1
|
Abdelwadood D, Fouad YA, El-Khazragy N, Amr AEH. Desmoglein-3 autoantibodies in tissues of oral lichen planus patients and its correlation with disease severity: case-control study. BMC Oral Health 2025; 25:930. [PMID: 40481453 PMCID: PMC12144807 DOI: 10.1186/s12903-025-06303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 05/29/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Due to the not fully understood exact pathogenesis of oral lichen planus, the patients receive symptomatic management, rather than a curative treatment. Consequently, revealing the pathogenesis of OLP is a primary concern in oral medicine research. Elevated levels of circulating antibodies against Desmoglein 3 have been discovered in the serum of OLP patients. The aim of the present study was to evaluate the level of Desmoglein 3 autoantibodies in tissue biopsies of atrophic/bullous erosive OLP and to correlate it with the disease severity, in attempt to reveal if it has a role in the pathogenesis of the disease. METHODS This is a case-control study, tissue biopsies were obtained from clinically and histopathologically diagnosed atrophic/bullous-erosive oral lichen planus (OLP) lesions (n = 10). The oral lichen planus biopsies were compared with healthy uninflamed gingival tissues excised during periodontal surgeries (n = 10). The tissue biopsies were tested for quantitative levels of desmoglein 3 autoantibodies using ELISA test. The clinical severity of oral lichen planus lesions was evaluated by Elsabagh scoring system. The levels of desmoglein 3 autoantibodies were correlated with the disease severity. RESULTS The concentration of desmoglein 3 autoantibodies level in tissues of patients with atrophic/erosive OLP [3395.4 (± 526.9) Pg/g] was significantly higher (p < 0.001) than in tissues of healthy controls [2329.7 (± 307.6) Pg/g]. The student's t-test was used to compare between the two groups. Moreover, the concentration of desmoglein 3 autoantibodies showed a statistically significant positive correlation (ρ = 0.801) with OLP clinical severity scores (p = 0.005). CONCLUSIONS Desmoglein 3 autoantibodies were detected in higher concentrations in oral lichen planus tissues compared to healthy controls. Increased concentration of desmoglein 3 autoantibodies is correlated with an increase in oral lichen planus clinical severity scores and vice versa. So, further investigation is needed to discover the exact role of Dsg3 autoantibodies in the pathogenesis of OLP. TRIAL REGISTRATION The study was registered on the Clinical Trial Registration Site (registration code: NCT06652477, last updated on 22-10-2024).
Collapse
Affiliation(s)
- Doaa Abdelwadood
- Faculty of Dentistry, Department of Oral Medicine, Periodontology, and Oral Diagnosis, Ain Shams University, Cairo, 11566, Egypt.
- Assistant Lecturer at Oral Medicine, Periodontology, and Oral Diagnosis Department, Faculty of Dentistry, Ahram Canadian University, Giza, Egypt.
| | - Yasmine Ahmed Fouad
- Associate Professor of Oral Medicine, Periodontology, and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Nashwa El-Khazragy
- Faculty of Medicine, Department of Clinical Pathology-Hematology and Ain Shams Medical Research Institute (MASRI), Ain Shams University, Cairo, 11566, Egypt
| | - Ahmed Elsayed Hamed Amr
- Associate Professor of Oral Medicine, Periodontology, and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Hoffman CL, Bharathan NK, Shibata Y, Giang W, Gudjonsson JE, Seykora JT, Prouty SM, Stahley SN, Payne AS, Kowalczyk AP. Pemphigus Vulgaris Autoantibodies Induce an Endoplasmic Reticulum Stress Response. J Invest Dermatol 2025:S0022-202X(25)00085-5. [PMID: 39909113 DOI: 10.1016/j.jid.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025]
Abstract
Desmosomes are intercellular junctions that mediate cell-cell adhesion and are essential for maintaining tissue integrity. Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease caused by autoantibodies (IgG) targeting desmoglein 3, a desmosomal cadherin. PV autoantibodies cause desmosome disassembly and loss of cell-cell adhesion; however, the molecular signaling pathways that regulate these processes are not fully understood. Using high-resolution time-lapse imaging of live keratinocytes, we found that endoplasmic reticulum (ER) tubules make frequent and persistent contacts with internalizing desmoglein 3 puncta in keratinocytes treated with IgG of patients with PV. Biochemical experiments demonstrated that PV IgG activated ER stress signaling pathways, including both IRE1⍺ and PERK pathways, in cultured keratinocytes. Furthermore, ER stress transcripts were upregulated in the skin of patients with PV. Pharmacological inhibition of ER stress protects against PV IgG-induced desmosome disruption and loss of keratinocyte cell-cell adhesion, suggesting that ER stress may be an important pathomechanism and a therapeutically targetable pathway for PV treatment. These data support a model in which desmosome adhesion is integrated with ER function to serve as a cell adhesion stress sensor that is activated in blistering skin diseases.
Collapse
Affiliation(s)
- Coryn L Hoffman
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | - Yoshitaka Shibata
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - William Giang
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - John T Seykora
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen M Prouty
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara N Stahley
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Aimee S Payne
- Department of Dermatology, Columbia University, New York, New York, USA
| | - Andrew P Kowalczyk
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
3
|
Dosenberry C, Arzi B, Palm C, Vapniarsky N, Soltero-Rivera M. An update on oral manifestations of systemic disorders in dogs and cats. Front Vet Sci 2025; 11:1511971. [PMID: 39834923 PMCID: PMC11743369 DOI: 10.3389/fvets.2024.1511971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Oral lesions are common in dogs and cats, and determining the underlying etiology of these lesions can be challenging. A wide range of systemic ailments may lead to lesions in the oral cavity, including immune-mediated diseases, adverse drug reactions, viral and bacterial infections, and metabolic and autoimmune diseases. A complete history and thorough physical examination (including a fundic examination) should be obtained in affected patients. It is critical to perform a detailed oral examination, which in some patients may need to be performed under sedation or general anesthesia. Tailored diagnostic plans and a multidisciplinary approach are necessary to fully characterize co-morbid disorders in affected patients. This narrative review aims to aid veterinarians in recognizing oral manifestations of systemic disorders based on the most recent reports and available research.
Collapse
Affiliation(s)
| | - Boaz Arzi
- School of Veterinary Medicine, Veterinary Surgical and Radiological Sciences, University of California, Davis, Davis, CA, United States
| | - Carrie Palm
- School of Veterinary Medicine, Veterinary Medicine and Epidemiology, University of California, Davis, Davis, CA, United States
| | - Natalia Vapniarsky
- School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA, United States
| | - Maria Soltero-Rivera
- School of Veterinary Medicine, Veterinary Surgical and Radiological Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Jin SP, Oh JH, Kim NK, Chung JH. H Antigen expression modulates epidermal Keratinocyte Integrity and differentiation. Biol Res 2024; 57:72. [PMID: 39420441 PMCID: PMC11487879 DOI: 10.1186/s40659-024-00541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND ABO blood group antigens (ABH antigens) are carbohydrate chains glycosylated on epithelial and red blood cells. Recent findings suggest reduced ABH expression in psoriasis and atopic dermatitis, a chronic inflammatory skin disease with retained scale. H antigen, a precursor for A and B antigens, is synthesized by fucosyltransferase 1 (FUT1). Desmosomes, critical for skin integrity, are known to require N-glycosylation for stability. We investigate the impact of H antigens, a specific type of glycosylation, on desmosomes in keratinocytes. METHOD Primary human keratinocytes were transfected with FUT1 siRNA or recombinant adenovirus for FUT1 overexpression. Cell adhesion and desmosome characteristics and their underlying mechanisms were analyzed. RESULT The knockdown of FUT1, responsible for H2 antigen expression in the skin, increased cell-cell adhesive strength and desmosome size in primary cultured keratinocytes without altering the overall desmosome structure. Desmosomal proteins, including desmogleins or plakophilin, were upregulated, suggesting enhanced desmosome assembly. Reduced H2 antigen expression via FUT1 knockdown led to increased keratinocyte differentiation, evidenced by elevated expression of differentiation markers. Epidermal growth factor receptor (EGFR) has been described to be associated with FUT1 and promotes cell migration and differentiation. The effects of FUT1 knockdown were recapitulated by an EGFR inhibitor concerning desmosomal proteins and cellular differentiation. Further investigation demonstrated that the FUT1 knockdown reduced EGFR signaling by lowering the levels of EGF ligands rather than directly regulating EGFR activity. Moreover, FUT1 overexpression reversed the effects observed in FUT1 knockdown, resulting in the downregulation of desmosomal proteins and differentiation markers while increasing both mRNA and protein levels of EGFR ligands. CONCLUSION The expression level of FUT1 in the epidermis appears to influence cell-cell adhesion and keratinocyte differentiation status, at least partly through regulation of H2 antigen and EGFR ligand expression. These observations imply that the fucosylation of the H2 antigen by FUT1 could play a significant role in maintaining the molecular composition and regulation of desmosomes and suggest a possible involvement of the altered H2 antigen expression in skin diseases, such as psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Namjoo Kaylee Kim
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Eming R, Riaz S, Müller EJ, Zakrzewicz A, Linne U, Tikkanen R, Zimmer CL, Hudemann C. Quality-controlled characterization of a monoclonal antibody specific to an EC5-domain of human desmoglein 3 for pemphigus research. Front Immunol 2024; 15:1464881. [PMID: 39450179 PMCID: PMC11499099 DOI: 10.3389/fimmu.2024.1464881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024] Open
Abstract
Background Pemphigus vulgaris (PV) is a life-threatening autoimmune blistering disease caused mainly by IgG autoantibodies (auto-abs) against the cadherin-type adhesion molecules desmoglein (Dsg) 1 and 3. Pathogenic anti-Dsg3 auto-abs bind to different Dsg3 epitopes, leading, among others, to signalling that is involved in pathogenic events, such as Dsg3 depletion. As central tools in research on PV, a limited number of antibodies such as AK23 are frequently used by the autoimmune bullous disease community. Methods Previously, we have introduced a novel Dsg3 EC5-binding antibody termed 2G4 that may potentially serve as a superior tool for numerous PV related analysis. The purpose of this study was to develop a quality-controlled production and verification process that allows I) a continuous quality improvement, and II) a verified and comprehensible overall quality with regard to pathogenic antigen-specific binding in a variety of pemphigus assays for each batch production. Results Thus, a workflow based on a standardized operating procedure was established. This includes the verification of purity and in-vitro binding capacity (SDS-page, direct and indirect immunofluorescence) as primary parameters, and size analysis by mass-spectrometry and ex-vivo pathogenicity by monolayer dissociation assay. Conclusion We here present an extensive point-by-point quality controlled IgG production protocol, which will serve as a basis for a standardized antibody assessment in PV research.
