1
|
Chi Y, Zhang H, Chen S, Cheng Y, Zhang X, Jia D, Chen Q, Chen H, Wei T. Leafhopper salivary carboxylesterase suppresses JA-Ile synthesis to facilitate initial arbovirus transmission in rice phloem. PLANT COMMUNICATIONS 2024; 5:100939. [PMID: 38725245 PMCID: PMC11412928 DOI: 10.1016/j.xplc.2024.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
Plant jasmonoyl-L-isoleucine (JA-Ile) is a major defense signal against insect feeding, but whether or how insect salivary effectors suppress JA-Ile synthesis and thus facilitate viral transmission in the plant phloem remains elusive. Insect carboxylesterases (CarEs) are the third major family of detoxification enzymes. Here, we identify a new leafhopper CarE, CarE10, that is specifically expressed in salivary glands and is secreted into the rice phloem as a saliva component. Leafhopper CarE10 directly binds to rice jasmonate resistant 1 (JAR1) and promotes its degradation by the proteasome system. Moreover, the direct association of CarE10 with JAR1 clearly impairs JAR1 enzyme activity for conversion of JA to JA-Ile in an in vitro JA-Ile synthesis system. A devastating rice reovirus activates and promotes the co-secretion of virions and CarE10 via virus-induced vesicles into the saliva-storing salivary cavities of the leafhopper vector and ultimately into the rice phloem to establish initial infection. Furthermore, a virus-mediated increase in CarE10 secretion or overexpression of CarE10 in transgenic rice plants causes reduced levels of JAR1 and thus suppresses JA-Ile synthesis, promoting host attractiveness to insect vectors and facilitating initial viral transmission. Our findings provide insight into how the insect salivary protein CarE10 suppresses host JA-Ile synthesis to promote initial virus transmission in the rice phloem.
Collapse
Affiliation(s)
- Yunhua Chi
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongxiang Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Siyu Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu Cheng
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dongsheng Jia
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qian Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Marin-Lopez A, Huck JD, Esterly AT, Azcutia V, Rosen C, Garcia-Milian R, Sefik E, Vidal-Pedrola G, Raduwan H, Chen TY, Arora G, Halene S, Shaw AC, Palm NW, Flavell RA, Parkos CA, Thangamani S, Ring AM, Fikrig E. The human CD47 checkpoint is targeted by an immunosuppressive Aedes aegypti salivary factor to enhance arboviral skin infectivity. Sci Immunol 2024; 9:eadk9872. [PMID: 39121194 DOI: 10.1126/sciimmunol.adk9872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 08/11/2024]
Abstract
The Aedes aegypti mosquito is a vector of many infectious agents, including flaviviruses such as Zika virus. Components of mosquito saliva have pleomorphic effects on the vertebrate host to enhance blood feeding, and these changes also create a favorable niche for pathogen replication and dissemination. Here, we demonstrate that human CD47, which is known to be involved in various immune processes, interacts with a 34-kilodalton mosquito salivary protein named Nest1. Nest1 is up-regulated in blood-fed female A. aegypti and facilitates Zika virus dissemination in human skin explants. Nest1 has a stronger affinity for CD47 than its natural ligand, signal regulatory protein α, competing for binding at the same interface. The interaction between Nest1 with CD47 suppresses phagocytosis by human macrophages and inhibits proinflammatory responses by white blood cells, thereby suppressing antiviral responses in the skin. This interaction elucidates how an arthropod protein alters the human response to promote arbovirus infectivity.
Collapse
Affiliation(s)
- Alejandro Marin-Lopez
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John D Huck
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Allen T Esterly
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Veronica Azcutia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Connor Rosen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, USA
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Gemma Vidal-Pedrola
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tse-Yu Chen
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Saravanan Thangamani
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Aaron M Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Castanha PMS, Azar SR, Yeung J, Wallace M, Kettenburg G, Watkins SC, Marques ETA, Vasilakis N, Barratt-Boyes SM. Aedes aegypti Mosquito Probing Enhances Dengue Virus Infection of Resident Myeloid Cells in Human Skin. Viruses 2024; 16:1253. [PMID: 39205228 PMCID: PMC11360165 DOI: 10.3390/v16081253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
The most prevalent arthropod-borne viruses, including the dengue viruses, are primarily transmitted by infected mosquitoes. However, the dynamics of dengue virus (DENV) infection and dissemination in human skin following Aedes aegypti probing remain poorly understood. We exposed human skin explants to adult female Ae. aegypti mosquitoes following their infection with DENV-2 by intrathoracic injection. Skin explants inoculated with a similar quantity of DENV-2 by a bifurcated needle were used as controls. Quantitative in situ imaging revealed that DENV replication was greatest in keratinocytes in the base of the epidermis, accounting for 50-60% of all infected cells regardless of the route of inoculation. However, DENV inoculation by Ae. aegypti probing resulted in an earlier and increased viral replication in the dermis, infecting twice as many cells at 24 h when compared to needle inoculation. Within the dermis, enhanced replication of DENV by Ae. aegypti infected mosquitoes was mediated by increased local recruitment of skin-resident macrophages, dermal dendritic cells, and epidermal Langerhans cells relative to needle inoculation. An enhanced but less pronounced influx of resident myeloid cells to the site of mosquito probing was also observed in the absence of infection. Ae. aegypti probing also increased recruitment and infection of dermal mast cells. Our findings reveal for the first time that keratinocytes are the primary targets of DENV infection following Ae. aegypti inoculation, even though most of the virus is inoculated into the dermis during probing. The data also show that mosquito probing promotes the local recruitment and infection of skin-resident myeloid cells in the absence of an intact vasculature, indicating that influx of blood-derived neutrophils is not an essential requirement for DENV spread within and out of skin.
Collapse
Affiliation(s)
- Priscila M. S. Castanha
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (P.M.S.C.); (M.W.); (G.K.); (E.T.A.M.)
| | - Sasha R. Azar
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Jason Yeung
- Department of Biochemistry, Cellular and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0645, USA;
| | - Megan Wallace
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (P.M.S.C.); (M.W.); (G.K.); (E.T.A.M.)
| | - Gwenddolen Kettenburg
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (P.M.S.C.); (M.W.); (G.K.); (E.T.A.M.)
| | - Simon C. Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ernesto T. A. Marques
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (P.M.S.C.); (M.W.); (G.K.); (E.T.A.M.)
- Aggeu Magalhaes Institute, Oswaldo Cruz Foundation, Recife 50.740-465, Pernambuco, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (P.M.S.C.); (M.W.); (G.K.); (E.T.A.M.)
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Wang Z, Nie K, Liang Y, Niu J, Yu X, Zhang O, Liu L, Shi X, Wang Y, Feng X, Zhu Y, Wang P, Cheng G. A mosquito salivary protein-driven influx of myeloid cells facilitates flavivirus transmission. EMBO J 2024; 43:1690-1721. [PMID: 38378891 PMCID: PMC11066113 DOI: 10.1038/s44318-024-00056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.
Collapse
Affiliation(s)
- Zhaoyang Wang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Kaixiao Nie
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yan Liang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jichen Niu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
| | - Xi Yu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Oujia Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100086, China
| | - Long Liu
- Institute of Virology, Hubei University of Medicine, Shiyan, 442000, China
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Xuechun Feng
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
5
|
Mu X, Lin Z, Sun Y, Chen L, Lv Q, Ji C, Kuang X, Li W, Shang Z, Cheng J, Nie Y, Li Z, Wu J. Aedes albopictus salivary adenosine deaminase is an immunomodulatory factor facilitating dengue virus replication. Sci Rep 2023; 13:16660. [PMID: 37794048 PMCID: PMC10551004 DOI: 10.1038/s41598-023-43751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
The Asian tiger mosquito, Aedes albopictus, is an important vector for the transmission of arboviruses such as dengue virus (DENV). Adenosine deaminase (ADA) is a well-characterized metabolic enzyme involved in facilitating blood feeding and (or) arbovirus transmission in some hematophagous insect species. We previously reported the immunologic function of ADA by investigating its effect on mast cell activation and the interaction with mast cell tryptase and chymase. The 2-D gel electrophoresis and mass spectrometry analysis in the current study revealed that ADA is present and upregulated following mosquito blood feeding, as confirmed by qRT-PCR and western blot. In addition, the recombinant ADA efficiently converted adenosine to inosine. Challenging the Raw264.7 and THP-1 cells with recombinant ADA resulted in the upregulation of IL-1β, IL-6, TNF-α, CCL2, IFN-β, and ISG15. The current study further identified recombinant ADA as a positive regulator in NF-κB signaling targeting TAK1. It was also found that recombinant Ae. albopictus ADA facilitates the replication of DENV-2. Compared with cells infected by DENV-2 alone, the co-incubation of recombinant ADA with DENV-2 substantially increased IL-1β, IL-6, TNF-α, and CCL2 gene transcripts in Raw264.7 and THP-1 cells. However, the expression of IFN-β and ISG15 were markedly downregulated in Raw264.7 cells but upregulated in THP-1 cells. These findings suggest that the immunomodulatory protein, Ae. albopictus ADA is involved in mosquito blood feeding and may modulate DENV transmission via macrophage or monocyte-driven immune response.
Collapse
Affiliation(s)
- Xiaohui Mu
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Department of Reproductive Medicine, People's Hospital of Anshun City Guizhou Province, Anshun, 561000, Guizhou, China
| | - Zimin Lin
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yu Sun
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Lu Chen
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Qingqiao Lv
- Xi'an Peihua University, Xi'an, 710065, Shaanxi, China
| | - Cejuan Ji
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Xiaoyuan Kuang
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Weiyi Li
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhengling Shang
- Department of Immunology, College of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Jinzhi Cheng
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Ying Nie
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhiqiang Li
- Department of Immunology, College of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| | - Jiahong Wu
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
6
|
Taylor M, Rayner JO. Immune Response to Chikungunya Virus: Sex as a Biological Variable and Implications for Natural Delivery via the Mosquito. Viruses 2023; 15:1869. [PMID: 37766276 PMCID: PMC10538149 DOI: 10.3390/v15091869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus with significant public health implications around the world. Climate change, as well as rapid urbanization, threatens to expand the population range of Aedes vector mosquitoes globally, increasing CHIKV cases worldwide in return. Epidemiological data suggests a sex-dependent response to CHIKV infection. In this review, we draw attention to the importance of studying sex as a biological variable by introducing epidemiological studies from previous CHIKV outbreaks. While the female sex appears to be a risk factor for chronic CHIKV disease, the male sex has recently been suggested as a risk factor for CHIKV-associated death; however, the underlying mechanisms for this phenotype are unknown. Additionally, we emphasize the importance of including mosquito salivary components when studying the immune response to CHIKV. As with other vector-transmitted pathogens, CHIKV has evolved to use these salivary components to replicate more extensively in mammalian hosts; however, the response to natural transmission of CHIKV has not been fully elucidated.
