1
|
Laha S, Das S, Banerjee U, Ganguly T, Senapati S, Chatterjee G, Chatterjee R. Genome-wide RNA-seq, DNA methylation and small RNA-seq analysis unraveled complex gene regulatory networks in psoriasis pathogenesis. Gene 2025; 933:148903. [PMID: 39233195 DOI: 10.1016/j.gene.2024.148903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Psoriasis is a complex inflammatory skin disease characterized by reversible albeit relapsing red scaly plaques in the skin of a patient. In addition to the genetic predisposition, involvement of epigenetic and non-coding RNAs have also been liked with the disease. Nevertheless, any comprehensive study involving transcriptomic, small-RNA and DNA methylation at the genomic level from same patients is lacking. To investigate the complex regulation of molecular pathways in psoriasis, we carried out multi-omics integrative analysis of RNA-sequencing, small RNA-sequencing and DNA methylation profiling from the psoriatic and adjacent normal skin tissues. Our multi-omics analysis identified the genes and biological processes regulated either independently or in combination by DNA methylation and microRNAs. We identified miRNAs that specifically regulated keratinocyte hyper-proliferation, and cell cycle progression and checkpoint signaling in psoriasis. On contrary, DNA methylation was found to be more predominant in regulating immune and inflammatory responses, another causative factor in psoriasis pathogenesis. Many characteristic pathways in psoriasis e.g., Th17 cell differentiation and JAK-STAT signaling, were found to be regulated by both miRNAs and DNA methylation. We carried out functional characterization of a downregulated miRNA hsa-let-7c-5p, predicted to target upregulated genes in psoriasis involved in cell cycle processes, Th17 cell differentiation and JAK-STAT signaling pathways. Overexpression of hsa-let-7c-5p in keratinocytes caused the downregulation of its target genes, resulting in reduced cell proliferation and migration rates, demonstrating potential of miRNAs in regulating psoriasis pathogenesis. In conclusion, our findings identified distinct and shared gene-networks regulated by DNA methylation and miRNAs of a complex disease with reversible phenotype.
Collapse
Affiliation(s)
- Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Shantanab Das
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Urbee Banerjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Torsa Ganguly
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Swapan Senapati
- Consultant Dermatologist, Uttarpara, Hooghly, West Bengal 712258, India
| | - Gobinda Chatterjee
- Department of Dermatology, IPGMER/SSKM Hospital, Kolkata, West Bengal, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India.
| |
Collapse
|
2
|
Hughes AN, Li X, Lehman JS, Nelson SA, DiCaudo DJ, Mudappathi R, Hwang A, Kechter J, Pittelkow MR, Mangold AR, Sekulic A. Drug Repurposing Using Molecular Network Analysis Identifies Jak as Targetable Driver in Necrobiosis Lipoidica. JID INNOVATIONS 2024; 4:100296. [PMID: 39391813 PMCID: PMC11465178 DOI: 10.1016/j.xjidi.2024.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 10/12/2024] Open
Abstract
Drug repurposing is an attractive strategy for therapy development, particularly in rare diseases where traditional drug development approaches may be challenging owing to high cost and small numbers of patients. In this study, we used a drug identification and repurposing pipeline to identify candidate targetable drivers of disease and corresponding therapies through application of causal reasoning using a combination of open-access resources and transcriptomics data. We optimized our approach on psoriasis as a disease model, demonstrating the ability to identify known and, to date, unrecognized molecular drivers of psoriasis and link them to current and emerging therapies. Application of our approach to a cohort of tissue samples of necrobiosis lipoidica (an unrelated; rare; and, to date, molecularly poorly characterized cutaneous inflammatory disorder) identified a unique set of upstream regulators, particularly highlighting the role of IFNG and the Jak-signal transducer and activator of transcription pathway as a likely driver of disease pathogenesis and linked it to Jak inhibitors as potential therapy. Analysis of an independent cohort of necrobiosis lipoidica samples validated these findings, with the overall agreement of drug-matched upstream regulators above 96%. These data highlight the utility of our approach in rare diseases and offer an opportunity for drug discovery in other rare diseases in dermatology and beyond.
