin microbiota can inhibit pathogens through several mechanisms such as the production of bacteriocins, proteases, phenol soluble modulins (PSMs), and fermentation. Furthermore, these commensals can produce molecules with antivirulence activity, reducing the potential of these pathogens to adhere to and invade human tissues. Microorganisms of the skin microbiota are also able to sense molecules from the environment and shape their behavior in response to these signals through the modulation of gene expression. Additionally, microbiota-derived compounds can affect pathogen gene expression, including the expression of virulence determinants. Although most studies related to microbial interactions in the skin have been directed towards elucidating competition mechanisms, microorganisms can also use the products of other species to their benefit. In this review, we will discuss several mechanisms through which microorganisms interact in the skin and the biotechnological applications of products originating from the skin microbiota that have already been reported in the literature.
Collapse
Affiliation(s)
- Thaís Glatthardt
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.G.); (R.D.L.); (R.M.d.M.)
- Department of Physiology and Pharmacology, Health Research Innovation Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pediatrics, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rayssa Durães Lima
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.G.); (R.D.L.); (R.M.d.M.)
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Raquel Monteiro de Mattos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.G.); (R.D.L.); (R.M.d.M.)
| | - Rosana Barreto Rocha Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.G.); (R.D.L.); (R.M.d.M.)
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
19
|
Torres Salazar BO, Dema T, Schilling NA, Janek D, Bornikoel J, Berscheid A, Elsherbini AMA, Krauss S, Jaag SJ, Lämmerhofer M, Li M, Alqahtani N, Horsburgh MJ, Weber T, Beltrán-Beleña JM, Brötz-Oesterhelt H, Grond S, Krismer B, Peschel A. Commensal production of a broad-spectrum and short-lived antimicrobial peptide polyene eliminates nasal Staphylococcus aureus. Nat Microbiol 2024; 9:200-213. [PMID: 38110697 PMCID: PMC11310079 DOI: 10.1038/s41564-023-01544-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/03/2023] [Indexed: 12/20/2023]
Abstract
Antagonistic bacterial interactions often rely on antimicrobial bacteriocins, which attack only a narrow range of target bacteria. However, antimicrobials with broader activity may be advantageous. Here we identify an antimicrobial called epifadin, which is produced by nasal Staphylococcus epidermidis IVK83. It has an unprecedented architecture consisting of a non-ribosomally synthesized peptide, a polyketide component and a terminal modified amino acid moiety. Epifadin combines a wide antimicrobial target spectrum with a short life span of only a few hours. It is highly unstable under in vivo-like conditions, potentially as a means to limit collateral damage of bacterial mutualists. However, Staphylococcus aureus is eliminated by epifadin-producing S. epidermidis during co-cultivation in vitro and in vivo, indicating that epifadin-producing commensals could help prevent nasal S. aureus carriage. These insights into a microbiome-derived, previously unknown antimicrobial compound class suggest that limiting the half-life of an antimicrobial may help to balance its beneficial and detrimental activities.
Collapse
Affiliation(s)
- Benjamin O Torres Salazar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Taulant Dema
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Nadine A Schilling
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Daniela Janek
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Jan Bornikoel
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anne Berscheid
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Ahmed M A Elsherbini
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Sophia Krauss
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Simon J Jaag
- Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Norah Alqahtani
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Malcolm J Horsburgh
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - José Manuel Beltrán-Beleña
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Stephanie Grond
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany.
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany.
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Dessinioti C, Katsambas A. The Microbiome and Acne: Perspectives for Treatment. Dermatol Ther (Heidelb) 2024; 14:31-44. [PMID: 38183614 PMCID: PMC10828138 DOI: 10.1007/s13555-023-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024] Open
Abstract
The skin microbiome consists of the microorganisms populating the human skin. Cutibacterium acnes (C. acnes, formerly named Propionibacterium acnes) is recognized as a key factor in acne development, regulating inflammatory and immune pathways. Dysbiosis has been described as the imbalance in skin microbiome homeostasis and may play a role in acne pathogenesis. Microbial interference has been shown to be a contributor to healthy skin homeostasis and staphylococcal strains may exclude acne-associated C. acnes phylotypes. In this review we present an update on the skin microbiome in acne and discuss how current acne treatments such as benzoyl peroxide, orally administered isotretinoin, and antibiotics may affect the skin microbiome homeostasis. We highlight the collateral damage of acne antibiotics on the skin microbiome, including the risk of antimicrobial resistance and the dysregulation of the microbiome equilibrium that may occur even with short-term antibiotic courses. Consequently, the interest is shifting towards new non-antibiotic pharmacological acne treatments. Orally administered spironolactone is an emerging off-label treatment for adult female patients and topical peroxisome proliferator-activated receptor gamma (PPARγ) modulation is being studied for patients with acne. The potential application of topical or oral probiotics, bacteriotherapy, and phage therapy for acne are further promising areas of future research.
Collapse
Affiliation(s)
- Clio Dessinioti
- 1st Department of Dermatology, Andreas Sygros Hospital, University of Athens, 5, Dragoumi Str, 16 121, Athens, Greece.
| | | |
Collapse
|
21
|
AL-Smadi K, Leite-Silva VR, Filho NA, Lopes PS, Mohammed Y. Innovative Approaches for Maintaining and Enhancing Skin Health and Managing Skin Diseases through Microbiome-Targeted Strategies. Antibiotics (Basel) 2023; 12:1698. [PMID: 38136732 PMCID: PMC10741029 DOI: 10.3390/antibiotics12121698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The skin microbiome is crucial in maintaining skin health, and its disruption is associated with various skin diseases. Prebiotics are non-digestible fibers and compounds found in certain foods that promote the activity and growth of beneficial bacteria in the gut or skin. On the other hand, live microorganisms, known as probiotics, benefit in sustaining healthy conditions when consumed in reasonable quantities. They differ from postbiotics, which are by-product compounds from bacteria that release the same effects as their parent bacteria. The human skin microbiome is vital when it comes to maintaining skin health and preventing a variety of dermatological conditions. This review explores novel strategies that use microbiome-targeted treatments to maintain and enhance overall skin health while managing various skin disorders. It is important to understand the dynamic relationship between these beneficial microorganisms and the diverse microbial communities present on the skin to create effective strategies for using probiotics on the skin. This understanding can help optimize formulations and treatment regimens for improved outcomes in skincare, particularly in developing solutions for various skin problems.
Collapse
Affiliation(s)
- Khadeejeh AL-Smadi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
| | - Vania Rodrigues Leite-Silva
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
| | - Newton Andreo Filho
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Patricia Santos Lopes
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
22
|
Seo JY, You SW, Gu KN, Kim H, Shin JG, Leem S, Hwang BK, Kim Y, Kang NG. Longitudinal study of the interplay between the skin barrier and facial microbiome over 1 year. Front Microbiol 2023; 14:1298632. [PMID: 38033568 PMCID: PMC10687563 DOI: 10.3389/fmicb.2023.1298632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Skin is a diverse ecosystem that provides a habitat for microorganisms. The skin condition and the skin microbiome interact each other under diverse environmental conditions. This study was conducted on 10 study participants for a one-year, from September 2020 to August 2021, to investigate the variability of skin microbiome and skin biophysical parameters [TEWL, hydration, and elasticity (R5)] according to season, and to understand the interplay between skin microbiome and skin characteristics. We identified that Cutibacterium, Corynebacterium, Staphyloccocus, unclassified genus within Neisseriaceae, and Streptococcus were major skin microbial taxa at the genus level, and fluctuated with the seasons. Cutibacterium was more abundant in winter, while Corynebacterium, Staphylococcus, and Streptococcus were more abundant in summer. Notably, Cutibacterium and skin barrier parameter, TEWL, exhibited a co-decreasing pattern from winter to summer and showed a significant association between Cutibacterium and TEWL. Furthermore, functional profiling using KEGG provided clues on the impact of Cutibacterium on the host skin barrier. This study enhances our understanding of the skin microbiome and its interplay with skin characteristics and highlights the importance of seasonal dynamics in shaping skin microbial composition.