Collapse
Affiliation(s)
| | - Jonathan O. Rayner
- Department of Microbiology & Immunology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA;
| |
Collapse
|
7
|
Sri-In C, Thontiravong A, Bartholomay LC, Wechtaisong W, Thongmeesee K, Riana E, Tiawsirisup S. 34-kDa salivary protein enhances duck Tembusu virus infectivity in the salivary glands of Aedes albopictus by modulating the innate immune response. Sci Rep 2023; 13:9098. [PMID: 37277542 DOI: 10.1038/s41598-023-35914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
Duck Tembusu virus (DTMUV) is an important flavivirus that can be transmitted to poultry via Aedes albopictus bites. Furthermore, humans residing in the DTMUV epidemic area display activated antiviral immune responses to local DTMUV isolates during the pathogenic invasion, thereby raising the primary concern that this flavivirus may be transmitted to humans via mosquito bites. Therefore, we identified the gene AALF004421, which is a homolog of the 34-kDa salivary protein (34 kDa) of Ae. albopictus and studied the salivary protein-mediated enhancement of DTMUV infection in Ae. albopictus salivary glands. We observed that double-stranded RNA-mediated silencing of the 34 kDa in mosquito salivary glands demonstrated that the silenced 34 kDa impaired DTMUV infectivity, similar to inhibition through serine protease. This impairment occurred as a consequence of triggering the innate immune response function of a macroglobulin complement-related factor (MCR). 34-kDa in the salivary gland which had similar activity as a serine protease, results in the abrogation of antimicrobial peptides production and strong enhance DTMUV replication and transmission. Although the function of the 34 kDa in Ae. albopictus is currently unknown; in the present study, we showed that it may have a major role in DTMUV infection in mosquito salivary glands through the suppression of the antiviral immune response in the earliest stages of infection. This finding provides the first identification of a prominently expressed 34 kDa protein in Ae. albopictus saliva that could serve as a target for controlling DTMUV replication in mosquito vectors.
Collapse
Affiliation(s)
- Chalida Sri-In
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aunyaratana Thontiravong
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, USA
| | - Wittawat Wechtaisong
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kritsada Thongmeesee
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Elizabeth Riana
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sonthaya Tiawsirisup
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Seavey CE, Doshi M, Panarello AP, Felice MA, Dickerson AK, Jewett MW, Willenberg BJ. Engineered Human Tissue as A New Platform for Mosquito Bite-Site Biology Investigations. INSECTS 2023; 14:514. [PMID: 37367330 PMCID: PMC10299109 DOI: 10.3390/insects14060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Vector-borne diseases transmitted through the bites of hematophagous arthropods, such as mosquitoes, continue to be a significant threat to human health globally. Transmission of disease by biting arthropod vectors includes interactions between (1) saliva expectorated by a vector during blood meal acquisition from a human host, (2) the transmitted vector-borne pathogens, and (3) host cells present at the skin bite site. Currently, the investigation of bite-site biology is challenged by the lack of model 3D human skin tissues for in vitro analyses. To help fill this gap, we have used a tissue engineering approach to develop new stylized human dermal microvascular bed tissue approximates-complete with warm blood-built with 3D capillary alginate gel (Capgel) biomaterial scaffolds. These engineered tissues, termed a Biologic Interfacial Tissue-Engineered System (BITES), were cellularized with either human dermal fibroblasts (HDFs) or human umbilical vein endothelial cells (HUVECs). Both cell types formed tubular microvessel-like tissue structures of oriented cells (82% and 54% for HDFs and HUVECs, respectively) lining the unique Capgel parallel capillary microstructures. Female Aedes (Ae.) aegypti mosquitoes, a prototypic hematophagous biting vector arthropod, swarmed, bit, and probed blood-loaded HDF BITES microvessel bed tissues that were warmed (34-37 °C), acquiring blood meals in 151 ± 46 s on average, with some ingesting ≳4 µL or more of blood. Further, these tissue-engineered constructs could be cultured for at least three (3) days following blood meal acquisitions. Altogether, these studies serve as a powerful proof-of-concept demonstration of the innovative BITES platform and indicate its potential for the future investigation of arthropod bite-site cellular and molecular biology.
Collapse
Affiliation(s)
- Corey E. Seavey
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Mona Doshi
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Andrew P. Panarello
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Michael A. Felice
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Andrew K. Dickerson
- Department of Mechanical, Aerospace, and Biomedical Engineering, Tickle College of Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Bradley J. Willenberg
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| |
Collapse
|
9
|
Marín-López A, Raduwan H, Chen TY, Utrilla-Trigo S, Wolfhard DP, Fikrig E. Mosquito Salivary Proteins and Arbovirus Infection: From Viral Enhancers to Potential Targets for Vaccines. Pathogens 2023; 12:371. [PMID: 36986293 PMCID: PMC10054260 DOI: 10.3390/pathogens12030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Arthropod-borne viruses present important public health challenges worldwide. Viruses such as DENV, ZIKV, and WNV are of current concern due to an increasing incidence and an expanding geographic range, generating explosive outbreaks even in non-endemic areas. The clinical signs associated with infection from these arboviruses are often inapparent, mild, or nonspecific, but occasionally develop into serious complications marked by rapid onset, tremors, paralysis, hemorrhagic fever, neurological alterations, or death. They are predominately transmitted to humans through mosquito bite, during which saliva is inoculated into the skin to facilitate blood feeding. A new approach to prevent arboviral diseases has been proposed by the observation that arthropod saliva facilitates transmission of pathogens. Viruses released within mosquito saliva may more easily initiate host invasion by taking advantage of the host's innate and adaptive immune responses to saliva. This provides a rationale for creating vaccines against mosquito salivary proteins, especially because of the lack of licensed vaccines against most of these viruses. This review aims to provide an overview of the effects on the host immune response by the mosquito salivary proteins and how these phenomena alter the infection outcome for different arboviruses, recent attempts to generate mosquito salivary-based vaccines against flavivirus including DENV, ZIKV, and WNV, and the potential benefits and pitfalls that this strategy involves.
Collapse
Affiliation(s)
- Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Tse-Yu Chen
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sergio Utrilla-Trigo
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
- Center for Animal Health Research (CISA-INIA/CSIC), 28130 Madrid, Spain
| | - David P. Wolfhard
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
- Faculty of Engineering Sciences, Institute of Pharmacy and Molecular Biotechnology, 69120 Heidelberg, Germany
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
10
|
Bhardwaj A, Sharma R, Grover A. Immuno-informatics guided designing of a multi-epitope vaccine against Dengue and Zika. J Biomol Struct Dyn 2023; 41:1-15. [PMID: 34796791 DOI: 10.1080/07391102.2021.2002720] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dengue and zika are amongst the most prevalent mosquito-borne diseases caused by closely related members Dengue virus (DENV) and Zika virus (ZIKV), respectively, of the Flaviviridae family. DENV and ZIKV have been reported to co-infect several people, resulting in fatalities across the world. A vaccine that can safeguard against both these pathogens concurrently, can offer several advantages. This study has employed immuno-informatics for devising a multi-epitope, multi-pathogenic vaccine against both these viruses. Since, the two viruses share a common vector source, whose salivary components are reported to aid viral pathogenesis; antigenic salivary proteins from Aedes aegypti were also incorporated into the design of the vaccine along with conserved structural and non-structural viral proteins. Conserved B- and T-cell epitopes were identified for all the selected antigenic proteins. These epitopes were merged and further supplemented with β-defensin as an adjuvant, to yield an immunogenic vaccine construct. In-silico 3D modeling and structural validation of the vaccine construct was conducted, followed by its molecular docking and molecular dynamics simulation studies with human TLR2. Immune simulation study was also performed, and it further provided support that the designed vaccine can mount an effective immune response and hence provide protection against both DENV and ZIKV. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditi Bhardwaj
- School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| |
Collapse
|
11
|
Olajiga OM, Marin-Lopez A, Cardenas JC, Gutierrez-Silva LY, Gonzales-Pabon MU, Maldonado-Ruiz LP, Worges M, Fikrig E, Park Y, Londono-Renteria B. Aedes aegypti anti-salivary proteins IgG levels in a cohort of DENV-like symptoms subjects from a dengue-endemic region in Colombia. FRONTIERS IN EPIDEMIOLOGY 2022; 2:1002857. [PMID: 38455331 PMCID: PMC10910902 DOI: 10.3389/fepid.2022.1002857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/20/2022] [Indexed: 03/09/2024]
Abstract
Dengue fever, caused by the dengue virus (DENV), is currently a threat to about half of the world's population. DENV is mainly transmitted to the vertebrate host through the bite of a female Aedes mosquito while taking a blood meal. During this process, salivary proteins are introduced into the host skin and blood to facilitate blood acquisition. These salivary proteins modulate both local (skin) and systemic immune responses. Several salivary proteins have been identified as immunogenic inducing the production of antibodies with some of those proteins also displaying immunomodulatory properties enhancing arboviral infections. IgG antibody responses against salivary gland extracts of a diverse number of mosquitoes, as well as antibody responses against the Ae. aegypti peptide, Nterm-34 kDa, have been suggested as biomarkers of human exposure to mosquito bites while antibodies against AgBR1 and NeSt1 proteins have been investigated for their potential protective effect against Zika virus (ZIKV) and West Nile virus infections. Thus, we were interested in evaluating whether IgG antibodies against AgBR1, NeSt1, Nterm-34 kDa peptide, and SGE were associated with DENV infections and clinical characteristics. For this, we tested samples from volunteers living in a dengue fever endemic area in Colombia in 2019 for the presence of IgG antibodies against those salivary proteins and peptides using an ELISA test. Results from this pilot study suggest an involvement of antibody responses against salivary proteins in dengue disease progression.
Collapse
Affiliation(s)
- Olayinka M. Olajiga
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Alejandro Marin-Lopez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jenny C. Cardenas
- Laboratorio Clínico, Hospital Local Los Patios, Los Patios, Colombia
| | | | | | | | - Matt Worges
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University of New Orleans, New Orleans, LA, United States
| | - Erol Fikrig
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Berlin Londono-Renteria
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University of New Orleans, New Orleans, LA, United States
| |
Collapse
|
12
|
Paige AS, Duvall LB. Vector biology: A mosquito's deadly kiss on the LIPS. Curr Biol 2022; 32:R874-R876. [PMID: 35998594 DOI: 10.1016/j.cub.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
A new study identifies a mosquito salivary protein that directly binds to a cuticular partner during biting to reshape the mosquito mouthparts, stimulate salivation and probing, and enhance blood-feeding efficiency. By affecting mosquito-host interactions, this phenomenon could influence pathogen transmission.
