1
|
Nissinen L, Riihilä P, Viiklepp K, Rajagopal V, Storek MJ, Kähäri VM. C1s targeting antibodies inhibit the growth of cutaneous squamous carcinoma cells. Sci Rep 2024; 14:13465. [PMID: 38866870 PMCID: PMC11169539 DOI: 10.1038/s41598-024-64088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. The incidence of cSCC is increasing globally and the prognosis of metastatic disease is poor. Currently there are no specific targeted therapies for advanced or metastatic cSCC. We have previously shown abundant expression of the complement classical pathway C1 complex components, serine proteases C1r and C1s in tumor cells in invasive cSCCs in vivo, whereas the expression of C1r and C1s was lower in cSCCs in situ, actinic keratoses and in normal skin. We have also shown that knockdown of C1s expression results in decreased viability and growth of cSCC cells by promoting apoptosis both in culture and in vivo. Here, we have studied the effect of specific IgG2a mouse monoclonal antibodies TNT003 and TNT005 targeting human C1s in five primary non-metastatic and three metastatic cSCC cell lines that show intracellular expression of C1s and secretion of C1s into the cell culture media. Treatment of cSCC cells with TNT003 and TNT005 significantly inhibited their growth and viability and promoted apoptosis of cSCC cells. These data indicate that TNT003 and TNT005 inhibit cSCC cell growth in culture and warrant further investigation of C1s targeted inhibition in additional in vitro and in vivo models of cSCC.
Collapse
Affiliation(s)
- Liisa Nissinen
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
| | | | | | - Veli-Matti Kähäri
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland.
| |
Collapse
|
2
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
3
|
Saxena R, Gottlin EB, Campa MJ, Bushey RT, Guo J, Patz EF, He YW. Complement factor H: a novel innate immune checkpoint in cancer immunotherapy. Front Cell Dev Biol 2024; 12:1302490. [PMID: 38389705 PMCID: PMC10883309 DOI: 10.3389/fcell.2024.1302490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
The elimination of cancer cells critically depends on the immune system. However, cancers have evolved a variety of defense mechanisms to evade immune monitoring, leading to tumor progression. Complement factor H (CFH), predominately known for its function in inhibiting the alternative pathway of the complement system, has recently been identified as an important innate immunological checkpoint in cancer. CFH-mediated immunosuppression enhances tumor cells' ability to avoid immune recognition and produce an immunosuppressive tumor microenvironment. This review explores the molecular underpinnings, interactions with immune cells, clinical consequences, and therapeutic possibilities of CFH as an innate immune checkpoint in cancer control. The difficulties and opportunities of using CFH as a target in cancer immunotherapy are also explored.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Ryan T Bushey
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Jian Guo
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
4
|
Kallionpää RA, Peltonen S, Le KM, Martikkala E, Jääskeläinen M, Fazeli E, Riihilä P, Haapaniemi P, Rokka A, Salmi M, Leivo I, Peltonen J. Characterization of Immune Cell Populations of Cutaneous Neurofibromas in Neurofibromatosis 1. J Transl Med 2024; 104:100285. [PMID: 37949359 DOI: 10.1016/j.labinv.2023.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Cutaneous neurofibromas (cNFs) are characteristic of neurofibromatosis 1 (NF1), yet their immune microenvironment is incompletely known. A total of 61 cNFs from 10 patients with NF1 were immunolabeled for different types of T cells and macrophages, and the cell densities were correlated with clinical characteristics. Eight cNFs and their overlying skin were analyzed for T cell receptor CDR domain sequences, and mass spectrometry of 15 cNFs and the overlying skin was performed to study immune-related processes. Intratumoral T cells were detected in all cNFs. Tumors from individuals younger than the median age of the study participants (33 years), growing tumors, and tumors smaller than the data set median showed increased T cell density. Most samples displayed intratumoral or peritumoral aggregations of CD3-positive cells. T cell receptor sequencing demonstrated that the skin and cNFs host distinct T cell populations, whereas no dominant cNF-specific T cell clones were detected. Unique T cell clones were fewer in cNFs than in skin, and mass spectrometry suggested lower expression of proteins related to T cell-mediated immunity in cNFs than in skin. CD163-positive cells, suggestive of M2 macrophages, were abundant in cNFs. Human cNFs have substantial T cell and macrophage populations that may be tumor-specific.
Collapse
Affiliation(s)
- Roope A Kallionpää
- Institute of Biomedicine, University of Turku, Turku, Finland; FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology and Venereology, University of Turku, Turku, Finland; Department of Dermatology, Turku University Hospital, Turku, Finland; Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Dermatology and Allergology, University of Helsinki, Helsinki, Finland; Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Kim My Le
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eija Martikkala
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Elnaz Fazeli
- Institute of Biomedicine, University of Turku, Turku, Finland; Biomedicum Imaging Unit, Faculty of Medicine and HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pilvi Riihilä
- Department of Dermatology and Venereology, University of Turku, Turku, Finland; Department of Dermatology, Turku University Hospital, Turku, Finland; FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Pekka Haapaniemi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, Turku, Finland; MediCity Research Laboratory, and InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Ilmo Leivo
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juha Peltonen
- Institute of Biomedicine, University of Turku, Turku, Finland; FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
5
|
Siljamäki E, Riihilä P, Suwal U, Nissinen L, Rappu P, Kallajoki M, Kähäri VM, Heino J. Inhibition of TGF-β signaling, invasion, and growth of cutaneous squamous cell carcinoma by PLX8394. Oncogene 2023; 42:3633-3647. [PMID: 37864034 PMCID: PMC10691969 DOI: 10.1038/s41388-023-02863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. The prognosis of patients with metastatic cSCC is poor emphasizing the need for new therapies. We have previously reported that the activation of Ras/MEK/ERK1/2 and transforming growth factor β (TGF-β)/Smad2 signaling in transformed keratinocytes and cSCC cells leads to increased accumulation of laminin-332 and accelerated invasion. Here, we show that the next-generation B-Raf inhibitor PLX8394 blocks TGF-β signaling in ras-transformed metastatic epidermal keratinocytes (RT3 cells) harboring wild-type B-Raf and hyperactive Ras. PLX8394 decreased phosphorylation of TGF-β receptor II and Smad2, as well as p38 activity, MMP-1 and MMP-13 synthesis, and laminin-332 accumulation. PLX8394 significantly inhibited the growth of human cSCC tumors and in vivo collagen degradation in xenograft model. In conclusion, our data indicate that PLX8394 inhibits several serine-threonine kinases in malignantly transformed human keratinocytes and cSCC cells and inhibits cSCC invasion and tumor growth in vitro and in vivo. We identify PLX8394 as a potential therapeutic compound for advanced human cSCC.
Collapse
Affiliation(s)
- Elina Siljamäki
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Ujjwal Suwal
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Pekka Rappu
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland.
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland.
| | - Jyrki Heino
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland.
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland.
| |
Collapse
|
6
|
Tsang DA, Tam SYC, Oh CC. Molecular Alterations in Cutaneous Squamous Cell Carcinoma in Immunocompetent and Immunosuppressed Hosts-A Systematic Review. Cancers (Basel) 2023; 15:1832. [PMID: 36980718 PMCID: PMC10046480 DOI: 10.3390/cancers15061832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/26/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The characterization of cutaneous squamous cell carcinoma (cSCC) at the molecular level is lacking in the current literature due to the high mutational burden of this disease. Immunosuppressed patients afflicted with cSCC experience considerable morbidity and mortality. In this article, we review the molecular profile of cSCC among the immunosuppressed and immunocompetent populations at the genetic, epigenetic, transcriptomic, and proteometabolomic levels, as well as describing key differences in the tumor immune microenvironment between these two populations. We feature novel biomarkers from the recent literature which may serve as potential targets for therapy.
Collapse
Affiliation(s)
- Denise Ann Tsang
- Department of Dermatology, Singapore General Hospital, Singapore 169608, Singapore;
| | - Steve Y. C. Tam
- Education Resource Centre, Singapore General Hospital, Singapore 169608, Singapore
| | - Choon Chiat Oh
- Department of Dermatology, Singapore General Hospital, Singapore 169608, Singapore;
- Duke-NUS Medical School, Singapore 169608, Singapore
| |
Collapse
|
7
|
Vedunova M, Turubanova V, Vershinina O, Savyuk M, Efimova I, Mishchenko T, Raedt R, Vral A, Vanhove C, Korsakova D, Bachert C, Coppieters F, Agostinis P, Garg AD, Ivanchenko M, Krysko O, Krysko DV. DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 anti-tumor immunity and provide a four-gene signature for glioma prognosis. Cell Death Dis 2022; 13:1062. [PMID: 36539408 PMCID: PMC9767932 DOI: 10.1038/s41419-022-05514-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Gliomas, the most frequent type of primary tumor of the central nervous system in adults, results in significant morbidity and mortality. Despite the development of novel, complex, multidisciplinary, and targeted therapies, glioma therapy has not progressed much over the last decades. Therefore, there is an urgent need to develop novel patient-adjusted immunotherapies that actively stimulate antitumor T cells, generate long-term memory, and result in significant clinical benefits. This work aimed to investigate the efficacy and molecular mechanism of dendritic cell (DC) vaccines loaded with glioma cells undergoing immunogenic cell death (ICD) induced by photosens-based photodynamic therapy (PS-PDT) and to identify reliable prognostic gene signatures for predicting the overall survival of patients. Analysis of the transcriptional program of the ICD-based DC vaccine led to the identification of robust induction of Th17 signature when used as a vaccine. These DCs demonstrate retinoic acid receptor-related orphan receptor-γt dependent efficacy in an orthotopic mouse model. Moreover, comparative analysis of the transcriptome program of the ICD-based DC vaccine with transcriptome data from the TCGA-LGG dataset identified a four-gene signature (CFH, GALNT3, SMC4, VAV3) associated with overall survival of glioma patients. This model was validated on overall survival of CGGA-LGG, TCGA-GBM, and CGGA-GBM datasets to determine whether it has a similar prognostic value. To that end, the sensitivity and specificity of the prognostic model for predicting overall survival were evaluated by calculating the area under the curve of the time-dependent receiver operating characteristic curve. The values of area under the curve for TCGA-LGG, CGGA-LGG, TCGA-GBM, and CGGA-GBM for predicting five-year survival rates were, respectively, 0.75, 0.73, 0.9, and 0.69. These data open attractive prospects for improving glioma therapy by employing ICD and PS-PDT-based DC vaccines to induce Th17 immunity and to use this prognostic model to predict the overall survival of glioma patients.
Collapse
Affiliation(s)
- Maria Vedunova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victoria Turubanova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia ,grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Olga Vershinina
- grid.28171.3d0000 0001 0344 908XInstitute of Information Technology, Mathematics and Mechanics, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria Savyuk
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia ,grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Iuliia Efimova
- grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium ,grid.510942.bCancer Research Institute Ghent, Ghent, Belgium
| | - Tatiana Mishchenko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Robrecht Raedt
- grid.5342.00000 0001 2069 77984Brain Team, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Anne Vral
- grid.5342.00000 0001 2069 7798Radiobiology Research Group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- grid.5342.00000 0001 2069 7798IBiTech-MEDISIP-Infinity Laboratory, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Daria Korsakova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Claus Bachert
- grid.5342.00000 0001 2069 7798Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Frauke Coppieters
- grid.5342.00000 0001 2069 7798Center for Medical Genetics Ghent (CMGG), Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrizia Agostinis
- grid.5596.f0000 0001 0668 7884Laboratory of Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology Research, Leuven, Belgium
| | - Abhishek D. Garg
- grid.5596.f0000 0001 0668 7884Laboratory of Cell Stress & Immunity (CSI), Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Mikhail Ivanchenko
- grid.28171.3d0000 0001 0344 908XInstitute of Information Technology, Mathematics and Mechanics, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga Krysko
- grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Dmitri V. Krysko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia ,grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium ,grid.510942.bCancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
8
|
Fang K, Long Q, Liao Z, Zhang C, Jiang Z. Glycoproteomics revealed novel N-glycosylation biomarkers for early diagnosis of lung adenocarcinoma cancers. Clin Proteomics 2022; 19:43. [DOI: 10.1186/s12014-022-09376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/15/2022] [Indexed: 11/20/2022] Open
Abstract
AbstractCirculating biomarkers play important roles in diagnosis of malignant tumors. N-glycosylation is an important post-translation patter and obviously affect biological behaviors of malignant tumor cells. However, the role of N-glycosylation sites in early diagnosis of tumors still remains further investigation. In this study, plasma from 20 lung adenocarcinoma (LUAD), which were all classified as stage I, as well as 20 normal controls (NL) were labeled and screened by mass spectrometry (MS). Total 39 differential N-glycosylation sites were detected in LUAD, 17 were up-regulated and 22 were down-regulated. In all differential sites, ITGB3-680 showed highest potential in LUAD which showed 99.2% AUC, 95.0% SP and 95.0% SN. Besides, APOB-1523 (AUC: 89.0%, SP: 95.0%, SN: 70.0%), APOB-2982 (AUC: 86.8%, SP: 95.0%, SN: 45.0%) and LPAL2-101 (AUC: 81.1%, SP: 95.0%, SN: 47.4%) also acted as candidate biomarkers in LUAD. Combination analysis was then performed by random forest model, all samples were divided into training group (16 cases) and testing group (4 cases) and conducted by feature selection, machine learning, integrated model of classifier and model evaluation. And the results indicated that combination of differential sites could reach 100% AUC in both training and testing group. Taken together, our study revealed multiple N-glycosylation sites which could be applied as candidate biomarkers for early diagnosis diagnosis of LUAD.