Collapse
Affiliation(s)
- Rüdiger Eming
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
- Department of Dermatology, Venerology and Allergology, German Armed Forces Central Hospital Koblenz, Koblenz, Germany
| | - Shafaq Riaz
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Eliane J. Müller
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anna Zakrzewicz
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Philipps University, Marburg, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christine Lea Zimmer
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Christoph Hudemann
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
6
|
Vernal S, Julio TA, Alves FH, Turatti A, Donadi EA, Roselino AM. Factors associated with non-pathogenic antibodies against desmoglein-3 in pemphigus foliaceus. An Bras Dermatol 2024; 99:680-687. [PMID: 38851894 PMCID: PMC11342976 DOI: 10.1016/j.abd.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/27/2023] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Anti-desmoglein (Dsg)1 is produced in pemphigus foliaceus (PF), affecting exclusively the skin. Pemphigus vulgaris (PV) shows the production of anti-Dsg3 in the mucosal form, and anti-Dsg1 and 3 in the mucocutaneous form. Anti-Dsg3 autoantibodies have been rarely reported in PF. OBJECTIVES To determine the factors associated with the production and pathogenicity of anti-Dsg3 in PF. METHODS Comparative analytical study of three patients groups: 16 PF-anti-Dsg3+, and 42 PF-anti-Dsg3(-) and 22 PV treatment-naïve cases. Serum was used in the anti-Dsg1 and 3 ELISA, and in immunoblotting (IB) with human epidermis extract. The expression of Dsg1 and 3 in paraffin sections was analyzed by immunohistochemistry (IHC). HLA-DRB1 alleles were compiled from a database. RESULTS In the PF-anti-Dsg3+ group: age range similar to that of the PV group (p > 0.9999); predominance of the generalized form of PF (p = 0.002); anti-Dsg3 titers lower than those of PV (p < 0.0001); IB confirmed Dsg3 identification in one (8.33%) of 12 patients; IHC showed exclusive cytoplasmic internalization of Dsg1; HLA-DRB1 alleles of susceptibility to PF, with the absence of alleles associated with PV, in the five typed patients. STUDY LIMITATIONS Most of the patients in the PF-anti-Dsg3+ group were undergoing treatment. CONCLUSION The presence of anti-Dsg3 antibodies in PF was related to older age (comparable to that of PV) and the generalized form of PF. The non-pathogenicity of anti-Dsg3 antibodies in PF can be attributed to the low serum anti-Dsg3 titers, the lack of Dsg3 internalization as detected by IHC, and the absence of PV-associated HLA-DRB1 alleles.
Collapse
Affiliation(s)
- Sebastian Vernal
- Laboratory of the Dermatology Division, Hospital das Clínicas, Faculty of Medicine of Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tamiris Amanda Julio
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernando Henrique Alves
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Aline Turatti
- Laboratory of the Dermatology Division, Hospital das Clínicas, Faculty of Medicine of Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Eduardo Antonio Donadi
- Division of Immunology, Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana Maria Roselino
- Laboratory of the Dermatology Division, Hospital das Clínicas, Faculty of Medicine of Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil; Division of Dermatology, Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Abstract
Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.
Collapse
Affiliation(s)
- Abbey L. Perl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jenny L. Pokorny
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Rudraprasad D, Gandhi J, Joseph J. Comparative extracellular vesicles proteomics unravels host-pathogen interactions: New insights in bacterial and fungal endophthalmitis in murine models. THE MICROBE 2024; 3:100074. [DOI: 10.1016/j.microb.2024.100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Ogawa S, Ishii T, Otani T, Inai Y, Matsuura T, Inai T. JNK inhibition enhances cell-cell adhesion impaired by desmoglein 3 gene disruption in keratinocytes. Histochem Cell Biol 2024; 161:345-357. [PMID: 38227055 DOI: 10.1007/s00418-023-02264-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/17/2024]
Abstract
c-Jun NH2-terminal protein kinase (JNK) and p38 are stress-activated mitogen-activated protein kinases (MAPK) that are phosphorylated by various stimuli. It has been reported that the loss of desmoglein (DSG) 3, a desmosomal transmembrane core molecule, in keratinocytes impairs cell-cell adhesion accompanied by p38 MAPK activation. To understand the biological role of DSG3 in desmosomes and its relationship with stress-activated MAPKs, we established DSG3 knockout keratinocytes (KO cells). Wild-type cells showed a linear localization of DSG1 to cell-cell contacts, whereas KO cells showed a remarkable reduction despite the increased protein levels of DSG1. Cell-cell adhesion in KO cells was impaired over time, as demonstrated by dispase-based dissociation assays. The linear localization of DSG1 to cell-cell contacts and the strength of cell-cell adhesion were promoted by the pharmacological inhibition of JNK. Conversely, pharmacological activation of JNK, but not p38 MAPK, in wild-type cells reduced the linear localization of DSG1 in cell-cell contacts. Our data indicate that DSG1 and DSG2 in KO cells cannot compensate for the attenuation of cell-cell adhesion strength caused by DSG3 deficiency and that JNK inhibition restores the strength of cell-cell adhesion by increasing the linear localization of DSG1 in cell-cell contacts in KO cells. Inhibition of JNK signaling may improve cell-cell adhesion in diseases in which DSG3 expression is impaired.
Collapse
Affiliation(s)
- Shuhei Ogawa
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Takashi Ishii
- Department of Nutrition and Dietetics, School of Family and Consumer Sciences, Kamakura Women's University, Kanagawa, 247-0056, Japan
| | - Takahito Otani
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Yuko Inai
- Division of General Dentistry, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Matsuura
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan.
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan.
| |
Collapse
|
10
|
Duan S, Li Q, Wang F, Kuang W, Dong Y, Liu D, Wang J, Li W, Chen Q, Zeng X, Li T. Single-Cell Transcriptomes and Immune Repertoires Reveal the Cell State and Molecular Changes in Pemphigus Vulgaris. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:375-388. [PMID: 38117802 DOI: 10.4049/jimmunol.2300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/05/2023] [Indexed: 12/22/2023]
Abstract
The etiology and pathogenesis of pemphigus vulgaris (PV) entail intricate interactions between immune cells and epithelial cells. However, the specific subtypes of immune cells involved in PV, along with their respective roles, remain elusive. Likewise, the precise functions and mechanisms by which glucocorticoids affect cell types within the disease context require further elucidation. To address these knowledge gaps, we performed 5' single-cell RNA sequencing, combined with V(D)J enrichment on buccal mucosal lesions and peripheral blood samples from treatment-naive patients with PV, in conjunction with post-treatment peripheral blood samples obtained after oral prednisone treatment. Our findings suggest that the IL-1α signaling pathway, myeloid APCs, inflammatory CD8+ resident memory T cells, and dysfunctional CD4+ regulatory T cells are involved in the pathogenesis of PV. Part of these findings were validated by immunohistochemical assays and multiplex immunofluorescence assays. Furthermore, our results highlight the significant impact of prednisone treatment on monocytes and mucosal-associated invariant T cells while revealing a limited effect on CD4+ regulatory T cells. Additionally, we present the CDR3 amino acid sequence of BCR related to PV disease and investigate the characteristics of TCR/BCR clonotypes. In conclusion, our study provides a comprehensive understanding of PV, particularly focusing on the mucosal-dominant type, and sheds light on the effects of glucocorticoids within the PV context. These insights hold promise for the development of new therapeutic strategies in this autoimmune disorder.
Collapse
Affiliation(s)
- Shumin Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qionghua Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Fei Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Kuang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yunmei Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
11
|
Das D, Arava S, Khandpur S, Santosh KV, Akhtar S, Sharma A. Dominance and improved survivability of human γδT17 cell subset aggravates the immunopathogenesis of pemphigus vulgaris. Immunol Res 2024; 72:72-81. [PMID: 37620509 DOI: 10.1007/s12026-023-09413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Human γδ T cells are highly enriched in epithelial cell-dominated compartments like skin. Nonetheless, their function in the pathogenesis of pemphigus vulgaris (PV), an autoimmune skin disorder, is lacking. Therefore, we investigated the functional expression of human γδT cell subsets along with their homing chemokine receptor-ligand and inflammatory cytokines in the immunopathogenesis of PV. Estimation of the frequency of γδT cell subsets by flow cytometry revealed four major subsets of γδ T cells (γδT1, γδT2, γδT17, γδTreg) in both control and PV circulation. The elevated frequency of γδT17 cells producing IL17 and expressing CCR6 receptor suggests their inflammatory and migratory potential in PV. In vitro culture of γδ T cells from patients showed increased mRNA expression of inflammatory cytokines IL17, RORγt, IL23, IL1, and co-stimulatory markers, CD27 and CD70. These findings correlated the role of IL1 and IL23 cytokines that alleviate the Th17 population in PV. Cytotoxic activities of γδ T cells were higher and inflammatory γδT17 cells were localized in the skin of PV whereas γδTreg cells associated TGFβ and FOXP3 were lowered. Hyperinflammatory phenotype of the γδT17 cell subset and its migratory potential might be aiding in the pathogenesis of PV, whereas γδTreg cells fail to suppress these inflammatory responses. Hence, γδT17 cell-associated markers can be targeted for identifying novel therapeutics in PV.
Collapse
Affiliation(s)
- Dayasagar Das
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sudheer Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujay Khandpur
- Department of Dermatology & Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - K V Santosh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shamima Akhtar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
12
|
Uchechukwu CF, Anyaduba UL, Udekwu CC, Orababa OQ, Kade AE. Desmoglein-2 and COVID-19 complications: insights into its role as a biomarker, pathogenesis and clinical implications. J Gen Virol 2023; 104. [PMID: 37815458 DOI: 10.1099/jgv.0.001902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Desmoglein-2 (DSG2) has emerged as a potential biomarker for coronavirus disease 2019 (COVID-19) complications, particularly cardiac and cardiovascular involvement. The expression of DSG2 in lung tissues has been detected at elevated levels, and circulating DSG2 levels correlate with COVID-19 severity. DSG2 may contribute to myocardial injury, cardiac dysfunction and vascular endothelial dysfunction in COVID-19. Monitoring DSG2 levels could aid in risk stratification, early detection and prognostication of COVID-19 complications. However, further research is required to validate DSG2 as a biomarker. Such research will aim to elucidate its precise role in pathogenesis, establishing standardized assays for its measurement and possibly identifying therapeutic targets.
Collapse
Affiliation(s)
- Chidiebere F Uchechukwu
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Michael Okpara University of Agriculture, Umudike, Nigeria
| | | | | | | | | |
Collapse
|
13
|
Sadhanasatish T, Augustin K, Windgasse L, Chrostek-Grashoff A, Rief M, Grashoff C. A molecular optomechanics approach reveals functional relevance of force transduction across talin and desmoplakin. SCIENCE ADVANCES 2023; 9:eadg3347. [PMID: 37343090 DOI: 10.1126/sciadv.adg3347] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Many mechanobiological processes that govern development and tissue homeostasis are regulated on the level of individual molecular linkages, and a number of proteins experiencing piconewton-scale forces in cells have been identified. However, under which conditions these force-bearing linkages become critical for a given mechanobiological process is often still unclear. Here, we established an approach to revealing the mechanical function of intracellular molecules using molecular optomechanics. When applied to the integrin activator talin, the technique provides direct evidence that its role as a mechanical linker is indispensable for the maintenance of cell-matrix adhesions and overall cell integrity. Applying the technique to desmoplakin shows that mechanical engagement of desmosomes to intermediate filaments is expendable under homeostatic conditions yet strictly required for preserving cell-cell adhesion under stress. These results reveal a central role of talin and desmoplakin as mechanical linkers in cell adhesion structures and demonstrate that molecular optomechanics is a powerful tool to investigate the molecular details of mechanobiological processes.