Collapse
Affiliation(s)
- Alysia N. Hughes
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Xing Li
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Julia S. Lehman
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven A. Nelson
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | - David J. DiCaudo
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Rekha Mudappathi
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona, USA
- Center for Individualized Medicine, Mayo Clinic, Scottsdale, Arizona, USA
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Angelina Hwang
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Jacob Kechter
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Aaron R. Mangold
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Aleksandar Sekulic
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
- City of Hope, Phoenix, Arizona, USA
| |
Collapse
|
3
|
Liu L, Chen L, Hu Y, Zhang Q, Chen K, Zhang J. Genome-wide DNA methylation regulated by AHCY through SAM / SAH axis promotes psoriasis pathogenesis. J Dermatol Sci 2024:S0923-1811(24)00213-5. [PMID: 39521647 DOI: 10.1016/j.jdermsci.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease that affects a significant proportion of the global population. The involvement of S-adenosine homocysteine hydrolase (AHCY) in psoriasis and its impact on DNA methylation have not been extensively studied. OBJECTIVE This study aimed to investigate the role of AHCY and its impact on DNA methylation in psoriasis pathogenesis. METHODS In the present study, we investigated the expression of AHCY in psoriatic lesions and assessed its association with the severity of the disease. Moreover, knockdown experiments were conducted to elucidate the impact of AHCY on psoriatic symptoms, keratinocyte proliferation, and aberrant differentiation. Furthermore, alterations in DNA methylation patterns resulting from AHCY knockdown were analyzed. RESULTS Our findings revealed that AHCY was upregulated in psoriatic lesions and exhibited a positive correlation with disease severity. Knockdown of AHCY alleviated psoriatic symptoms, inhibited keratinocyte proliferation, and prevented abnormal differentiation. Moreover, AHCY knockdown led to reduced levels of DNA methylation and alterations in methylation patterns. Notably, differential methylation was observed at specific gene loci associated with psoriasis-related inflammation. CONCLUSION This study highlights the potential role of AHCY in psoriasis development through its influence on DNA methylation. The findings underscore the complex interaction among AHCY, epigenetic modifications, and inflammation in the pathogenesis of psoriasis. Consequently, AHCY may serve as a promising therapeutic target for psoriasis treatment.
Collapse
Affiliation(s)
- Lingxi Liu
- Institute of Dermatology and Hospital for Skin Diseases,Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Lihao Chen
- Institute of Dermatology and Hospital for Skin Diseases,Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yu Hu
- Institute of Dermatology and Hospital for Skin Diseases,Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Qian Zhang
- Department of Dermatology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Chen
- Institute of Dermatology and Hospital for Skin Diseases,Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| | - Jiaan Zhang
- Institute of Dermatology and Hospital for Skin Diseases,Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
4
|
Mangum KD, denDekker A, Li Q, Tsoi LC, Joshi AD, Melvin WJ, Wolf SJ, Moon JY, Audu CO, Shadiow J, Obi AT, Wasikowski R, Barrett EC, Bauer TM, Boyer K, Ahmed Z, Davis FM, Gudjonsson J, Gallagher KA. The STAT3/SETDB2 axis dictates NF-κB-mediated inflammation in macrophages during wound repair. JCI Insight 2024; 9:e179017. [PMID: 39435663 PMCID: PMC11530128 DOI: 10.1172/jci.insight.179017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024] Open
Abstract
Macrophage transition from an inflammatory to reparative phenotype after tissue injury is controlled by epigenetic enzymes that regulate inflammatory gene expression. We have previously identified that the histone methyltransferase SETDB2 in macrophages drives tissue repair by repressing NF-κB-mediated inflammation. Complementary ATAC-Seq and RNA-Seq of wound macrophages isolated from mice deficient in SETDB2 in myeloid cells revealed that SETDB2 suppresses the inflammatory gene program by inhibiting chromatin accessibility at NF-κB-dependent gene promoters. We found that STAT3 was required for SETDB2 expression in macrophages, yet paradoxically, it also functioned as a binding partner of SETDB2 where it repressed SETDB2 activity by inhibiting its interaction with the NF-κB component, RELA, leading to increased RELA/NF-κB-mediated inflammatory gene expression. Furthermore, RNA-Seq in wound macrophages from STAT3-deficient mice corroborated this and revealed STAT3 and SETDB2 transcriptionally coregulate overlapping genes. Finally, in diabetic wound macrophages, STAT3 expression and STAT3/SETDB2 binding were increased. We have identified what we believe to be a novel STAT3/SETDB2 axis that modulates macrophage phenotype during tissue repair and may be an important therapeutic target for nonhealing diabetic wounds.