Collapse
|
9
|
Ding Q, Li H, Xu Z, Hu K, Ye Q. Identification of CFHR4 associated with poor prognosis of hepatocellular carcinoma. Front Oncol 2022; 12:812663. [PMID: 36338737 PMCID: PMC9632743 DOI: 10.3389/fonc.2022.812663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most leading causes of cancer death worldwide. The 5-year survival rate of HCC patients remains low due to the lack of early-stage symptoms. Human complement factor H-related protein 4 (CFHR4) is a critical gene that belongs to the factor H family of plasma glycoproteins, which has not been linked to HCC development. The correlations between CFHR4 and prognosis and tumor-infiltrating lymphocytes in HCC are yet unknown. The present study demonstrated the involvement of CFHR4 in HCC via data mining approaches. Results A total of 18 upregulated and 67 down-regulated differentially expressed genes (DEGs) were identified. Importantly, CFHR4, which was screened from DEGs, was shown to express at a lower level in HCC tumor tissue than normal tissues. Western blotting (WB), immunohistochemical (IHC) and quantitative reverse transcription PCR (qRT-PCR) experiments of clinical samples further validated CFHR4 was aberrantly expressed in HCC patients; Data from TCGA showed that CFHR4 was inversely correlated with a cancer family history, histological grade, tumor node metastasis (TNM) stage, and serum AFP level of HCC patients; Univariate and multivariate analyses revealed that low expression of CFHR4 was an independent predictive marker in patients with HCC; Kaplan-Meier analysis showed that the lower expression of CFHR4 was significantly associated with the progression of HCC and poor prognosis rates. Furthermore, TIMER analysis indicated that CFHR4 expression levels had correlations with infiltrating levels of immune cells in HCC. Conclusion CFHR4 expression was low in HCC and was significantly related to the poor prognosis of HCC and the level of immune infiltration. CFHR4 played important roles in regulating the initiation and progression of HCC and could be a potential biomarker for the diagnosis and prognosis of HCC. Methods The expression of CFHR4 was analyzed by GEO and TCGA-LIHC database and verified by WB and IHC assay. The biological function of CFHR4 was performed by GO and KEGG enrichment analysis, and the genomic alteration of CFHR4 was investigated by cBioPortal database.The correlation between CFHR4 expression and clinical relevance was evaluated through Cox proportional hazards model, and the correlation between CFHR4 expression and tumor immune infiltrates were studied by TIMER database.
Collapse
Affiliation(s)
- Qinglin Ding
- Sino-German Biomedical Center, National Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Hanluo Li
- Sino-German Biomedical Center, National Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Zhigao Xu
- Institute of Hepatobiliary Diseases of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kanghong Hu
- Sino-German Biomedical Center, National Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Qifa Ye
- Institute of Hepatobiliary Diseases of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Evaluating the clinical utility of measuring levels of factor H and the related proteins. Mol Immunol 2022; 151:166-182. [PMID: 36162225 DOI: 10.1016/j.molimm.2022.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022]
Abstract
After years of disappointing clinical results, the tide has finally changed and complement targeted-therapies have become a validated and accepted treatment option for several diseases. These accomplishments have revitalized the field and brought renewed attention to the prospects that complement therapeutics can offer. Streamlining diagnostics and therapeutics is imperative in this new era of clinical use of complement therapeutics. However, the incredible success in therapeutics has not been accompanied by the development of novel standardized tools for complement testing. Complement biomarkers can assist in the risk assessment and diagnosis of diseases as well as the prediction of disease progression and treatment response. Recently, a group of complement proteins has been suggested to be highly relevant in various complement-associated disorders, namely the human factor H (FH) protein family. This family of closely related proteins consists of FH, FH-like protein 1, and five factor H-related proteins, and they have been linked to eye, kidney, infectious, vascular, and autoimmune diseases as well as cancer. The goal of this review is to provide a comprehensive overview of the available data on circulating levels of FH and its related proteins in different pathologies. In addition, we examined the current literature to determine the clinical utility of measuring levels of the FH protein family in health and disease. Finally, we discuss future steps that are needed to make their clinical translation a reality.
Collapse
|
11
|
Super Enhancer-Regulated LINC00094 (SERLOC) Upregulates the Expression of MMP-1 and MMP-13 and Promotes Invasion of Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14163980. [PMID: 36010973 PMCID: PMC9406669 DOI: 10.3390/cancers14163980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important regulators of cancer progression. Super enhancers (SE) play a role in tumorigenesis and regulate the expression of specific lncRNAs. We examined the role of BRD3OS, also named LINC00094, in cutaneous squamous cell carcinoma (cSCC). Elevated BRD3OS (LINC00094) expression was detected in cSCC cells, and expression was downregulated by SE inhibitors THZ1 and JQ1 and via the MEK1/ERK1/2 pathway. Increased expression of BRD3OS (LINC00094) was noted in tumor cells in cSCCs and their metastases compared to normal skin, actinic keratoses, and cSCCs in situ. Higher BRD3OS (LINC00094) expression was noted in metastatic cSCCs than in non-metastatic cSCCs. RNA-seq analysis after BRD3OS (LINC00094) knockdown revealed significantly regulated GO terms Cell-matrix adhesion, Basement membrane, Metalloendopeptidase activity, and KEGG pathway Extracellular matrix–receptor interaction. Among the top-regulated genes were MMP1, MMP10, and MMP13. Knockdown of BRD3OS (LINC00094) resulted in decreased production of MMP-1 and MMP-13 by cSCC cells, suppressed invasion of cSCC cells through collagen I, and growth of human cSCC xenografts in vivo. Based on these observations, BRD3OS (LINC00094) was named SERLOC (super enhancer and ERK1/2-Regulated Long Intergenic non-protein coding transcript Overexpressed in Carcinomas). These results reveal the role of SERLOC in cSCC invasion and identify it as a potential therapeutic target in advanced cSCC.
Collapse
|
12
|
Yu H, Wang C, Ke S, Bai M, Xu Y, Lu S, Feng Z, Qian B, Xu Y, Zhou M, Li Z, Yin B, Li X, Hua Y, Zhou Y, Pan S, Fu Y, Ma Y. Identification of CFHR4 as a Potential Prognosis Biomarker Associated With lmmune Infiltrates in Hepatocellular Carcinoma. Front Immunol 2022; 13:892750. [PMID: 35812416 PMCID: PMC9257081 DOI: 10.3389/fimmu.2022.892750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Background Complement factor H-related 4 (CFHR4) is a protein-coding gene that plays an essential role in multiple diseases. However, the prognostic value of CFHR4 in hepatocellular carcinoma (HCC) is unknown. Methods Using multiple databases, we investigated CFHR4 expression levels in HCC and multiple cancers. The relationship between CFHR4 expression levels and clinicopathological variables was further analyzed. Various potential biological functions and regulatory pathways of CFHR4 in HCC were identified by performing a Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA). Single-sample gene set enrichment analysis (ssGSEA) was performed to confirm the correlation between CFHR4 expression and immune cell infiltration. The correlations between CFHR4 expression levels in HCC and N6-methyladenosine (m6A) modifications and the competing endogenous RNA (ceRNA) regulatory networks were confirmed in TCGA cohort. Results CFHR4 expression levels were significantly decreased in HCC tissues. Low CFHR4 expression in HCC tissues was significantly correlated with the patients’ sex, race, age, TNM stage, pathological stage, tumor status, residual tumor, histologic grade and alpha fetal protein (AFP) level. GO and KEGG analyses revealed that differentially expressed genes related to CFHR4 may be involved in the synaptic membrane, transmembrane transporter complex, gated channel activity, chemical carcinogenesis, retinol metabolism, calcium signaling pathway, PPAR signaling pathway, insulin and gastric acid secretion. GSEA revealed that the FCGR-activated reaction, PLK1 pathway, ATR pathway, MCM pathway, cascade reactions of PI3K and FGFR1, reactant-mediated MAPK activation and FOXM1 pathway were significantly enriched in HCC with low CFHR4 expression. Moreover, CFHR4 expression was inversely correlated the levels of infiltrating Th2 cells, NK CD56bright cells and Tfh cells. In contrast, we observed positive correlations with the levels of infiltrating DCs, neutrophils, Th17 cells and mast cells. CFHR4 expression showed a strong correlation with various immunomarker groups in HCC. In addition, high CFHR4 expression significantly prolonged the overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI). We observed a substantial correlation between the expression of CFHR4 and multiple N6-methyladenosine genes in HCC and constructed potential CFHR4-related ceRNA regulatory networks. Conclusions CFHR4 might be a potential therapeutic target for improving the HCC prognosis and is closely related to immune cell infiltration.
Collapse
Affiliation(s)
- Hongjun Yu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanjia Ke
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Miaoyu Bai
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhigang Feng
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The First Department of General Surgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Baolin Qian
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Xu
- Department of Pediatrics, Hainan Hospital of PLA General Hospital, Sanya, China
| | - Menghua Zhou
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zihao Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhou
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yao Fu, ; Yong Ma,
| | - Yong Ma
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yao Fu, ; Yong Ma,
| |
Collapse
|
13
|
Johnson EM, Uppalapati CK, Pascual AS, Estrada SI, Averitte RL, Leyva KJ, Hull EE. Complement Factor H in cSCC: Evidence of a Link Between Sun Exposure and Immunosuppression in Skin Cancer Progression. Front Oncol 2022; 12:819580. [PMID: 35223500 PMCID: PMC8869607 DOI: 10.3389/fonc.2022.819580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common form of skin cancer with an estimated 750,000 cases diagnosed annually in the United States. Most cases are successfully treated with a simple excision procedure, but ~5% of cases metastasize and have a 5-year survival rate of 25-45%. Thus, identification of biomarkers correlated to cSCC progression may be useful in the early identification of high-risk cSCC and in the development of new therapeutic strategies. This work investigates the role of complement factor H (CFH) in the development of cSCC. CFH is a regulatory component of the complement cascade which affects cell mediated immune responses and increases in complement proteins are associated with poor outcomes in multiple cancer types. We provide evidence that sun exposure may increase levels of CFH, suggesting an immunomodulatory role for CFH early in the development of cSCC. We then document increased levels of CFH in cSCC samples, compared to adjacent normal tissue (ANT) routinely excised in a dermatology clinic which, in paired samples, received the same level of sun exposure. We also provide evidence that levels of CFH are even greater in more advanced cases of cSCC. To provide a potential link between CFH and immune modulation, we assessed immune system function by measuring interferon gamma (IFN-γ) and FOXP3 in patient samples. IFN-γ levels were unchanged in cSCC relative to ANT which is consistent with an ineffective cell-mediated immune response. FOXP3 was used to assess prevalence of regulatory T cells within the tissues, indicating either a derailed or inhibitory immune response. Our data suggest that FOXP3 levels are higher in cSCC than in ANT. Our current working model is that increased CFH downstream of sun exposure is an early event in the development of cSCC as it interferes with proper immune surveillance and decreases the effectiveness of the immune response, and creates a more immunosuppressive environment, thus promoting cSCC progression.