Collapse
Affiliation(s)
- Tanmay Sadhanasatish
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster D-48149, Germany
| | - Katharina Augustin
- Center for Protein Assemblies and Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Lukas Windgasse
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster D-48149, Germany
| | - Anna Chrostek-Grashoff
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster D-48149, Germany
| | - Matthias Rief
- Center for Protein Assemblies and Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Carsten Grashoff
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster D-48149, Germany
| |
Collapse
|
14
|
Bharathan NK, Giang W, Hoffman CL, Aaron JS, Khuon S, Chew TL, Preibisch S, Trautman ET, Heinrich L, Bogovic J, Bennett D, Ackerman D, Park W, Petruncio A, Weigel AV, Saalfeld S, Wayne Vogl A, Stahley SN, Kowalczyk AP. Architecture and dynamics of a desmosome-endoplasmic reticulum complex. Nat Cell Biol 2023; 25:823-835. [PMID: 37291267 PMCID: PMC10960982 DOI: 10.1038/s41556-023-01154-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/24/2023] [Indexed: 06/10/2023]
Abstract
The endoplasmic reticulum (ER) forms a dynamic network that contacts other cellular membranes to regulate stress responses, calcium signalling and lipid transfer. Here, using high-resolution volume electron microscopy, we find that the ER forms a previously unknown association with keratin intermediate filaments and desmosomal cell-cell junctions. Peripheral ER assembles into mirror image-like arrangements at desmosomes and exhibits nanometre proximity to keratin filaments and the desmosome cytoplasmic plaque. ER tubules exhibit stable associations with desmosomes, and perturbation of desmosomes or keratin filaments alters ER organization, mobility and expression of ER stress transcripts. These findings indicate that desmosomes and the keratin cytoskeleton regulate the distribution, function and dynamics of the ER network. Overall, this study reveals a previously unknown subcellular architecture defined by the structural integration of ER tubules with an epithelial intercellular junction.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - William Giang
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Coryn L Hoffman
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jesse S Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Satya Khuon
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephan Preibisch
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eric T Trautman
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Larissa Heinrich
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - John Bogovic
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Davis Bennett
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - David Ackerman
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Woohyun Park
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Alyson Petruncio
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Aubrey V Weigel
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephan Saalfeld
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - A Wayne Vogl
- Life Sciences Institute and the Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sara N Stahley
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
15
|
Robinson C, Jones J, Chachula L, Neiner J. Bullous Impetigo: A Mimicker of Immune-mediated Dermatoses. Mil Med 2023; 188:e1332-e1334. [PMID: 37191635 DOI: 10.1093/milmed/usab475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/28/2021] [Accepted: 11/03/2021] [Indexed: 05/17/2023] Open
Abstract
The differential diagnosis of vesiculobullous lesions can be intimidating to the primary care provider. While some entities such as bullous impetigo may easily be diagnosed clinically if the patient's demographics as well as the lesion morphology and distribution present classically, atypical presentations may require additional laboratory studies for confirmation. We describe a case of bullous impetigo with characteristics that clinically mimicked two rare immunobullous dermatoses. Although extensive diagnostic testing was performed, we recommend an approach for primary care providers to initiate empiric treatment while maintaining awareness of less common immunobullous entities.
Collapse
Affiliation(s)
- Carolyn Robinson
- Department of Dermatology, San Antonio Military Medical Center, Fort Sam Houston, TX 78234, USA
| | - James Jones
- Department of Dermatology, Fort Belvoir Community Hospital, Ft Belvoir, VA 22060, USA
| | - Laura Chachula
- Department of Family Medicine, Fort Belvoir Community Hospital, Fort Belvoir, VA 22060, USA
| | - James Neiner
- Department of Dermatology, San Antonio Military Medical Center, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
16
|
Hudemann C, Hoffmann J, Schmidt E, Hertl M, Eming R. T Regulatory Cell-Associated Tolerance Induction by High-Dose Immunoglobulins in an HLA-Transgenic Mouse Model of Pemphigus. Cells 2023; 12:cells12091340. [PMID: 37174740 PMCID: PMC10177252 DOI: 10.3390/cells12091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Pemphigus vulgaris (PV) is a potentially lethal autoimmune bullous skin disorder caused by IgG autoantibodies against desmoglein 3 (Dsg3) and Dsg1. During the last three decades, high-dose intravenous immunoglobulins (IVIgs) have been applied as an effective and relatively safe treatment regime in severe, therapy-refractory PV. This prompted us to study T- and B- cell polarization by IVIg in a human-Dsg3-dependent mouse model for PV. Using humanized mice transgenic for HLA-DRB1*04:02, which is a highly prevalent haplotype in PV, we employed IVIg in two different experimental approaches: in prevention and quasi-therapeutic settings. Our data show that intraperitoneally applied IVIg was systemically distributed for up to 42 days or longer. IVIg-treated Dsg3-immunized mice exhibited, in contrast to Dsg3-immunized mice without IVIg, significantly less Dsg3-specific IgG, and showed induction of T regulatory cells in lymphatic tissue. Ex vivo splenocyte analysis upon Dsg3-specific stimulation revealed an initial, temporarily reduced antigen-induced cell proliferation, as well as IFN-γ secretion that became less apparent over the course of time. Marginal-zone B cells were initially reduced in the preventive approach but re-expanded over time. In contrast, in the quasi-therapeutic approach, a robust down-regulation in both spleen and lymph nodes was observed. We found a significant down-regulation of the immature transitional 1 (T1) B cells in IVIg-treated mice in the quasi-therapeutic approach, while T2 and T3, representing a healthy stage of B-cell development, appeared to be up-regulated by IVIg. In summary, in two experimental settings employing an active PV mouse model, we demonstrate distinct alterations of T- and B-cell populations upon IVIg treatment, compatible with a tolerance-associated polarization in lymphatic tissue. Our data suggest that the clinical efficacy of IVIg is at least modulated by distinct alterations of T- and B-cell populations compatible with a tolerance-associated polarization in lymphatic tissue.
Collapse
Affiliation(s)
- Christoph Hudemann
- Department of Dermatology and Allergology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Jochen Hoffmann
- Department of Dermatology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, 23562 Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, 23562 Lübeck, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-University Marburg, 35037 Marburg, Germany
- Department of Dermatology, Venerology and Allergology, German Armed Forces Central Hospital Koblenz, 56072 Koblenz, Germany
| |
Collapse
|
17
|
Schmitt T, Hudemann C, Moztarzadeh S, Hertl M, Tikkanen R, Waschke J. Dsg3 epitope-specific signalling in pemphigus. Front Immunol 2023; 14:1163066. [PMID: 37143675 PMCID: PMC10151755 DOI: 10.3389/fimmu.2023.1163066] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Pemphigus is an autoantibody driven disease that impairs the barrier function of the skin and mucosa by disrupting desmosomes and thereby impeding cellular cohesion. It is known that the different clinical phenotypes of pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are dependent on the autoantibody profile and target antigens that, amongst others, are primarily desmoglein (Dsg)1 and/or Dsg3 for PV and Dsg1 for PF. However, it was reported that autoantibodiesagainst different epitopes of Dsg1 and Dsg3 can be pathogenic or not. The underlying mechanisms are very complex and involve both direct inhibition of Dsg interactions and downstream signalling. The aim of this study was to find out whether there is target-epitope-specific Dsg3 signalling by comparing the effects of the two pathogenic murine IgGs, 2G4 and AK23. Methods Dispase-based dissociation assay, Western Blot analysis, Stimulated emission depletion microscopy, Fura-based Ca2+ flux measurements, Rho/Rac G-Protein-linked immunosorbent assay, Enzyme-linked immunosorbent assay. Results The IgGs are directed against the EC5 and EC1 domain of Dsg3, respectively. The data show that 2G4 was less effective in causing loss of cell adhesion, compared to AK23. STED imaging revealed that both autoantibodies had similar effects on keratin retraction and reduction of desmosome number whereas only AK23 induced Dsg3 depletion. Moreover, both antibodies induced phosphorylation of p38MAPK and Akt whereas Src was phosphorylated upon treatment with AK23 only. Interestingly, Src and Akt activation were p38MAPK-dependent. All pathogenic effects were rescued by p38MAPK inhibition and AK23-mediated effects were also ameliorated by Src inhibition. Discussion The results give first insights into pemphigus autoantibody-induced Dsg3 epitope-specific signalling which is involved in pathogenic events such as Dsg3 depletion.
Collapse
Affiliation(s)
- Thomas Schmitt
- Instiute of Anatomy, Faculty of Medicine, Chair of Vegetative Anatomy, Ludwig-Maximilian -Universität (LMU) Munich, München, Germany
| | - Christoph Hudemann
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Sina Moztarzadeh
- Instiute of Anatomy, Faculty of Medicine, Chair of Vegetative Anatomy, Ludwig-Maximilian -Universität (LMU) Munich, München, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jens Waschke
- Instiute of Anatomy, Faculty of Medicine, Chair of Vegetative Anatomy, Ludwig-Maximilian -Universität (LMU) Munich, München, Germany
| |
Collapse
|
18
|
Hudemann C, Exner Y, Pollmann R, Schneider K, Zakrzewicz A, Feldhoff S, Schmidt T, Spindler V, Rafei-Shamsabadi D, Völlner F, Waschke J, Tikkanen R, Hertl M, Eming R. IgG against the Membrane-Proximal Portion of the Desmoglein 3 Ectodomain Induces Loss of Keratinocyte Adhesion, a Hallmark in Pemphigus Vulgaris. J Invest Dermatol 2023; 143:254-263.e3. [PMID: 36089007 DOI: 10.1016/j.jid.2022.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023]
Abstract
Pemphigus vulgaris is a severe autoimmune blistering disease characterized by IgG autoantibodies (auto-abs) against the desmosomal adhesion molecules desmoglein (DSG) 3 and DSG1. Underlying mechanisms leading to blister formation upon binding of DSG-specific IgG auto-abs are not fully understood. Numerous studies showed the pathogenicity of IgG auto-ab binding to the aminoterminal region 1 (EC1) of the DSG3 ectodomain. However, auto-abs in pemphigus vulgaris are polyclonal, including IgG against both aminoterminal- and membrane-proximal epitopes of the DSG3 ectodomain. In this study, the pathogenicity of a previously uncharacterized murine monoclonal IgG antibody, 2G4, directed against the membrane-proximal region (EC5) of the DSG3 ectodomain was characterized and tested in various specificity and functionality assays. The results clearly show that 2G4 is capable of inhibiting intercellular keratinocyte adhesion and of inducing cellular DSG3 redistribution by activation of the p38MAPK signal transduction pathway. In this study, we provide evidence that an IgG auto-abs directed against the membrane-proximal region EC5 of DSG3 induces acantholysis, the hallmark in pemphigus vulgaris. These findings challenge the current concept that IgG auto-abs targeting the NH2-terminal portion of the DSG3 ectodomain are pathogenic only. Our study provides further aspects for a deeper understanding of desmosomal keratinocyte adhesion and improves our insight into the complex auto-ab‒induced blister formation in pemphigus vulgaris.