Collapse
|
23
|
Dernovics Á, Seprényi G, Rázga Z, Ayaydin F, Veréb Z, Megyeri K. Phenol-Soluble Modulin α3 Stimulates Autophagy in HaCaT Keratinocytes. Biomedicines 2023; 11:3018. [PMID: 38002017 PMCID: PMC10669503 DOI: 10.3390/biomedicines11113018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Phenol-soluble modulins (PSMs) are pore-forming toxins (PFTs) produced by staphylococci. PSMs exert diverse cellular effects, including lytic, pro-apoptotic, pro-inflammatory and antimicrobial actions. Since the effects of PSMs on autophagy have not yet been reported, we evaluated the autophagic activity in HaCaT keratinocytes treated with recombinant PSMα3. METHODS The autophagic flux and levels of autophagic marker proteins were determined using Western blot analysis. Subcellular localization of LC3B and Beclin-1 was investigated using an indirect immunofluorescence assay. The ultrastructural features of control and PSMα3-treated cells were evaluated via transmission electron microscopy. Cytoplasmic acidification was measured via acridine orange staining. Phosphorylation levels of protein kinases, implicated in autophagy regulation, were studied using a phospho-kinase array and Western blot analysis. RESULTS PSMα3 facilitated the intracellular redistribution of LC3B, increased the average number of autophagosomes per cell, promoted the development of acidic vesicular organelles, elevated the levels of LC3B-II, stimulated autophagic flux and triggered a significant decrease in the net autophagic turnover rate. PSMα3 induced the accumulation of autophagosomes/autolysosomes, amphisomes and multilamellar bodies at the 0.5, 6 and 24 h time points, respectively. The phospho-Akt1/2/3 (T308 and S473), and phospho-mTOR (S2448) levels were decreased, whereas the phospho-Erk1/2 (T202/Y204 and T185/Y187) level was increased in PSMα3-treated cells. CONCLUSIONS In HaCaT keratinocytes, PSMα3 stimulates autophagy. The increased autophagic activity elicited by sub-lytic PSM concentrations might be an integral part of the cellular defense mechanisms protecting skin homeostasis.
Collapse
Affiliation(s)
- Áron Dernovics
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary;
| | - György Seprényi
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Kossuth L. sgt. 40., H-6724 Szeged, Hungary;
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, Állomás u. 2, H-6720 Szeged, Hungary;
| | - Ferhan Ayaydin
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM) Nonprofit Ltd., Római krt. 21., H-6723 Szeged, Hungary;
- Laboratory of Cellular Imaging, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Korányi Fasor 6, H-6720 Szeged, Hungary;
- Biobank, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Research Development and Innovation Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Klára Megyeri
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary;
| |
Collapse
|
24
|
Faccin M, Wiener DJ, Rech RR, Santoro D, Rodrigues Hoffmann A. Common superficial and deep cutaneous bacterial infections in domestic animals: A review. Vet Pathol 2023; 60:796-811. [PMID: 37264789 DOI: 10.1177/03009858231176558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The skin covers the external surface of animals, and it is constantly exposed to and inhabited by different microorganisms, including bacteria. Alterations in the skin barrier allow commensal and/or pathogenic bacteria to proliferate and penetrate deep into the lower layers of the skin. Being the first barrier to the external environment, the skin is prone to injuries, allowing the penetration of microorganisms that may lead to severe deep infections. Companion animals, especially dogs, are prone to bacterial infections, often secondary to allergic dermatitis. When environmental conditions are unfavorable, horses, cattle, sheep, and goats can develop superficial infections, such as those caused by Dermatophilus congolensis. Deep inflammation is commonly caused by Mycobacterium spp., which results in granulomatous to pyogranulomatous dermatitis and panniculitis. Likewise, bacteria such as Nocardia spp. and Actinomyces spp. can cause deep pyogranulomatous inflammation. Bacteria that lead to deep necrotizing lesions (eg, necrotizing fasciitis/flesh-eating bacteria) can be severe and even result in death. This review includes an overview of the most common cutaneous bacterial infections of domestic animals, highlighting the main features and histologic morphology of the bacteria, cutaneous structures involved, and the type of inflammatory infiltrates.
Collapse
|
25
|
Williams MR, Bagood MD, Enroth TJ, Bunch ZL, Jiang N, Liu E, Almoughrabie S, Khalil S, Li F, Brinton S, Cech NB, Horswill AR, Gallo RL. Staphylococcus epidermidis activates keratinocyte cytokine expression and promotes skin inflammation through the production of phenol-soluble modulins. Cell Rep 2023; 42:113024. [PMID: 37610872 PMCID: PMC10586132 DOI: 10.1016/j.celrep.2023.113024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/05/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Staphylococcus epidermidis is a common microbe on human skin and has beneficial functions in the skin microbiome. However, under conditions of allergic inflammation, the abundance of S. epidermidis increases, establishing potential danger to the epidermis. To understand how this commensal may injure the host, we investigate phenol-soluble modulin (PSM) peptides produced by S. epidermidis that are similar to peptides produced by Staphylococcus aureus. Synthetic S. epidermidis PSMs induce expression of host defense genes and are cytotoxic to human keratinocytes. Deletion mutants of S. epidermidis lacking these gene products support these observations and further show that PSMs require the action of the EcpA bacterial protease to induce inflammation when applied on mouse skin with an intact stratum corneum. The expression of PSMδ from S. epidermidis is also found to correlate with disease severity in patients with atopic dermatitis. These observations show how S. epidermidis PSMs can promote skin inflammation.
Collapse
Affiliation(s)
- Michael R Williams
- Department of Dermatology, University of California, San Diego, San Diego, CA 92093, USA
| | - Michelle D Bagood
- Department of Dermatology, University of California, San Diego, San Diego, CA 92093, USA
| | - Timothy J Enroth
- Department of Veterans Affairs Denver Health Care System, Denver, CO, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zoie L Bunch
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | - Nina Jiang
- Department of Dermatology, University of California, San Diego, San Diego, CA 92093, USA
| | - Edward Liu
- Department of Dermatology, University of California, San Diego, San Diego, CA 92093, USA
| | - Samia Almoughrabie
- Department of Dermatology, University of California, San Diego, San Diego, CA 92093, USA
| | - Shadi Khalil
- Department of Dermatology, University of California, San Diego, San Diego, CA 92093, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, San Diego, CA 92093, USA
| | - Samantha Brinton
- Department of Dermatology, University of California, San Diego, San Diego, CA 92093, USA
| | - Nadja B Cech
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | - Alexander R Horswill
- Department of Veterans Affairs Denver Health Care System, Denver, CO, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
26
|
Bru JL, Kasallis SJ, Chang R, Zhuo Q, Nguyen J, Pham P, Warren E, Whiteson K, Høyland-Kroghsbo NM, Limoli DH, Siryaporn A. The great divide: rhamnolipids mediate separation between P. aeruginosa and S. aureus. Front Cell Infect Microbiol 2023; 13:1245874. [PMID: 37780859 PMCID: PMC10540625 DOI: 10.3389/fcimb.2023.1245874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
The interactions between bacterial species during infection can have significant impacts on pathogenesis. Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic bacterial pathogens that can co-infect hosts and cause serious illness. The factors that dictate whether one species outcompetes the other or whether the two species coexist are not fully understood. We investigated the role of surfactants in the interactions between these two species on a surface that enables P. aeruginosa to swarm. We found that P. aeruginosa swarms are repelled by colonies of clinical S. aureus isolates, creating physical separation between the two strains. This effect was abolished in mutants of S. aureus that were defective in the production of phenol-soluble modulins (PSMs), which form amyloid fibrils around wild-type S. aureus colonies. We investigated the mechanism that establishes physical separation between the two species using Imaging of Reflected Illuminated Structures (IRIS), which is a non-invasive imaging method that tracks the flow of surfactants produced by P. aeruginosa. We found that PSMs produced by S. aureus deflected the surfactant flow, which in turn, altered the direction of P. aeruginosa swarms. These findings show that rhamnolipids mediate physical separation between P. aeruginosa and S. aureus, which could facilitate coexistence between these species. Additionally, we found that a number of molecules repelled P. aeruginosa swarms, consistent with a surfactant deflection mechanism. These include Bacillus subtilis surfactant, the fatty acids oleic acid and linoleic acid, and the synthetic lubricant polydimethylsiloxane. Lung surfactant repelled P. aeruginosa swarms and inhibited swarm expansion altogether at higher concentration. Our results suggest that surfactant interactions could have major impacts on bacteria-bacteria and bacteria-host relationships. In addition, our findings uncover a mechanism responsible for P. aeruginosa swarm development that does not rely solely on sensing but instead is based on the flow of surfactant.