Collapse
Affiliation(s)
- Ellise M Johnson
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Chandana K Uppalapati
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Agnes S Pascual
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Sarah I Estrada
- Affiliated Dermatology & Affiliated Laboratories, Scottsdale, AZ, United States
| | - Richard L Averitte
- Affiliated Dermatology & Affiliated Laboratories, Scottsdale, AZ, United States
| | - Kathryn J Leyva
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Elizabeth E Hull
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| |
Collapse
|
14
|
Luo L, Deng S, Tang W, Hu X, Yin F, Ge H, Tang J, Liao Z, Li X, Feng J. Recruitment of IL-1β-producing intermediate monocytes enhanced by C5a contributes to the development of malignant pleural effusion. Thorac Cancer 2022; 13:811-823. [PMID: 35137541 PMCID: PMC8930456 DOI: 10.1111/1759-7714.14324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background Monocytes are involved in tumor growth and metastasis, but the distribution of monocyte phenotypes and their role in the development of malignant pleural effusion (MPE) remains unknown. Methods A total of 94 MPE patients (76 diagnosed with adenocarcinoma lung cancer and 18 with squamous cell lung cancer) and 102 volunteers for health examination in Xiangya Hospital from December 2016 to December 2019 were included in the study. Results The distribution of monocyte subtypes identified by the expression of CD14 and CD16 were analyzed by flow cytometry. The proportion of CD14++CD16+ intermediate monocytes were significantly increased in pleural effusion of MPE patients. The complement system components were assayed by immunohistochemistry and ELISA, and higher expression of the classical and alternative pathways were detected in malignant pleural tissue. Transwell assay further revealed that C5a enhanced the infiltration of intermediate monocytes into the pleural cavity by promoting CCL2 production in pleural mesothelial cells (PMCs). In addition, C5a promoted the secretion of IL‐1β by intermediate monocytes. Furthermore, C5a activated in intermediate monocytes and IL‐1β released after C5a stimulation by monocytes promoted the proliferation, migration, adhesion, and epithelial‐to‐mesenchymal transition (EMT) of tumor cells, and attenuated tumor cell apoptosis. Conclusions C5a, activated by the classical and alternative pathways of the complement system, not only mediated the infiltration of intermediate monocytes by enhancing CCL2 production in PMCs but also induced IL‐1β release from the recruited monocytes in MPE. The consequence of C5a activation and the subsequent IL‐1β overexpression in intermediate monocytes contributed to MPE progression.
Collapse
Affiliation(s)
- Lisha Luo
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tang
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yin
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ge
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Jiale Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhonghua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Juntao Feng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Rahmati Nezhad P, Riihilä P, Knuutila JS, Viiklepp K, Peltonen S, Kallajoki M, Meri S, Nissinen L, Kähäri VM. Complement Factor D Is a Novel Biomarker and Putative Therapeutic Target in Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14020305. [PMID: 35053469 PMCID: PMC8773783 DOI: 10.3390/cancers14020305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The incidence of the most common metastatic skin malignancy, cutaneous squamous cell carcinoma (cSCC), is growing worldwide, and the prognosis of the metastatic disease is poor. Presently, there are no biomarkers or therapeutic targets for high-risk cSCCs. Recent studies have demonstrated the essential role of autocrine complement synthesis in the progression of cSCC. Here, we have evaluated the role of complement Factor D (FD), the rate-limiting enzyme of the alternative complement pathway, in cSCC development. The results identify FD as a novel biomarker and putative therapeutic target for cSCC and propose the small-molecule FD inhibitor Danicopan as a highly specific drug candidate in the therapy of advanced cSCC. It is expected that the discovery of complement-associated molecular markers for cSCC progression would improve diagnosis, classification, prognostication, and targeted therapy of cSCC and its precursors in the future. Abstract Cutaneous squamous cell carcinoma (cSCC) is the most prevalent metastatic skin cancer. Previous studies have demonstrated the autocrine role of complement components in cSCC progression. We have investigated factor D (FD), the key enzyme of the alternative complement pathway, in the development of cSCC. RT-qPCR analysis of cSCC cell lines and normal human epidermal keratinocytes (NHEKs) demonstrated significant up-regulation of FD mRNA in cSCC cells compared to NHEKs. Western blot analysis also showed more abundant FD production by cSCC cell lines. Significantly higher FD mRNA levels were noted in cSCC tumors than in normal skin. Strong tumor cell-associated FD immunolabeling was detected in the invasive margin of human cSCC xenografts. More intense tumor cell-specific immunostaining for FD was seen in the tumor edge in primary and metastatic cSCCs, in metastases, and in recessive dystrophic epidermolysis bullosa-associated cSCCs, compared with cSCC in situ, actinic keratosis and normal skin. FD production by cSCC cells was dependent on p38 mitogen-activated protein kinase activity, and it was induced by interferon-γ and interleukin-1β. Blocking FD activity by Danicopan inhibited activation of extracellular signal-regulated kinase 1/2 and attenuated proliferation of cSCC cells. These results identify FD as a novel putative biomarker and therapeutic target for cSCC progression.
Collapse
Affiliation(s)
- Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Jaakko S. Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland;
| | - Seppo Meri
- Department of Bacteriology and Immunology, The Translational Immunology Research Program, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Correspondence: ; Tel.: +358-2-3131600
| |
Collapse
|
16
|
C1r Upregulates Production of Matrix Metalloproteinase-13 and Promotes Invasion of Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2021; 142:1478-1488.e9. [PMID: 34756877 DOI: 10.1016/j.jid.2021.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with increasing incidence worldwide. Previous studies have demonstrated the role of complement system in cSCC progression. In this study we have investigated the mechanistic role of serine protease C1r, a component of the classical pathway of complement system, in cSCC. Knockout of C1r in cSCC cells using CRISPR/Cas9 resulted in significant decrease in their proliferation, migration, and invasion through collagen type I compared to wild type cSCC cells. Knockout of C1r suppressed growth and vascularization of cSCC xenograft tumors, and promoted apoptosis of tumor cells in vivo. mRNA-seq analysis after C1r knockdown revealed significantly regulated GO terms Cell-matrix adhesion, Extracellular matrix component, Basement membrane, Metalloendopeptidase activity and KEGG pathway Extracellular matrix-receptor interaction. Among the significantly regulated genes were invasion-associated matrix metalloproteinases MMP1, MMP13, MMP10, and MMP12. Knockout of C1r resulted in decreased production of MMP-1, MMP-13, MMP-10, and MMP-12 by cSCC cells in culture. Knockout of C1r inhibited expression of MMP-13 by tumor cells, suppressed invasion, and reduced the amount of degraded collagen in vivo in xenografts. These results provide evidence for the role of C1r in promoting the invasion of cSCC cells by increasing MMP production.
Collapse
|
17
|
Boudhabhay I, Roumenina LT. Complement factor H: a guardian within? Kidney Int 2021; 100:747-749. [PMID: 34556298 DOI: 10.1016/j.kint.2021.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
The glomerular endothelium produces the key complement regulator factor H (FH), but its role in the endothelial cells protection and functional integrity is unclear. In this edition of Kidney International, Mahajan et al. demonstrate that the endothelial-intrinsic FH is important for the cytoskeletal architecture, monolayer integrity, proliferation control, metabolism, and inflammatory signaling regulation. These findings place the endothelium-derived FH in the center of the pathological process of diseases, characterized with FH genetic abnormalities.
Collapse
Affiliation(s)
- Idris Boudhabhay
- Service de Néphrologie et Transplantation Rénale, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France; Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, Paris, France.
| |
Collapse
|
18
|
Wang F, Huang L, Yu J, Zang D, Ye L, Zhu Q. Altered levels of complement components associated with non-immediate drug hypersensitivity reactions. J Immunotoxicol 2021; 17:1-9. [PMID: 31795786 DOI: 10.1080/1547691x.2019.1695985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nonimmediate drug hypersensitivity reactions (niDHRs) range from mild-type maculopapular exanthema (MPE) to severe type Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) with unentirely clarified pathogenesis. This study sought to explore whether complement components participated in niDHRs. The participants comprised of three groups as follows: MPE (n = 65), SJS/TEN (n = 13, contains 7 SJS, 2 SJS-TEN overlap and 4 TEN), and equal healthy controls (n = 78). Skin pathological changes were confirmed by hematoxylin and eosin staining. The mRNA and protein levels of complement components were assessed. In the MPE group, there were no alterations in complement components at the protein and mRNA levels found except for a decrease in factor H mRNA. In the SJS/TEN group, up-regulated levels of C3aR and C5aR mRNA and down-regulated factor H mRNA levels in blood were noted. A lower plasma protein level of C3, Factor H and a higher level of C3a, C5, C5a, C5b-9, Factor B (p < 0.05) were found in the SJS/TEN group compared with in the control (p < 0.05). In SJS/TEN skin lesions, indirect immunofluorescence assays showed positive specific staining for C5b-9, but not C3. Both C3aR and C5aR were positive staining in the SJS/TEN samples, while staining for C1q, mannose-binding lectin (MBL), Factor B, and Factor H were only weak or negative. The findings reported here are the first to define the expression profiles/extent of the presence of various complement components at the mRNA and protein levels in niDHRs, especially in SJS/TEN. These altered complement components might, at least in part, be integral to the mechanisms underlying the pathogeneses of SJS and TEN.
Collapse
Affiliation(s)
- Feng Wang
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Hefei, China
| | - Liping Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Junfeng Yu
- Department of Dermatology, Fifth Affiliated Hospital of Chengdu City, Chengdu, China
| | - Dandan Zang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Liangping Ye
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Hefei, China
| |
Collapse
|
19
|
Daugan MV, Revel M, Thouenon R, Dragon-Durey MA, Robe-Rybkine T, Torset C, Merle NS, Noé R, Verkarre V, Oudard SM, Mejean A, Validire P, Cathelineau X, Sanchez-Salas R, Pickering MC, Cremer I, Mansuet-Lupo A, Alifano M, Sautès-Fridman C, Damotte D, Fridman WH, Roumenina LT. Intracellular Factor H Drives Tumor Progression Independently of the Complement Cascade. Cancer Immunol Res 2021; 9:909-925. [PMID: 34039652 DOI: 10.1158/2326-6066.cir-20-0787] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/03/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
The complement system is a powerful and druggable innate immune component of the tumor microenvironment. Nevertheless, it is challenging to elucidate the exact mechanisms by which complement affects tumor growth. In this study, we examined the processes by which the master complement regulator factor H (FH) affects clear cell renal cell carcinoma (ccRCC) and lung cancer, two cancers in which complement overactivation predicts poor prognosis. FH was present in two distinct cellular compartments: the membranous (mb-FH) and intracellular (int-FH) compartments. Int-FH resided in lysosomes and colocalized with C3. In ccRCC and lung adenocarcinoma, FH exerted protumoral action through an intracellular, noncanonical mechanism. FH silencing in ccRCC cell lines resulted in decreased proliferation, due to cell-cycle arrest and increased mortality, and this was associated with increased p53 phosphorylation and NFκB translocation to the nucleus. Moreover, the migration of the FH-silenced cells was reduced, likely due to altered morphology. These effects were cell type-specific because no modifications occurred upon CFH silencing in other FH-expressing cells tested: tubular cells (from which ccRCC originates), endothelial cells (human umbilical vein endothelial cells), and squamous cell lung cancer cells. Consistent with this, in ccRCC and lung adenocarcinoma, but not in lung squamous cell carcinoma, int-FH conferred poor prognosis in patient cohorts. Mb-FH performed its canonical function of complement regulation but had no impact on tumor cell phenotype or patient survival. The discovery of intracellular functions for FH redefines the role of the protein in tumor progression and its use as a prognostic biomarker or potential therapeutic target.See article by Daugan et al., p. 891 (36).
Collapse
Affiliation(s)
- Marie V Daugan
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Margot Revel
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Romane Thouenon
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Marie-Agnès Dragon-Durey
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Department of Biologic Immunology, Hôpital Européen Georges-Pompidou, Assistance Publique Hopitaux de Paris, Paris, France
| | - Tania Robe-Rybkine
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Carine Torset
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Nicolas S Merle
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Rémi Noé
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Virginie Verkarre
- Université de Paris, Paris, France.,Department of Pathology, Hôpital Européen Georges-Pompidou, Assistance Publique Hopitaux de Paris, Paris, France
| | - Stephane Marie Oudard
- Université de Paris, Paris, France.,Department of Oncology, Hôpital Européen Georges-Pompidou, Assistance Publique Hopitaux de Paris, Paris, France
| | - Arnaud Mejean
- Université de Paris, Paris, France.,Department of Urology, Hôpital Européen Georges-Pompidou, Assistance Publique Hopitaux de Paris, Paris, France
| | - Pierre Validire
- Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Xavier Cathelineau
- Université de Paris, Paris, France.,Department of Urology, Institut Mutualiste Montsouris, Paris, France
| | | | - Mathew C Pickering
- Centre for Complement and Inflammation Research, Imperial College, London, United Kingdom
| | - Isabelle Cremer
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Audrey Mansuet-Lupo
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Departments of Pathology and Thoracic Surgery, Hôpital Cochin, Assistance Publique Hopitaux de Paris, Paris, France
| | - Marco Alifano
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Departments of Pathology and Thoracic Surgery, Hôpital Cochin, Assistance Publique Hopitaux de Paris, Paris, France
| | - Catherine Sautès-Fridman
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Diane Damotte
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Departments of Pathology and Thoracic Surgery, Hôpital Cochin, Assistance Publique Hopitaux de Paris, Paris, France
| | - Wolf H Fridman
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
20
|
Rahmati Nezhad P, Riihilä P, Piipponen M, Kallajoki M, Meri S, Nissinen L, Kähäri VM. Complement factor I upregulates expression of matrix metalloproteinase-13 and -2 and promotes invasion of cutaneous squamous carcinoma cells. Exp Dermatol 2021; 30:1631-1641. [PMID: 33813765 DOI: 10.1111/exd.14349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/19/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022]
Abstract
The incidence of cutaneous squamous cell carcinoma (cSCC) is increasing globally. Here, we have studied the functional role of complement factor I (CFI) in the progression of cSCC. CFI was knocked down in cSCC cells, and RNA-seq analysis was performed. Significant downregulation of genes in IPA biofunction categories Proliferation of cells and Growth of malignant tumor, in Gene Ontology (GO) terms Metallopeptidase activity and Extracellular matrix component, as well as Reactome Degradation of extracellular matrix was detected after CFI knockdown. Further analysis of the latter three networks, revealed downregulation of several genes coding for invasion-associated matrix metalloproteinases (MMPs) after CFI knockdown. The downregulation of MMP-13 and MMP-2 was confirmed at mRNA, protein and tissue levels by qRT-qPCR, Western blot and immunohistochemistry, respectively. Knockdown of CFI decreased the invasion of cSCC cells through type I collagen. Overexpression of CFI in cSCC cells resulted in enhanced production of MMP-13 and MMP-2 and increased invasion through type I collagen and Matrigel, and in increased ERK1/2 activation and cell proliferation. Altogether, these findings identify a novel mechanism of action of CFI in upregulation of MMP-13 and MMP-2 expression and cSCC invasion. These results identify CFI as a prospective molecular marker for invasion and metastasis of cSCC.