Collapse
Affiliation(s)
- Christoph Hudemann
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany.
| | - Yvonne Exner
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Robert Pollmann
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Karina Schneider
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Anna Zakrzewicz
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Simon Feldhoff
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Schmidt
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians University Munich, Munich, Germany
| | - David Rafei-Shamsabadi
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany; Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Frauke Völlner
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany; Department of Dermatology, Venerology and Allergology, German Armed Forces Central Hospital Koblenz, Koblenz, Germany
| |
Collapse
|
19
|
Drenovska K, Ivanova M, Vassileva S, Shahid MA, Naumova E. Association of specific HLA alleles and haplotypes with pemphigus vulgaris in the Bulgarian population. Front Immunol 2022; 13:901386. [PMID: 35983062 PMCID: PMC9378788 DOI: 10.3389/fimmu.2022.901386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune bullous dermatosis with uneven geographic distribution and higher incidence in certain populations. In previous studies, a relatively high incidence of PV was reported in Bulgaria (0.47/100,000/year) comparable to that in other countries. The genetic background was considered responsible for the disease susceptibility, and multiple reports have proven PV to be an HLA-associated condition. The aim of our study was to analyze the role of genetic factors in the development of PV in Bulgaria. HLA genotyping was performed in 56 PV patients, ethnic Bulgarians whose diagnosis was confirmed based on clinical, histological, and immunofluorescent findings. The control group consisted of 204 healthy individuals from the Bulgarian population without evidence for HLA-associated autoimmune diseases. HLA-A,-B,-DRB1,-DQB1 analysis was performed by PCR-SSP. Our results revealed predisposing associations with DRB1*14, DRB1*04:02, and B*38, B*55, while allele DRB1*03:01 and the corresponding haplotypes were significantly decreased in the PV patients. The predisposing role of these alleles has been observed in other populations. All reported predisposing DRB1 alleles have the same amino acids at key positions of the beta chain of the HLA molecules, 26 (Phe), 67 (Leu or Ileu), 70 and 71 (hydrophobic AA: Gln, Arg, Asp, or Glu), and 86 (Val), which is important for the selective presentation of desmoglein 3 peptides. Additionally, specific alleles HLA-A*01 and DRB1*11 were identified with decreased frequencies in the patients’ group, the last one being a common protective allele for autoimmune diseases in the Bulgarian population. The elucidation of the role of genetic factors for the development of pemphigus will help explain its higher incidence and clinical variability in certain populations.
Collapse
Affiliation(s)
- Kossara Drenovska
- Department of Dermatology and Venereology, University Hospital “Alexandrovska”, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
- *Correspondence: Kossara Drenovska,
| | - Milena Ivanova
- Department of Clinical Immunology, University Hospital “Alexandrovska”, Medical Faculty, Medical University – Sofia, Sofia, Bulgaria
| | - Snejina Vassileva
- Department of Dermatology and Venereology, University Hospital “Alexandrovska”, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| | - Martin Abu Shahid
- Department of Dermatology and Venereology, University Hospital “Alexandrovska”, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| | - Elissaveta Naumova
- Department of Clinical Immunology, University Hospital “Alexandrovska”, Medical Faculty, Medical University – Sofia, Sofia, Bulgaria
| |
Collapse
|
20
|
Egu DT, Schmitt T, Waschke J. Mechanisms Causing Acantholysis in Pemphigus-Lessons from Human Skin. Front Immunol 2022; 13:884067. [PMID: 35720332 PMCID: PMC9205406 DOI: 10.3389/fimmu.2022.884067] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune bullous skin disease caused primarily by autoantibodies (PV-IgG) against the desmosomal adhesion proteins desmoglein (Dsg)1 and Dsg3. PV patient lesions are characterized by flaccid blisters and ultrastructurally by defined hallmarks including a reduction in desmosome number and size, formation of split desmosomes, as well as uncoupling of keratin filaments from desmosomes. The pathophysiology underlying the disease is known to involve several intracellular signaling pathways downstream of PV-IgG binding. Here, we summarize our studies in which we used transmission electron microscopy to characterize the roles of signaling pathways in the pathogenic effects of PV-IgG on desmosome ultrastructure in a human ex vivo skin model. Blister scores revealed inhibition of p38MAPK, ERK and PLC/Ca2+ to be protective in human epidermis. In contrast, inhibition of Src and PKC, which were shown to be protective in cell cultures and murine models, was not effective for human skin explants. The ultrastructural analysis revealed that for preventing skin blistering at least desmosome number (as modulated by ERK) or keratin filament insertion (as modulated by PLC/Ca2+) need to be ameliorated. Other pathways such as p38MAPK regulate desmosome number, size, and keratin insertion indicating that they control desmosome assembly and disassembly on different levels. Taken together, studies in human skin delineate target mechanisms for the treatment of pemphigus patients. In addition, ultrastructural analysis supports defining the specific role of a given signaling molecule in desmosome turnover at ultrastructural level.
Collapse
|
21
|
Aoki V, Abdeladhim M, Li N, Cecilio P, Prisayanh P, Diaz LA, Valenzuela JG. Some Good and Some Bad: Sand Fly Salivary Proteins in the Control of Leishmaniasis and in Autoimmunity. Front Cell Infect Microbiol 2022; 12:839932. [PMID: 35281450 PMCID: PMC8913536 DOI: 10.3389/fcimb.2022.839932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023] Open
Abstract
Sand flies are hematophagous insects responsible for the transmission of vector-borne diseases to humans. Prominent among these diseases is Leishmaniasis that affects the skin and mucous surfaces and organs such as liver and spleen. Importantly, the function of blood-sucking arthropods goes beyond merely transporting pathogens. The saliva of vectors of disease contains pharmacologically active components that facilitate blood feeding and often pathogen establishment. Transcriptomic and proteomic studies have enumerated the repertoire of sand fly salivary proteins and their potential use for the control of Leishmaniasis, either as biomarkers of vector exposure or as anti-Leishmania vaccines. However, a group of specific sand fly salivary proteins triggers formation of cross-reactive antibodies that bind the ectodomain of human desmoglein 1, a member of the epidermal desmosomal cadherins. These cross-reactive antibodies are associated with skin autoimmune blistering diseases, such as pemphigus, in certain immunogenetically predisposed individuals. In this review, we focus on two different aspects of sand fly salivary proteins in the context of human disease: The good, which refers to salivary proteins functioning as biomarkers of exposure or as anti-Leishmania vaccines, and the bad, which refers to salivary proteins as environmental triggers of autoimmune skin diseases.
Collapse
Affiliation(s)
- Valeria Aoki
- Department of Dermatology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Universidade de Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Valeria Aoki,
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pedro Cecilio
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Phillip Prisayanh
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Luis A. Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
22
|
Bumiller-Bini Hoch V, Schneider L, Pumpe AE, Lüders E, Hundt JE, Boldt ABW. Marked to Die-Cell Death Mechanisms for Keratinocyte Acantholysis in Pemphigus Diseases. Life (Basel) 2022; 12:life12030329. [PMID: 35330080 PMCID: PMC8948972 DOI: 10.3390/life12030329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Pemphigus is a group of blistering autoimmune diseases causing painful skin lesions, characterized by acantholysis and by the production of autoantibodies against, mainly, adhesion proteins. We reviewed the literature for molecules and/ or features involved in the 12 cell death pathways described by Nomenclature Committee on Cell Death, taking place in pemphigus patients, cell lines, or human skin organ cultures treated with sera or IgG from pemphigus patients or in pemphigus mouse models, and found 61 studies mentioning 97 molecules involved in cell death pathways. Among the molecules, most investigated were pleiotropic molecules such as TNF and CASP3, followed by FASL and CASP8, and then by FAS, BAX, BCL2, and TP53, all involved in more than one pathway but interpreted to function only within apoptosis. Most of these previous investigations focused only on apoptosis, but four recent studies, using TUNEL assays and/or electron microscopy, disqualified this pathway as a previous event of acantholysis. For PV, apoptolysis was suggested as a cell death mechanism based on pathogenic autoantibodies diversity, mitochondrial dysfunction, and p38 MAPK signaling. To answer those many questions that remain on cell death and pemphigus, we propose well-controlled, statistically relevant investigations on pemphigus and cell death pathways besides apoptosis, to overcome the challenges of understanding the etiopathology of pemphigus diseases.
Collapse
Affiliation(s)
- Valéria Bumiller-Bini Hoch
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (V.B.-B.H.); (L.S.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (A.E.P.); (E.L.); (J.E.H.)
| | - Larissa Schneider
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (V.B.-B.H.); (L.S.)
| | - Anna Elisabeth Pumpe
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (A.E.P.); (E.L.); (J.E.H.)
| | - Emelie Lüders
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (A.E.P.); (E.L.); (J.E.H.)
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (A.E.P.); (E.L.); (J.E.H.)
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-980, Brazil; (V.B.-B.H.); (L.S.)
- Correspondence:
| |
Collapse
|
23
|
Lim YL, Bohelay G, Hanakawa S, Musette P, Janela B. Autoimmune Pemphigus: Latest Advances and Emerging Therapies. Front Mol Biosci 2022; 8:808536. [PMID: 35187073 PMCID: PMC8855930 DOI: 10.3389/fmolb.2021.808536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pemphigus represents a group of rare and severe autoimmune intra-epidermal blistering diseases affecting the skin and mucous membranes. These painful and debilitating diseases are driven by the production of autoantibodies that are mainly directed against the desmosomal adhesion proteins, desmoglein 3 (Dsg3) and desmoglein 1 (Dsg1). The search to define underlying triggers for anti-Dsg-antibody production has revealed genetic, environmental, and possible vaccine-driven factors, but our knowledge of the processes underlying disease initiation and pathology remains incomplete. Recent studies point to an important role of T cells in supporting auto-antibody production; yet the involvement of the myeloid compartment remains unexplored. Clinical management of pemphigus is beginning to move away from broad-spectrum immunosuppression and towards B-cell-targeted therapies, which reduce many patients’ symptoms but can have significant side effects. Here, we review the latest developments in our understanding of the predisposing factors/conditions of pemphigus, the underlying pathogenic mechanisms, and new and emerging therapies to treat these devastating diseases.
Collapse
Affiliation(s)
- Yen Loo Lim
- Department of Dermatology, National Skin Centre, Singapore
| | - Gerome Bohelay
- Department of Dermatology and INSERM U1125, Avicenne Hospital, Bobigny, France
| | - Sho Hanakawa
- A*STAR Skin Research Labs (ASRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Philippe Musette
- Department of Dermatology and INSERM U1125, Avicenne Hospital, Bobigny, France
| | - Baptiste Janela
- A*STAR Skin Research Labs (ASRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
- Singapore Immunology network, Agency for Science, Technology and Research (A*STAR), Singapore
- *Correspondence: Baptiste Janela,
| |
Collapse
|
24
|
Godsel LM, Roth-Carter QR, Koetsier JL, Tsoi LC, Huffine AL, Broussard JA, Fitz GN, Lloyd SM, Kweon J, Burks HE, Hegazy M, Amagai S, Harms PW, Xing X, Kirma J, Johnson JL, Urciuoli G, Doglio LT, Swindell WR, Awatramani R, Sprecher E, Bao X, Cohen-Barak E, Missero C, Gudjonsson JE, Green KJ. Translational implications of Th17-skewed inflammation due to genetic deficiency of a cadherin stress sensor. J Clin Invest 2022; 132:e144363. [PMID: 34905516 PMCID: PMC8803337 DOI: 10.1172/jci144363] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Desmoglein 1 (Dsg1) is a cadherin restricted to stratified tissues of terrestrial vertebrates, which serve as essential physical and immune barriers. Dsg1 loss-of-function mutations in humans result in skin lesions and multiple allergies, and isolated patient keratinocytes exhibit increased proallergic cytokine expression. However, the mechanism by which genetic deficiency of Dsg1 causes chronic inflammation is unknown. To determine the systemic response to Dsg1 loss, we deleted the 3 tandem Dsg1 genes in mice. Whole transcriptome analysis of embryonic Dsg1-/- skin showed a delay in expression of adhesion/differentiation/keratinization genes at E17.5, a subset of which recovered or increased by E18.5. Comparing epidermal transcriptomes from Dsg1-deficient mice and humans revealed a shared IL-17-skewed inflammatory signature. Although the impaired intercellular adhesion observed in Dsg1-/- mice resembles that resulting from anti-Dsg1 pemphigus foliaceus antibodies, pemphigus skin lesions exhibit a weaker IL-17 signature. Consistent with the clinical importance of these findings, treatment of 2 Dsg1-deficient patients with an IL-12/IL-23 antagonist originally developed for psoriasis resulted in improvement of skin lesions. Thus, beyond impairing the physical barrier, loss of Dsg1 function through gene mutation results in a psoriatic-like inflammatory signature before birth, and treatment with a targeted therapy significantly improved skin lesions in patients.