Collapse
Affiliation(s)
- Jean-Louis Bru
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Summer J. Kasallis
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Rendell Chang
- School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Quantum Zhuo
- Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Jacqueline Nguyen
- School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Phillip Pham
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Elizabeth Warren
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Katrine Whiteson
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | | | - Dominique H. Limoli
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Albert Siryaporn
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
27
|
Jiminez V, Yusuf N. Bacterial Metabolites and Inflammatory Skin Diseases. Metabolites 2023; 13:952. [PMID: 37623895 PMCID: PMC10456496 DOI: 10.3390/metabo13080952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The microbiome and gut-skin axis are popular areas of interest in recent years concerning inflammatory skin diseases. While many bacterial species have been associated with commensalism of both the skin and gastrointestinal tract in certain disease states, less is known about specific bacterial metabolites that regulate host pathways and contribute to inflammation. Some of these metabolites include short chain fatty acids, amine, and tryptophan derivatives, and more that when dysregulated, have deleterious effects on cutaneous disease burden. This review aims to summarize the knowledge of wealth surrounding bacterial metabolites of the skin and gut and their role in immune homeostasis in inflammatory skin diseases such as atopic dermatitis, psoriasis, and hidradenitis suppurativa.
Collapse
Affiliation(s)
- Victoria Jiminez
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
28
|
Kim G, Lee Y, You JS, Hwang W, Hwang J, Kim HY, Kim J, Jo A, Park IH, Ali M, Kim J, Shin JS, Kwon HK, Kim HJ, Yoon SS. A Moonlighting Protein Secreted by a Nasal Microbiome Fortifies the Innate Host Defense Against Bacterial and Viral Infections. Immune Netw 2023; 23:e31. [PMID: 37670809 PMCID: PMC10475824 DOI: 10.4110/in.2023.23.e31] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 09/07/2023] Open
Abstract
Evidence suggests that the human respiratory tract, as with the gastrointestinal tract, has evolved to its current state in association with commensal microbes. However, little is known about how the airway microbiome affects the development of airway immune system. Here, we uncover a previously unidentified mode of interaction between host airway immunity and a unique strain (AIT01) of Staphylococcus epidermidis, a predominant species of the nasal microbiome. Intranasal administration of AIT01 increased the population of neutrophils and monocytes in mouse lungs. The recruitment of these immune cells resulted in the protection of the murine host against infection by Pseudomonas aeruginosa, a pathogenic bacterium. Interestingly, an AIT01-secreted protein identified as GAPDH, a well-known bacterial moonlighting protein, mediated this protective effect. Intranasal delivery of the purified GAPDH conferred significant resistance against other Gram-negative pathogens (Klebsiella pneumoniae and Acinetobacter baumannii) and influenza A virus. Our findings demonstrate the potential of a native nasal microbe and its secretory protein to enhance innate immune defense against airway infections. These results offer a promising preventive measure, particularly relevant in the context of global pandemics.
Collapse
Affiliation(s)
- Gwanghee Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- BioMe Inc., Seoul 02455, Korea
| | - Yoojin Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jin Sun You
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Wontae Hwang
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeewon Hwang
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hwa Young Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jieun Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ara Jo
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul 03080, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - In ho Park
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Mohammed Ali
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jongsun Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeon-Soo Shin
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul 03080, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- BioMe Inc., Seoul 02455, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
29
|
Zayabaatar E, Tang NMT, Pham MT. Electrogenic Staphylococcus epidermidis colonizes nasal cavities and alleviates IL-6 progression induced by the SARS2-CoV nucleocapsid protein. J Appl Microbiol 2023; 134:lxad179. [PMID: 37558389 DOI: 10.1093/jambio/lxad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
AIM Certain probiotic bacteria have been shown to possess an immunomodulatory effect and a protective effect on influenza infections. Using the Staphylococcus epidermidis K1 colonized mice model, we assessed the effect of nasal administration of glycerol or flavin mononucleotide (FMN) on the production of interleukin (IL)-6 mediated by the severe acute respiratory syndrome coronavirus 2 (SARS2-CoV) nucleocapsid protein (NPP). METHODS AND RESULTS FMN, one of the key electron donors for the generation of electricity facilitated by S. epidermidis ATCC 12228, was detected in the glycerol fermentation medium. Compared to the S. epidermidis ATCC 12228, the S. epidermidis K1 isolate showed significant expression of the electron transfer genes, including pyruvate dehydrogenase (pdh), riboflavin kinase (rk), 1,4-dihydroxy-2-naphthoate octaprenyltransferase (menA), and type II NADH quinone oxidoreductase (ndh2). Institute of cancer research (ICR) mice were intranasally administered with S. epidermidis K1 with or without pretreatment with riboflavin kinase inhibitors, then nasally treated with glycerol or FMN before inoculating the NPP. Furthermore, J774A.1 macrophages were exposed to NPP serum and then treated with NPP of SARS2-CoV. The IL-6 levels in the bronchoalveolar lavage fluid (BALF) of mice and macrophages were quantified using a mouse IL-6 enzyme-linked immunosorbent assay kit. CONCLUSIONS Here, we report that nasal administration of NPP strongly elevates IL-6 levels in both BALF and J774A.1 macrophages. It is worth noting that NPP-neutralizing antibodies can decrease IL-6 levels in macrophages. The nasal administration of glycerol or FMN to S. epidermidis K1-colonized mice results in a reduction of NPP-induced IL-6 production.
Collapse
Affiliation(s)
- Enkhbat Zayabaatar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Nguyen Mai Trinh Tang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Minh Tan Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
30
|
Caballero-Flores G, Pickard JM, Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol 2023; 21:347-360. [PMID: 36539611 PMCID: PMC10249723 DOI: 10.1038/s41579-022-00833-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
A dense and diverse microbial community inhabits the gut and many epithelial surfaces. Referred to as the microbiota, it co-evolved with the host and is beneficial for many host physiological processes. A major function of these symbiotic microorganisms is protection against pathogen colonization and overgrowth of indigenous pathobionts. Dysbiosis of the normal microbial community increases the risk of pathogen infection and overgrowth of harmful pathobionts. The protective mechanisms conferred by the microbiota are complex and include competitive microbial-microbial interactions and induction of host immune responses. Pathogens, in turn, have evolved multiple strategies to subvert colonization resistance conferred by the microbiota. Understanding the mechanisms by which microbial symbionts limit pathogen colonization should guide the development of new therapeutic approaches to prevent or treat disease.