Collapse
Affiliation(s)
- Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
21
|
Ghetti G, D’Avella MC, Pradelli L. Preliminary Cost-Effectiveness and Cost-Utility Analysis of Cemiplimab in Patients with Advanced Cutaneous Squamous Cell Carcinoma in Italy. CLINICOECONOMICS AND OUTCOMES RESEARCH 2021; 13:121-133. [PMID: 33603419 PMCID: PMC7882423 DOI: 10.2147/ceor.s295605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/23/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Cutaneous squamous cell carcinoma (CSCC) is a common cancer that in most cases is curable with surgery. About 3-5% of patients develop advanced CSCC (aCSCC) and are no longer responsive to surgery or radiation therapy. The aim of this study was to assess the cost-effectiveness and cost-utility of cemiplimab, the first systemic therapy approved in Italy for patients with aCSCC, vs platinum-based chemotherapy from the Italian National Health Service (SSN) perspective. METHODS A partitioned survival model, which included three mutually exclusive health states, was developed to estimate costs and outcomes for patients with aCSCC, over a 30-year time horizon (lifetime). No direct evidence of the comparative efficacy and safety of cemiplimab versus other therapies currently exists. Therefore, a simulated treatment comparison (STC) was conducted to estimate the comparative efficacy of cemiplimab versus chemotherapy. Individual patient data for cemiplimab were collected from the EMPOWER-CSCC 1 trial whereas chemotherapy data were derived from a retrospective study. In the STC a regression model was used to predict outcomes for cemiplimab in the population observed in the comparator study. Costs of drug acquisition/administration and management of adverse events were included. Costs and outcomes were discounted at 3% per year. Incremental cost-effectiveness ratio (ICER) and incremental cost-utility ratio (ICUR) were calculated; sensitivity and scenario analyses were performed to assess the robustness of results. RESULTS In the base-case, treatment with cemiplimab was associated with a gain of 4.89 LYs and 3.99 QALYs, compared with a platinum-based chemotherapy regimen, resulting in an estimated ICER of 27,821 €/LY gained and an ICUR of 34,110 €/QALY gained. Both ICER and ICUR were below the commonly used Italian SSN willingness to pay thresholds. CONCLUSION The use of cemiplimab, compared with a platinum-based chemotherapy regimen, can be considered a cost-effective option for the treatment of aCSCC patients in Italy.
Collapse
Affiliation(s)
- Gianni Ghetti
- Department of Health Economics and Outcome Research, AdRes, Turin, Italy
| | | | - Lorenzo Pradelli
- Department of Health Economics and Outcome Research, AdRes, Turin, Italy
| |
Collapse
|
22
|
Jackson WD, Gulino A, Fossati-Jimack L, Castro Seoane R, Tian K, Best K, Köhl J, Belmonte B, Strid J, Botto M. C3 Drives Inflammatory Skin Carcinogenesis Independently of C5. J Invest Dermatol 2021; 141:404-414.e6. [PMID: 32682912 PMCID: PMC8150327 DOI: 10.1016/j.jid.2020.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/30/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022]
Abstract
Nonmelanoma skin cancer such as cutaneous squamous cell carcinoma (cSCC) is the most common form of cancer and can occur as a consequence of DNA damage to the epithelium by UVR or chemical carcinogens. There is growing evidence that the complement system is involved in cancer immune surveillance; however, its role in cSCC remains unclear. Here, we show that complement genes are expressed in tissue from patients with cSCC, and C3 activation fragments are present in cSCC biopsies, indicating complement activation. Using a range of complement-deficient mice in a two-stage mouse model of chemically-induced cSCC, where a subclinical dose of 7,12-dimethylbenz[a]anthracene causes oncogenic mutations in epithelial cells and 12-O-tetradecanoylphorbol-13-acetate promotes the outgrowth of these cells, we found that C3-deficient mice displayed a significantly reduced tumor burden, whereas an opposite phenotype was observed in mice lacking C5aR1, C5aR2, and C3a receptor. In addition, in mice unable to form the membrane attack complex, the tumor progression was unaltered. C3 deficiency did not affect the cancer response to 7,12-dimethylbenz[a]anthracene treatment alone but reduced the epidermal hyperplasia during 12-O-tetradecanoylphorbol-13-acetate-induced inflammation. Collectively, these data indicate that C3 drives tumorigenesis during chronic skin inflammation, independently of the downstream generation of C5a or membrane attack complex.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/administration & dosage
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Animals
- Carcinogens/administration & dosage
- Carcinogens/toxicity
- Carcinoma, Squamous Cell/chemically induced
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Complement Activation/genetics
- Complement Activation/immunology
- Complement C3/genetics
- Complement C3/metabolism
- Complement C5/metabolism
- Complement Membrane Attack Complex/metabolism
- Disease Models, Animal
- Disease Progression
- Humans
- Mice
- Mice, Knockout
- Mice, Transgenic
- Neoplasms, Experimental/blood
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Receptor, Anaphylatoxin C5a/genetics
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Skin/drug effects
- Skin/immunology
- Skin/pathology
- Skin Neoplasms/chemically induced
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Tumor Escape
Collapse
Affiliation(s)
- William D Jackson
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| | - Alessandro Gulino
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Liliane Fossati-Jimack
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| | - Rocio Castro Seoane
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| | - Kunyuan Tian
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| | - Katie Best
- Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital and College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Jessica Strid
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom.
| | - Marina Botto
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| |
Collapse
|
23
|
Cost of illness del carcinoma cutaneo a cellule squamose (CSCC). GLOBAL & REGIONAL HEALTH TECHNOLOGY ASSESSMENT 2020; 7:148-153. [PMID: 36627959 PMCID: PMC9677610 DOI: 10.33393/grhta.2020.2171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023] Open
Abstract
Background: Cutaneous squamous cell carcinoma (CSCC) is the second most frequent form of nonmelanoma skin cancer (NMSC) and accounts for 20-25% of skin cancers (AIOM Guidelines 2019). Objectives: The aim of this study was to estimate the total annual direct costs incurred by the National Health Service for the management and treatment of CSCC and advanced CSCC patients in Italy. Methods: An incidence-based cost of illness (COI) model was developed to estimate direct costs associated with the treatment and management of CSCC patients in Italy. The identified treatment pathway was validated with a team of clinical experts and was distinguished between resectable CSCC and locally advanced CSCC or metastatic CSCC. Treatments costs were obtained through the analysis of the National Hospital Discharge Database (HDD) for the years 2015-2018; monitoring and terminal care costs were obtained from national tariffs of outpatient care service and from the literature respectively. Results: Associating the estimated costs for each phase of the treatment pathway with the proportion of patients present in each phase, the COI model estimated an annual economic burden of about € 25.9 million for the management and treatment of patients with CSCC in Italy, € 2.7 million of which were associated to patients with advanced CSCC. The average cost per patient with advanced CSCC was higher compared to that of patient with resectable CSCC (€ 4,490 vs € 2,236 respectively). Conclusions: Our analysis showed that advanced CSCC patients are associated with a higher average cost than patients with resectable CSCC.
Collapse
|
24
|
Mao X, Zhou L, Tey SK, Ma APY, Yeung CLS, Ng TH, Wong SWK, Liu BHM, Fung YME, Patz EF, Cao P, Gao Y, Yam JWP. Tumour extracellular vesicle-derived Complement Factor H promotes tumorigenesis and metastasis by inhibiting complement-dependent cytotoxicity of tumour cells. J Extracell Vesicles 2020; 10:e12031. [PMID: 33708358 PMCID: PMC7890557 DOI: 10.1002/jev2.12031] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/02/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic profiling revealed that extracellular vesicles (EVs) released by metastatic hepatocellular carcinoma (HCC) cells contained a significant number of complement proteins. Complement Factor H (CFH), an abundant soluble serum protein that inhibits the alternative complement pathway, was found to be highly expressed in EVs of metastatic HCC cell lines. Here, we investigated the functional role of EV-CFH and explored the therapeutic efficacy of targeting EV-CFH with an anti-CFH antibody in HCC. The results showed that EVs that are enriched in CFH promoted HCC cell growth, migration, invasiveness and enhanced liver tumour formation in mice. EV-CFH also promoted metastasis, which was significantly abrogated when treated with an anti-CFH antibody. These findings demonstrate an unexplored function of EV-CFH in protecting HCC cells by evading complement attack, thereby facilitating tumorigenesis and metastasis. Lastly, we demonstrated the therapeutic efficacy of an anti-CFH antibody in suppressing tumour formation in a syngeneic mouse model. This study suggests a new therapeutic strategy for HCC, by inhibiting EV-CFH with a tumour specific anti-CFH antibody.
Collapse
Affiliation(s)
- Xiaowen Mao
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Longyin Zhou
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Sze Keong Tey
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Angel Po Yee Ma
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Cherlie Lot Sum Yeung
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Tung Him Ng
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Samuel Wan Ki Wong
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Bonnie Hei Man Liu
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Yi Man Eva Fung
- Department of Chemistry, State Key Laboratory of Synthetic ChemistryThe University of Hong KongPokfulamHong Kong
| | - Edward F. Patz
- Department of RadiologyDuke University Medical CenterDurhamUSA
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamUSA
| | - Peihua Cao
- Clinical Research Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
- Institute of Regenerative Medicine, Zhujiang HospitalSouthern Medical UniversityGuangzhouP. R. China
- Artificial Organs and Tissue Engineering Centre of Guangdong ProvinceGuangzhouP. R. China
- State Key Laboratory of Organ Failure ResearchSouthern Medical UniversityGuangzhouP. R. China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
- State Key Laboratory of Liver Research (The University of Hong Kong)PokfulamHong Kong
| |
Collapse
|
25
|
Complement System: Promoter or Suppressor of Cancer Progression? Antibodies (Basel) 2020; 9:antib9040057. [PMID: 33113844 PMCID: PMC7709131 DOI: 10.3390/antib9040057] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Constituent of innate immunity, complement is present in the tumor microenvironment. The functions of complement include clearance of pathogens and maintenance of homeostasis, and as such could contribute to an anti-tumoral role in the context of certain cancers. However, multiple lines of evidence show that in many cancers, complement has pro-tumoral actions. The large number of complement molecules (over 30), the diversity of their functions (related or not to the complement cascade), and the variety of cancer types make the complement-cancer topic a very complex matter that has just started to be unraveled. With this review we highlight the context-dependent role of complement in cancer. Recent studies revealed that depending of the cancer type, complement can be pro or anti-tumoral and, even for the same type of cancer, different models presented opposite effects. We aim to clarify the current knowledge of the role of complement in human cancers and the insights from mouse models. Using our classification of human cancers based on the prognostic impact of the overexpression of complement genes, we emphasize the strong potential for therapeutic targeting the complement system in selected subgroups of cancer patients.