Collapse
Affiliation(s)
- Andrew S Paige
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Laura B Duvall
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Lu S, Martin-Martin I, Ribeiro JM, Calvo E. A deeper insight into the sialome of male and female Ochlerotatus triseriatus mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103800. [PMID: 35787945 PMCID: PMC9494274 DOI: 10.1016/j.ibmb.2022.103800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Over the last 20 years, advancements in sequencing technologies have highlighted the unique composition of the salivary glands of blood-feeding arthropods. Further biochemical and structural data demonstrated that salivary proteins can disrupt host hemostasis, inflammation and immunity, which favors pathogen transmission. Previously, a Sanger-based sialome of adult Ochlerotatus triseriatus female salivary glands was published based on 731 expressed sequence tag (ESTs). Here, we revisited O. triseriatus salivary gland contents using an Illumina-based sequencing approach of both male and female tissues. In the current data set, we report 10,317 DNA coding sequences classified into several functional classes. The translated transcripts also served as a reference database for proteomic analysis of O. triseriatus female saliva, in which unique peptides from 101 proteins were found. Finally, comparison of male and female libraries allowed for the identification of female-enriched transcripts that are potentially related to blood acquisition and virus transmission.
Collapse
Affiliation(s)
- Stephen Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jose M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
14
|
Antiviral Effect of hBD-3 and LL-37 during Human Primary Keratinocyte Infection with West Nile Virus. Viruses 2022; 14:v14071552. [PMID: 35891533 PMCID: PMC9319560 DOI: 10.3390/v14071552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
West Nile virus (WNV) is an emerging flavivirus transmitted through mosquito bites and responsible for a wide range of clinical manifestations. Following their inoculation within the skin, flaviviruses replicate in keratinocytes of the epidermis, inducing an innate immune response including the production of antimicrobial peptides (AMPs). Among them, the cathelicidin LL-37 and the human beta-defensin (hBD)-3 are known for their antimicrobial and immunomodulatory properties. We assessed their role during WNV infection of human primary keratinocytes. LL-37 reduced the viral load in the supernatant of infected keratinocytes and of the titer of a viral inoculum incubated in the presence of the peptide, suggesting a direct antiviral effect of this AMP. Conversely, WNV replication was not inhibited by hBD-3. The two peptides then demonstrated immunomodulatory properties whether in the context of keratinocyte stimulation by poly(I:C) or infection by WNV, but not alone. This study demonstrates the immunostimulatory properties of these two skin AMPs at the initial site of WNV replication and the ability of LL-37 to directly inactivate West Nile viral infectious particles. The results provide new information on the multiple functions of these two peptides and underline the potential of AMPs as new antiviral strategies in the fight against flaviviral infections.
Collapse
|
15
|
Arnoldi I, Mancini G, Fumagalli M, Gastaldi D, D'Andrea L, Bandi C, Di Venere M, Iadarola P, Forneris F, Gabrieli P. A salivary factor binds a cuticular protein and modulates biting by inducing morphological changes in the mosquito labrum. Curr Biol 2022; 32:3493-3504.e11. [PMID: 35835123 DOI: 10.1016/j.cub.2022.06.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 01/03/2023]
Abstract
The mosquito proboscis is an efficient microelectromechanical system, which allows the insect to feed on vertebrate blood quickly and painlessly. Its efficiency is further enhanced by the insect saliva, although through unclear mechanisms. Here, we describe the initial trigger of an unprecedented feedback signaling pathway in Aedes mosquitoes affecting feeding behavior. We identified LIPS proteins in the saliva of Aedes mosquitoes that promote feeding in the vertebrate skin. LIPS show a new all-helical protein fold constituted by two domains. The N-terminal domain interacts with a cuticular protein (Cp19) located at the tip of the mosquito labrum. Upon interaction, the morphology of the labral cuticle changes, and this modification is most likely sensed by proprioceptive neurons. Our study identifies an additional role of mosquito saliva and underlines that the external cuticle is a possible site of key molecular interactions affecting the insect biology and its vector competence.
Collapse
Affiliation(s)
- Irene Arnoldi
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; Entopar lab, Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy; Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Giulia Mancini
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; Biochemistry Unit, Department Biology and Biotechnology, University of Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Dario Gastaldi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Luca D'Andrea
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Claudio Bandi
- Entopar lab, Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy; Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Monica Di Venere
- Biochemistry Unit, Department Biology and Biotechnology, University of Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Paolo Iadarola
- Biochemistry Unit, Department Biology and Biotechnology, University of Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Paolo Gabrieli
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; Entopar lab, Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy; Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy.
| |
Collapse
|
16
|
Fiorillo C, Yen PS, Colantoni A, Mariconti M, Azevedo N, Lombardo F, Failloux AB, Arcà B. MicroRNAs and other small RNAs in Aedes aegypti saliva and salivary glands following chikungunya virus infection. Sci Rep 2022; 12:9536. [PMID: 35681077 PMCID: PMC9184468 DOI: 10.1038/s41598-022-13780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Mosquito saliva facilitates blood feeding through the anti-haemostatic, anti-inflammatory and immunomodulatory properties of its proteins. However, the potential contribution of non-coding RNAs to host manipulation is still poorly understood. We analysed small RNAs from Aedes aegypti saliva and salivary glands and show here that chikungunya virus-infection triggers both the siRNA and piRNA antiviral pathways with limited effects on miRNA expression profiles. Saliva appears enriched in specific miRNA subsets and its miRNA content is well conserved among mosquitoes and ticks, clearly pointing to a non-random sorting and occurrence. Finally, we provide evidence that miRNAs from Ae. aegypti saliva may target human immune and inflammatory pathways, as indicated by prediction analysis and searching for experimentally validated targets of identical human miRNAs. Overall, we believe these observations convincingly support a scenario where both proteins and miRNAs from mosquito saliva are injected into vertebrates during blood feeding and contribute to the complex vector-host-pathogen interactions.
Collapse
Affiliation(s)
- Carmine Fiorillo
- Department of Public Health and Infectious Diseases - Division of Parasitology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Pei-Shi Yen
- Arboviruses and Insect Vectors Unit, Institute Pasteur, 25 rue Dr. Roux, 75724, Paris Cedex 15, France
| | - Alessio Colantoni
- Department of Biology and Biotechnology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marina Mariconti
- Arboviruses and Insect Vectors Unit, Institute Pasteur, 25 rue Dr. Roux, 75724, Paris Cedex 15, France
| | - Nayara Azevedo
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases - Division of Parasitology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Institute Pasteur, 25 rue Dr. Roux, 75724, Paris Cedex 15, France
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases - Division of Parasitology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
17
|
Li Z, Ji C, Cheng J, Åbrink M, Shen T, Kuang X, Shang Z, Wu J. Aedes albopictus salivary proteins adenosine deaminase and 34k2 interact with human mast cell specific proteases tryptase and chymase. Bioengineered 2022; 13:13752-13766. [PMID: 35746853 PMCID: PMC9275959 DOI: 10.1080/21655979.2022.2081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When mosquitoes probe to feed blood, they inoculate a mixture of salivary molecules into vertebrate hosts’ skin causing acute inflammatory reactions where mast cell-derived mediators are involved. Mosquito saliva contains many proteins with largely unknown biological functions. Here, two Aedes albopictus salivary proteins – adenosine deaminase (alADA) and al34k2 – were investigated for their immunological impact on mast cells and two mast cell-specific proteases, the tryptase and the chymase. Mouse bone marrow-derived mast cells were challenged with increased concentrations of recombinant alADA or al34k2 for 1, 3, and 6 h, and to measure mast cell activation, the activity levels of β-hexosaminidase and tryptase and secretion of IL-6 were evaluated. In addition, a direct interaction between alADA or al34k2 with tryptase or chymase was investigated. Results show that bone marrow-derived mast cells challenged with 10 μg/ml of alADA secreted significant levels of β-hexosaminidase, tryptase, and IL-6. Furthermore, both al34k2 and alADA are cut by human tryptase and chymase. Interestingly, al34k2 dose-dependently enhance enzymatic activity of both tryptase and chymase. In contrast, while alADA enhances the enzymatic activity of tryptase, chymase activity was inhibited. Our finding suggests that alADA and al34k2 via interaction with mast cell-specific proteases tryptase and chymase modulate mast cell-driven immune response in the local skin microenvironment. alADA- and al34k2-mediated modulation of tryptase and chymase may also recruit more inflammatory cells and induce vascular leakage, which may contribute to the inflammatory responses at the mosquito bite site.
Collapse
Affiliation(s)
- Zhiqiang Li
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Department of Medical Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Department of Immunology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Cejuan Ji
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Department of Medical Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Jinzhi Cheng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Department of Medical Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Magnus Åbrink
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tao Shen
- Department of Immunology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoyuan Kuang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Department of Medical Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhengling Shang
- Department of Immunology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Department of Medical Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
18
|
Sri-In C, Thontiravong A, Bartholomay LC, Tiawsirisup S. Effects of Aedes aegypti salivary protein on duck Tembusu virus replication and transmission in salivary glands. Acta Trop 2022; 228:106310. [PMID: 35032469 DOI: 10.1016/j.actatropica.2022.106310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
Duck Tembusu virus (DTMUV) infection is an arthropod-borne viral disease that affects many poultry species, including ducks, chickens, and geese. Aedes aegypti mosquito is an important vector of DTMUV. This study sought to determine whether any individual Ae. aegypti salivary protein modulated DTMUV replication in the mosquito salivary gland. Ae. aegypti salivary gland protein of 34 kDa (AaSG34) was found to be expressed explicitly in mosquito salivary glands and was upregulated following DTMUV infection. Thus, AaSG34 was silenced in mosquitoes via RNA interference using double strand RNA (dsRNA), and the mosquitoes were then infected with DTMUV to elucidate their effects on DTMUV replication and transmission. Transcripts of the DTMUV genome in salivary glands and virus titer in saliva were significantly diminished when AaSG34 was silenced, indicating that its presence enhances DTMUV replication in the salivary glands and DTMUV dissemination to saliva. Furthermore, the expression of antimicrobial peptides (AMPs) was upregulated upon AaSG34 silenced. Our results demonstrate that AaSG34 may play a vital role in the suppression of antiviral immune responses to enhance DTMUV replication and transmission. We thus provide new information on the effect of the AaSG34 salivary protein on DTMUV replication in Ae. aegypti as the mechanism of blocking virus transmission to the host.
Collapse
Affiliation(s)
- Chalida Sri-In
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aunyaratana Thontiravong
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, United States
| | - Sonthaya Tiawsirisup
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
19
|
A leafhopper saliva protein mediates horizontal transmission of viral pathogens from insect vectors into rice phloem. Commun Biol 2022; 5:204. [PMID: 35246603 PMCID: PMC8897447 DOI: 10.1038/s42003-022-03160-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
Numerous insects transmit viruses together with saliva to plant phloem, but the roles of saliva components remain elusive. Here, we report that calcium-binding protein (CBP), a universal insect saliva protein, is modified to benefit horizontal transmission of a devastating rice reovirus into plant phloem. CBP effectively competes with virus-induced filaments to target and traverse actin-based apical plasmalemma into saliva-stored cavities in salivary glands of leafhopper vector. Thus, the inhibition of CBP expression by viral infection facilitates filament-mediated viral secretion into salivary cavities and then into plant phloem. Furthermore, virus-mediated reduction of CBP secretion causes an increase of cytosolic Ca2+ levels in rice, triggering substantial callose deposition and H2O2 production. Thus, viruliferous vectors encounter stronger feeding barriers, probe more frequently, and secrete more saliva into plants, ultimately enhancing viral transmission. We thus conclude that the inhibition of CBP secretion facilitates viral secretion and increases host defense response to benefit viral transmission. CBP, a calcium binding protein found in insect saliva, allows for the transmission of the devastating rice gall dwarf virus into plant phloem. This interaction with CBP is compounded by stronger feeding barriers, more frequent probing behavior, and increased saliva secretion into plants by insect vectors, all increasing the likelihood of viral transmission.