Collapse
Affiliation(s)
- Lisa M. Godsel
- Department of Pathology and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | - Lam C. Tsoi
- Department of Dermatology
- Department of Computational Medicine & Bioinformatics, and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Joshua A. Broussard
- Department of Pathology and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | | | - Sarah M. Lloyd
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Junghun Kweon
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | | | | | | | - Paul W. Harms
- Department of Dermatology
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Jodi L. Johnson
- Department of Pathology and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | | | - Lynn T. Doglio
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Rajeshwar Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xiaomin Bao
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Eran Cohen-Barak
- Department of Dermatology, “Emek” Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, Naples, Italy
- Department of Biology, University of Naples, Naples, Italy
| | | | - Kathleen J. Green
- Department of Pathology and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
25
|
Miguel MCB, Julio TA, Vernal S, de Paula NA, Lieber A, Roselino AM. Autoantibodies against desmoglein 2 are not pathogenic in pemphigus. An Bras Dermatol 2022; 97:145-156. [PMID: 35058080 PMCID: PMC9073259 DOI: 10.1016/j.abd.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/22/2021] [Accepted: 06/11/2021] [Indexed: 11/01/2022] Open
|
26
|
Sisto M, Ribatti D, Lisi S. Cadherin Signaling in Cancer and Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms222413358. [PMID: 34948155 PMCID: PMC8704376 DOI: 10.3390/ijms222413358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cadherins mediate cell–cell adhesion through a dynamic process that is strongly dependent on the cellular context and signaling. Cadherin regulation reflects the interplay between fundamental cellular processes, including morphogenesis, proliferation, programmed cell death, surface organization of receptors, cytoskeletal organization, and cell trafficking. The variety of molecular mechanisms and cellular functions regulated by cadherins suggests that we have only scratched the surface in terms of clarifying the functions mediated by these versatile proteins. Altered cadherins expression is closely connected with tumorigenesis, epithelial–mesenchymal transition (EMT)-dependent fibrosis, and autoimmunity. We review the current understanding of how cadherins contribute to human health and disease, considering the mechanisms of cadherin involvement in diseases progression, as well as the clinical significance of cadherins as therapeutic targets.
Collapse
|
27
|
CAR Treg: A new approach in the treatment of autoimmune diseases. Int Immunopharmacol 2021; 102:108409. [PMID: 34863655 DOI: 10.1016/j.intimp.2021.108409] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
Regulatory T cells (Tregs) have the role of regulating self-tolerance, and suppressing immune responses. Defects in Treg function and number can lead to in loss of tolerance or autoimmune disease. To treat or control autoimmune diseases, one of the options is to develop immune tolerance for Tregs cell therapy, which includes promotion and activation. Recently, cell-based treatment as a promising approach to increase cells function and number has been developed. Cell therapy by chimeric T antigen receptor (CAR-T) cells has shown significant efficacy in the treatment of leukemia, which has led researchers to use CAR-T cells in other diseases like autoimmune diseases. Here, we describe the existing treatments for autoimmune diseases and the available treatments based on Treg, their benefits and restrictions for implementation in clinical trials. We also discussed potential solutions to overcome these limitations. It seems novel designs of CARs to be new hope for autoimmune diseases and expected to be a potential cure option in a wide array of disease in the future. Therefore, it is very important to address this issue and increase information about it.
Collapse
|
28
|
Aghighi M, Pukhalskaya T, Smoller BR. Immunohistochemical Expression of Galectin-3 in Pemphigus Vulgaris. Am J Dermatopathol 2021; 43:e165-e168. [PMID: 33767069 DOI: 10.1097/dad.0000000000001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Pemphigus vulgaris (PV) is an autoimmune bullous disorder related to immunoglobulin-G autoantibodies against desmoglein-3. Galectin-3 is one of the main elements of the immunoglobulin-E group which is essential in the cell-cell or cell-matrix adhesion. Although the presence of immunoglobulin-E autoantibodies in PV has been observed, no studies have been performed to describe the role of galectin-3 in PV. We evaluated galectin-3 expression in PV as a first step in assessing its impact in the pathogenesis of this autoimmune blistering process. In a retrospective study, 56 specimens from 45 patients diagnosed with PV were stained with antibodies to galectin-3. The percentages of nuclear and cytoplasmic galectin-3 expression as well as staining intensity were evaluated around blisters and adjacent unaffected skin. We observed a significant decrease in galectin-3 cytoplasmic and nuclear expression as well as stain intensity around blisters compared with adjacent unaffected skin. Although autoantibodies against desmogleins trigger the blister formation in PV patients, loss of galectin-3 may play a role in the extension of blister formation by initiating cell-cell disassembly at the level of the intercellular keratinocyte desmosome. We demonstrated a lower expression of galectin-3 around the blisters in PV. The pathogenesis of the blister formation may be related to lower expression of galectin-3. Additional studies are necessary to clarify the result of this outcome and determine the accurate pathogenesis of blister formation in PV.
Collapse
Affiliation(s)
- Maryam Aghighi
- Department of Pathology, Robert Wood Johnson Barnabas Health, Livingston, NJ; and
| | - Tatsiana Pukhalskaya
- Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Bruce R Smoller
- Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
29
|
Bernegger S, Vidmar R, Fonovic M, Posselt G, Turk B, Wessler S. Identification of Desmoglein-2 as a novel target of Helicobacter pylori HtrA in epithelial cells. Cell Commun Signal 2021; 19:108. [PMID: 34742300 PMCID: PMC8571890 DOI: 10.1186/s12964-021-00788-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND High temperature requirement A (HtrA) is an active serine protease secreted by the group-I carcinogen Helicobacter pylori (H. pylori). The human cell adhesion protein and tumor suppressor E-cadherin (hCdh1) expressed on the surface of gastric epithelial cells was identified as the first HtrA substrate. HtrA-mediated hCdh1 cleavage and subsequent disruption of intercellular adhesions are considered as important steps in H. pylori pathogenesis. In this study, we performed a proteomic profiling of H. pylori HtrA (HpHtrA) to decipher the complex mechanism of H. pylori interference with the epithelial barrier integrity. RESULTS Using a proteomic approach we identified human desmoglein-2 (hDsg2), neuropilin-1, ephrin-B2, and semaphorin-4D as novel extracellular HpHtrA substrates and confirmed the well characterized target hCdh1. HpHtrA-mediated hDsg2 cleavage was further analyzed by in vitro cleavage assays using recombinant proteins. In infection experiments, we demonstrated hDsg2 shedding from H. pylori-colonized MKN28 and NCI-N87 cells independently of pathogen-induced matrix-metalloproteases or ADAM10 and ADAM17. CONCLUSIONS Characterizing the substrate specificity of HpHtrA revealed efficient hDsg2 cleavage underlining the importance of HpHtrA in opening intercellular junctions. Video Abstract.
Collapse
Affiliation(s)
- Sabine Bernegger
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020 Salzburg, Austria
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Marko Fonovic
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Gernot Posselt
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020 Salzburg, Austria
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Silja Wessler
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020 Salzburg, Austria
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| |
Collapse
|
30
|
Zhuang P, Xie L, Zhang Y, Yuan Y, Liu H, Bi C, Zhao H, Li Y, Zhang Y. Inhibition of desmoglein-1 by aspirin leads to synthetic lethality of keratinocytes in Shuanghuanglian-induced cutaneous eruption response. Toxicol Lett 2021; 349:145-154. [PMID: 34126182 DOI: 10.1016/j.toxlet.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Cutaneous eruptions caused by the combination of Chinese and Western medicine have attracted widespread attention; however, the underlying mechanism remains unclear. This study aimed to evaluate the potential mechanism of cutaneous eruptions in vivo and in vitro using the combination of Shuanghuanglian injection powder (SHL) and aspirin (ASA) as an example. ASA and SHL co-administration induced inflammatory responses in HaCat cells, as evidenced by marked increases in the expression of IL-4 and TNF-α, and the level of apoptosis. Additionally, histopathological investigation of mice skin tissues showed local inflammatory cell infiltration. Western boltting was used to detect the effects of ASA on desmoglein-1 (DSG1) expression; we found that DSG1 expression was down-regulated in vivo and in vitro. Finally, the key components of SHL were administered to HaCat cells with down-regulated DSG1; it was seen that neochlorogenic acid and rutin have a significant effect on HaCat cell apoptosis. These results demonstrate that DSG1 deficiency is a potential cause of cutaneous eruptions caused by the combination of SHL and ASA, and neochlorogenic acid and rutin are the main allergenic components. This study provides a new research strategy for the safety evaluation of integrated traditional Chinese and Western medicine.
Collapse
Affiliation(s)
- Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Lijuan Xie
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yidan Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yu Yuan
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hui Liu
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Chenghao Bi
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Huan Zhao
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yubo Li
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Yanjun Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
31
|
R H, Ramani P, Tilakaratne WM, Sukumaran G, Ramasubramanian A, Krishnan RP. Critical appraisal of different triggering pathways for the pathobiology of pemphigus vulgaris-A review. Oral Dis 2021; 28:1760-1769. [PMID: 34152662 DOI: 10.1111/odi.13937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
Pemphigus vulgaris is an autoimmune blistering disease with an increased potential for mortality. The epithelium is key in understanding the pathobiology as it is specialized to perform functions like mechanical protection, immunological defense, and proprioception. In order to perform these array of functions, epithelial integrity is important. This integrity is maintained by a host of molecules which orchestrate the ability of the keratinocytes to function as a single unit. Desmoglein 3 antibodies formed in genetically susceptible individuals are known to cause the disruption of the intact oral mucosa leading to the formation of blisters in pemphigus vulgaris patients. However, there are underlying complex triggering pathways leading to the clinical disease. The aim of the review is to congregate and critically appraise the various triggering pathways which contribute toward the pathobiology of pemphigus vulgaris. Articles relevant to the pathobiology of pemphigus vulgaris were identified from various search databases till the year 2020. The pathogenesis of pemphigus vulgaris is complex, and it involves an in-depth understanding of the various predisposing factors, provoking factors, and progression mechanisms. Congregation of the various triggering pathways will open our minds to understand pemphigus vulgaris better and in turn develop a reliable treatment in the near future.