Collapse
Affiliation(s)
- Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Joseph M Pickard
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
De Almeida CV, Antiga E, Lulli M. Oral and Topical Probiotics and Postbiotics in Skincare and Dermatological Therapy: A Concise Review. Microorganisms 2023; 11:1420. [PMID: 37374920 DOI: 10.3390/microorganisms11061420] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The skin microbiota is a pivotal contributor to the maintenance of skin homeostasis by protecting it from harmful pathogens and regulating the immune system. An imbalance in the skin microbiota can lead to pathological conditions such as eczema, psoriasis, and acne. The balance of the skin microbiota components can be disrupted by different elements and dynamics such as changes in pH levels, exposure to environmental toxins, and the use of certain skincare products. Some research suggests that certain probiotic strains and their metabolites (postbiotics) may provide benefits such as improving the skin barrier function, reducing inflammation, and improving the appearance of acne-prone or eczema-prone skin. Consequently, in recent years probiotics and postbiotics have become a popular ingredient in skincare products. Moreover, it was demonstrated that skin health can be influenced by the skin-gut axis, and imbalances in the gut microbiome caused by poor diet, stress, or the use of antibiotics can lead to skin conditions. In this way, products that improve gut microbiota balance have been gaining attention from cosmetic and pharmaceutical companies. The present review will focus on the crosstalk between the SM and the host, and its effects on health and diseases.
Collapse
Affiliation(s)
| | - Emiliano Antiga
- Department of Health Sciences, Section of Dermatology, University of Florence, 50139 Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| |
Collapse
|
32
|
Nurxat N, Wang L, Wang Q, Li S, Jin C, Shi Y, Wulamu A, Zhao N, Wang Y, Wang H, Li M, Liu Q. Commensal Staphylococcus epidermidis Defends against Staphylococcus aureus through SaeRS Two-Component System. ACS OMEGA 2023; 8:17712-17718. [PMID: 37251147 PMCID: PMC10210170 DOI: 10.1021/acsomega.3c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Staphylococcus aureus is a high-virulent Gram-positive pathogen that is responsible for a serious of diseases. The emergence of antibiotic-resistant S. aureus poses a significant challenge in terms of treatment. The recent research on the human microbiome suggested that the application of commensal bacteria is a new strategy for combating pathogenic infections. Staphylococcus epidermidis, one of the most abundant species in the nasal microbiome, is able to inhibit the colonization of S. aureus. However, during bacterial competition, S. aureus undergoes evolutionary changes to adapt to the diverse environment. Our study has demonstrated that the nasal colonized S. epidermidis possesses the ability to inhibit the hemolytic activity of S. aureus. Moreover, we deciphered another layer of mechanism to inhibit S. aureus colonization by S. epidermidis. The active component present in the cell-free culture of S. epidermidis was found to significantly reduce the hemolytic activity of S. aureus in SaeRS- and Agr-dependent manner. Specifically, the hemolytic inhibition on the S. aureus Agr-I type by S. epidermidis is primarily dependent on the SaeRS two-component system. The active component is characterized as a small molecule that is heat sensitive and protease resistant. Critically, S. epidermidis significantly inhibit the virulence of S. aureus in a mouse skin abscess model, suggesting that the active compound could potentially be used as a therapeutic agent for managing S. aureus infections.
Collapse
Affiliation(s)
- Nadira Nurxat
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lili Wang
- Department
of Stomatology, Tongji Hospital, Tongji
University, Shanghai 200065, China
| | - Qichen Wang
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shujing Li
- Faculty
of Medical Laboratory Science, Shanghai
Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Chen Jin
- Faculty
of Medical Laboratory Science, Shanghai
Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Yaran Shi
- Faculty
of Medical Laboratory Science, Shanghai
Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Ayjiamali Wulamu
- Faculty
of Medical Laboratory Science, Shanghai
Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Na Zhao
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanan Wang
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hua Wang
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Min Li
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Faculty
of Medical Laboratory Science, Shanghai
Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Qian Liu
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
33
|
Nakatsuji T, Brinton SL, Cavagnero KJ, O'Neill AM, Chen Y, Dokoshi T, Butcher AM, Osuoji OC, Shafiq F, Espinoza JL, Dupont CL, Hata TR, Gallo RL. Competition between skin antimicrobial peptides and commensal bacteria in type 2 inflammation enables survival of S. aureus. Cell Rep 2023; 42:112494. [PMID: 37167061 DOI: 10.1016/j.celrep.2023.112494] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
During inflammation, the skin deploys antimicrobial peptides (AMPs) yet during allergic inflammation it becomes more susceptible to Staphylococcus aureus. To understand this contradiction, single-cell sequencing of Il4ra-/- mice combined with skin microbiome analysis reveals that lower production of AMPs from interleukin-4 receptor α (IL-4Rα) activation selectively inhibits survival of antibiotic-producing strains of coagulase-negative Staphylococcus (CoNS). Diminished AMPs under conditions of T helper type 2 (Th2) inflammation enable expansion of CoNS strains without antibiotic activity and increase Staphylococcus aureus (S. aureus), recapitulating the microbiome on humans with atopic dermatitis. This response is rescued in Camp-/- mice or after topical steroids, since further inhibition of AMPs enables survival of antibiotic-producing CoNS strains. In conditions of Th17 inflammation, a higher expression of host AMPs is sufficient to directly inhibit S. aureus survival. These results show that antimicrobials produced by the host and commensal bacteria each act to control S. aureus on the skin.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Samantha L Brinton
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kellen J Cavagnero
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alan M O'Neill
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Yang Chen
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Anna M Butcher
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Olive C Osuoji
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Faiza Shafiq
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Josh L Espinoza
- Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | | - Tissa R Hata
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
Kikukawa H, Nagao T, Ota M, Takashima S, Kitaguchi K, Yanase E, Maeda S, Hara KY. Production of a selective antibacterial fatty acid against Staphylococcus aureus by Bifidobacterium strains. MICROBIOME RESEARCH REPORTS 2023; 2:4. [PMID: 38045611 PMCID: PMC10688799 DOI: 10.20517/mrr.2022.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 12/05/2023]
Abstract
Aims: C16 monounsaturated fatty acid (C16:1) show antibacterial activity against Staphylococcus aureus, a pathogen associated with various diseases such as atopic dermatitis and bacteremia, while the compound does not exhibit antibacterial activity against Staphylococcus epidermidis, an epidermal commensal that inhibits the growth of S. aureus. In this study, we aimed to find bifidobacterial strains with the ability to produce C16:1 and to find a practical manner to utilize C16:1-producing strains in industry. Methods: Various Bifidobacterium strains were screened for their content of C16:1. The chemical identity of C16:1 produced by a selected strain was analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Medium components that affect the C16:1 content of the selected strain were investigated. Antibacterial activity against staphylococci was compared between the authentic C16:1 isomers and total fatty acids (TFA) extracted from the selected strain. Results: B. adolescentis 12451, B. adolescentis 12-111, B. boum JCM 1211, and Bifidobacterium sp. JCM 7042 showed high C16:1 content among the tested strains. TFA extracted from Bifidobacterium sp. JCM 7042 contained C16:1 at 2.3% as the fatty acid constituent (2.4 mg/L of broth). Through GC-MS and LC-MS analyses, the C16:1 synthesized by Bifidobacterium sp. JCM 7042 was identified as 7-cis-hexadecenoic acid (7-cis-C16:1). The authentic 7-cis-C16:1 showed strong and selective antibacterial activity against S. aureus, similar to 6-cis-C16:1, with a minimum inhibitory concentration (MIC) of < 10 µg/mL. Components that increase C16:1 productivity were not found in the MRS and TOS media; however, Tween 80 was shown to considerably reduce the C16:1 ratio in TFA. Antibacterial activity against S. aureus was observed when the TFA extracted from Bifidobacterium sp. JCM 7042 contained high level of 7-cis-C16:1 (6.1% in TFA) but not when it contained low level of 7-cis-C16:1 (0.1% in TFA). Conclusion: The fatty acid, 7-cis-C16:1, which can selectively inhibit the S. aureus growth, is accumulated in TFA of several bifidobacteria. The TFA extracted from cultured cells of Bifidobacterium sp. JCM 7042 demonstrated antibacterial activity. From a practical viewpoint, our findings are important for developing an efficient method to produce novel skin care cosmetics, functional dairy foods, and other commodities.