Collapse
|
20
|
Valenzuela-Leon PC, Shrivastava G, Martin-Martin I, Cardenas JC, Londono-Renteria B, Calvo E. Multiple Salivary Proteins from Aedes aegypti Mosquito Bind to the Zika Virus Envelope Protein. Viruses 2022; 14:v14020221. [PMID: 35215815 PMCID: PMC8876891 DOI: 10.3390/v14020221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Aedes aegypti mosquitoes are important vectors of several debilitating and deadly arthropod-borne (arbo) viruses, including Yellow Fever virus, Dengue virus, West Nile virus and Zika virus (ZIKV). Arbovirus transmission occurs when an infected mosquito probes the host’s skin in search of a blood meal. Salivary proteins from mosquitoes help to acquire blood and have also been shown to enhance pathogen transmission in vivo and in vitro. Here, we evaluated the interaction of mosquito salivary proteins with ZIKV by surface plasmon resonance and enzyme-linked immunosorbent assay. We found that three salivary proteins AAEL000793, AAEL007420, and AAEL006347 bind to the envelope protein of ZIKV with nanomolar affinities. Similar results were obtained using virus-like particles in binding assays. These interactions have no effect on viral replication in cultured endothelial cells and keratinocytes. Additionally, we found detectable antibody levels in ZIKV and DENV serum samples against the recombinant proteins that interact with ZIKV. These results highlight complex interactions between viruses, salivary proteins and antibodies that could be present during viral transmissions.
Collapse
Affiliation(s)
- Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (P.C.V.-L.); (G.S.); (I.M.-M.)
| | - Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (P.C.V.-L.); (G.S.); (I.M.-M.)
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (P.C.V.-L.); (G.S.); (I.M.-M.)
| | - Jenny C. Cardenas
- Arbovirology Laboratory, Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (J.C.C.); (B.L.-R.)
| | - Berlin Londono-Renteria
- Arbovirology Laboratory, Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (J.C.C.); (B.L.-R.)
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (P.C.V.-L.); (G.S.); (I.M.-M.)
- Correspondence:
| |
Collapse
|
21
|
Chowdhury A, Modahl CM, Missé D, Kini RM, Pompon J. High resolution proteomics of Aedes aegypti salivary glands infected with either dengue, Zika or chikungunya viruses identify new virus specific and broad antiviral factors. Sci Rep 2021; 11:23696. [PMID: 34880409 PMCID: PMC8654903 DOI: 10.1038/s41598-021-03211-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Arboviruses such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses infect close to half a billion people per year, and are primarily transmitted through Aedes aegypti bites. Infection-induced changes in mosquito salivary glands (SG) influence transmission by inducing antiviral immunity, which restricts virus replication in the vector, and by altering saliva composition, which influences skin infection. Here, we profiled SG proteome responses to DENV serotype 2 (DENV2), ZIKV and CHIKV infections by using high-resolution isobaric-tagged quantitative proteomics. We identified 218 proteins with putative functions in immunity, blood-feeding or related to the cellular machinery. We observed that 58, 27 and 29 proteins were regulated by DENV2, ZIKV and CHIKV infections, respectively. While the regulation patterns were mostly virus-specific, we separately depleted four uncharacterized proteins that were upregulated by all three viral infections to determine their effects on these viral infections. Our study suggests that gamma-interferon responsive lysosomal thiol-like (GILT-like) has an anti-ZIKV effect, adenosine deaminase (ADA) has an anti-CHIKV effect, salivary gland surface protein 1 (SGS1) has a pro-ZIKV effect and salivary gland broad-spectrum antiviral protein (SGBAP) has an antiviral effect against all three viruses. The comprehensive description of SG responses to three global pathogenic viruses and the identification of new restriction factors improves our understanding of the molecular mechanisms influencing transmission.
Collapse
Affiliation(s)
- Avisha Chowdhury
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Present Address: Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Cassandra M. Modahl
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, Singapore ,grid.48004.380000 0004 1936 9764Present Address: Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Dorothée Missé
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - R. Manjunatha Kini
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julien Pompon
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France. .,Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore. .,MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France.
| |
Collapse
|
22
|
Complex Roles of Neutrophils during Arboviral Infections. Cells 2021; 10:cells10061324. [PMID: 34073501 PMCID: PMC8227388 DOI: 10.3390/cells10061324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Arboviruses are known to cause large-scale epidemics in many parts of the world. These arthropod-borne viruses are a large group consisting of viruses from a wide range of families. The ability of their vector to enhance viral pathogenesis and transmission makes the development of treatments against these viruses challenging. Neutrophils are generally the first leukocytes to be recruited to a site of infection, playing a major role in regulating inflammation and, as a result, viral replication and dissemination. However, the underlying mechanisms through which neutrophils control the progression of inflammation and disease remain to be fully understood. In this review, we highlight the major findings from recent years regarding the role of neutrophils during arboviral infections. We discuss the complex nature of neutrophils in mediating not only protection, but also augmenting disease pathology. Better understanding of neutrophil pathways involved in effective protection against arboviral infections can help identify potential targets for therapeutics.
Collapse
|
23
|
Demarta-Gatsi C, Mécheri S. Vector saliva controlled inflammatory response of the host may represent the Achilles heel during pathogen transmission. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200155. [PMID: 34035796 PMCID: PMC8128132 DOI: 10.1590/1678-9199-jvatitd-2020-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection with vector-borne pathogens starts with the inoculation of these pathogens during blood feeding. In endemic regions, the population is regularly bitten by naive vectors, implicating a permanent stimulation of the immune system by the vector saliva itself (pre-immune context). Comparatively, the number of bites received by exposed individuals from non-infected vectors is much higher than the bites from infected ones. Therefore, vector saliva and the immunological response in the skin may play an important role, so far underestimated, in the establishment of anti-pathogen immunity in endemic areas. Hence, the parasite biology and the disease pathogenesis in “saliva-primed” and “saliva-unprimed” individuals must be different. This integrated view on how the pathogen evolves within the host together with vector salivary components, which are known to be endowed with a variety of pharmacological and immunological properties, must remain the focus of any investigational study dealing with vector-borne diseases. Considering this three-way partnership, the host skin (immune system), the pathogen, and the vector saliva, the approach that consists in the validation of vector saliva as a source of molecular entities with anti-disease vaccine potential has been recently a subject of active and fruitful investigation. As an example, the vaccination with maxadilan, a potent vasodilator peptide extracted from the saliva of the sand fly Lutzomyia longipalpis, was able to protect against infection with various leishmanial parasites. More interestingly, a universal mosquito saliva vaccine that may potentially protect against a range of mosquito-borne infections including malaria, dengue, Zika, chikungunya and yellow fever. In this review, we highlight the key role played by the immunobiology of vector saliva in shaping the outcome of vector-borne diseases and discuss the value of studying diseases in the light of intimate cross talk among the pathogen, the vector saliva, and the host immune mechanisms.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France.,Medicines for Malaria Venture (MMV), Geneva, Switzerland.,Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Salah Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France
| |
Collapse
|
24
|
Olajiga O, Holguin-Rocha AF, Rippee-Brooks M, Eppler M, Harris SL, Londono-Renteria B. Vertebrate Responses against Arthropod Salivary Proteins and Their Therapeutic Potential. Vaccines (Basel) 2021; 9:347. [PMID: 33916367 PMCID: PMC8066741 DOI: 10.3390/vaccines9040347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023] Open
Abstract
The saliva of hematophagous arthropods contains a group of active proteins to counteract host responses against injury and to facilitate the success of a bloodmeal. These salivary proteins have significant impacts on modulating pathogen transmission, immunogenicity expression, the establishment of infection, and even disease severity. Recent studies have shown that several salivary proteins are immunogenic and antibodies against them may block infection, thereby suggesting potential vaccine candidates. Here, we discuss the most relevant salivary proteins currently studied for their therapeutic potential as vaccine candidates or to control the transmission of human vector-borne pathogens and immune responses against different arthropod salivary proteins.
Collapse
Affiliation(s)
- Olayinka Olajiga
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Andrés F. Holguin-Rocha
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | | | - Megan Eppler
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Shanice L. Harris
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Berlin Londono-Renteria
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| |
Collapse
|
25
|
Assis JB, Cogliati B, Esteves E, Capurro ML, Fonseca DM, Sá-Nunes A. Aedes aegypti mosquito saliva ameliorates acetaminophen-induced liver injury in mice. PLoS One 2021; 16:e0245788. [PMID: 33556084 PMCID: PMC7869984 DOI: 10.1371/journal.pone.0245788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (N-acetyl-p-aminophenol, APAP) overdose is the most common cause of drug-induced liver injury (DILI). Although the primary hepatic damage is induced by APAP-derived toxic intermediates resulting from cytochrome P450 metabolism, immune components also play an important role in DILI pathophysiology. Aedes aegypti saliva is a source of bioactive molecules with in vitro anti-inflammatory and immunomodulatory activities. However, evidences on the therapeutic use of Ae. aegypti salivary preparations in animal models of relevant clinical conditions are still scarce. Thus, the present study was designed to evaluate the protective role of Ae. aegypti saliva in a murine model of APAP-induced DILI. C57BL/6 mice were exposed to Ae. aegypti bites 2 hours after APAP overdose. Biochemical and immunological parameters were evaluated in blood and liver samples at different time points after APAP administration. Exposure to Ae. aegypti saliva attenuated liver damage, as demonstrated by reduced hepatic necrosis and serum levels of alanine aminotransferase in APAP-overdosed mice. The levels of hepatic CYP2E1, the major enzyme responsible for the bioactivation of APAP, were not changed in Ae. aegypti exposed animals, suggesting no effects in the generation of hepatotoxic metabolites. On the other hand, mice treated with Ae. aegypti saliva following APAP overdose presented lower serum concentration of TNF-α, IL-6, IL-1β and IL-10, as well as reduced frequency of inflammatory cell populations in the liver, such as NKT cells, macrophages and dendritic cells. These findings show that Ae. aegypti saliva has bioactive molecules with therapeutic properties and may represent a prospective source of new compounds in the management of DILI-associated inflammatory disorders and, perhaps, many other inflammatory/autoimmune diseases.