Collapse
Affiliation(s)
- Hannah R
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| | - Pratibha Ramani
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| | - W M Tilakaratne
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Department of Oral Pathology, Faculty of Dental sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Gheena Sukumaran
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| | - Abilasha Ramasubramanian
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| | - Reshma Poothakulath Krishnan
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| |
Collapse
|
32
|
Schmitt T, Egu DT, Walter E, Sigmund AM, Eichkorn R, Yazdi A, Schmidt E, Sárdy M, Eming R, Goebeler M, Waschke J. Ca 2+ signalling is critical for autoantibody-induced blistering of human epidermis in pemphigus. Br J Dermatol 2021; 185:595-604. [PMID: 33792909 DOI: 10.1111/bjd.20091] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pemphigus is a severe bullous autoimmune skin disease. Pemphigus foliaceus (PF) is characterized by antidesmoglein (Dsg) 1 IgG causing epidermal blistering; mucosal pemphigus vulgaris (mPV) by anti-Dsg3 IgG inducing erosions in the mucosa; and mucocutaneous pemphigus vulgaris (PV) by affecting both, with autoantibodies targeting Dsg1 and Dsg3. OBJECTIVES To characterize the Ca2+ flux pathway and delineate its importance in pemphigus pathogenesis and clinical phenotypes caused by different antibody profiles. METHODS Immunoprecipitation, Ca2+ flux analysis, Western blotting, immunofluorescence staining, dissociation assays and a human skin ex vivo model were used. RESULTS PV IgG and PF IgG, but neither Dsg3-specific monoclonal antibody (AK23) nor mPV IgG, caused Ca2+ influx in primary human keratinocytes. Phosphatidylinositol 4-kinase α interacts with Dsg1 but not with Dsg3. Its downstream target - phospholipase-C-γ1 (PLC) - was activated by PV IgG and PF IgG but not AK23 or mPV IgG. PLC releases inositol 1,4,5-trisphosphate (IP3) causing IP3 receptor (IP3R) activation and Ca2+ flux from the endoplasmic reticulum into the cytosol, which stimulates Ca2+ release-activated channels (CRAC)-mediated Ca2+ influx. Inhibitors against PLC, IP3R and CRAC effectively blocked PV IgG and PF IgG-induced Ca2+ influx; ameliorated alterations of Dsg1 and Dsg3 localization, and reorganization of keratin and actin filaments; and inhibited loss of cell adhesion in vitro. Finally, inhibiting PLC or IP3R was protective against PV IgG-induced blister formation and redistribution of Dsg1 and Dsg3 in human skin ex vivo. CONCLUSIONS Ca2+ -mediated signalling is important for epidermal blistering and dependent on the autoantibody profile, which indicates different roles for signalling complexes organized by Dsg1 and Dsg3. Interfering with PLC and Ca2+ signalling may be a promising approach to treat epidermal manifestations of pemphigus.
Collapse
Affiliation(s)
- T Schmitt
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Pettenkoferstraße 11, München, D-80336, Germany
| | - D T Egu
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Pettenkoferstraße 11, München, D-80336, Germany
| | - E Walter
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Pettenkoferstraße 11, München, D-80336, Germany
| | - A M Sigmund
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Pettenkoferstraße 11, München, D-80336, Germany
| | - R Eichkorn
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls-University, Tübingen, Germany
| | - A Yazdi
- Department of Dermatology, University Medical Center Tübingen, Eberhard Karls-University, Tübingen, Germany.,Department of Dermatology, RWTH Aachen, Aachen, Germany
| | - E Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, 23562, Germany.,Department of Dermatology, University of Lübeck, Lübeck, 23562, Germany
| | - M Sárdy
- Clinic for Dermatology, Semmelweis University, Budapest, Hungary
| | - R Eming
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - M Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, 97080, Germany
| | - J Waschke
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Pettenkoferstraße 11, München, D-80336, Germany
| |
Collapse
|
33
|
McLellan LK, McAllaster MR, Kim AS, Tóthová Ľ, Olson PD, Pinkner JS, Daugherty AL, Hreha TN, Janetka JW, Fremont DH, Hultgren SJ, Virgin HW, Hunstad DA. A host receptor enables type 1 pilus-mediated pathogenesis of Escherichia coli pyelonephritis. PLoS Pathog 2021; 17:e1009314. [PMID: 33513212 PMCID: PMC7875428 DOI: 10.1371/journal.ppat.1009314] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/10/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Type 1 pili have long been considered the major virulence factor enabling colonization of the urinary bladder by uropathogenic Escherichia coli (UPEC). The molecular pathogenesis of pyelonephritis is less well characterized, due to previous limitations in preclinical modeling of kidney infection. Here, we demonstrate in a recently developed mouse model that beyond bladder infection, type 1 pili also are critical for establishment of ascending pyelonephritis. Bacterial mutants lacking the type 1 pilus adhesin (FimH) were unable to establish kidney infection in male C3H/HeN mice. We developed an in vitro model of FimH-dependent UPEC binding to renal collecting duct cells, and performed a CRISPR screen in these cells, identifying desmoglein-2 as a primary renal epithelial receptor for FimH. The mannosylated extracellular domain of human DSG2 bound directly to the lectin domain of FimH in vitro, and introduction of a mutation in the FimH mannose-binding pocket abolished binding to DSG2. In infected C3H/HeN mice, type 1-piliated UPEC and Dsg2 were co-localized within collecting ducts, and administration of mannoside FIM1033, a potent small-molecule inhibitor of FimH, significantly attenuated bacterial loads in pyelonephritis. Our results broaden the biological importance of FimH, specify the first renal FimH receptor, and indicate that FimH-targeted therapeutics will also have application in pyelonephritis. Urinary tract infections (UTIs) are among the most common bacterial infections in humans. While much has been discovered about how E. coli cause bladder infections, less is known about the host-pathogen interactions that underlie kidney infection (pyelonephritis). We employed recently developed mouse models to show that bacterial surface fibers called type 1 pili, which bear the adhesive protein FimH and are known to mediate E. coli binding to bladder epithelium, are also required for ascending kidney infection. We developed a cell-culture model of bacterial binding to renal collecting duct, then performed a screen using the gene-editing tool CRISPR to identify the first known FimH receptor in the kidney. This epithelial cell-surface protein, desmoglein-2, was shown to directly bind FimH, and we localized this binding to specific extracellular domains of DSG2. Further, we showed that mannosides, small-molecule FimH inhibitors currently in development to treat bladder infection, are also effective in experimental kidney infection. Our study reveals a novel host-pathogen interaction during pyelonephritis and demonstrates how this interaction may be therapeutically targeted.
Collapse
Affiliation(s)
- Lisa K. McLellan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael R. McAllaster
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Arthur S. Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ľubomíra Tóthová
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Patrick D. Olson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Allyssa L. Daugherty
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Teri N. Hreha
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Herbert W. Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David A. Hunstad
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
34
|
Calonga‐Solís V, Amorim LM, Farias TDJ, Petzl‐Erler ML, Malheiros D, Augusto DG. Variation in genes implicated in B-cell development and antibody production affects susceptibility to pemphigus. Immunology 2021; 162:58-67. [PMID: 32926429 PMCID: PMC7730027 DOI: 10.1111/imm.13259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Pemphigus foliaceus (PF) is an autoimmune blistering skin disease characterized by the presence of pathogenic autoantibodies against desmoglein 1, a component of intercellular desmosome junctions. PF occurs sporadically across the globe and is endemic in some Brazilian regions. Because PF is a B-cell-mediated disease, we aimed to study the impact of variants within genes encoding molecules involved in the different steps of B-cell development and antibody production on the susceptibility of endemic PF. We analysed 3,336 single nucleotide polymorphisms (SNPs) from 167 candidate genes genotyped with Illumina microarray in a cohort of 227 PF patients and 193 controls. After quality control and exclusion of non-informative and redundant SNPs, 607 variants in 149 genes remained in the logistic regression analysis, in which sex and ancestry were included as covariates. Our results revealed 10 SNPs within or nearby 11 genes that were associated with susceptibility to endemic PF (OR >1.56; p < 0.005): rs6657275*G (TGFB2); rs1818545*A (RAG1/RAG2/IFTAP);rs10781530*A (PAXX), rs10870140*G and rs10781522*A (TRAF2); rs535068*A (TNFRSF1B); rs324011*A (STAT6);rs6432018*C (YWHAQ); rs17149161*C (YWHAG); and rs2070729*C (IRF1). Interestingly, these SNPs have been previously associated with differential gene expression, mostly in peripheral blood, in publicly available databases. For the first time, we show that polymorphisms in genes involved in B-cell development and antibody production confer differential susceptibility to endemic PF, and therefore are candidates for possible functional studies to understand immunoglobulin gene rearrangement and its impact on diseases.
Collapse
Affiliation(s)
- Verónica Calonga‐Solís
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Leonardo M. Amorim
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Ticiana D. J. Farias
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Maria Luiza Petzl‐Erler
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Danielle Malheiros
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Danillo G. Augusto
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
35
|
Chen Q, Huang Y, Wang Z, Teng S, Hanif Q, Lei C, Sun J. Whole-genome resequencing reveals diversity and selective signals in Longlin goat. Gene 2020; 771:145371. [PMID: 33346103 DOI: 10.1016/j.gene.2020.145371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022]
Abstract
The Longlin goat is one of the most valuable livestock species in Guangxi Autonomous Region of China, but its genomic diversity and selective signals are not clearly elucidated. Here we compared 20 genomes of Longlin goat to 66 genomes of other seven goat breeds worldwide to analyze patterns of Longlin goat genetic variation. We found the lowest linkage disequilibrium at the large distances between SNPs associated with the highest effective population size in the recent generations ago in Longlin goat. The eight goat breeds could be divided into Euro-African and East Asian goat population. Interestingly, like East Asian taurine, the same two migration phases might have occurred in the history of East Asian goat. More importantly, we identified selective signals implicated in immune resistance to disease, especially for skin disease, in Longlin goat. Our findings will not only help understand the evolutionary history and breed characteristic but can provide valuable resources for conservation of germplasm resources and implementation of crossbreeding programs.
Collapse
Affiliation(s)
- Qiuming Chen
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530001, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yingfei Huang
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Zihao Wang
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Shaohua Teng
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Quratulain Hanif
- Computational Biology Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad 577, Pakistan; Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| | - Chuzhao Lei
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Junli Sun
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530001, China.
| |
Collapse
|
36
|
Shi J, Peng P, Liu W, Mi P, Xing C, Ning G, Feng S. Bioinformatics analysis of genes associated with the patchy-type alopecia areata: CD2 may be a new therapeutic target. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:380-386. [DOI: 10.5507/bp.2019.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
|
37
|
Effect of SUV39H1 Histone Methyltransferase Knockout on Expression of Differentiation-Associated Genes in HaCaT Keratinocytes. Cells 2020; 9:cells9122628. [PMID: 33297464 PMCID: PMC7762351 DOI: 10.3390/cells9122628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Keratinocytes undergo a complex differentiation process, coupled with extensive changes in gene expression through which they acquire distinctive features indispensable for cells that form the external body barrier—epidermis. Disturbed epidermal differentiation gives rise to multiple skin diseases. The involvement of epigenetic factors, such as DNA methylation or histone modifications, in the regulation of epidermal gene expression and differentiation has not been fully recognized yet. In this work we performed a CRISPR/Cas9-mediated knockout of SUV39H1, a gene-encoding H3K9 histone methyltransferase, in HaCaT cells that originate from spontaneously immortalized human keratinocytes and examined changes in the expression of selected differentiation-specific genes located in the epidermal differentiation complex (EDC) and other genomic locations by RT-qPCR. The studied genes revealed a diverse differentiation state-dependent or -independent response to a lower level of H3K9 methylation. We also show, by means of chromatin immunoprecipitation, that the expression of genes in the LCE1 subcluster of EDC was regulated by the extent of trimethylation of lysine 9 in histone H3 bound to their promoters. Changes in gene expression were accompanied by changes in HaCaT cell morphology and adhesion.