Collapse
|
26
|
Siljamäki E, Rappu P, Riihilä P, Nissinen L, Kähäri VM, Heino J. H-Ras activation and fibroblast-induced TGF-β signaling promote laminin-332 accumulation and invasion in cutaneous squamous cell carcinoma. Matrix Biol 2020; 87:26-47. [PMID: 31655292 DOI: 10.1016/j.matbio.2019.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer, with increasing incidence worldwide. The molecular basis of cSCC progression to invasive and metastatic disease is still incompletely understood. Here, we show that fibroblasts and transforming growth factor-β (TGF-β) signaling promote laminin-332 synthesis in cancer cells in an activated H-Ras-dependent manner, which in turn promotes cancer cell invasion. Immunohistochemical analysis of sporadic UV-induced invasive human cSCCs (n = 208) revealed prominent cSCC cell specific immunostaining for laminin-332 γ2 chain, located in the majority of cases (90%, n = 173) in the invasive edge of the tumors. To mimic the progression of cSCC we established 3D spheroid cocultures using primary skin fibroblasts and HaCaT/ras-HaCaT human keratinocytes. Our results indicate that in 3D spheroids, unlike in monolayer cultures, TGF-β upregulates laminin-332 production, but only in cells that harbour oncogenic H-Ras. Accumulation of laminin-332 was prevented by both H-Ras knock down and inhibition of TGF-β signaling by SB431542 or RAdKD-ALK5 kinase-defective adenovirus. Furthermore, fibroblasts accelerated the invasion of ras-HaCaT cells through collagen I gels in a Ras/TGF-β signaling dependent manner. In conclusion, we demonstrate the presence of laminin-332 in the invasive front of cSCC tumors and report a new Ras/TGF-β-dependent mechanism that promotes laminin-332 accumulation and cancer cell invasion.
Collapse
Affiliation(s)
- Elina Siljamäki
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, 20520, Turku, Finland; Department of Biochemistry, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
| | - Pekka Rappu
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, 20520, Turku, Finland; Department of Biochemistry, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
| | - Pilvi Riihilä
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, 20520, Turku, Finland; Department of Dermatology, University of Turku, Turku University Hospital, Hämeentie 11, 20520, Turku, Finland; The Western Cancer Centre of the Cancer Centre Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Liisa Nissinen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, 20520, Turku, Finland; Department of Dermatology, University of Turku, Turku University Hospital, Hämeentie 11, 20520, Turku, Finland; The Western Cancer Centre of the Cancer Centre Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Veli-Matti Kähäri
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, 20520, Turku, Finland; Department of Dermatology, University of Turku, Turku University Hospital, Hämeentie 11, 20520, Turku, Finland; The Western Cancer Centre of the Cancer Centre Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Jyrki Heino
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, 20520, Turku, Finland; Department of Biochemistry, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
| |
Collapse
|
27
|
Azimi A, Kaufman KL, Kim J, Ali M, Mann GJ, Fernandez-Penas P. Proteomics: An emerging approach for the diagnosis and classification of cutaneous squamous cell carcinoma and its precursors. J Dermatol Sci 2020; 99:9-16. [PMID: 32312638 DOI: 10.1016/j.jdermsci.2020.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/01/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) and its precursors, actinic keratosis (AK) and Bowen's disease (BD), are the most common types of keratinocytic skin lesions (KSL) which account for the majority of non-melanoma skin cancer lethality. Currently, clinical and histopathological criteria are used for the diagnosis, classification and therapeutic intervention of KSLs, however discrepancies exist between the clinical presentations and histologic analyses of these lesions, making the diagnosis difficult. The identification of biomarkers as companion diagnostics for accurately stratifying KSL types is required to support the paradigm shift in current cancer care to personalised, precision medicine and ameliorate the negative impact of misdiagnoses or delayed diagnoses on patient outcome. Also, it is essential to elaborate on the poorly defined molecular modifications required for the initiation, development and progression of KSL from normal keratinocytes. By harnessing recent technological advances in molecular profiling techniques, it is anticipated that greater insight into the various combinations of proteomic events or alternative pathways underlying carcinogenesis will be gained. This review will explore recent genomic studies in KSL followed by assessing the feasibility and significance of mass spectrometry-based proteomics profiling as a promising approach to a better understanding of the oncogenic pathways underpinning the formation and progression of KSL lesions and in aiding the identification of novel biomarkers and new therapeutic targets. The development of non-invasive tools such as tape-stripping coupled with proteomic analysis alone or in conjunction with imaging and genomic technologies will complement existing clinical and histopathological parameters, leading to an improvement in patient outcomes.
Collapse
Affiliation(s)
- Ali Azimi
- Centre for Translational Skin Research, The University of Sydney, Westmead, Australia; Department of Dermatology, Westmead Hospital, Westmead, Australia
| | - Kimberley L Kaufman
- Department of Neurosurgery, Chris O'Brien Lifehouse, Camperdown, Australia; Discipline of Pathology, The University of Sydney, Camperdown, Australia
| | - Jennifer Kim
- Department of Tissue Pathology and Diagnostic Oncology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, Australia
| | - Marina Ali
- Centre for Translational Skin Research, The University of Sydney, Westmead, Australia; Department of Dermatology, Westmead Hospital, Westmead, Australia
| | - Graham J Mann
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia; Melanoma Institute Australia, The University of Sydney, Wollstonecraft, Australia
| | - Pablo Fernandez-Penas
- Centre for Translational Skin Research, The University of Sydney, Westmead, Australia; Department of Dermatology, Westmead Hospital, Westmead, Australia.
| |
Collapse
|
28
|
Riihilä P, Viiklepp K, Nissinen L, Farshchian M, Kallajoki M, Kivisaari A, Meri S, Peltonen J, Peltonen S, Kähäri V. Tumour-cell-derived complement components C1r and C1s promote growth of cutaneous squamous cell carcinoma. Br J Dermatol 2020; 182:658-670. [PMID: 31049937 PMCID: PMC7065064 DOI: 10.1111/bjd.18095] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The incidence of epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is increasing worldwide. OBJECTIVES To study the role of the complement classical pathway components C1q, C1r and C1s in the progression of cSCC. METHODS The mRNA levels of C1Q subunits and C1R and C1S in cSCC cell lines, normal human epidermal keratinocytes, cSCC tumours in vivo and normal skin were analysed with quantitative real-time polymerase chain reaction. The production of C1r and C1s was determined with Western blotting. The expression of C1r and C1s in tissue samples in vivo was analysed with immunohistochemistry and further investigated in human cSCC xenografts by knocking down C1r and C1s. RESULTS Significantly elevated C1R and C1S mRNA levels and production of C1r and C1s were detected in cSCC cells, compared with normal human epidermal keratinocytes. The mRNA levels of C1R and C1S were markedly elevated in cSCC tumours in vivo compared with normal skin. Abundant expression of C1r and C1s by tumour cells was detected in invasive sporadic cSCCs and recessive dystrophic epidermolysis bullosa-associated cSCCs, whereas the expression of C1r and C1s was lower in cSCC in situ, actinic keratosis and normal skin. Knockdown of C1r and C1s expression in cSCC cells inhibited activation of extracellular signal-related kinase 1/2 and Akt, promoted apoptosis of cSCC cells and significantly suppressed growth and vascularization of human cSCC xenograft tumours in vivo. CONCLUSIONS These results provide evidence for the role of tumour-cell-derived C1r and C1s in the progression of cSCC and identify them as biomarkers and putative therapeutic targets in cSCC. What's already known about this topic? The incidences of actinic keratosis, cutaneous squamous cell carcinoma (cSCC) in situ and invasive cSCC are increasing globally. Few specific biomarkers for progression of cSCC have been identified, and no biological markers are in clinical use to predict the aggressiveness of actinic keratosis, cSCC in situ and invasive cSCC. What does this study add? Our results provide novel evidence for the role of complement classical pathway components C1r and C1s in the progression of cSCC. What is the translational message? Our results identify complement classical pathway components C1r and C1s as biomarkers and putative therapeutic targets in cSCC.
Collapse
Affiliation(s)
- P. Riihilä
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - K. Viiklepp
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - L. Nissinen
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - M. Farshchian
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
| | - M. Kallajoki
- Department of PathologyTurku University HospitalTurkuFinland
| | - A. Kivisaari
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
| | - S. Meri
- Haartman InstituteUniversity of HelsinkiHelsinkiFinland
| | - J. Peltonen
- Department of Anatomy and Cell BiologyUniversity of TurkuTurkuFinland
| | - S. Peltonen
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - V.‐M. Kähäri
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| |
Collapse
|
29
|
Piipponen M, Nissinen L, Riihilä P, Farshchian M, Kallajoki M, Peltonen J, Peltonen S, Kähäri VM. p53-Regulated Long Noncoding RNA PRECSIT Promotes Progression of Cutaneous Squamous Cell Carcinoma via STAT3 Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:503-517. [PMID: 31837949 DOI: 10.1016/j.ajpath.2019.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 01/28/2023]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as putative biomarkers and therapeutic targets in cancer. The role of lncRNA LINC00346 in cutaneous squamous carcinoma (cSCC) was examined. The expression of LINC00346 was up-regulated in cSCC cells compared with normal human epidermal keratinocytes. Elevated expression of LINC00346 was noted in tumor cells in cSCC tissue sections in vivo, as compared with cSCC in situ, and actinic keratosis by RNA in situ hybridization; and the expression in seborrheic keratosis and normal skin was very low. Immunohistochemical analysis of cSCC tissue sections and functional assays of cSCC cells in culture showed that LINC00346 expression is down-regulated by p53. Knockdown of LINC00346 inhibited invasion of cSCC cells in culture and suppressed growth of human cSCC xenografts in vivo. Knockdown of LINC00346 inhibited expression of activated STAT3 and resulted in down-regulation of the expression of matrix metalloproteinase (MMP)-1, MMP-3, MMP-10, and MMP-13. Based on these observations LINC00346 was named p53 regulated carcinoma-associated STAT3-activating long intergenic non-protein coding transcript (PRECSIT). These results identify PRECSIT as a new p53-regulated lncRNA, which promotes progression of cSCC via STAT3 signaling.
Collapse
Affiliation(s)
- Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Mehdi Farshchian
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland.
| |
Collapse
|
30
|
Roumenina LT, Daugan MV, Petitprez F, Sautès-Fridman C, Fridman WH. Context-dependent roles of complement in cancer. Nat Rev Cancer 2019; 19:698-715. [PMID: 31666715 DOI: 10.1038/s41568-019-0210-0] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
The tumour microenvironment (TME) highly influences the growth and spread of tumours, thus impacting the patient's clinical outcome. In this context, the complement system plays a major and complex role. It may either act to kill antibody-coated tumour cells, support local chronic inflammation or hamper antitumour T cell responses favouring tumour progression. Recent studies demonstrate that these opposing effects are dependent upon the sites of complement activation, the composition of the TME and the tumour cell sensitivity to complement attack. In this Review, we present the evidence that has so far accrued showing a role for complement activation and its effects on cancer control and clinical outcome under different TME contexts. We also include a new analysis of the publicly available transcriptomic data to provide an overview of the prognostic value of complement gene expression in 30 cancer types. We argue that the interplay of complement components within each cancer type is unique, governed by the properties of the tumour cells and the TME. This concept is of critical importance for the design of efficient therapeutic strategies aimed at targeting complement components and their signalling.
Collapse
Affiliation(s)
- Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France.
| | - Marie V Daugan
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France
| | - Florent Petitprez
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France
| | - Wolf Herman Fridman
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France.
| |
Collapse
|
31
|
Haapasalo K, Meri S. Regulation of the Complement System by Pentraxins. Front Immunol 2019; 10:1750. [PMID: 31428091 PMCID: PMC6688104 DOI: 10.3389/fimmu.2019.01750] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/10/2019] [Indexed: 01/09/2023] Open
Abstract
The functions of pentraxins, like C-reactive protein (CRP), serum amyloid protein P (SAP) and pentraxin-3 (PTX3), are to coordinate spatially and temporally targeted clearance of injured tissue components, to protect against infections and to regulate related inflammation together with the complement system. For this, pentraxins have a dual relationship with the complement system. Initially, after a focused binding to their targets, e.g., exposed phospholipids or cholesterol in the injured tissue area, or microbial components, the pentraxins activate complement by binding its first component C1q. However, the emerging inflammation needs to be limited to the target area. Therefore, pentraxins inhibit complement at the C3b stage to prevent excessive damage. The complement inhibitory functions of pentraxins are based on their ability to interact with complement inhibitors C4bp or factor H (FH). C4bp binds to SAP, while FH binds to both CRP and PTX3. FH promotes opsonophagocytosis through inactivation of C3b to iC3b, and inhibits AP activity thus preventing formation of the C5a anaphylatoxin and the complement membrane attack complex (MAC). Monitoring CRP levels gives important clinical information about the extent of tissue damage and severity of infections. CRP is a valuable marker for distinguishing bacterial infections from viral infections. Disturbances in the functions and interactions of pentraxins and complement are also involved in a number of human diseases. This review will summarize what is currently known about the FH family proteins and pentraxins that interact with FH. Furthermore, we will discuss diseases, where interactions between these molecules may play a role.