Collapse
Affiliation(s)
- Josiane B. Assis
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Cogliati
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Eliane Esteves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Margareth L. Capurro
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Conselho Nacional de Desenvolvimento Científico e Tecnológico (INCT-EM/CNPq), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise M. Fonseca
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Conselho Nacional de Desenvolvimento Científico e Tecnológico (INCT-EM/CNPq), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
26
|
Onyango MG, Ciota AT, Kramer LD. The Vector - Host - Pathogen Interface: The Next Frontier in the Battle Against Mosquito-Borne Viral Diseases? Front Cell Infect Microbiol 2020; 10:564518. [PMID: 33178624 PMCID: PMC7596266 DOI: 10.3389/fcimb.2020.564518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
An unprecedented spread of mosquito-borne viruses and increasing populations of mosquito vectors has led to an increase in the frequency of mosquito-borne virus disease outbreaks. Recent outbreaks of Zika virus (ZIKV) and yellow fever virus (YFV), among others have led to a concerted effort to understand the biology of mosquito-borne viruses and their interaction with their vector mosquito and vertebrate hosts. Recent studies have aimed to understand the vector-host-pathogen interface and how it influences infection, tropism and disease severity in the vertebrate host. The initial replication of the pathogen at the skin bite site is crucial in determining the progression of the infection in the vertebrate host. Delineating the role of the commensal microbes in the mosquito saliva as well as how they interact with the vertebrate host keratinocytes will improve our understanding of disease immunopathology and may lead to new therapeutics.
Collapse
Affiliation(s)
- Maria Gorreti Onyango
- New York State Department of Health, Wadsworth Center, Slingerlands, NY, United States
| | - Alexander T Ciota
- New York State Department of Health, Wadsworth Center, Slingerlands, NY, United States.,School of Public Health, State University of New York at Albany, Albany, NY, United States
| | - Laura D Kramer
- New York State Department of Health, Wadsworth Center, Slingerlands, NY, United States.,School of Public Health, State University of New York at Albany, Albany, NY, United States
| |
Collapse
|
27
|
Shrivastava G, Valenzuela Leon PC, Calvo E. Inflammasome Fuels Dengue Severity. Front Cell Infect Microbiol 2020; 10:489. [PMID: 33014899 PMCID: PMC7511630 DOI: 10.3389/fcimb.2020.00489] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
Dengue is an acute febrile disease triggered by dengue virus. Dengue is the widespread and rapidly transmitted mosquito-borne viral disease of humans. Diverse symptoms and diseases due to Dengue virus (DENV) infection ranges from dengue fever, dengue hemorrhagic fever (life-threatening) and dengue shock syndrome characterized by shock, endothelial dysfunction and vascular leakage. Several studies have linked the severity of dengue with the induction of inflammasome. DENV activates the NLRP3-specific inflammasome in DENV infected human patients, mice; specifically, mouse bone marrow derived macrophages (BMDMs), dendritic cells, endothelial cells, human peripheral blood mononuclear cells (PBMCs), keratinocytes, monocyte-differentiated macrophages (THP-1), and platelets. Dengue virus mediated inflammasome initiates the maturation of IL-1β and IL-18, which are critical for dengue pathology and inflammatory response. Several studies have reported the molecular mechanism through which (host and viral factors) dengue induces inflammasome, unravels the possible mechanisms of DENV pathogenesis and sets up the stage for the advancement of DENV therapeutics. In this perspective article, we discuss the potential implications and our understanding of inflammasome mechanisms of dengue virus and highlight research areas that have potential to inhibit the pathogenesis of viral diseases, specifically for dengue.
Collapse
Affiliation(s)
- Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Paola Carolina Valenzuela Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
28
|
Dengue Virus Infection of Aedes aegypti Alters Extracellular Vesicle Protein Cargo to Enhance Virus Transmission. Int J Mol Sci 2020; 21:ijms21186609. [PMID: 32927629 PMCID: PMC7555558 DOI: 10.3390/ijms21186609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Dengue is the most burdensome vector-borne viral disease in the world. Dengue virus (DENV), the etiological cause of dengue, is transmitted primarily by the Aedes aegypti mosquito. Like any arbovirus, the transmission cycle of dengue involves the complex interactions of a multitude of human and mosquito factors. One point during this transmission cycle that is rich in these interactions is the biting event by the mosquito, upon which its saliva is injected into the host. A number of components in mosquito saliva have been shown to play a pivotal role in the transmission of dengue, however one such component that is not as well characterized is extracellular vesicles. Here, using high-performance liquid chromatography in tandem with mass spectrometry, we show that dengue infection altered the protein cargo of Aedes aegypti extracellular vesicles, resulting in the packaging of proteins with infection-enhancing ability. Our results support the presence of an infection-dependent pro-viral protein packaging strategy that uses the differential packaging of pro-viral proteins in extracellular vesicles of Ae. aegypti saliva to promote transmission. These studies represent the first investigation into the function of Ae. aegypti extracellular vesicle cargo during dengue infection.
Collapse
|
29
|
Guerrero D, Cantaert T, Missé D. Aedes Mosquito Salivary Components and Their Effect on the Immune Response to Arboviruses. Front Cell Infect Microbiol 2020; 10:407. [PMID: 32850501 PMCID: PMC7426362 DOI: 10.3389/fcimb.2020.00407] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Vector-borne diseases are responsible for over a billion infections each year and nearly one million deaths. Mosquito-borne dengue virus, West Nile, Japanese encephalitis, Zika, Chikungunya, and Rift Valley Fever viruses constitute major public health problems in regions with high densities of arthropod vectors. During the initial step of the transmission cycle, vector, host, and virus converge at the bite site, where local immune cells interact with the vector's saliva. Hematophagous mosquito saliva is a mixture of bioactive components known to modulate vertebrate hemostasis, immunity, and inflammation during the insect's feeding process. The capacity of mosquito saliva to modulate the host immune response has been well-studied over the last few decades and has led to the consensus that the presence of saliva is linked to the enhancement of virus transmission, host susceptibility, disease progression, viremia levels, and mortality. We review some of the major aspects of the interactions between mosquito saliva and the host immune response that may be useful for future studies on the control of arboviruses.
Collapse
Affiliation(s)
- David Guerrero
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Dorothée Missé
- MIVEGEC, IRD, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
30
|
Sun P, Nie K, Zhu Y, Liu Y, Wu P, Liu Z, Du S, Fan H, Chen CH, Zhang R, Wang P, Cheng G. A mosquito salivary protein promotes flavivirus transmission by activation of autophagy. Nat Commun 2020; 11:260. [PMID: 31937766 PMCID: PMC6959235 DOI: 10.1038/s41467-019-14115-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/07/2019] [Indexed: 01/07/2023] Open
Abstract
Transmission from an infected mosquito to a host is an essential process in the life cycle of mosquito-borne flaviviruses. Numerous studies have demonstrated that mosquito saliva facilitates viral transmission. Here we find that a saliva-specific protein, named Aedes aegypti venom allergen-1 (AaVA-1), promotes dengue and Zika virus transmission by activating autophagy in host immune cells of the monocyte lineage. The AG6 mice (ifnar1–/–ifngr1–/–) bitten by the virus-infected AaVA-1-deficient mosquitoes present a lower viremia and prolonged survival. AaVA-1 intracellularly interacts with a dominant negative binder of Beclin-1, known as leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), and releases Beclin-1 from LRPPRC-mediated sequestration, thereby enabling the initialization of downstream autophagic signaling. A deficiency in Beclin-1 reduces viral infection in mice and abolishes AaVA-1-mediated enhancement of ZIKV transmission by mosquitoes. Our study provides a mechanistic insight into saliva-aided viral transmission and could offer a potential prophylactic target for reducing flavivirus transmission. Mosquito saliva affects transmission of flaviviruses, but underlying mechanisms are incompletely understood. Here, the authors show that Aedes aegypti venom allergen-1 (AaVA-1) promotes dengue and Zika virus transmission by activating autophagy in host immune cells of the monocyte lineage.
Collapse
Affiliation(s)
- Peng Sun
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Kaixiao Nie
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yang Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pa Wu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ziwen Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Senyan Du
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Huahao Fan
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, 35053, China
| | - Renli Zhang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, The University of Connecticut Health Center, Farmington, Connecticut, 06030, USA
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
31
|
Yu X, Zhu Y, Xiao X, Wang P, Cheng G. Progress towards Understanding the Mosquito-Borne Virus Life Cycle. Trends Parasitol 2019; 35:1009-1017. [PMID: 31669148 DOI: 10.1016/j.pt.2019.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022]
Abstract
Mosquito-borne arboviruses are a group of heterogeneous viruses that are mainly transmitted to vertebrate hosts and are the aetiological agents of many human diseases. These viruses naturally maintain a life cycle between distinct hosts by transmission from an infected mosquito to a naive host, and acquisition from a viraemic host back to a fed mosquito. To survive in and maintain a cycle between different host environments, mosquito-borne arboviruses exploit sophisticated approaches, including subverting the immune system, hijacking host factors, and taking advantage of gut microbes. We summarize the recent progress towards understanding the mechanisms of arboviral transmission and acquisition by mosquitoes. This knowledge offers an insight into the emergence and re-emergence of arboviruses in nature and an avenue for disease prevention in the future.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Xiaoping Xiao
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
32
|
Buezo Montero S, Gabrieli P, Severini F, Picci L, Di Luca M, Forneris F, Facchinelli L, Ponzi M, Lombardo F, Arcà B. Analysis in a murine model points to IgG responses against the 34k2 salivary proteins from Aedes albopictus and Aedes aegypti as novel promising candidate markers of host exposure to Aedes mosquitoes. PLoS Negl Trop Dis 2019; 13:e0007806. [PMID: 31618201 PMCID: PMC6816578 DOI: 10.1371/journal.pntd.0007806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/28/2019] [Accepted: 09/25/2019] [Indexed: 01/22/2023] Open
Abstract
Background Aedes mosquitoes are vectors of arboviral diseases of great relevance for public health. The recent outbreaks of dengue, Zika, chikungunya and the rapid worldwide spreading of Aedes albopictus emphasize the need for improvement of vector surveillance and control. Host antibody response to mosquito salivary antigens is emerging as a relevant additional tool to directly assess vector-host contact, monitor efficacy of control interventions and evaluate risk of arboviral transmission. Methodology/principal findings Groups of four BALB/c mice were immunized by exposure to bites of either Aedes albopictus or Aedes aegypti. The 34k2 salivary proteins from Ae. albopictus (al34k2) and Ae. aegypti (ae34k2) were expressed in recombinant form and Ae. albopictus salivary peptides were designed through B-cell epitopes prediction software. IgG responses to salivary gland extracts, peptides, al34k2 and ae34k2 were measured in exposed mice. Both al34k2 and ae34k2, with some individual and antigen-specific variation, elicited a clearly detectable antibody response in immunized mice. Remarkably, the two orthologous proteins showed very low level of immune cross-reactivity, suggesting they may eventually be developed as species-specific markers of host exposure. The al34k2 immunogenicity and the limited immune cross-reactivity to ae34k2 were confirmed in a single human donor hyperimmune to Ae. albopictus saliva. Conclusions/significance Our study shows that exposure to bites of Ae. albopictus or Ae. aegypti evokes in mice species-specific IgG responses to al34k2 or ae34k2, respectively. Deeper understanding of duration of antibody response and validation in natural conditions of human exposure to Aedes mosquitoes are certainly needed. However, our findings point to the al34k2 salivary protein as a promising potential candidate for the development of immunoassays to evaluate human exposure to Ae. albopictus. This would be a step forward in the establishment of a serological toolbox for the simultaneous assessment of human exposure to Aedes vectors and the pathogens they transmit. Taking advantage of several factors, as worldwide trading, climatic changes and urbanization, Aedes mosquitoes are impressively expanding their geographic distribution. A paradigm is provided by the rapid global spreading of Aedes albopictus, a species that is a competent vector of several arboviral diseases (e.g. dengue, Zika, chikungunya) and has been responsible of quite a few outbreaks in the last decade. Historically, vector control always played a pivotal role for the containment of arthropod-borne diseases, and this appears especially crucial for arboviral diseases for which no effective vaccines or specific medications are available. Currently, host exposure to mosquitoes is indirectly evaluated by entomological methods; however, exploitation of human immune responses to mosquito salivary proteins is emerging as a relevant additional tool, with important epidemiological implications for the evaluation of mosquito-borne disease risk. This study provides preliminary but solid indications that the 34k2 salivary proteins from Ae. albopictus and Aedes aegypti may be suitable candidates for the development of serological assays to evaluate spatial and/or temporal variation of human exposure to Aedes vectors. Combined to the presently available tools to assess arboviral exposure/infection, this may be of great help for the development of a serological toolbox allowing for the simultaneous determination of human exposure to Aedes vectors and to the pathogens they transmit.