Collapse
|
38
|
Tham HL, Linder KE, Olivry T. Deep pemphigus (pemphigus vulgaris, pemphigus vegetans and paraneoplastic pemphigus) in dogs, cats and horses: a comprehensive review. BMC Vet Res 2020; 16:457. [PMID: 33228633 PMCID: PMC7686683 DOI: 10.1186/s12917-020-02677-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
Pemphigus is the term used to describe a group of rare mucocutaneous autoimmune bullous diseases characterized by flaccid blisters and erosions of the mucous membranes and/or skin. When the autoantibodies target desmosomes in the deep layers of the epidermis, deep pemphigus variants such as pemphigus vulgaris, pemphigus vegetans and paraneoplastic pemphigus develop. In this article, we will review the signalment, clinical signs, histopathology and treatment outcome of pemphigus vulgaris, pemphigus vegetans and paraneoplastic pemphigus in dogs, cats and horses; where pertinent, we compare the animal diseases to their human homologue. Canine, feline and equine pemphigus vulgaris, pemphigus vegetans and paraneoplastic pemphigus have many features similar to the human counterpart. These chronic and often relapsing autoimmune dermatoses require aggressive immunosuppressive therapy. In animals, the partial-to-complete remission of pemphigus vulgaris and pemphigus vegetans has been achieved with high dose glucocorticoid therapy, with or without adjunct immunosuppressants; the prognosis is grave for paraneoplastic pemphigus.
Collapse
Affiliation(s)
- Heng L. Tham
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Keith E. Linder
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
39
|
Distorted frequency of dendritic cells and their associated stimulatory and inhibitory markers augment the pathogenesis of pemphigus vulgaris. Immunol Res 2020; 68:353-362. [PMID: 33184735 DOI: 10.1007/s12026-020-09166-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
The objective of this study was to investigate the frequency and functionality of DCs and its associated stimulatory and inhibitory markers in the pathogenesis of PV Active PV patients (n = 30) having both skin and oral lesions, and 30 healthy controls were recruited in the study. The frequency of DCs was determined by flow cytometry followed by the primary culture by using recombinant IL-4 (250 IU/ml) and GM-CSF (600 IU/ml). The culture supernatant was used for ELISA. RNA was isolated from sorted DCs and used for the mRNA expression of DC-associated stimulatory (CD40 and CD80) and inhibitory (PSGL1 and ILT3) markers. Tissue localization of Langerhans cells was done by immunohistochemistry. In this study, altered frequency of myeloid DC (mDC) and plasmacytoid DC (pDC) was seen in the circulation of PV patients. The primary culture of patient-derived DCs showed anomalous cytokine profiling. In the culture supernatant of DCs, elevated levels of TNF-ɑ and IL-12 were detected in PV patients. Meanwhile, reverse trend was found in the case of IFN-ɑ and IL-10 cytokine levels. Similarly, a discrepancy in the expression of DC-associated stimulatory (CD40 and CD80) and inhibitory (PSGL1 and ILT3) markers suggested their possible involvement in the immunopathogenesis of PV. An elevated number of tissue localizing Langerhans cells was also observed in the perilesional skin. This study indicates the distorted frequency and functionality of DCs in the immunopathogenesis of PV. Targeting these functional markers in the future may generate novel therapeutic options for better management of PV.
Collapse
|
40
|
Fujii E, Funahashi S, Taniguchi K, Kawai S, Nakano K, Kato A, Suzuki M. Tissue-specific effects of an anti-desmoglein-3 ADCC antibody due to expression of the target antigen and physiological characteristics of the mouse vagina. J Toxicol Pathol 2020; 33:67-76. [PMID: 32425339 PMCID: PMC7218237 DOI: 10.1293/tox.2019-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
Desmoglein-3 (DSG3) is a potential target of cytotoxic antibody therapy for squamous cell carcinomas but is also expressed in various normal squamous epithelia. We obtained information about DSG3 distribution in mouse tissues by immunohistochemistry and conducted an intravenous multiple-dose study in mouse to estimate the toxic potential of anti-DSG3 therapy. DSG3 was expressed in the squamous epithelium of several organs including the skin, esophagus, tongue, forestomach, eye, and vagina. It was expressed at all estrous cycles of the vagina with changes in distribution patterns along with the structural changes in each cycle, and expression was reduced in ovariectomized (OVX) mice. On the administration of the antibody, there was disarrangement of the vaginal mucosal epithelium with formation of miroabscess, increased granulocyte infiltration, and single cell necrosis. Despite similar expression levels of DSG3 in other tissues, histopathological changes were limited to the vagina. The severity of the changes was reduced by ovariectomy. From these findings, the lesions were thought to be related to the drastic change in the histological structure of the vaginal mucosa accompanying the estrous cycle. Thus, we have shown that the changing expression of target antigen distribution and its relationship with physiological changes in tissue structure are important features for estimating the toxic potential of cytotoxic antibody therapy.
Collapse
Affiliation(s)
- Etsuko Fujii
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 6-1 Komaba 4, Meguro, Tokyo 153-8904, Japan.,Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Shinichi Funahashi
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 6-1 Komaba 4, Meguro, Tokyo 153-8904, Japan
| | - Kenji Taniguchi
- Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Shigeto Kawai
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 6-1 Komaba 4, Meguro, Tokyo 153-8904, Japan
| | - Kiyotaka Nakano
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 6-1 Komaba 4, Meguro, Tokyo 153-8904, Japan
| | - Atsuhiko Kato
- Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Masami Suzuki
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 6-1 Komaba 4, Meguro, Tokyo 153-8904, Japan.,Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| |
Collapse
|
41
|
Cutaneous type of pemphigus vulgaris. J Am Acad Dermatol 2020; 83:919-920. [PMID: 31931088 DOI: 10.1016/j.jaad.2019.12.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/29/2019] [Accepted: 12/31/2019] [Indexed: 11/21/2022]
|
42
|
Mannschreck D, Feig J, Selph J, Cohen B. Disseminated bullous impetigo and atopic dermatitis: Case series and literature review. Pediatr Dermatol 2020; 37:103-108. [PMID: 31755570 DOI: 10.1111/pde.14032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Bullous impetigo (BI) is a common skin infection of early childhood, resulting from desmoglein-1 cleavage by Staphylococcus aureus exfoliative toxins. Due to compromised barrier function and immune dysregulation, children with atopic dermatitis (AD) are at increased risk of cutaneous infections, yet no literature has been published on disseminated bullous impetigo (DBI) in children with atopic dermatitis (AD). We sought to explore the atopic phenotypes, antibiotic sensitivities, and treatment courses of children diagnosed with disseminated bullous impetigo at our institution. METHODS We conducted a retrospective case series of 12 children diagnosed with disseminated bullous impetigo at Johns Hopkins from 12/2016 to 5/2017. RESULTS Eleven children (92%) had severe AD. All children were initially misdiagnosed; the majority (67%) were misdiagnosed with AD flares, and other misdiagnoses included scabies, eczema herpeticum, ecthyma, varicella, and eczema coxsackium. All cultures were positive for methicillin-sensitive Staphylococcus aureus (MSSA). Three children (25%) had clindamycin-resistant strains of MSSA, and only one child was positive for both MSSA and methicillin-resistant S aureus. All children were treated with systemic antibiotics and experienced resolution of symptoms within 24-48 hours. CONCLUSIONS This case series is the first of its kind exploring children with DBI with the atopic diathesis. Our results indicate that DBI is often misdiagnosed, and increased training is likely needed for pediatricians, emergency room physicians, and dermatologists. Earlier diagnosis of bullous impetigo may prevent dissemination and spare a patient treatment with systemic antibiotics. Given the high rate of clindamycin resistance observed in this series, we recommend cephalosporins to treat uncomplicated cases of DBI.
Collapse
Affiliation(s)
| | - Jessica Feig
- Division of Pediatric Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaqueline Selph
- Division of Pediatric Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bernard Cohen
- Division of Pediatric Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Green KJ, Jaiganesh A, Broussard JA. Desmosomes: Essential contributors to an integrated intercellular junction network. F1000Res 2019; 8. [PMID: 31942240 PMCID: PMC6944264 DOI: 10.12688/f1000research.20942.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The development of adhesive connections between cells was critical for the evolution of multicellularity and for organizing cells into complex organs with discrete compartments. Four types of intercellular junction are present in vertebrates: desmosomes, adherens junctions, tight junctions, and gap junctions. All are essential for the development of the embryonic layers and organs as well as adult tissue homeostasis. While each junction type is defined as a distinct entity, it is now clear that they cooperate physically and functionally to create a robust and functionally diverse system. During evolution, desmosomes first appeared in vertebrates as highly specialized regions at the plasma membrane that couple the intermediate filament cytoskeleton at points of strong cell–cell adhesion. Here, we review how desmosomes conferred new mechanical and signaling properties to vertebrate cells and tissues through their interactions with the existing junctional and cytoskeletal network.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Avinash Jaiganesh
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joshua A Broussard
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
44
|
Yang M, Wu H, Zhao M, Chang C, Lu Q. The pathogenesis of bullous skin diseases. J Transl Autoimmun 2019; 2:100014. [PMID: 32743502 PMCID: PMC7388362 DOI: 10.1016/j.jtauto.2019.100014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023] Open
Abstract
Bullous skin diseases are a group of dermatoses characterized by blisters and bullae in the skin and mucous membranes. The etiology and pathogenesis of bullous skin diseases are not completely clear. The most common are pemphigus and bullous pemphigoid (BP). Autoantibodies play critical roles in their pathogenesis. Abnormalities in the adhesion between keratinocytes in patients with pemphigus leads to acantholysis and formation of intra-epidermal blisters. Anti-desmoglein autoantibodies are present both in the circulation and skin lesions of patients with pemphigus. The deficient adhesion of keratinocytes to the basement membrane in BP patients gives rise to subepidermal blisters. Autoantibodies against the components of hemidesmosome can be detected in BP patients. Many novel therapeutics based on knowledge of the pathogenesis have emerged in recent years.
Collapse
Affiliation(s)
- Miao Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children’s Hospital, Hollywood, FL, 33021, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| |
Collapse
|
45
|
Guo J, Zhong J, Li L, Zhong T, Wang L, Song T, Zhang H. Comparative genome analyses reveal the unique genetic composition and selection signals underlying the phenotypic characteristics of three Chinese domestic goat breeds. Genet Sel Evol 2019; 51:70. [PMID: 31771503 PMCID: PMC6880376 DOI: 10.1186/s12711-019-0512-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND As one of the important livestock species around the world, goats provide abundant meat, milk, and fiber to fulfill basic human needs. However, the genetic loci that underlie phenotypic variations in domestic goats are largely unknown, particularly for economically important traits. In this study, we sequenced the whole genome of 38 goats from three Chinese breeds (Chengdu Brown, Jintang Black, and Tibetan Cashmere) and downloaded the genome sequence data of 30 goats from five other breeds (four non-Chinese and one Chinese breed) and 21 Bezoar ibexes to investigate the genetic composition and selection signatures of the Chinese goat breeds after domestication. RESULTS Based on population structure analysis and FST values (average FST = 0.22), the genetic composition of Chengdu Brown goats differs considerably from that of Bezoar ibexes as a result of geographic isolation. Strikingly, the genes under selection that we identified in Tibetan Cashmere goats were significantly enriched in the categories hair growth and bone and nervous system development, possibly because they are involved in adaptation to high-altitude. In particular, we found a large difference in allele frequency of one novel SNP (c.-253G>A) in the 5'-UTR of FGF5 between Cashmere goats and goat breeds with short hair. The mutation at this site introduces a start codon that results in the occurrence of a premature FGF5 protein and is likely a natural causal variant that is involved in the long hair phenotype of cashmere goats. The haplotype tagged with the AGG-allele in exon 12 of DSG3, which encodes a cell adhesion molecule that is expressed mainly in the skin, was almost fixed in Tibetan Cashmere goats, whereas this locus still segregates in the lowland goat breeds. The pigmentation gene KITLG showed a strong signature of selection in Tibetan Cashmere goats. The genes ASIP and LCORL were identified as being under positive selection in Jintang Black goats. CONCLUSIONS After domestication, geographic isolation of some goat breeds has resulted in distinct genetic structures. Furthermore, our work highlights several positively selected genes that likely contributed to breed-related traits in domestic goats.