Collapse
Affiliation(s)
- Karita Haapasalo
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
32
|
Riihilä P, Nissinen L, Knuutila J, Rahmati Nezhad P, Viiklepp K, Kähäri VM. Complement System in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20143550. [PMID: 31331124 PMCID: PMC6678994 DOI: 10.3390/ijms20143550] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with high mortality rates in the advanced stage. Chronic inflammation is a recognized risk factor for cSCC progression and the complement system, as a part of innate immunity, belongs to the microenvironment of tumors. The complement system is a double-edged sword in cancer, since complement activation is involved in anti-tumor cytotoxicity and immune responses, but it also promotes cancer progression directly and indirectly. Recently, the role of several complement components and inhibitors in the regulation of progression of cSCC has been shown. In this review, we will discuss the role of complement system components and inhibitors as biomarkers and potential new targets for therapeutic intervention in cSCC.
Collapse
Affiliation(s)
- Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Jaakko Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland.
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland.
| |
Collapse
|
33
|
Fishelson Z, Kirschfink M. Complement C5b-9 and Cancer: Mechanisms of Cell Damage, Cancer Counteractions, and Approaches for Intervention. Front Immunol 2019; 10:752. [PMID: 31024572 PMCID: PMC6467965 DOI: 10.3389/fimmu.2019.00752] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023] Open
Abstract
The interactions of cancer cells with components of the complement system are highly complex, leading to an outcome that is either favorable or detrimental to cancer cells. Currently, we perceive only the "tip of the iceberg" of these interactions. In this review, we focus on the complement terminal C5b-9 complex, known also as the complement membrane attack complex (MAC) and discuss the complexity of its interaction with cancer cells, starting with a discussion of its proposed mode of action in mediating cell death, and continuing with a portrayal of the strategies of evasion exhibited by cancer cells, and closing with a proposal of treatment approaches targeted at evasion strategies. Upon intense complement activation and membrane insertion of sufficient C5b-9 complexes, the afflicted cells undergo regulated necrotic cell death with characteristic damage to intracellular organelles, including mitochondria, and perforation of the plasma membrane. Several pro-lytic factors have been proposed, including elevated intracellular calcium ion concentrations and activated JNK, Bid, RIPK1, RIPK3, and MLKL; however, further research is required to fully characterize the effective cell death signals activated by the C5b-9 complexes. Cancer cells over-express a multitude of protective measures which either block complement activation, thus reducing the number of membrane-inserted C5b-9 complexes, or facilitate the elimination of C5b-9 from the cell surface. Concomitantly, cancer cells activate several protective pathways that counteract the death signals. Blockage of complement activation is mediated by the complement membrane regulatory proteins CD46, CD55, and CD59 and by soluble complement regulators, by proteases that cleave complement proteins and by protein kinases, like CK2, which phosphorylate complement proteins. C5b-9 elimination and inhibition of cell death signals are mediated by caveolin and dynamin, by Hsp70 and Hsp90, by the mitochondrial stress protein mortalin, and by the protein kinases PKC and ERK. It is conceivable that various cancers and cancers at different stages of development will utilize distinct patterns of these and other MAC resistance strategies. In order to enhance the impact of antibody-based therapy on cancer, novel precise reagents that block the most effective protective strategies will have to be designed and applied as adjuvants to the therapeutic antibodies.
Collapse
Affiliation(s)
- Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
34
|
Helmig S, Lochnit G, Schneider J. Comparative proteomic analysis in serum of former uranium miners with and without radon induced squamous lung cancer. J Occup Med Toxicol 2019; 14:9. [PMID: 30923558 PMCID: PMC6419832 DOI: 10.1186/s12995-019-0228-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
SUMMARY Former uranium miners of the Wismut Company, East Germany, have been exposed to ionizing radiation from radon decay products and therefore were at high risk for lung cancer. Since histological types of cancer in the so called Wismut cohort revealed an association of high radon exposure with a higher relative frequency of squamous cell carcinoma (SqCC), we used comparative proteomic analysis to identify differentially expressed proteins in serum exposed uranium miners with SqCC. METHODE Pooled sera of exposed former uranium miners without lung disease and pooled sera of former uranium miners with SqCC were analysed by 2-D gel electrophoresis. MALDI-TOF-MS was performed from reproducable, significantly, at least 5-fold up-regulated protein spots. Proteins were identified by MASCOT peptide mass fingerprint search. Additionally a receiver operating characteristic curve for CYFRA 21-1 was created. RESULTS The protein spots were identified as Keratin 10 (K10), Keratin 1 (K1), complement factor H (CFH) and a haptoglobin (Hpt) fragment. The sensitivity for CYFRA 21-1 reveals 60% at a specifity of 95 and 80% at a specifity of 80%. Plotting the sensitivity against specifity reveals an AUC of 0.88. CONCLUSION In SqCC Keratin 10 and 1 were strongly induced. This was associated with CYFRA 21-1, confirming the cytokeratin fragment as a tumormarker.
Collapse
Affiliation(s)
- Simone Helmig
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus-Liebig-University Giessen, Aulweg 129, D-35392, Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Friedrichstraße 24, Justus-Liebig-University Giessen, D-35392, Giessen, Germany
| | - Joachim Schneider
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus-Liebig-University Giessen, Aulweg 129, D-35392, Giessen, Germany
| |
Collapse
|
35
|
Tang L, Cao Y, Song X, Wang X, Li Y, Yu M, Li M, Liu X, Huang F, Chen F, Wan H. HOXC6 promotes migration, invasion and proliferation of esophageal squamous cell carcinoma cells via modulating expression of genes involved in malignant phenotypes. PeerJ 2019; 7:e6607. [PMID: 30886783 PMCID: PMC6421064 DOI: 10.7717/peerj.6607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/10/2019] [Indexed: 12/29/2022] Open
Abstract
Background HOXC6 is a member of the HOX gene family. The elevated expression of this gene occurs in prostate and breast cancers. However, the role of HOXC6 in esophageal squamous cell carcinoma (ESCC) remains largely uninvestigated. Methods The expression of HOXC6 was examined by immunohistochemistry, quantitative real-time PCR and immunoblotting assays. The lentivirus-mediated expression of HOXC6 was verified at mRNA and protein levels. Wound healing and Matrigel assays were performed to assess the effect of HOXC6 on the migration and invasion of cancer cells. The growth curving, CCK8, and colony formation assays were utilized to access the proliferation capacities. RNA-seq was performed to evaluate the downstream targets of HOXC6. Bioinformatic tool was used to analyze the gene expression. Results HOXC6 was highly expressed in ESCC tissues. HOXC6 overexpression promoted the migration, invasion, and proliferation of both Eca109 and TE10 cells. There were 2,155 up-regulated and 759 down-regulated genes in Eca109-HOXC6 cells and 95 up-regulated and 47 down-regulated genes in TE10-HOXC6 cells compared with the results of control. Interestingly, there were only 20 common genes, including 17 up-regulated and three down-regulated genes with similar changes upon HOXC6 transfection in both cell lines. HOXC6 activated several crucial genes implicated in the malignant phenotype of cancer cells. Discussion HOXC6 is highly expressed in ESCC and promotes malignant phenotype of ESCC cells. HOXC6 can be used as a new therapeutic target of ESCC.
Collapse
Affiliation(s)
- Li Tang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Cao
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xueqin Song
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyan Wang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Li
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Minglan Yu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mingying Li
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xu Liu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fang Huang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haisu Wan
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
36
|
Pandey A, Liaukovich M, Joshi K, Avezbakiyev BI, O'Donnell JE. Uncommon Presentation of Metastatic Squamous Cell Carcinoma of the Skin and Treatment Challenges. AMERICAN JOURNAL OF CASE REPORTS 2019; 20:294-299. [PMID: 30837448 PMCID: PMC6419533 DOI: 10.12659/ajcr.913488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Patient: Female, 80 Final Diagnosis: Metastatic squamous cell carcinoma of skin Symptoms: Back pain • leg swelling • uti Medication: — Clinical Procedure: Immunotherapy Specialty: Oncology
Collapse
Affiliation(s)
- Anita Pandey
- Department of Hematology and Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Maksim Liaukovich
- Department of Hematology and Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Kishor Joshi
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Boris I Avezbakiyev
- Department of Hematology and Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - James E O'Donnell
- Department of Pathology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| |
Collapse
|
37
|
Fan Z, Qin J, Wang D, Geng S. Complement C3a promotes proliferation, migration and stemness in cutaneous squamous cell carcinoma. J Cell Mol Med 2019; 23:3097-3107. [PMID: 30825266 PMCID: PMC6484302 DOI: 10.1111/jcmm.13959] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Background Complement C3 has been shown to be highly expressed in cutaneous squamous cell carcinoma (cSCC) tumour tissues and is correlated with tumour cell growth. This study aimed to investigate the mechanism of C3 in cSCC malignant transformation. Methods C3 expression was analysed in cSCC cell lines A431, Tca8113, SCC13, HSC‐5 and HSC‐1 and in immortalized HaCaT keratinocytes. Proliferation and migration of cSCC were determined after C3a exposure. Expression of cyclin D1, cyclin E, vascular endothelial growth factor (VEGF), pro‐matrix metalloproteinase 1 (pro‐MMP1), pro‐matrix metalloproteinase 2 (pro‐MMP2), stemness factors, GSK‐3β, and β‐catenin were analyzed. Tumour growth was examined in a murine xenograft model. Results C3 expression was much more highly expressed in all cSCC cell lines than in HaCaT cells. C3a treatment significantly promoted cSCC cell proliferation and migration and upregulated cyclin D1, cyclin E, VEGF, pro‐MMP1 and pro‐MMP2 expression, which were impeded by the C3aR antagonist. Moreover, the expression of stemness factors Sox‐2, Nanog, Oct‐4, c‐Myc and CD‐44 was stimulated by C3a and slowed by C3aR disruption. Knockdown of Sox‐2 by siRNA transfection suppressed cell proliferation and migration, constrained VEGF secretion and inhibited pro‐MMP1 and pro‐MMP2 expression. C3a also activated the Wnt and β‐catenin pathway in cSCC cells. Disruption of C3aR expression dampened tumour growth and the expression of Wnt‐1, β‐catenin and Sox‐2 in the xenograft model. Conclusions C3a enhanced cell proliferation, migration and stemness in cSCC, and this activity was correlated with activation of the Wnt and β‐catenin pathway.