Collapse
Affiliation(s)
- Sara Buezo Montero
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Paolo Gabrieli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Italy
| | - Francesco Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Leonardo Picci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Di Luca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Federico Forneris
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Italy
| | - Luca Facchinelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marta Ponzi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
- * E-mail:
| |
Collapse
|
33
|
Manning JE, Morens DM, Kamhawi S, Valenzuela JG, Memoli M. Mosquito Saliva: The Hope for a Universal Arbovirus Vaccine? J Infect Dis 2019; 218:7-15. [PMID: 29617849 DOI: 10.1093/infdis/jiy179] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) are taxonomically diverse causes of significant morbidity and mortality. In recent decades, important mosquito-borne viruses such as West Nile, chikungunya, dengue, and Zika have re-emerged and spread widely, in some cases pandemically, to cause serious public health emergencies. There are no licensed vaccines against most of these viruses, and vaccine development and use has been complicated by the number of different viruses to protect against, by subtype and strain variation, and by the inability to predict when and where outbreaks will occur. A new approach to preventing arboviral diseases is suggested by the observation that arthropod saliva facilitates transmission of pathogens, including leishmania parasites, Borrelia burgdorferi, and some arboviruses. Viruses carried within mosquito saliva may more easily initiate host infection by taking advantage of the host's innate and adaptive immune responses to saliva. This provides a rationale for creating vaccines against mosquito salivary proteins, rather than against only the virus proteins contained within the saliva. As proof of principle, immunization with sand fly salivary antigens to prevent leishmania infection has shown promising results in animal models. A similar approach using salivary proteins of important vector mosquitoes, such as Aedes aegypti, might protect against multiple mosquito-borne viral infections.
Collapse
Affiliation(s)
- Jessica E Manning
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, Maryland.,Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Shaden Kamhawi
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, Maryland
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew Memoli
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
34
|
Sri-In C, Weng SC, Chen WY, Wu-Hsieh BA, Tu WC, Shiao SH. A salivary protein of Aedes aegypti promotes dengue-2 virus replication and transmission. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103181. [PMID: 31265906 DOI: 10.1016/j.ibmb.2019.103181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/31/2019] [Accepted: 06/26/2019] [Indexed: 05/26/2023]
Abstract
Although dengue is the most prevalent arthropod-borne viral disease in humans, no effective medication or vaccine is presently available. Previous studies suggested that mosquito salivary proteins influence infection by the dengue virus (DENV) in the mammalian host. However, the effects of salivary proteins on DENV replication within the Aedes aegypti mosquito remain largely unknown. In this study, we investigated the effect of a specific salivary protein (named AaSG34) on DENV serotype 2 (DENV2) replication and transmission. We showed that transcripts of AaSG34 were upregulated in the salivary glands of Aedes aegypti mosquitoes after a meal of blood infected with DENV2. Transcripts of the dengue viral genome and envelop protein in the salivary glands were significantly diminished after an infectious blood meal when AaSG34 was silenced. The effect of AaSG34 on DENV2 transmission was investigated in Stat1-deficient mice. The intradermal inoculation of infectious mosquito saliva induced hemorrhaging in the Stat1-deficient mice; however, saliva from the AaSG34-silenced mosquitoes did not induce hemorrhaging, suggesting that AaSG34 enhances DENV2 transmission. This is the first report to demonstrate that the protein AaSG34 promotes DENV2 replication in mosquito salivary glands and enhances the transmission of the virus to the mammalian host.
Collapse
Affiliation(s)
- Chalida Sri-In
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Yu Chen
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Betty A Wu-Hsieh
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wu-Chun Tu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan.
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
35
|
Hsu AY, Ho TC, Lai ML, Tan SS, Chen TY, Lee M, Chien YW, Chen YP, Perng GC. Identification and characterization of permissive cells to dengue virus infection in human hematopoietic stem and progenitor cells. Transfusion 2019; 59:2938-2951. [PMID: 31251408 DOI: 10.1111/trf.15416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Dengue virus (DENV) is a significant threat to public health in tropical and subtropical regions, where the frequency of human migration is increasing. Transmission of DENV from donors to recipients after hematopoietic stem cell transplantation has been steadily described. However, the underlying mechanisms remain unclear. STUDY DESIGN AND METHODS Freshly isolated bone marrow (BM) was subjected to DENV infection, followed by multicolor fluorescence-activated cell sorting (FACS) analysis. Virus in supernatants was collected and analyzed by plaque assay. RESULTS DENV-1 to DENV-4 could effectively infect freshly obtained BM and produced infectious virus. DENV infection did not change the quantitative population of hematopoietic stem and progenitor cells (HSPCs), megakaryocytic progenitor cells (MkPs) and megakaryocytes. Additionally, DENV antigen, nonstructural protein 1, was enriched in HSPCs and MkPs of DENV infected marrow cells. CD34+, CD133+, or CD61+ cells sorted out from BM were not only the major contributing targets facilitating the DENV infection directly but also facilitated the spread of DENV into other cells when cocultured. CONCLUSION Results suggest that DENV can efficiently infect HSPCs, which might jeopardize the recipients if DENV-infected cells were subsequently used. We therefore raise the need for DENV screening for both the donors and recipients of hematopoietic stem cell transplantation, especially for donors exposed to endemic areas, to mitigate DENV infection in immunocompromised recipients.
Collapse
Affiliation(s)
- Alan Y Hsu
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Tzu-Chuan Ho
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Ling Lai
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Sia Seng Tan
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Tsai-Yun Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meed Lee
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Chien
- Departement of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ping Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Guey Chuen Perng
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
36
|
Tick saliva and its role in pathogen transmission. Wien Klin Wochenschr 2019; 135:165-176. [PMID: 31062185 PMCID: PMC10118219 DOI: 10.1007/s00508-019-1500-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022]
Abstract
Tick saliva is a complex mixture of peptidic and non-peptidic molecules that aid engorgement. The composition of tick saliva changes as feeding progresses and the tick counters the dynamic host response. Ixodid ticks such as Ixodes ricinus, the most important tick species in Europe, transmit numerous pathogens that cause debilitating diseases, e.g. Lyme borreliosis and tick-borne encephalitis. Tick-borne pathogens are transmitted in tick saliva during blood feeding; however, saliva is not simply a medium enabling pathogen transfer. Instead, tick-borne pathogens exploit saliva-induced modulation of host responses to promote their transmission and infection, so-called saliva-assisted transmission (SAT). Characterization of the saliva factors that facilitate SAT is an active area of current research. Besides providing new insights into how tick-borne pathogens survive in nature, the research is opening new avenues for vaccine development.
Collapse
|
37
|
Du K, Zhang X, Zou Z, Li B, Gu S, Zhang S, Qu X, Ling Y, Zhang H. Epigenetically modified N 6-methyladenine inhibits DNA replication by human DNA polymerase η. DNA Repair (Amst) 2019; 78:81-90. [PMID: 30991231 DOI: 10.1016/j.dnarep.2019.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
N6-methyladenine (6mA), as a newly reported epigenetic marker, plays significant roles in regulation of various biological processes in eukaryotes. However, the effect of 6mA on human DNA replication remain elusive. In this work, we used Y-family human DNA polymerase η as a model to investigate the kinetics of bypass of 6mA by hPol η. We found 6mA and its intermediate hypoxanthine (I) on template partially inhibited DNA replication by hPol η. dTMP incorporation opposite 6mA and dCMP incorporation opposite I can be considered as correct incorporation. However, both 6mA and I reduced correct incorporation efficiency, next-base extension efficiency, and the priority in extension beyond correct base pair. Both dTMP incorporation opposite 6mA and dCTP opposite I showed fast burst phases. However, 6mA and I reduced the burst incorporation rates (kpol) and increased the dissociation constant (Kd,dNTP), compared with that of dTMP incorporation opposite unmodified A. Biophysical binding assays revealed that both 6mA and I on template reduced the binding affinity of hPol η to DNA in binary or ternary complex compared with unmodified A. All the results explain the inhibition effects of 6mA and I on DNA replication by hPol η, providing new insight in the effects of epigenetically modified 6mA on human DNA replication.
Collapse
Affiliation(s)
- Ke Du
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangqian Zhang
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China
| | - Zhenyu Zou
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Bianbian Li
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiling Gu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuming Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyi Qu
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Panyu District, Guangzhou, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
38
|
Abstract
Mosquitoes are haematophagous vectors for hundreds of pathogenic viruses that are aetiological agents of human diseases. In nature, mosquito-borne viruses maintain a lifecycle between mosquitoes and vertebrate animals. Viruses are acquired by a naive mosquito from an infected host by blood meals and then propagate extensively in the mosquito's tissues. This mosquito then becomes a virus reservoir and is competent to transmit the viruses to a naive vertebrate host through the next blood meal. To survive in and efficiently cycle between two distinct host environments, mosquito-borne viruses have evolved delicate and smart strategies to comprehensively exploit host and vector factors. Here, we provide an update on recent studies of the mechanisms of virus survival in, acquisition and transmission by mosquitoes.
Collapse
|
39
|
Huang YJS, Higgs S, Vanlandingham DL. Arbovirus-Mosquito Vector-Host Interactions and the Impact on Transmission and Disease Pathogenesis of Arboviruses. Front Microbiol 2019; 10:22. [PMID: 30728812 PMCID: PMC6351451 DOI: 10.3389/fmicb.2019.00022] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Hundreds of viruses, designated as arboviruses, are transmitted by arthropod vectors in complex transmission cycles between the virus, vertebrate host, and the vector. With millions of human and animal infections per year, it is critical to improve our understanding of the interactions between the biological and environmental factors that play a critical role in pathogenesis, disease outcomes, and transmission of arboviruses. This review focuses on mosquito-borne arboviruses and discusses current knowledge of the factors and underlying mechanisms that influence infection and transmission of arboviruses and discusses critical factors and pathways that can potentially become targets for intervention and therapeutics.