Collapse
Affiliation(s)
- Hiroshi Kikukawa
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Toshihiro Nagao
- Research Division of Biomaterials and Commodity Chemicals, Osaka Research Institute of Industrial Science and Technology, Osaka 536-8553, Japan
| | - Mitsuki Ota
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Shigeo Takashima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Kohji Kitaguchi
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Sadatoshi Maeda
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Kiyotaka Y. Hara
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
35
|
von Richthofen HJ, Westerlaken GH, Gollnast D, Besteman S, Delemarre EM, Rodenburg K, Moerer P, Stapels DA, Andiappan AK, Rötzschke O, Nierkens S, Leavis HL, Bont LJ, Rooijakkers SH, Meyaard L. Soluble Signal Inhibitory Receptor on Leukocytes-1 Is Released from Activated Neutrophils by Proteinase 3 Cleavage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:389-397. [PMID: 36637221 PMCID: PMC9915861 DOI: 10.4049/jimmunol.2200169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/05/2022] [Indexed: 01/14/2023]
Abstract
Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an immune inhibitory receptor expressed on human granulocytes and monocytes that dampens antimicrobial functions. We previously showed that sputum neutrophils from infants with severe respiratory syncytial virus (RSV) bronchiolitis have decreased SIRL-1 surface expression compared with blood neutrophils and that SIRL-1 surface expression is rapidly lost from in vitro activated neutrophils. This led us to hypothesize that activated neutrophils lose SIRL-1 by ectodomain shedding. Here, we developed an ELISA and measured the concentration of soluble SIRL-1 (sSIRL-1) in patients with RSV bronchiolitis and hospitalized patients with COVID-19, which are both characterized by neutrophilic inflammation. In line with our hypothesis, sSIRL-1 concentration was increased in sputum compared with plasma of patients with RSV bronchiolitis and in serum of hospitalized patients with COVID-19 compared with control serum. In addition, we show that in vitro activated neutrophils release sSIRL-1 by proteolytic cleavage and that this diminishes the ability to inhibit neutrophilic reactive oxygen species production via SIRL-1. Finally, we found that SIRL-1 shedding is prevented by proteinase 3 inhibition and by extracellular adherence protein from Staphylococcus aureus. Notably, we recently showed that SIRL-1 is activated by PSMα3 from S. aureus, suggesting that S. aureus may counteract SIRL-1 shedding to benefit from preserved inhibitory function of SIRL-1. In conclusion, we report that SIRL-1 is released from activated neutrophils by proteinase 3 cleavage and that endogenous sSIRL-1 protein is present in vivo.
Collapse
Affiliation(s)
- Helen J. von Richthofen
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Oncode Institute, Utrecht, the Netherlands
| | - Geertje H.A. Westerlaken
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Oncode Institute, Utrecht, the Netherlands
| | - Doron Gollnast
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Oncode Institute, Utrecht, the Netherlands
| | - Sjanna Besteman
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eveline M. Delemarre
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Karlijn Rodenburg
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Petra Moerer
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Daphne A.C. Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anand K. Andiappan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore; and
| | - Olaf Rötzschke
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore; and
| | - Stefan Nierkens
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Helen L. Leavis
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Louis J. Bont
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Suzan H.M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Linde Meyaard
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
36
|
Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol 2023; 21:97-111. [PMID: 36042296 PMCID: PMC9903335 DOI: 10.1038/s41579-022-00780-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/20/2023]
Abstract
The coagulase-negative bacterium Staphylococcus epidermidis is a member of the human skin microbiota. S. epidermidis is not merely a passive resident on skin but actively primes the cutaneous immune response, maintains skin homeostasis and prevents opportunistic pathogens from causing disease via colonization resistance. However, it is now appreciated that S. epidermidis and its interactions with the host exist on a spectrum of potential pathogenicity derived from its high strain-level heterogeneity. S. epidermidis is the most common cause of implant-associated infections and is a canonical opportunistic biofilm former. Additional emerging evidence suggests that some strains of S. epidermidis may contribute to the pathogenesis of common skin diseases. Here, we highlight new developments in our understanding of S. epidermidis strain diversity, skin colonization dynamics and its multifaceted interactions with the host and other members of the skin microbiota.
Collapse
|
37
|
Maciag JJ, Chantraine C, Mills KB, Yadav R, Yarawsky AE, Chaton CT, Vinod D, Fitzkee NC, Mathelié-Guinlet M, Dufrêne YF, Fey PD, Horswill AR, Herr AB. Mechanistic basis of staphylococcal interspecies competition for skin colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525635. [PMID: 36747832 PMCID: PMC9900903 DOI: 10.1101/2023.01.26.525635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Staphylococci, whether beneficial commensals or pathogens, often colonize human skin, potentially leading to competition for the same niche. In this multidisciplinary study we investigate the structure, binding specificity, and mechanism of adhesion of the Aap lectin domain required for Staphylococcus epidermidis skin colonization and compare its characteristics to the lectin domain from the orthologous Staphylococcus aureus adhesin SasG. The Aap structure reveals a legume lectin-like fold with atypical architecture, showing specificity for N-acetyllactosamine and sialyllactosamine. Bacterial adhesion assays using human corneocytes confirmed the biological relevance of these Aap-glycan interactions. Single-cell force spectroscopy experiments measured individual binding events between Aap and corneocytes, revealing an extraordinarily tight adhesion force of nearly 900 nN and a high density of receptors at the corneocyte surface. The SasG lectin domain shares similar structural features, glycan specificity, and corneocyte adhesion behavior. We observe cross-inhibition of Aap-and SasG-mediated staphylococcal adhesion to corneocytes. Together, these data provide insights into staphylococcal interspecies competition for skin colonization and suggest potential avenues for inhibition of S. aureus colonization.