Collapse
Affiliation(s)
- Kevin D. Mangum
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Aaron denDekker
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Qinmengge Li
- Department of Dermatology
- Department of Computation Medicine and Bioinformatics; and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C. Tsoi
- Department of Dermatology
- Department of Computation Medicine and Bioinformatics; and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Amrita D. Joshi
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - William J. Melvin
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Sonya J. Wolf
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Jadie Y. Moon
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Christopher O. Audu
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - James Shadiow
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Andrea T. Obi
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | | | - Emily C. Barrett
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Tyler M. Bauer
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Kylie Boyer
- Section of Vascular Surgery, Department of Surgery
| | - Zara Ahmed
- Section of Vascular Surgery, Department of Surgery
| | - Frank M. Davis
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | | | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| |
Collapse
|
5
|
Liu Y, Chen Y, Batzorig U, Li J, Fernández-Méndez C, Mahapatra S, Li F, Sam S, Dokoshi T, Hong SP, Nakatsuji T, Gallo RL, Sen GL. The transcription regulators ZNF750 and LSD1/KDM1A dampen inflammation on the skin's surface by silencing pattern recognition receptors. Immunity 2024; 57:2296-2309.e5. [PMID: 39353440 PMCID: PMC11464168 DOI: 10.1016/j.immuni.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/20/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
The surface of the skin is continually exposed to pro-inflammatory stimuli; however, it is unclear why it is not constantly inflamed due to this exposure. Here, we showed undifferentiated keratinocytes residing in the deep epidermis could trigger a strong inflammatory response due to their high expression of pattern recognition receptors (PRRs) that detect damage or pathogens. As keratinocytes differentiated, they migrated outward toward the surface of the skin and decreased their PRR expression, which led to dampened immune responses. ZNF750, a transcription factor expressed only in differentiated keratinocytes, recruited the histone demethylase KDM1A/LSD1 to silence genes coding for PRRs (TLR3, IFIH1/MDA5, and DDX58/RIG1). Loss of ZNF750 or KDM1A in human keratinocytes or mice resulted in sustained and excessive inflammation resembling psoriatic skin, which could be restored to homeostatic conditions upon silencing of TLR3. Our findings explain how the skin's surface prevents excessive inflammation through ZNF750- and KDM1A-mediated suppression of PRRs.
Collapse
Affiliation(s)
- Ye Liu
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Yifang Chen
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Uyanga Batzorig
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Jingting Li
- Institute of Precision Medicine, Department of Burns, Department of Dermatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Celia Fernández-Méndez
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Samiksha Mahapatra
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Fengwu Li
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Shebin Sam
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Seung-Phil Hong
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA; Department of Dermatology, Yonsei University, Wonju College of Medicine, Wonju, Republic of Korea
| | - Teruaki Nakatsuji
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Richard L Gallo
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - George L Sen
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA.