Collapse
Affiliation(s)
- Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
40
|
Manning JE, Cantaert T. Time to Micromanage the Pathogen-Host-Vector Interface: Considerations for Vaccine Development. Vaccines (Basel) 2019; 7:E10. [PMID: 30669682 PMCID: PMC6466432 DOI: 10.3390/vaccines7010010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
The current increase in vector-borne disease worldwide necessitates novel approaches to vaccine development targeted to pathogens delivered by blood-feeding arthropod vectors into the host skin. A concept that is gaining traction in recent years is the contribution of the vector or vector-derived components, like salivary proteins, to host-pathogen interactions. Indeed, the triad of vector-host-pathogen interactions in the skin microenvironment can influence host innate and adaptive responses alike, providing an advantage to the pathogen to establish infection. A better understanding of this "bite site" microenvironment, along with how host and vector local microbiomes immunomodulate responses to pathogens, is required for future vaccines for vector-borne diseases. Microneedle administration of such vaccines may more closely mimic vector deposition of pathogen and saliva into the skin with the added benefit of near painless vaccine delivery. Focusing on the 'micro'⁻from microenvironments to microbiomes to microneedles⁻may yield an improved generation of vector-borne disease vaccines in today's increasingly complex world.
Collapse
Affiliation(s)
- Jessica E Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh 12201, Cambodia.
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia.
| |
Collapse
|
41
|
Manning JE, Oliveira F, Parker DM, Amaratunga C, Kong D, Man S, Sreng S, Lay S, Nang K, Kimsan S, Sokha L, Kamhawi S, Fay MP, Suon S, Ruhl P, Ackerman H, Huy R, Wellems TE, Valenzuela JG, Leang R. The PAGODAS protocol: pediatric assessment group of dengue and Aedes saliva protocol to investigate vector-borne determinants of Aedes-transmitted arboviral infections in Cambodia. Parasit Vectors 2018; 11:664. [PMID: 30572920 PMCID: PMC6300895 DOI: 10.1186/s13071-018-3224-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mosquito-borne arboviruses, like dengue virus, continue to cause significant global morbidity and mortality, particularly in Southeast Asia. When the infectious mosquitoes probe into human skin for a blood meal, they deposit saliva containing a myriad of pharmacologically active compounds, some of which alter the immune response and influence host receptivity to infection, and consequently, the establishment of the virus. Previous reports have highlighted the complexity of mosquito vector-derived factors and immunity in the success of infection. Cumulative evidence from animal models and limited data from humans have identified various vector-derived components, including salivary components, that are co-delivered with the pathogen and play an important role in the dissemination of infection. Much about the roles and effects of these vector-derived factors remain to be discovered. METHODS/DESIGN We describe a longitudinal, pagoda (community)-based pediatric cohort study to evaluate the burden of dengue virus infection and document the immune responses to salivary proteins of Aedes aegypti, the mosquito vector of dengue, Zika, and chikungunya viruses. The study includes community-based seroprevalence assessments in the peri-urban town of Chbar Mon in Kampong Speu Province, Cambodia. The study aims to recruit 771 children between the ages of 2 and 9 years for a three year period of longitudinal follow-up, including twice per year (rainy and dry season) serosurveillance for dengue seroconversion and Ae. aegypti salivary gland homogenate antibody intensity determinations by ELISA assays. Diagnostic tests for acute dengue, Zika and chikungunya viral infections will be performed by RT-PCR. DISCUSSION This study will serve as a foundation for further understanding of mosquito saliva immunity and its impact on Aedes-transmitted arboviral diseases endemic to Cambodia. TRIAL REGISTRATION NCT03534245 registered on 23 May 2018.
Collapse
Affiliation(s)
- Jessica E. Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Daniel M. Parker
- Department of Population Health and Disease Prevention, University of California, Irvine, California, USA
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Dara Kong
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Somnang Man
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sokunthea Sreng
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sreyngim Lay
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Kimsour Nang
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Soun Kimsan
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Ly Sokha
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Shaden Kamhawi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Michael P. Fay
- Biostatistics Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Seila Suon
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Parker Ruhl
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Hans Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Rekol Huy
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Jesus G. Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Rithea Leang
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| |
Collapse
|
42
|
Garcia M, Alout H, Diop F, Damour A, Bengue M, Weill M, Missé D, Lévêque N, Bodet C. Innate Immune Response of Primary Human Keratinocytes to West Nile Virus Infection and Its Modulation by Mosquito Saliva. Front Cell Infect Microbiol 2018; 8:387. [PMID: 30450338 PMCID: PMC6224356 DOI: 10.3389/fcimb.2018.00387] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
West Nile Virus (WNV) is a flavivirus involved in many human infections worldwide. This arthropod-borne virus is directly co-inoculated with mosquito saliva through the epidermis and the dermis during blood meal. WNV starts replicating in the skin before migrating to the draining lymph node, leading to widespread viremia and in some cases to neurological symptoms. Skin is a complex organ composed of different cell types that together perform essential functions such as pathogen sensing, barrier maintenance and immunity. Keratinocytes, which represent 90% of the cells of the epidermis, are the organism's first line of defense, initiating innate immune response by recognizing pathogens through their pattern recognition receptors. Although WNV was previously known to replicate in human primary keratinocytes, the induced inflammatory response remains unknown. The aim of this study was first to characterize the inflammatory response of human primary keratinocytes to WNV infection and then, to assess the potential role of co-inoculated mosquito saliva on the keratinocyte immune response and viral replication. A type I and III interferon inflammatory response associated with an increase of IRF7 but not IRF3 mRNA expression, and dependent on infectious dose, was observed during keratinocyte infection with WNV. Expression of several interferon-stimulated gene mRNA was also increased at 24 h post-infection (p.i.); they included CXCL10 and interferon-induced proteins with tetratricopeptide repeats (IFIT)-2 sustained up until 48 h p.i. Moreover, WNV infection of keratinocyte resulted in a significant increase of pro-inflammatory cytokines (TNFα, IL-6) and various chemokines (CXCL1, CXCL2, CXCL8 and CCL20) expression. The addition of Aedes aegypti or Culex quinquefasciatus mosquito saliva, two vectors of WNV infection, to infected keratinocytes led to a decrease of inflammatory response at 24 h p.i. However, only Ae. Aegypti saliva adjunction induced modulation of viral replication. In conclusion, this work describes for the first time the inflammatory response of human primary keratinocytes to WNV infection and its modulation in presence of vector mosquito saliva. The effects of mosquito saliva assessed in this work could be involved in the early steps of WNV replication in skin promoting viral spread through the body.
Collapse
Affiliation(s)
- Magali Garcia
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Haoues Alout
- Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| | - Fodé Diop
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Alexia Damour
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Michèle Bengue
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| | - Dorothée Missé
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Nicolas Lévêque
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| |
Collapse
|
43
|
Paniz-Mondolfi AE, Blohm GM, Hernandez-Perez M, Larrazabal A, Moya D, Marquez M, Talamo A, Carrillo A, Rothe de Arocha J, Lednicky J, Morris JG. Cutaneous features of Zika virus infection: a clinicopathological overview. Clin Exp Dermatol 2018; 44:13-19. [PMID: 30267436 DOI: 10.1111/ced.13793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus transmitted mainly by Aedes species of mosquitos. Although the infection is usually mild and self-limiting, it is emerging as a public health challenge in tropical and subtropical countries owing to its unprecedented pathogenicity and increased risk for fetal malformations and neurological symptoms. Cutaneous manifestations as for other mosquito-borne viruses remain a hallmark of the disease. This article provides a detailed overview on ZIKV infection, including its varied cutaneous clinical manifestations and diagnostic aspects, and also provides detailed insights into its pathogenesis in human skin.
Collapse
Affiliation(s)
- A E Paniz-Mondolfi
- Department of Infectious Diseases and Tropical Medicine, Clínica IDB Cabudare, Instituto de Investigaciones Biomédicas IDB, Barquisimeto, Lara, Venezuela.,Instituto Venezolano de los Seguros Sociales (IVSS), Department of Health, Caracas, Venezuela
| | - G M Blohm
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - M Hernandez-Perez
- Department of Dermatopathology, Miraca Life Sciences Research Institute/Tufts Medical Center, Boston, MA, USA
| | - A Larrazabal
- Department of Infectious Diseases and Tropical Medicine, Clínica IDB Cabudare, Instituto de Investigaciones Biomédicas IDB, Barquisimeto, Lara, Venezuela.,Infectious Diseases Research Branch-Venezuelan Science and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Arboviral Diseases Branch, Barquisimeto, Lara, Venezuela
| | - D Moya
- Department of Infectious Diseases and Tropical Medicine, Clínica IDB Cabudare, Instituto de Investigaciones Biomédicas IDB, Barquisimeto, Lara, Venezuela.,Infectious Diseases Research Branch-Venezuelan Science and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Arboviral Diseases Branch, Barquisimeto, Lara, Venezuela
| | - M Marquez
- Infectious Diseases Research Branch-Venezuelan Science and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Arboviral Diseases Branch, Barquisimeto, Lara, Venezuela.,Health Sciences Department, College of Medicine, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Lara, Venezuela
| | - A Talamo
- Infectious Diseases Research Branch-Venezuelan Science and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Arboviral Diseases Branch, Barquisimeto, Lara, Venezuela.,Health Sciences Department, College of Medicine, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Lara, Venezuela
| | - A Carrillo
- Department of Infectious Diseases and Tropical Medicine, Clínica IDB Cabudare, Instituto de Investigaciones Biomédicas IDB, Barquisimeto, Lara, Venezuela.,Infectious Diseases Research Branch-Venezuelan Science and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Arboviral Diseases Branch, Barquisimeto, Lara, Venezuela.,Health Sciences Department, College of Medicine, Universidad Nacional Experimental 'Francisco de Miranda', Punto Fijo, Falcon, Venezuela
| | - J Rothe de Arocha
- Sociedad Anticancerosa del Estado Lara, Barquisimeto, Lara, Venezuela.,Psoriasis Unit, Hospital Central Antonio Maria Pineda, Barquisimeto, Lara, Venezuela
| | - J Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - J G Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Division of Infectious Diseases and Global Health, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
44
|
Pandey RK, Dahiya S, Mahita J, Sowdhamini R, Prajapati VK. Vaccination and immunization strategies to design Aedes aegypti salivary protein based subunit vaccine tackling Flavivirus infection. Int J Biol Macromol 2018; 122:1203-1211. [PMID: 30219509 DOI: 10.1016/j.ijbiomac.2018.09.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022]
Abstract
Flavivirus causes arthropod-borne severe diseases that sometimes lead to the death. The Flavivirus species including Dengue virus, Zika virus and yellow fever virus are transmitted by the bite of Aedes mosquitoes. All these viral species target the people living in their respective endemic zone causing a high mortality rate. Recent studies show that immune factors present in the Ae. aegypti saliva is the hidden culprit promoting blood meal collection, suppressing host immune molecules and promoting disease establishment. This study was designed to develop a subunit vaccine using Aedes mosquito salivary proteins targeting the aforementioned Flaviviruses. Subunit vaccine was designed very precisely by combining the immunogenic B-cell epitope with CTL and HTL epitopes and also suitable adjuvant and linkers. Immunogenicity, allergenicity and physiochemical characterization were also performed for scientific validation. Molecular docking and molecular dynamics simulations studies were carried out to confirm the stable affinity between the vaccine protein (3D) and TLR3 receptor. At last, in silico cloning was executed to get the subunit vaccine restriction clone into pET28a vectro to express it in microbial expression system. Additionally, this study warrants the experimental evaluation for the validation purposes.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh (305817), Ajmer, Rajasthan, India
| | - Surbhi Dahiya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh (305817), Ajmer, Rajasthan, India
| | - Jarjapu Mahita
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh (305817), Ajmer, Rajasthan, India.