Collapse
Affiliation(s)
- Joseph J. Maciag
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Constance Chantraine
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Krista B. Mills
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Rahul Yadav
- Department of Chemistry, Mississippi State University, Mississippi State, MS
| | - Alexander E. Yarawsky
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Catherine T. Chaton
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Divya Vinod
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Medical Sciences Undergraduate Program, University of Cincinnati, Cincinnati, OH
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS
| | - Marion Mathelié-Guinlet
- Institut de Chimie et Biologie des Membranes et des Nano-Objets, CNRS UMR 5248, University of Bordeaux, Pessac, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
38
|
Bioinorganic Preparation of Hydroxyapatite and Rare Earth Substituted Hydroxyapatite for Biomaterials Applications. Bioinorg Chem Appl 2023; 2023:7856300. [PMID: 36741962 PMCID: PMC9891820 DOI: 10.1155/2023/7856300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Rare Earth elements in the lanthanide series are regarded as one of the finest options for the cationic substitution of calcium ions in hydroxyapatite (HA) because of their favorable impact on the biological characteristics of substituted HA. Neodymium and cerium were used to substitute 5% of calcium ions in HA, prepared via the wet precipitation method. Characterization tests for pure and substituted HA were conducted using XRD, FTIR, EDS, and FESEM. The results showed that changing part from calcium ions in hydroxyapatite to Nd and Ce ions altered its structure, composition, and morphology. Regarding the biological tests, the cytotoxicity test revealed a change in IC50 for both normal and cancer cell lines, where substitution part of the Ca ions with rare Earth elements led to increasing antitumor activity in comparison with HA without substitution; in addition, antibacterial and fungicide activity was evident for both HA and Nd-Ce/HA, with a modest increase in antibacterial activity of Nd-Ce/HA against S. epidermidis and E. coli in comparison with HA. These findings may shed light on the process by which Nd and Ce ions improve the biological characteristics of pure HA and the increased potential of these bioceramics.
Collapse
|
39
|
Tamai M, Yamazaki Y, Ito T, Nakagawa S, Nakamura Y. Pathogenic role of the staphylococcal accessory gene regulator quorum sensing system in atopic dermatitis. Front Cell Infect Microbiol 2023; 13:1178650. [PMID: 37124047 PMCID: PMC10140505 DOI: 10.3389/fcimb.2023.1178650] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
The skin is home to various bacteria, archaea, fungi, and viruses, collectively referred to as the skin microbiota. Patients with certain skin diseases reportedly have unique skin "dysbiosis," a condition involving imbalanced microbiota, suggesting that dysbiosis in the skin may be either causal or a consequence of specific skin diseases. Atopic dermatitis (AD) is the most common allergic skin disease that affects 15-20% of children and 2-10% of adults worldwide. Both intrinsic genetic factors, such as susceptibility to type 2 inflammation or skin barrier dysfunction, and extrinsic environmental factors, such as air pollen and skin microbiota, contribute to AD. Staphylococcus aureus, which does not often colonize the skin of healthy individuals, is commonly identified in the lesional skin of patients with AD and is correlated with the disease flare. However, the role of S. aureus in the pathogenesis of AD has not been elucidated. Here, we discuss the pathological behavior of S. aureus, focusing on accessory gene regulator (Agr) quorum sensing, which is a fundamental bacterial cell-to-cell interaction mechanism that affects the behavior of S. aureus and other members of the microbial community. Importantly, beyond bacteria-bacteria interactions, the Agr quorum sensing system also regulates various virulence factors, which induce type 2 and IL-17-dependent skin inflammation in the host. Furthermore, the colonization of Agr-positive S. aureus in early life accelerates the development of pediatric AD. Finally, we aim to highlight the current efforts to establish novel therapeutic methods to ameliorate or prevent AD through Agr-targeted intervention.
Collapse
Affiliation(s)
- Masakazu Tamai
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuriko Yamazaki
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- *Correspondence: Yuumi Nakamura, ; Yuriko Yamazaki,
| | - Tomoka Ito
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yuumi Nakamura
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- *Correspondence: Yuumi Nakamura, ; Yuriko Yamazaki,
| |
Collapse
|
40
|
Spoto M, Riera Puma JP, Fleming E, Guan C, Ondouah Nzutchi Y, Kim D, Oh J. Large-Scale CRISPRi and Transcriptomics of Staphylococcus epidermidis Identify Genetic Factors Implicated in Lifestyle Versatility. mBio 2022; 13:e0263222. [PMID: 36409086 PMCID: PMC9765180 DOI: 10.1128/mbio.02632-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus epidermidis is a ubiquitous human commensal skin bacterium that is also one of the most prevalent nosocomial pathogens. The genetic factors underlying this remarkable lifestyle plasticity are incompletely understood, mainly due to the difficulties of genetic manipulation, precluding high-throughput functional profiling of this species. To probe the versatility of S. epidermidis to survive across a diversity of environmental conditions, we developed a large-scale CRISPR interference (CRISPRi) screen complemented by transcriptional profiling (RNA sequencing) across 24 diverse conditions and piloted a droplet-based CRISPRi approach to enhance throughput and sensitivity. We identified putative essential genes, importantly revealing amino acid metabolism as crucial to survival across diverse environments, and demonstrated the importance of trace metal uptake for survival under multiple stress conditions. We identified pathways significantly enriched and repressed across our range of stress and nutrient-limited conditions, demonstrating the considerable plasticity of S. epidermidis in responding to environmental stressors. Additionally, we postulate a mechanism by which nitrogen metabolism is linked to lifestyle versatility in response to hyperosmotic challenges, such as those encountered on human skin. Finally, we examined the survival of S. epidermidis under acid stress and hypothesize a role for cell wall modification as a vital component of the survival response under acidic conditions. Taken together, this study integrates large-scale CRISPRi and transcriptomics data across multiple environments to provide insights into a keystone member of the human skin microbiome. Our results additionally provide a valuable benchmarking analysis for CRISPRi screens and are a rich resource for other staphylococcal researchers. IMPORTANCE Staphylococcus epidermidis is a bacteria that broadly inhabits healthy human skin, yet it is also a common cause of skin infections and bloodstream infections associated with implanted medical devices. Because human skin has many different types of S. epidermidis, each containing different genes, our goal is to determine how these different genes allow S. epidermidis to switch from healthy growth in the skin to being an infectious pathogen. Understanding this switch is critical to developing new strategies to prevent and treat S. epidermidis infections.
Collapse
Affiliation(s)
- Michelle Spoto
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- The University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | - Elizabeth Fleming
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Changhui Guan
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | | | - Dean Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| |
Collapse
|
41
|
Chen H, Zhao Q, Zhong Q, Duan C, Krutmann J, Wang J, Xia J. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:363-382. [PMID: 36939800 PMCID: PMC9712873 DOI: 10.1007/s43657-022-00073-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022]
Abstract
Skin is a complex ecosystem colonized by millions of microorganisms, including bacteria, fungi, and viruses. Skin microbiota is believed to exert critical functions in maintaining host skin health. Profiling the structure of skin microbial community is the first step to overview the ecosystem. However, the community composition is highly individualized and extremely complex. To explore the fundamental factors driving the complexity of the ecosystem, namely the selection pressures, we review the present studies on skin microbiome from the perspectives of ecology. This review summarizes the following: (1) the composition of substances/nutrients in the cutaneous ecological environment that are derived from the host and the environment, highlighting their proposed function on skin microbiota; (2) the features of dominant skin commensals to occupy ecological niches, through self-adaptation and microbe-microbe interactions; (3) how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes, including skin immunity, maintenance of skin physiology such as pH and hydration, ultraviolet (UV) protection, odor production, and wound healing. This review aims to re-examine the host-microbe interactions from the ecological perspectives and hopefully to give new inspiration to this field.