Collapse
Affiliation(s)
- Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jie Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Tao Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Tianzeng Song
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009 China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
46
|
Oliveira LC, Kretzschmar GC, Dos Santos ACM, Camargo CM, Nisihara RM, Farias TDJ, Franke A, Wittig M, Schmidt E, Busch H, Petzl-Erler ML, Boldt ABW. Complement Receptor 1 (CR1, CD35) Polymorphisms and Soluble CR1: A Proposed Anti-inflammatory Role to Quench the Fire of "Fogo Selvagem" Pemphigus Foliaceus. Front Immunol 2019; 10:2585. [PMID: 31824479 PMCID: PMC6883348 DOI: 10.3389/fimmu.2019.02585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Pemphigus foliaceus is an autoimmune disease that is sporadic around the world but endemic in Brazil, where it is known as fogo selvagem (FS). Characterized by autoantibodies against the desmosomal cadherin desmoglein 1, FS causes painful erosions, and crusts that may be widespread. The recognition of antigens, including exposed sugar moieties, activates the complement system. Complement receptor 1 (CR1, CD35), which is responsible for the Knops blood group on erythrocytes (York and McCoy antigens), is also expressed by antigen-presenting cells. This regulates the complement system by removing opsonized antigens, blocking the final steps of the complement cascade. Membrane-bound CR1 also fosters antigen presentation to B cells, whereas soluble CR1 has anti-inflammatory properties. CR1 gene polymorphisms have been associated with susceptibility to complex diseases. In order to investigate the association of CR1 polymorphisms with FS susceptibility, we developed a multiplex sequence-specific assay to haplotype eleven polymorphisms in up to 367 FS patients and 242 controls from an endemic area and 289 from a non-endemic area. We also measured soluble CR1 (sCR1) in the serum of 53 FS patients and 27 controls and mRNA levels in the peripheral blood mononuclear cells of 63 genotyped controls. The haplotypes CR1*3B2B (with the York antigen–encoded by p.1408Met) and CR1*3A2A (with p.1208Arg) were associated with protection against FS (OR = 0.57, P = 0.027, and OR = 0.46, P = 0.014, respectively). In contrast, the CR1*1 haplotype (with the McCoy antigen – encoded by p.1590Glu) was associated with FS susceptibility (OR = 4.97, P < 0.001). Heterozygote rs12034383*A/G individuals presented higher mRNA expression than homozygotes with the G allele (P = 0.04). The lowest sCR1 levels occurred in patients with active disease before treatment (P = 0.036). Patients in remission had higher levels of sCR1 than did healthy controls (P = 0.013). Among those under treatment, patients with localized lesions also presented higher sCR1 levels than those with generalized lesions (P = 0.0073). In conclusion, the Knops blood group seems to modulate susceptibility to the disease. Furthermore, corticosteroid treatment might increase sCR1 serum levels, and higher levels may play an anti-inflammatory role in patients with FS, limiting the distribution of lesions. Based on these results, we suggest CR1 as a potential new therapeutic target for the treatment of FS.
Collapse
Affiliation(s)
- Luana Caroline Oliveira
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Carolina Maciel Camargo
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Renato Mitsunori Nisihara
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | | | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Maria Luiza Petzl-Erler
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
47
|
Abstract
Pathogen-related skin infections are a common problem in the dermatological practice. Apart from culturing and serological detection methods, a skin biopsy is a possible diagnostic procedure, especially when the clinical picture is unspecific and other non-infectious skin diseases are considered as possible differential diagnoses. Some organisms can already be detected by routine staining methods (hematoxylin & eosin, e. g., yeasts, Leishmania), for others numerous histochemical and immunohistochemical stains are available, e. g. periodic acid-Schiff reaction (PAS) and Grocott for hyphae and spores, Ziehl-Neelson and Fite-Faraco for Mycobacteria or specific antibodies for Treponema pallidum or herpesviruses. In other instances, an infectious disease may not be diagnosed with certainty in a histological section but the pattern of inflammatory infiltrates is highly suggestive of an infectious cause. Based on such reaction patterns, the dermatopathologist can advise the clinician to perform cultures or serological investigations or additional molecular biological techniques can be applied to the biopsy specimen in order to identify the pathogens. This article presents skin infections with their histopathological features and highlights diseases that can be diagnosed with certainty in a biopsy and those in which a biopsy is helpful to exclude differential diagnoses or to perform molecular diagnostics on the specimen.
Collapse
Affiliation(s)
- A Böer-Auer
- Klinik für Hautkrankheiten, Universitätsklinikum Münster, Von-Esmarch-Str. 58, 48149, Münster, Deutschland.
- Dermatologikum Hamburg, Stephansplatz 5, 20354, Hamburg, Deutschland.
| |
Collapse
|
48
|
Yang Q, Pinto VMR, Duan W, Paxton EE, Dessauer JH, Ryan W, Lopez MJ. In vitro Characteristics of Heterogeneous Equine Hoof Progenitor Cell Isolates. Front Bioeng Biotechnol 2019; 7:155. [PMID: 31355191 PMCID: PMC6637248 DOI: 10.3389/fbioe.2019.00155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Damage to an ectodermal-mesodermal interface like that in the equine hoof and human finger nail bed can permanently alter tissue structure and associated function. The purpose of this study was to establish and validate in vitro culture of primary progenitor cell isolates from the ectodermal-mesodermal tissue junction in equine hooves, the stratum internum, with and without chronic inflammation known to contribute to lifelong tissue defects. The following were evaluated in hoof stratum internum cell isolates up to 5 cell passages (P): expansion capacity by cell doublings and doubling time; plasticity with multi-lineage differentiation and colony-forming unit (CFU) frequency percentage; immunophenotype with immunocytochemistry and flow cytometry; gene expression with RT-PCR; and ultrastructure with transmission electron microscopy. The presence of keratin (K)14, 15 and K19 as well as cluster of differentiation (CD)44 and CD29 was determined in situ with immunohistochemistry. To confirm in vivo extracellular matrix (ECM) formation, cell-scaffold (polyethylene glycol/poly-L-lactic acid and tricalcium phosphate/hydroxyapatite) constructs were evaluated with scanning electron microscopy 9 weeks after implantation in athymic mice. Cultured cells had characteristic progenitor cell morphology, expansion, CFU frequency percentage and adipocytic, osteoblastic, and neurocytic differentiation capacity. CD44, CD29, K14, K15 and K19 proteins were present in native hoof stratum internum. Cultured cells also expressed K15, K19 and desmogleins 1 and 3. Gene expression of CD105, CD44, K14, K15, sex determining region Y-box 2 (SOX2) and octamer-binding transcription factor 4 (OCT4) was confirmed in vitro. Cultured cells had large, eccentric nuclei, elongated mitochondria, and intracellular vacuoles. Scaffold implants with cells contained fibrous ECM 9 weeks after implantation compared to little or none on acellular scaffolds. In vitro expansion and plasticity and in vivo ECM deposition of heterogeneous, immature cell isolates from the ectodermal-mesodermal tissue interface of normal and chronically inflamed hooves are typical of primary cell isolates from other adult tissues, and they appear to have both mesodermal and ectodermal qualities in vitro. These results establish a unique cell culture model to target preventative and restorative therapies for ectodermal-mesodermal tissue junctions.
Collapse
Affiliation(s)
- Qingqiu Yang
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Vanessa Marigo Rocha Pinto
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Wei Duan
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Erica E Paxton
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jenna H Dessauer
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - William Ryan
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Mandi J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
49
|
Didona D, Maglie R, Eming R, Hertl M. Pemphigus: Current and Future Therapeutic Strategies. Front Immunol 2019; 10:1418. [PMID: 31293582 PMCID: PMC6603181 DOI: 10.3389/fimmu.2019.01418] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
Pemphigus encompasses a heterogeneous group of autoimmune blistering diseases, which affect both mucous membranes and the skin. The disease usually runs a chronic-relapsing course, with a potentially devastating impact on the patients' quality of life. Pemphigus pathogenesis is related to IgG autoantibodies targeting various adhesion molecules in the epidermis, including desmoglein (Dsg) 1 and 3, major components of desmosomes. The pathogenic relevance of such autoantibodies has been largely demonstrated experimentally. IgG autoantibody binding to Dsg results in loss of epidermal keratinocyte adhesion, a phenomenon referred to as acantholysis. This in turn causes intra-epidermal blistering and the clinical appearance of flaccid blisters and erosions at involved sites. Since the advent of glucocorticoids, the overall prognosis of pemphigus has largely improved. However, mortality persists elevated, since long-term use of high dose corticosteroids and adjuvant steroid-sparing immunosuppressants portend a high risk of serious adverse events, especially infections. Recently, rituximab, a chimeric anti CD20 monoclonal antibody which induces B-cell depletion, has been shown to improve patients' survival, as early rituximab use results in higher disease remission rates, long term clinical response and faster prednisone tapering compared to conventional immunosuppressive therapies, leading to its approval as a first line therapy in pemphigus. Other anti B-cell therapies targeting B-cell receptor or downstream molecules are currently tried in clinical studies. More intriguingly, a preliminary study in a preclinical mouse model of pemphigus has shown promise regarding future therapeutic application of Chimeric Autoantibody Receptor T-cells engineered using Dsg domains to selectively target autoreactive B-cells. Conversely, previous studies from our group have demonstrated that B-cell depletion in pemphigus resulted in secondary impairment of T-cell function; this may account for the observed long-term remission following B-cell recovery in rituximab treated patients. Likewise, our data support the critical role of Dsg-specific T-cell clones in orchestrating the inflammatory response and B-cell activation in pemphigus. Monitoring autoreactive T-cells in patients may indeed provide further information on the role of these cells, and would be the starting point for designating therapies aimed at restoring the lost immune tolerance against Dsg. The present review focuses on current advances, unmet challenges and future perspectives of pemphigus management.
Collapse
Affiliation(s)
- Dario Didona
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Roberto Maglie
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany.,Surgery and Translational Medicine, Section of Dermatology, University of Florence, Florence, Italy.,Section of Dermatology, Departement of Health Sciences, University of Florence, Florence, Italy
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| |
Collapse
|
50
|
Petrunin DD. Pharmacotherapy: Its impact on morphofunctional characteristics of the epidermal barrier. VESTNIK DERMATOLOGII I VENEROLOGII 2019. [DOI: 10.25208/0042-4609-2019-95-1-59-76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Various pharmaceuticals used for topical and systemic therapy are capable of exerting significant impact on morphological and physiological characteristics of human epidermis, as well as its barrier properties. This may affect the course of dermatologic diseases and the efficacy of their treatment. In this literature review, the author analyzes the impact of various pharmaceutical classes on the morphofunctional characteristics of the epidermal barrier and formulates recommendations for skin disease treatment.
Collapse
|