| |
Collapse
|
45
|
Bakhshi H, Failloux AB, Zakeri S, Raz A, Dinparast Djadid N. Mosquito-borne viral diseases and potential transmission blocking vaccine candidates. INFECTION GENETICS AND EVOLUTION 2018; 63:195-203. [PMID: 29842982 DOI: 10.1016/j.meegid.2018.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023]
Abstract
Mosquito-borne viral diseases (MBVDs) have a complex biological cycle involving vectors and vertebrate hosts. These viruses are responsible for many deadly diseases worldwide. Although MBVDs threaten mostly developing countries, there is growing evidence indicating that they are also of concern in western countries where local transmission of arboviruses such as West Nile, Zika, Chikungunya and Dengue viruses have been recently reported. The rapid rise in human infections caused by these viruses is attributed to rapid climate change and travel facilities. Usually, the only way to control these diseases relies on the control of vectors in the absence of licensed vaccines and specific treatments. However, the overuse of insecticides has led to the emergence of insecticide resistance in vector populations, posing significant challenges for their control. An alternative method for reducing MBVDs can be the use of Transmission Blocking Vaccines (TBVs) that limits viral infection at the mosquito vector stage. Some successes have been obtained confirming the potential application of TBVs against viruses; however, this approach remains at the developmental stage and still needs improvements. The present review aims to give an update on MBVDs and to discuss the application as well as usage of potential TBVs for the control of mosquito-borne viral infections.
Collapse
Affiliation(s)
- Hasan Bakhshi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran.
| |
Collapse
|
46
|
Jin L, Guo X, Shen C, Hao X, Sun P, Li P, Xu T, Hu C, Rose O, Zhou H, Yang M, Qin CF, Guo J, Peng H, Zhu M, Cheng G, Qi X, Lai R. Salivary factor LTRIN from Aedes aegypti facilitates the transmission of Zika virus by interfering with the lymphotoxin-β receptor. Nat Immunol 2018; 19:342-353. [DOI: 10.1038/s41590-018-0063-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/30/2018] [Indexed: 11/09/2022]
|
47
|
Duangkhae P, Erdos G, Ryman KD, Watkins SC, Falo LD, Marques ETA, Barratt-Boyes SM. Interplay between Keratinocytes and Myeloid Cells Drives Dengue Virus Spread in Human Skin. J Invest Dermatol 2017; 138:618-626. [PMID: 29106931 DOI: 10.1016/j.jid.2017.10.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/08/2017] [Accepted: 10/08/2017] [Indexed: 01/19/2023]
Abstract
The skin is the site of dengue virus (DENV) transmission following the bite of an infected mosquito, but the contribution of individual cell types within skin to infection is unknown. We studied the dynamics of DENV infection in human skin explants using quantitative in situ imaging. DENV replicated primarily in the epidermis and induced a transient IFN-α response. DENV infected a wide range of cells, including Langerhans cells, macrophages, dermal dendritic cells, mast cells, fibroblasts, and lymphatic endothelium, but keratinocytes were the earliest targets of infection and made up 60% of infected cells over time. Virus inoculation led to recruitment and infection of Langerhans cells, macrophages, and dermal dendritic cells, and these cells emigrated from skin in increased numbers as a result of infection. DENV induced expression of proinflammatory cytokines and chemokines by infected keratinocytes. Blocking keratinocyte-derived IL-1β alone reduced infection of Langerhans cells, macrophages, and dermal dendritic cells by 75-90% and reduced the overall number of infected cells in dermis by 65%. These data show that the innate response of infected keratinocytes attracts virus-permissive myeloid cells that inadvertently spread DENV infection. Our findings highlight a role for keratinocytes and their interplay with myeloid cells in dengue.
Collapse
Affiliation(s)
- Parichat Duangkhae
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Geza Erdos
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kate D Ryman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon C Watkins
- Center for Biologic Imaging, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Louis D Falo
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ernesto T A Marques
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Aggeu Magalhães Research Center, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
| | - Simon M Barratt-Boyes
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
Alagarasu K, Patil PS, Shil P, Seervi M, Kakade MB, Tillu H, Salunke A. In-vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2. Peptides 2017; 92:23-30. [PMID: 28400226 DOI: 10.1016/j.peptides.2017.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022]
Abstract
Human Cathelicidin antimicrobial peptide LL-37 is known to have antiviral activity against many viruses. In the present study, we investigated the in-vitro effect of LL-37 on dengue virus type 2 (DENV-2) infection and replication in Vero E6 cells. To study the effect of pretreatment of virus or cells with LL-37, the virus was pretreated with different concentrations of LL-37 (2.5μM-15μM) or scrambled (Scr) LL-37(5μM-15μM) and used for infection or the cells were first treated with LL-37 and infected. To study the effect of LL-37 post infection (PI), the cells were infected first followed by addition of LL-37 to the culture medium 24h after infection. In all conditions, after the incubation, the culture supernatant was assessed for viral RNA copy number by real time RT-PCR, infectious virus particles by focus forming unit assay (FFU) and non structural protein 1 (NS1) antigen levels by ELISA. Percentage of infection was assessed using immunoflourescence assay (IFA). The results revealed that pretreatment of virus with 10-15μM LL-37 significantly reduced its infectivity as compared to virus control (P<0.0001). Moreover, pretreatment of virus with 10-15μM LL-37 significantly reduced the levels of viral genomic RNA and NS1 antigen (P<0.0001). Treatment of virus with 10-15μM LL-37 resulted in two to three log reduction of mean log10 FFU/ml as compared to virus control (P<0.0001). Treatment of the virus with scrambled LL-37 had no effect on percentage of infection and viral load as compared to virus control cultures (P>0.05). Pretreatment of cells before infection or addition of LL-37 to the culture 24h PI had no effect on viral load. Molecular docking studies revealed possible binding of LL-37 to both the units of DENV envelope (E) protein dimer. Together, the in-vitro experiments and in-silico analyses suggest that LL-37 inhibits DENV-2 at the stage of entry into the cells by binding to the E protein. The results might have implications for prophylaxis against DENV infections and need further in-vivo studies.
Collapse
Affiliation(s)
- K Alagarasu
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, 20A, Dr. Ambedkar Road, Pune 411001, Maharashtra, India.
| | - P S Patil
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, 20A, Dr. Ambedkar Road, Pune 411001, Maharashtra, India
| | - P Shil
- Bioinformatics Group, Microbial Containment Complex, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, Maharashtra, India
| | - M Seervi
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, 20A, Dr. Ambedkar Road, Pune 411001, Maharashtra, India
| | - M B Kakade
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, 20A, Dr. Ambedkar Road, Pune 411001, Maharashtra, India
| | - H Tillu
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, 20A, Dr. Ambedkar Road, Pune 411001, Maharashtra, India
| | - A Salunke
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, 20A, Dr. Ambedkar Road, Pune 411001, Maharashtra, India
| |
Collapse
|
49
|
Wichit S, Ferraris P, Choumet V, Missé D. The effects of mosquito saliva on dengue virus infectivity in humans. Curr Opin Virol 2016; 21:139-145. [PMID: 27770704 DOI: 10.1016/j.coviro.2016.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
Abstract
Arboviruses such as Dengue, Chikungunya, and Zika viruses represent a major public health problem due to globalization and propagation of susceptible vectors worldwide. Arthropod vector-derived salivary factors have the capacity to modulate human cells function by enhancing or suppressing viral replication and, therefore, modify the establishment of local and systemic viral infection. Here, we discuss how mosquito saliva may interfere with Dengue virus (DENV) infection in humans. Identification of saliva factors that enhance infectivity will allow the production of vector-based vaccines and therapeutics that would interfere with viral transmission by targeting arthropod saliva components. Understanding the role of salivary proteins in DENV transmission will provide tools to control not only Dengue but also other arboviral diseases transmitted by the same vectors.
Collapse
Affiliation(s)
| | - Pauline Ferraris
- Laboratory of MIVEGEC, UMR 224 IRD/CNRS/UM1, Montpellier, France
| | - Valérie Choumet
- Environment and Infectious Risks Unit, Pasteur Institute, Paris, France
| | - Dorothée Missé
- Laboratory of MIVEGEC, UMR 224 IRD/CNRS/UM1, Montpellier, France.
| |
Collapse
|
50
|
Jimenez A, Shaz BH, Bloch EM. Zika Virus and the Blood Supply: What Do We Know? Transfus Med Rev 2016; 31:1-10. [PMID: 27569055 DOI: 10.1016/j.tmrv.2016.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
Zika virus (ZIKV), a mosquito-borne Flavivirus and emerging infectious disease, is the focus of an international public health emergency after its rapid spread through the Americas and the Caribbean. Although most ZIKV infections are subclinical or characterized by mild febrile illness, ZIKV has been implicated in severe complications, most notably microcephaly in babies born to incident infected mothers during pregnancy. As yet, the extent to which ZIKV is transfusion transmissible remains undefined. Nonetheless, a high prevalence of asymptomatic infection during outbreaks, the demonstration of ZIKV in blood donors, and 4 possible cases of transfusion-transmitted ZIKV in Brazil have raised concern for risk to the blood supply. Consequently, a proactive response is underway by blood collection agencies, regulatory bodies, national funding agencies, and industry alike. Mitigation strategies differ between endemic and nonendemic areas. In the continental United States, the American Association of Blood Banks and Food and Drug Administration guidelines recommend travel-based deferral for those returning from affected areas, and nucleic acid testing is being initiated under an investigational new drug application in Puerto Rico and selected areas of the United States. Options are less clear for countries where autochthonous vector-borne transmission is active. The burden of Zika falls in low-resource countries where high cost and technical barriers associated with testing and pathogen reduction pose barriers to implementation. Additional strategies include maintaining selective inventory for high-risk recipients (eg, pregnant women). We review the available data as of July 2016 on ZIKV in relation to the blood supply including risk, mitigation strategies, and barriers to implementation in addition to the research that is needed to address current uncertainty.
Collapse
Affiliation(s)
| | - Beth H Shaz
- Columbia University Medical Center and New York Blood Center, New York, NY
| | | |
Collapse
|