Collapse
Affiliation(s)
- Huizhen Chen
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qi Zhao
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Qian Zhong
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Cheng Duan
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| | - Jean Krutmann
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
- grid.506261.60000 0001 0706 7839Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, 200438 China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
42
|
Huang B, An L, Su W, Yan T, Zhang H, Yu DJ. Exploring the alterations and function of skin microbiome mediated by ionizing radiation injury. Front Cell Infect Microbiol 2022; 12:1029592. [DOI: 10.3389/fcimb.2022.1029592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
BackgroundRadiation-induced skin injury (RISI) is still the most common and severe side effect of radiotherapy. The role of the skin’s microbial barrier in the pathogenesis and progression of RISI needs to be fully investigated.MethodsThis study aimed to explore the alterations in and functions of the skin microbiota in RISI. We applied the unculturable approach to characterize the cutaneous microbiomes of a radiation-induced animal model by sequencing the V1–V3 regions of the 16S ribosomal RNA (rRNA) gene. Combined with the downloaded clinical data of patients, a comprehensive analysis was performed to identify potential radioprotective species and metabolic pathways.ResultsThere were no significant differences in the alpha diversity indices (Sobs, Shannon, Simpson, Ace, and Chao) between the acute radiation injury and control groups. Phylum-level analysis of the RISI microbiomes exhibited significant predominance of Firmicutes (mean abundance = 67%, corrected p = 0.0035). The high abundance of Firmicutes was significantly associated with rapid healing of RISI (average relative abundance = 52%; Kruskal–Wallis: p = 5.7E−4). Among its members, Streptococcus, Staphylococcus, Acetivibrio ethanolgignens group, Peptostreptococcus, Anaerofilum, and UCG-002 [linear discriminant analysis (LDA) > 3, p < 0.05] were identified as the core genera of Firmicutes. In addition, Lachnosiraceae and Lactobacillus occupied an important position in the interaction network (r > 0.6, p < 0.05). The differential metabolic pathways of RISI were mainly associated with carbohydrate metabolism (butanoate and propanoate metabolism), amino acid metabolism (tryptophan and histidine metabolism), energy metabolism, and lipid metabolism (fatty acid degradation and biosynthesis).ConclusionThis study provides new insights into the potential mechanism and skin microbial changes in the progression of RISI. The overwhelming predominance of members of Firmicutes, including Streptococcaceae, Staphylococcaceae, Lachnospiraceae, and Lactobacillus, is potentially related to rapid healing of RISI. The microbiota–metabolite axis plays a critical role in RISI and provides promising therapeutic targets for the treatment of adverse side effects.
Collapse
|
43
|
Lee HJ, Kim M. Skin Barrier Function and the Microbiome. Int J Mol Sci 2022; 23:13071. [PMID: 36361857 PMCID: PMC9654002 DOI: 10.3390/ijms232113071] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Human skin is the largest organ and serves as the first line of defense against environmental factors. The human microbiota is defined as the total microbial community that coexists in the human body, while the microbiome refers to the collective genome of these microorganisms. Skin microbes do not simply reside on the skin but interact with the skin in a variety of ways, significantly affecting the skin barrier function. Here, we discuss recent insights into the symbiotic relationships between the microbiome and the skin barrier in physical, chemical, and innate/adaptive immunological ways. We discuss the gut-skin axis that affects skin barrier function. Finally, we examine the effects of microbiome dysbiosis on skin barrier function and the role of these effects in inflammatory skin diseases, such as acne, atopic dermatitis, and psoriasis. Microbiome cosmetics can help restore skin barrier function and improve these diseases.
Collapse
Affiliation(s)
| | - Miri Kim
- Department of Dermatology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, #10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea
| |
Collapse
|
44
|
Association between impaired healing after orthognathic surgery and irritable bowel syndrome: A case report and literature review. Int J Surg Case Rep 2022; 100:107745. [PMID: 36252543 PMCID: PMC9579328 DOI: 10.1016/j.ijscr.2022.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction In the disease irritable bowel syndrome (IBS), gastrointestinal function is worsened even though no organic abnormalities are observed in the gastrointestinal mucosa. We report the case of an orthognathic surgery patient with suspected irritable bowel syndrome. Case In September 2017, a 15-year-old Japanese female was referred to us with dental crowding, malocclusion, and mandibular protrusion. In June 2019, a disagreement with classmates led to abdominal pain, diarrhea, and hemorrhage; in August 2019, a preoperative blood test showed sudden anemia, and her surgery was thus postponed. Subsequent upper and lower gastrointestinal endoscopy revealed no organic abnormality, and no definitive diagnosis was made. In March 2020, after an improvement in anemia was observed, a segmental Le Fort I osteotomy and bilateral sagittal split ramus osteotomy (BSSRO) were performed under general anesthesia. On the third post-operative day, due to the mucosal dehiscence adjacent to the suture part, the titanium plate was exposed, and irrigation of the wound with normal saline solution and oral hygiene instruction was continued daily for 2 weeks. Two years and eight months have passed since the surgery, and the healing of the oral mucosa and bone has been uneventful. Discussion The relationship between IBS and post-operative impaired healing associated with the fragility of the oral mucosa is unknown. However, psychological stress has been reported as a cause of IBS and to be related to oral microorganisms. Conclusion Reducing risk factors for IBS and maintaining proper perioperative oral hygiene is essential in managing similar cases. Irritable bowel syndrome (IBS) is a functional gastrointestinal disease with recurrent abdominal pain. It is difficult to diagnose IBS since the clinical symptoms are confusing. IBS and psychological stress affect post-surgical healing. Reducing risk factors for IBS and maintaining proper perioperative oral hygiene is essential in the management.
Collapse
|
45
|
Ito Y, Amagai M. Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases. Inflamm Regen 2022; 42:26. [PMID: 36045395 PMCID: PMC9434865 DOI: 10.1186/s41232-022-00212-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
The skin serves as the interface between the human body and the environment and interacts with the microbial community. The skin microbiota consists of microorganisms, such as bacteria, fungi, mites, and viruses, and they fluctuate depending on the microenvironment defined by anatomical location and physiological function. The balance of interactions between the host and microbiota plays a pivotal role in the orchestration of skin homeostasis; however, the disturbance of the balance due to an alteration in the microbial communities, namely, dysbiosis, leads to various skin disorders. Recent developments in sequencing technology have provided new insights into the structure and function of skin microbial communities. Based on high-throughput sequencing analysis, a growing body of evidence indicates that a new treatment using live bacteria, termed bacteriotherapy, is a feasible therapeutic option for cutaneous diseases caused by dysbiosis. In particular, the administration of specific bacterial strains has been investigated as an exclusionary treatment strategy against pathogens associated with chronic skin disorders, whereas the safety, efficacy, and sustainability of this therapeutic approach using isolated live bacteria need to be further explored. In this review, we summarize our current understanding of the skin microbiota, as well as therapeutic strategies using characterized strains of live bacteria for skin inflammatory diseases. The ecosystem formed by interactions between the host and skin microbial consortium is still largely unexplored; however, advances in our understanding of the function of the skin microbiota at the strain level will lead to the development of new therapeutic methods.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
46
|
The Skin Microbiome in Cutaneous T-Cell Lymphomas (CTCL)—A Narrative Review. Pathogens 2022; 11:pathogens11080935. [PMID: 36015055 PMCID: PMC9414712 DOI: 10.3390/pathogens11080935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, numerous studies have shown a significant role of the skin microbiome in the development and exacerbation of skin diseases. Cutaneous T-cell lymphomas (CTCL) are a group of malignancies primary involving skin, with unclear pathogenesis and etiology. As external triggers appear to contribute to chronic skin inflammation and the malignant transformation of T-cells, some microorganisms or dysbiosis may be involved in these processes. Recently, studies analyzing the skin microbiome composition and diversity have been willingly conducted in CTCL patients. In this review, we summarize currently available data on the skin microbiome in CTLC. We refer to a healthy skin microbiome and the contribution of microorganisms in the pathogenesis and progression of other skin diseases, focusing on atopic dermatitis and its similarities to CTCL. Moreover, we present information about the possible role of identified microorganisms in CTCL development and progression. Additionally, we summarize information about the involvement of Staphylococcus aureus in CTCL pathogenesis. This article also presents therapeutic options used in CTCL and discusses how they may influence the microbiome.