Collapse
Affiliation(s)
- Zhuo Fan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Dermatology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jingjing Qin
- Department of Dermatology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Dandan Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
38
|
Zhang R, Liu Q, Li T, Liao Q, Zhao Y. Role of the complement system in the tumor microenvironment. Cancer Cell Int 2019; 19:300. [PMID: 31787848 PMCID: PMC6858723 DOI: 10.1186/s12935-019-1027-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
The complement system has traditionally been considered a component of innate immunity against invading pathogens and "nonself" cells. Recent studies have demonstrated the immunoregulatory functions of complement activation in the tumor microenvironment (TME). The TME plays crucial roles in tumorigenesis, progression, metastasis and recurrence. Imbalanced complement activation and the deposition of complement proteins have been demonstrated in many types of tumors. Plasma proteins, receptors, and regulators of complement activation regulate several biological functions of stromal cells in the TME and promote the malignant biological properties of tumors. Interactions between the complement system and cancer cells contribute to the proliferation, epithelial-mesenchymal transition, migration and invasion of tumor cells. In this review, we summarize recent advances related to the function of the complement system in the TME and discuss the therapeutic potential of targeting complement-mediated immunoregulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Ronghua Zhang
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Qiaofei Liu
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Tong Li
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Quan Liao
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Yupei Zhao
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| |
Collapse
|
39
|
Singh N, Tripathi AK, Sahu DK, Mishra A, Linan M, Argente B, Varkey J, Parida N, Chowdhry R, Shyam H, Alam N, Dixit S, Shankar P, Mishra A, Agarwal A, Yoo C, Bhatt MLB, Kant R. Differential genomics and transcriptomics between tyrosine kinase inhibitor-sensitive and -resistant BCR-ABL-dependent chronic myeloid leukemia. Oncotarget 2018; 9:30385-30418. [PMID: 30100996 PMCID: PMC6084383 DOI: 10.18632/oncotarget.25752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/28/2018] [Indexed: 01/11/2023] Open
Abstract
Previously, it has been stated that the BCR-ABL fusion-protein is sufficient to induce Chronic Myeloid Leukemia (CML), but additional genomic-changes are required for disease progression. Hence, we profiled control and tyrosine kinase inhibitors (TKI) alone or in combination with other drug-treated CML-samples in different phases, categorized as drug-sensitive and drug-resistant on the basis of BCR-ABL transcripts, the marker of major molecular-response. Molecular-profiling was done using the molecular-inversion probe-based-array, Human Transcriptomics-Array2.0, and Axiom-Biobank genotyping-arrays. At the transcript-level, clusters of control, TKI-resistant and TKI-sensitive cases were correlated with BCR-ABL transcript-levels. Both at the gene- and exon-levels, up-regulation of MPO, TPX2, and TYMS and down-regulation of STAT6, FOS, TGFBR2, and ITK lead up-regulation of the cell-cycle, DNA-replication, DNA-repair pathways and down-regulation of the immune-system, chemokine- and interleukin-signaling, TCR, TGF beta and MAPK signaling pathways. A comparison between TKI-sensitive and TKI-resistant cases revealed up-regulation of LAPTM4B, HLTF, PIEZO2, CFH, CD109, ANGPT1 in CML-resistant cases, leading to up-regulation of autophagy-, protein-ubiquitination-, stem-cell-, complement-, TGFβ- and homeostasis-pathways with specific involvement of the Tie2 and Basigin signaling-pathway. Dysregulated pathways were accompanied with low CNVs in CP-new and CP-UT-TKI-sensitive-cases with undetectable BCR-ABL-copies. High CNVs (previously reported gain of 9q34) were observed in BCR-ABL-independent and -dependent TKI, non-sensitive-CP-UT/AP-UT/B-UT and B-new samples. Further, genotyping CML-CP-UT cases with BCR-ABL 0-to-77.02%-copies, the identified, rsID239798 and rsID9475077, were associated with FAM83B, a candidate for therapeutic resistance. The presence of BCR-ABL, additional genetic-events, dysregulated-signaling-pathways and rsIDs associated with FAM83B in TKI-resistant-cases can be used to develop a signature-profile that may help in monitoring therapy.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Anil Kumar Tripathi
- Department of Clinical Hematology, King George's Medical University, Lucknow, India
| | - Dinesh Kumar Sahu
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Archana Mishra
- Department of Cardio Thoracic and Vascular Surgery, King George's Medical University, Lucknow, India
| | | | | | | | - Niranjan Parida
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Rebecca Chowdhry
- Department of Periodontics, King George's Medical University, Lucknow, India
| | - Hari Shyam
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Nawazish Alam
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Shivani Dixit
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Pratap Shankar
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Abhishek Mishra
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Avinash Agarwal
- Department of Medicine, King George's Medical University, Lucknow, India
| | - Chris Yoo
- Systems Imagination, Scottsdale, Arizona, USA
| | | | - Ravi Kant
- All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
40
|
Li L, Yang H, Li Y, Li XD, Zeng TT, Lin SX, Zhu YH, Guan XY. Hypoxia restrains the expression of complement component 9 in tumor-associated macrophages promoting non-small cell lung cancer progression. Cell Death Discov 2018; 4:63. [PMID: 29900010 PMCID: PMC5992192 DOI: 10.1038/s41420-018-0064-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/07/2018] [Accepted: 05/06/2018] [Indexed: 12/26/2022] Open
Abstract
The tumor microenvironment, including stroma cells, signaling molecules, and the extracellular matrix, critically regulates the growth and survival of cancer cells. Dissecting the active molecules in tumor microenvironment may uncover the key factors that can impact cancer progression. Human NSCLC tumor tissue-conditioned medium (TCM) and adjacent nontumor tissue-conditioned medium (NCM) were used to treat two NSCLC cells LSC1 and LAC1, respectively. Cell growth and foci formation assays were applied to assess the effects of TCM and NCM on cancer cells. The active factors were identified by protein mass spectrometry. Cell growth and foci formation assays showed that 8 of 26 NCM and none of TCM could effectively lead to tumor cell lysis, which was known as tumoricidal activity. And then protein mass spectrometry analysis and functional verifications confirmed that complement component 9 (C9) played a crucial role in the complement-dependent cytotoxicity (CDC)-mediated tumoricidal activity in vitro. Furthermore, immunofluorescent staining revealed that C9 specifically expressed in most alveolar macrophages (AMs) in adjacent lung tissues and a small fraction of tumor-associated macrophages (TAMs) in NSCLC tissues. Most importantly, the percentage of C9-positive cells in AMs or TAMs was responsible for the tumoricidal activity of NCM and TCM. Herein, we found that high expression of C9 in TAMs was a significant independent prognostic factor (P = 0.029), and associated with beneficial overall survival (P = 0.012) and disease-free survival (P = 0.016) for patients with NSCLC. Finally, we unveiled that hypoxic tumor microenvironment could switch the phenotype of macrophages from M1 to M2 forms, accompanying with the downregulation of C9 in TAMs. Collectively, our findings elucidated a novel role of TAMs expressing C9 in the prognosis of NSCLC patients, which provided a promising strategy in the development of anticancer treatments based on the CDC-mediated tumoricidal activity.
Collapse
Affiliation(s)
- Lei Li
- 1State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China
| | - Hong Yang
- 1State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China.,Guangdong Esophageal Cancer Research Institute, 510060 Guangzhou, China.,3Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Yan Li
- 1State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China
| | - Xiao-Dong Li
- 1State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China.,3Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Ting-Ting Zeng
- 1State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China
| | - Su-Xia Lin
- 4Department of Pathology, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China
| | - Ying-Hui Zhu
- 1State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China
| | - Xin-Yuan Guan
- 1State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China.,5Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
Farshchian M, Nissinen L, Siljamäki E, Riihilä P, Piipponen M, Kivisaari A, Kallajoki M, Grénman R, Peltonen J, Peltonen S, Quint KD, Bavinck JNB, Kähäri VM. Tumor cell-specific AIM2 regulates growth and invasion of cutaneous squamous cell carcinoma. Oncotarget 2018; 8:45825-45836. [PMID: 28526809 PMCID: PMC5542230 DOI: 10.18632/oncotarget.17573] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. Inflammation is a typical feature in cSCC progression. Analysis of the expression of inflammasome components in cSCC cell lines and normal human epidermal keratinocytes revealed upregulation of the expression of AIM2 mRNA and protein in cSCC cells. Elevated levels of AIM2 mRNA were noted in cSCCs in vivo compared with normal skin. Strong and moderate tumor cell specific expression of AIM2 was detected with immunohistochemistry (IHC) in sporadic human cSCCs in vivo, whereas expression of AIM2 was moderate in cSCC in situ (cSCCIS) and low or absent in actinic keratosis (AK) and normal skin. IHC of cSCCs, cSCCIS and AKs from organ transplant recipients also revealed strong and moderate tumor cell specific expression of AIM2 in cSCCs. Knockdown of AIM2 resulted in reduction in viability of cSCC cells and onset of apoptosis. RNA-seq and pathway analysis after knockdown of AIM2 in cSCC cells revealed downregulation of the biofunction category Cell cycle and upregulation of the biofunction category Cell Death and Survival. Knockdown of AIM2 also resulted in reduction in invasion of cSCC cells and downregulation in production of invasion proteinases MMP1 and MMP13. Knockdown of AIM2 resulted in suppression of growth and vascularization of cSCC xenografts in vivo. These results provide evidence for the role of AIM2 in the progression of cSCC and identify AIM2 inflammasome function as a potential therapeutic target in these invasive and metastatic tumors.
Collapse
Affiliation(s)
- Mehdi Farshchian
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Elina Siljamäki
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Atte Kivisaari
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Koen D Quint
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands.,DDL Diagnostic Laboratory, Rijswijk, The Netherlands
| | | | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| |
Collapse
|
42
|
Csősz É, Márkus B, Darula Z, Medzihradszky KF, Nemes J, Szabó E, Tőzsér J, Kiss C, Márton I. Salivary proteome profiling of oral squamous cell carcinoma in a Hungarian population. FEBS Open Bio 2018; 8:556-569. [PMID: 29632809 PMCID: PMC5881539 DOI: 10.1002/2211-5463.12391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/23/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the seventh most common malignancy and the ninth most frequent cause of cancer death in Europe. Within Europe, Hungary has one of the highest rates of OSCC incidence and mortality. Thus, there is an urgent need to improve early detection. Saliva, as a readily available body fluid, became an increasingly important substance for the detection of biomarkers for many diseases. Different research groups have identified salivary biomarkers specific for OSCC for different countries. In this study, saliva samples of Hungarian patients with OSCC were studied to discover disease‐specific and perhaps region‐specific biomarkers. LC‐mass spectrometry (MS)/MS analysis on a linear ion trap‐Orbitrap mass spectrometer was used for qualitative and quantitative salivary protein profiling. More than 500 proteins were identified from saliva by shotgun proteomics. The up‐ and downregulated proteins in the saliva of patients with OSCC highlighted the importance of protein–protein interaction networks involving the immune system and proteolysis in disease development. Two potential biomarkers from our shotgun analysis and a third candidate reported earlier by a Taiwanese group were further examined by ELISA on a larger reference set of samples. Resistin, a biomarker reported in Taiwan but not validated in our study, highlights the necessity of application of standardized analysis methods in different ethnic or geographical populations to identify biomarkers with sufficient specificity and sensitivity.
Collapse
Affiliation(s)
- Éva Csősz
- Proteomics Core Facility Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary.,Biomarker Research Group Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Bernadett Márkus
- Proteomics Core Facility Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary.,Biomarker Research Group Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research Biological Research Centre of the Hungarian Academy of Sciences Szeged Hungary
| | - Katalin F Medzihradszky
- Laboratory of Proteomics Research Biological Research Centre of the Hungarian Academy of Sciences Szeged Hungary
| | - Judit Nemes
- Department of Pedodontics Faculty of Dentistry University of Debrecen Hungary
| | - Emese Szabó
- Proteomics Core Facility Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary.,Biomarker Research Group Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - József Tőzsér
- Proteomics Core Facility Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary.,Biomarker Research Group Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Csongor Kiss
- Department of Pediatrics Faculty of Medicine University of Debrecen Hungary
| | - Ildikó Márton
- Department of Restorative Dentistry Faculty of Dentistry University of Debrecen Hungary
| |
Collapse
|
43
|
Non Melanoma Skin Cancer Pathogenesis Overview. Biomedicines 2018; 6:biomedicines6010006. [PMID: 29301290 PMCID: PMC5874663 DOI: 10.3390/biomedicines6010006] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Non-melanoma skin cancer is the most frequently diagnosed cancer in humans. The process of skin carcinogenesis is still not fully understood. However, several studies have been conducted to better explain the mechanisms that lead to malignancy; (2) Methods: We reviewed the more recent literature about the pathogenesis of non-melanoma skin cancer focusing on basal cell carcinomas, squamous cell carcinoma and actinic keratosis; (3) Results: Several papers reported genetic and molecular alterations leading to non-melanoma skin cancer. Plenty of risk factors are involved in non-melanoma skin cancer pathogenesis, including genetic and molecular alterations, immunosuppression, and ultraviolet radiation; (4) Conclusion: Although skin carcinogenesis is still not fully understood, several papers demonstrated that genetic and molecular alterations are involved in this process. In addition, plenty of non-melanoma skin cancer risk factors are now known, allowing for an effective prevention of non-melanoma skin cancer development. Compared to other papers on the same topic, our review focused on molecular and genetic factors and analyzed in detail several factors involved in non-melanoma skin cancer.
Collapse
|
44
|
Gallenkamp J, Spanier G, Wörle E, Englbrecht M, Kirschfink M, Greslechner R, Braun R, Schäfer N, Bauer RJ, Pauly D. A novel multiplex detection array revealed systemic complement activation in oral squamous cell carcinoma. Oncotarget 2017; 9:3001-3013. [PMID: 29423024 PMCID: PMC5790441 DOI: 10.18632/oncotarget.22963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/11/2017] [Indexed: 11/25/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common tumors within the oral cavity. Early diagnosis and prognosis tools are urgently needed. This study aimed to investigate the activation of the complement system in OSCC patients as potential biomarker. Therefore, an innovative complement activation array was developed. Characterized antibodies detecting the complement activation specific epitopes C3a, C5a and sC5b-9 along with control antibodies were implemented into a suspension bead array. Human serum from a healthy (n = 46) and OSCC patient (n = 57) cohort were used to investigate the role of complement activation in oral tumor progression. The novel multiplex assay detected C3a, C5a and sC5b-9 from a minimal sample volume of human tears, aqueous humor and blood samples. Limits of detection were 0.04 ng/mL for C3a, 0.03 ng/mL for C5a and 18.9 ng/mL for sC5b-9, respectively. Biological cut-off levels guaranteed specific detections from serum. The mean serum concentration of a healthy control cohort was 680 ng/mL C3a, 70 ng/mL C5a and 2247 ng/mL sC5b-9, respectively. The assay showed an intra-assay precision of 2.9-6.4% and an inter-assay precision of 9.2-18.2%. Increased systemic C5a (p < 0.0001) and sC5b-9 (p = 0.01) concentrations in OSCC patients were determined using the validated multiplex complement assay. Higher C5a concentrations correlated with tumor differentiation and OSCC extension state. Systemic sC5b-9 determination provided a novel biomarker for infiltrating tumor growth and C3a levels were associated with local tumor spreading. Our study suggests that systemic complement activation levels in OSCC patients may be useful to assess disease progression.