Collapse
|
47
|
Jin Y, Wang Q, Zhang H, Zhao N, Yang Z, Wang H, Li M, Liu Q. Phenol-soluble modulin contributes to the dispersal of Staphylococcus epidermidis isolates from catheters. Front Microbiol 2022; 13:934358. [PMID: 35958143 PMCID: PMC9358717 DOI: 10.3389/fmicb.2022.934358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus epidermidis (S. epidermidis), a human commensal, has been implicated in invasive infection in humans due to their ability to form biofilm. It is assumed that when a biofilm is dispersed it will subsequently cause a more severe infection. The clinical significance of S. epidermidis isolated from sterile body fluid (BF) remains unclear, and might be related to dispersal from catheter-associated biofilm infection. To evaluate this relationship, we evaluated S. epidermidis isolates from catheters (CA) or BF in hospitalized patients. Sequence type 2 (ST2) is the most prevalent type isolated from infection sites. Although the specific STs were also observed in isolates from different sites, we observed that the main sequence type was ST2, followed by ST59, among all the 114 isolates from different infection sites. Interestingly, ST2 strains isolated from BF exhibited significantly thicker biofilm than those from CA. The thicker biofilm was due to the higher expression of accumulation-associated protein (aap) but not intercellular adhesion (ica) operon. Moreover, the transcription of PSMδ and PSMε were significantly increased in ST2 strains isolated from BF. Although the bacterial loads on catheters were similar infected by CA- or BF-originated strains in mouse biofilm-associated infection model, we observed a higher CFU in peri-catheter tissues infected by ST2 clones isolated from BF, suggesting that S. epidermidis with thicker biofilm formation might be able to disperse. Taken together, our data suggested that S. epidermidis originated from diverse infection sites exhibited different biofilm forming capacity. The major ST2 clone isolated from BF exhibited thicker biofilm by increasing the expression of Aap. The higher expression of PSM of these strains may contribute to bacteria dispersal from biofilm and the following bacterial spread.
Collapse
|
48
|
Blum FC, Whitmire JM, Bennett JW, Carey PM, Ellis MW, English CE, Law NN, Tribble DR, Millar EV, Merrell DS. Nasal microbiota evolution within the congregate setting imposed by military training. Sci Rep 2022; 12:11492. [PMID: 35798805 PMCID: PMC9263147 DOI: 10.1038/s41598-022-15059-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
The human microbiome is comprised of a complex and diverse community of organisms that is subject to dynamic changes over time. As such, cross-sectional studies of the microbiome provide a multitude of information for a specific body site at a particular time, but they fail to account for temporal changes in microbial constituents resulting from various factors. To address this shortcoming, longitudinal research studies of the human microbiome investigate the influence of various factors on the microbiome of individuals within a group or community setting. These studies are vital to address the effects of host and/or environmental factors on microbiome composition as well as the potential contribution of microbiome members during the course of an infection. The relationship between microbial constituents and disease development has been previously explored for skin and soft tissue infections (SSTIs) within congregate military trainees. Accordingly, approximately 25% of the population carries Staphylococcus aureus within their nasal cavity, and these colonized individuals are known to be at increased risk for SSTIs. To examine the evolution of the nasal microbiota of U.S. Army Infantry trainees, individuals were sampled longitudinally from their arrival at Fort Benning, Georgia, until completion of their training 90 days later. These samples were then processed to determine S. aureus colonization status and to profile the nasal microbiota using 16S rRNA gene-based methods. Microbiota stability differed dramatically among the individual trainees; some subjects exhibited great stability, some subjects showed gradual temporal changes and some subjects displayed a dramatic shift in nasal microbiota composition. Further analysis utilizing the available trainee metadata suggests that the major drivers of nasal microbiota stability may be S. aureus colonization status and geographic origin of the trainees. Nasal microbiota evolution within the congregate setting imposed by military training is a complex process that appears to be affected by numerous factors. This finding may indicate that future campaigns to prevent S. aureus colonization and future SSTIs among high-risk military trainees may require a ‘personalized’ approach.
Collapse
Affiliation(s)
- Faith C Blum
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Jeannette M Whitmire
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Jason W Bennett
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Patrick M Carey
- Benning Martin Army Community Hospital, Fort Benning, GA, USA
| | | | - Caroline E English
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Natasha N Law
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - David R Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Eugene V Millar
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
49
|
Chai R, Tai Z, Zhu Y, Chai C, Chen Z, Zhu Q. Symbiotic microorganisms: prospects for treating atopic dermatitis. Expert Opin Biol Ther 2022; 22:911-927. [PMID: 35695265 DOI: 10.1080/14712598.2022.2089560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a common chronic recurrent inflammatory skin disease. The pathogenesis is unclear but may be related to genetic, immune, and environmental factors and abnormal skin barrier function. Symbiotic microorganisms in the gut and on the skin are associated with AD occurrence. AREAS COVERED We discuss the metabolism and distribution of intestinal and skin flora and review their relationship with AD, summarizing the recent applications of intestinal and skin flora in AD treatment, and discussing the prospect of research on these two human microbiota systems and their influence on AD treatment. The PubMed database was searched to identify relevant publications from 1949 to 2020 for the bibliometric analysis of atopic dermatitis and symbiotic microorganisms. EXPERT OPINION Many studies have suggested a potential contribution of microbes in the intestine and on the skin to AD. Bacteria living on the skin can aggravate AD by secreting numerous virulence factors. Moreover, the metabolism of intestinal flora can influence AD occurrence and development via the circulatory system. Current evidence suggests that by regulating intestinal and skin flora, AD can be treated and prevented.
Collapse
Affiliation(s)
- Rongrong Chai
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai P.R. China
| | - Zongguang Tai
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai P.R. China.,Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Yunjie Zhu
- RnD-I, Zifo RnD Solution, Shanghai, P.R. China
| | - Chaochao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing P.R. China
| | - Zhongjian Chen
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai P.R. China
| | - Quangang Zhu
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai P.R. China
| |
Collapse
|
50
|
Manipulating Microbiota to Treat Atopic Dermatitis: Functions and Therapies. Pathogens 2022; 11:pathogens11060642. [PMID: 35745496 PMCID: PMC9228373 DOI: 10.3390/pathogens11060642] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a globally prevalent skin inflammation with a particular impact on children. Current therapies for AD are challenged by the limited armamentarium and the high heterogeneity of the disease. A novel promising therapeutic target for AD is the microbiota. Numerous studies have highlighted the involvement of the skin and gut microbiota in the pathogenesis of AD. The resident microbiota at these two epithelial tissues can modulate skin barrier functions and host immune responses, thus regulating AD progression. For example, the pathogenic roles of Staphylococcus aureus in the skin are well-established, making this bacterium an attractive target for AD treatment. Targeting the gut microbiota is another therapeutic strategy for AD. Multiple oral supplements with prebiotics, probiotics, postbiotics, and synbiotics have demonstrated promising efficacy in both AD prevention and treatment. In this review, we summarize the association of microbiota dysbiosis in both the skin and gut with AD, and the current knowledge of the functions of commensal microbiota in AD pathogenesis. Furthermore, we discuss the existing therapies in manipulating both the skin and gut commensal microbiota to prevent or treat AD. We also propose potential novel therapies based on the cutting-edge progress in this area.
Collapse
|