Collapse
Affiliation(s)
- Juliane Gallenkamp
- University Hospital Regensburg, Department of Oral and Maxillofacial Surgery, Regensburg, Germany
| | - Gerrit Spanier
- University Hospital Regensburg, Department of Oral and Maxillofacial Surgery, Regensburg, Germany
| | - Elisabeth Wörle
- University Hospital Regensburg, Department of Ophthalmology, Regensburg, Germany
| | - Markus Englbrecht
- University Hospital Regensburg, Department of Ophthalmology, Regensburg, Germany
| | | | - Roman Greslechner
- University Hospital Regensburg, Department of Ophthalmology, Regensburg, Germany
| | - Regine Braun
- University Hospital Regensburg, Department of Ophthalmology, Regensburg, Germany
| | - Nicole Schäfer
- University Hospital Regensburg, Department of Ophthalmology, Regensburg, Germany
| | - Richard J Bauer
- University Hospital Regensburg, Department of Oral and Maxillofacial Surgery, Regensburg, Germany.,Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Diana Pauly
- University Hospital Regensburg, Department of Ophthalmology, Regensburg, Germany
| |
Collapse
|
45
|
Daugan M, Noe R, Herman Fridman W, Sautes-Fridman C, Roumenina LT. [The complement system: a double edge sword in tumor progression]. Med Sci (Paris) 2017; 33:871-877. [PMID: 28994383 DOI: 10.1051/medsci/20173310019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The complement system is a key component of the innate immunity, playing a role in pathogen elimination and in host homeostasis. The complement system has been considered for long time as an anti-tumoral element. However, recent studies showed a pro-tumoral effect of complement and particularly of the anaphylatoxines C3a and C5a in a large variety of tumor types. Complement proteins act on different levels of tumor progression, affecting the tumor cells, the angiogenesis and the immune microenvironment. The impact of the complement system on tumor progression seems to be cancer type-dependent and this has to be taken into account in the establishment of potential biomarkers and development of therapeutic strategies.
Collapse
Affiliation(s)
- Marie Daugan
- Inserm UMRS 1138, Centre de recherche des Cordeliers, équipe complément et maladies, 15, rue de l'École de Médecine, 75006 Paris, France - Sorbonne Paris Cité, Université Paris Descartes, Paris, France - Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Remi Noe
- Inserm UMRS 1138, Centre de recherche des Cordeliers, équipe complément et maladies, 15, rue de l'École de Médecine, 75006 Paris, France - Sorbonne Paris Cité, Université Paris Descartes, Paris, France - Sorbonne Universités, UPMC Université Paris 06, Paris, France - École pratique des hautes études (EPHE), Paris, France
| | - Wolf Herman Fridman
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France - Sorbonne Universités, UPMC Université Paris 06, Paris, France - Inserm UMRS 1138, Centre de recherche des Cordeliers, équipe cancer et immunité anti-tumorale, Paris, France
| | - Catherine Sautes-Fridman
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France - Sorbonne Universités, UPMC Université Paris 06, Paris, France - Inserm UMRS 1138, Centre de recherche des Cordeliers, équipe cancer et immunité anti-tumorale, Paris, France
| | - Lubka T Roumenina
- Inserm UMRS 1138, Centre de recherche des Cordeliers, équipe complément et maladies, 15, rue de l'École de Médecine, 75006 Paris, France - Sorbonne Paris Cité, Université Paris Descartes, Paris, France - Sorbonne Universités, UPMC Université Paris 06, Paris, France
| |
Collapse
|
46
|
Belden SE, Uppalapati CK, Pascual AS, Montgomery MR, Leyva KJ, Hull EE, Averitte RL. Establishment of a Clinic-based Biorepository. J Vis Exp 2017:55583. [PMID: 28605380 PMCID: PMC5608153 DOI: 10.3791/55583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The incidence of skin cancer (e.g., squamous cell carcinoma, basal cell carcinoma, and melanoma) has been increasing over the past several years. It is expected that there will be a parallel demand for cutaneous tumor samples for biomedical research studies. Tissue availability, however, is limited due the cost of establishing a biorepository and the lack of protocols available for obtaining clinical samples that do not interfere with clinical operations. A protocol was established to collect and process cutaneous tumor and associated blood and saliva samples that has minimal impact on routine clinical procedures on the date of a Mohs surgery. Tumor samples are collected and processed from patients undergoing their first layer of Mohs surgery for biopsy-proven cutaneous malignancies by the Mohs histotechnologist. Adjacent normal tissue is collected at the time of surgical closure. Additional samples that may be collected are whole-blood and buccal swabs. By utilizing tissue samples that are normally discarded, a biorepository was generated that offers several key advantages by being based in the clinic versus the laboratory setting. These include a wide range of collected samples; access to de-identified patient records, including pathology reports; and, for the typical donor, access to additional samples during follow-up visits.
Collapse
Affiliation(s)
- Sarah E Belden
- Affiliated Dermatology & Affiliated Laboratories, Midwestern University Osteopathic Postdoctoral Training Institute, Midwestern University
| | - Chandana K Uppalapati
- Department of Microbiology & Immunology, Arizona College of Osteopathic Medicine, Midwestern University
| | - Agnes S Pascual
- Biomedical Sciences Program, College of Health Sciences, Midwestern University
| | - McKale R Montgomery
- Biomedical Sciences Program, College of Health Sciences, Midwestern University
| | - Kathryn J Leyva
- Department of Microbiology & Immunology, Arizona College of Osteopathic Medicine, Midwestern University
| | - Elizabeth E Hull
- Biomedical Sciences Program, College of Health Sciences, Midwestern University;
| | - Richard L Averitte
- Affiliated Dermatology & Affiliated Laboratories, Midwestern University Osteopathic Postdoctoral Training Institute, Midwestern University
| |
Collapse
|
47
|
Nissinen L, Siljamäki E, Riihilä P, Piipponen M, Farshchian M, Kivisaari A, Kallajoki M, Raiko L, Peltonen J, Peltonen S, Kähäri VM. Expression of claudin-11 by tumor cells in cutaneous squamous cell carcinoma is dependent on the activity of p38δ. Exp Dermatol 2017; 26:771-777. [PMID: 27992079 DOI: 10.1111/exd.13278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2016] [Indexed: 12/20/2022]
Abstract
The incidence of cutaneous squamous cell carcinoma (cSCC) is rapidly increasing, and the prognosis of patients with metastatic disease is poor. There is an emerging need to identify molecular markers for predicting aggressive behaviour of cSCC. Here, we have examined the role of tight junction (TJ) components in the progression of cSCC. The expression pattern of mRNAs for TJ components was determined with RNA sequencing and oligonucleotide array-based expression analysis from cSCC cell lines (n=8) and normal human epidermal keratinocytes (NHEK, n=5). The expression of CLDN11 was specifically elevated in primary cSCC cell lines (n=5), but low or absent in metastatic cSCC cell lines (n=3) and NHEKs. Claudin-11 was detected in cell-cell contacts of primary cSCC cells in culture by indirect immunofluorescence analysis. Analysis of a large panel of tissue samples from sporadic UV-induced cSCC (n=65), cSCC in situ (n=56), actinic keratoses (n=31), seborrhoeic keratoses (n=7) and normal skin (n=16) by immunohistochemistry showed specific staining for claudin-11 in intercellular junctions of keratinizing tumor cells in well and moderately differentiated cSCCs, whereas no staining for claudin-11 was detected in poorly differentiated tumors. The expression of claudin-11 in cSCC cells was dependent on the activity of p38δ MAPK and knock-down of claudin-11 enhanced cSCC cell invasion. These findings provide evidence for the role of claudin-11 in regulation of cSCC invasion and suggest loss of claudin-11 expression in tumor cells as a biomarker for advanced stage of cSCC.
Collapse
Affiliation(s)
- Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Elina Siljamäki
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Mehdi Farshchian
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Atte Kivisaari
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Laura Raiko
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| |
Collapse
|
48
|
Riihilä P, Nissinen L, Farshchian M, Kallajoki M, Kivisaari A, Meri S, Grénman R, Peltonen S, Peltonen J, Pihlajaniemi T, Heljasvaara R, Kähäri VM. Complement Component C3 and Complement Factor B Promote Growth of Cutaneous Squamous Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1186-1197. [PMID: 28322200 DOI: 10.1016/j.ajpath.2017.01.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/30/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is one of the most common metastatic skin cancers with increasing incidence. We examined the roles of complement component C3 and complement factor B (CFB) in the growth of cSCC. Analysis of cSCC cell lines (n = 8) and normal human epidermal keratinocytes (n = 11) with real-time quantitative PCR and Western blotting revealed up-regulation of C3 and CFB expression in cSCC cells. Immunohistochemical staining revealed stronger tumor cell-specific labeling for C3 and CFB in invasive cSCCs (n = 71) and recessive dystrophic epidermolysis bullosa-associated cSCCs (n = 11) than in cSCC in situ (n = 69), actinic keratoses (n = 63), and normal skin (n = 5). Significant up-regulation of C3 and CFB mRNA expression was noted in chemically induced mouse cSCCs, compared to benign papillomas. Knockdown of C3 and CFB expression inhibited migration and proliferation of cSCC cells and resulted in potent inhibition of extracellular signal-regulated kinase 1/2 activation. Knockdown of C3 and CFB markedly inhibited growth of human cSCC xenograft tumors in vivo. These results provide evidence for the roles of C3 and CFB in the development of cSCC and identify them as biomarkers and potential therapeutic targets in this metastatic skin cancer.
Collapse
Affiliation(s)
- Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Mehdi Farshchian
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - Atte Kivisaari
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Seppo Meri
- Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and the Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and the Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland.
| |
Collapse
|
49
|
Abstract
In addition to being a component of innate immunity and an ancient defense mechanism against invading pathogens, complement activation also participates in the adaptive immune response, inflammation, hemostasis, embryogenesis, and organ repair and development. Activation of the complement system via classical, lectin, or alternative pathways generates anaphylatoxins (C3a and C5a) and membrane attack complex (C5b-9) and opsonizes targeted cells. Complement activation end products and their receptors mediate cell-cell interactions that regulate several biological functions in the extravascular tissue. Signaling of anaphylatoxin receptors or assembly of membrane attack complex promotes cell dedifferentiation, proliferation, and migration in addition to reducing apoptosis. As a result, complement activation in the tumor microenvironment enhances tumor growth and increases metastasis. In this Review, I discuss immune and nonimmune functions of complement proteins and the tumor-promoting effect of complement activation.
Collapse
|
50
|
Azimi A, Kaufman KL, Ali M, Kossard S, Fernandez-Penas P. In Silico Analysis Validates Proteomic Findings of Formalin-fixed Paraffin Embedded Cutaneous Squamous Cell Carcinoma Tissue. Cancer Genomics Proteomics 2017; 13:453-465. [PMID: 27807068 DOI: 10.21873/cgp.20008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is a common type of skin cancer but there are no comprehensive proteomic studies on this entity. MATERIALS AND METHODS We employed liquid chromatography coupled with tandem mass spectrometry (MS/MS) using formalin-fixed paraffin-embedded (FFPE) cSCC material to study the tumor and normal skin tissue proteomes. Ingenuity Pathway Analysis (IPA) was used to interpret the role of altered proteins in cSCC pathophysiology. Results were validated using the Human Protein Atlas and Oncomine database in silico. RESULTS Of 1,310 unique proteins identified, expression of an average of 144 and 88 proteins were significantly (p<0.05) increased and decreased, respectively, in the tumor samples compared to their normal counterparts. IPA analysis revealed disruptions in proteins associated with cell proliferation, apoptosis, and migration. In silico analysis confirmed that proteins corresponding to 12 antibodies, and genes corresponding to 18 proteins were differentially expressed between the two categories, validating our proteomic measurements. CONCLUSION Label-free MS-based proteomics is useful for analyzing FFPE cSCC tissues.
Collapse
Affiliation(s)
- Ali Azimi
- Department of Dermatology, Westmead Hospital, The University of Sydney, Westmead, NSW, Australia
| | - Kimberley L Kaufman
- School of Molecular Bioscience, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Marina Ali
- Department of Dermatology, Westmead Hospital, The University of Sydney, Westmead, NSW, Australia
| | - Steven Kossard
- Dermatopathology, Skin and Cancer Foundation Australia, Darlinghurst, NSW, Australia
| | - Pablo Fernandez-Penas
- Department of Dermatology, Westmead Hospital, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|