| |
Collapse
|
6
|
Varela Martins T, Silva de Melo BM, Toller-Kawahisa JE, da Silva GVL, Aníbal Silva CE, Paiva IM, Públio GA, Rosa MH, da Silva Souza C, Zamboni DS, Cunha FQ, Cunha TM, Ryffel B, Riteau N, Alves-Filho JC. The DNA sensor AIM2 mediates psoriasiform inflammation by inducing type 3 immunity. JCI Insight 2024; 9:e171894. [PMID: 39352743 DOI: 10.1172/jci.insight.171894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/18/2024] [Indexed: 11/09/2024] Open
Abstract
Psoriasis is a chronic and recurrent inflammatory skin disease characterized by abnormal proliferation and differentiation of keratinocytes and activation of immune cells. However, the molecular driver that triggers this immune response in psoriatic skin remains unclear. The inflammation-related gene absent in melanoma 2 (AIM2) was identified as a susceptibility gene/locus associated with psoriasis. In this study, we investigated the role of AIM2 in the pathophysiology of psoriasis. We found elevated levels of mitochondrial DNA in patients with psoriasis, along with high expression of AIM2 in both the human psoriatic epidermis and a mouse model of psoriasis induced by topical imiquimod (IMQ) application. Genetic ablation of AIM2 reduced the development of IMQ-induced psoriasis by decreasing the production of type 3 cytokines (such as IL-17A and IL-23) and infiltration of immune cells into the inflammatory site. Furthermore, we demonstrate that IL-17A induced AIM2 expression in keratinocytes. Finally, the genetic absence of inflammasome components downstream AIM2, ASC, and caspase-1 alleviated IMQ-induced skin inflammation. Collectively, our data show that AIM2 is involved in developing psoriasis through its canonical activation.
Collapse
Affiliation(s)
- Timna Varela Martins
- Department of Pharmacology, Ribeirão Preto Medical School, and
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Sao Paulo, Brazil
- Immune Health Laboratory, Regulation of host responses and immune health, IRL2029, French National Centre for Scientific Research (CNRS) and Ribeirão Preto Medical School (FMRP) of the Sao Paulo University (USP), Sao Paulo, Brazil
- INEM, CNRS, UMR7355 and University, Orleans, France
| | - Bruno Marcel Silva de Melo
- Department of Pharmacology, Ribeirão Preto Medical School, and
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Juliana Escher Toller-Kawahisa
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Gabriel Victor Lucena da Silva
- Department of Pharmacology, Ribeirão Preto Medical School, and
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Conceição Elidianne Aníbal Silva
- Department of Pharmacology, Ribeirão Preto Medical School, and
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Isadora Marques Paiva
- Department of Pharmacology, Ribeirão Preto Medical School, and
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Gabriel Azevedo Públio
- Department of Pharmacology, Ribeirão Preto Medical School, and
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Marcos Henrique Rosa
- Department of Pharmacology, Ribeirão Preto Medical School, and
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | | | - Dario Simões Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, and
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, and
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | | | - Nicolas Riteau
- Immune Health Laboratory, Regulation of host responses and immune health, IRL2029, French National Centre for Scientific Research (CNRS) and Ribeirão Preto Medical School (FMRP) of the Sao Paulo University (USP), Sao Paulo, Brazil
- INEM, CNRS, UMR7355 and University, Orleans, France
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, and
- Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Sao Paulo, Brazil
- Immune Health Laboratory, Regulation of host responses and immune health, IRL2029, French National Centre for Scientific Research (CNRS) and Ribeirão Preto Medical School (FMRP) of the Sao Paulo University (USP), Sao Paulo, Brazil
| |
Collapse
|
7
|
Li H, Wang X, Zhu J, Yang B, Lou J. Identifying key inflammatory genes in psoriasis via weighted gene co-expression network analysis: Potential targets for therapy. BIOMOLECULES & BIOMEDICINE 2024; 24:1133-1149. [PMID: 38829444 PMCID: PMC11379011 DOI: 10.17305/bb.2024.10327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 06/05/2024]
Abstract
Psoriasis is a globally prevalent chronic inflammatory skin disease. This study aimed to scrutinize the hub genes related to inflammation and potential molecular mechanisms in psoriasis. Utilizing mRNA expression profiles from public datasets GSE13355, GSE78097, and GSE14905, we set up a comprehensive analysis. Initially, we selected differentially expressed genes (DEGs) from psoriasis and control samples in GSE13355, followed by calculating inflammatory indices using genomic set variation analysis (GSVA). Weighted gene co-expression network analysis (WGCNA) was then applied to link significant modules with the inflammatory index. This process helped us identify differentially expressed inflammation-related genes (DE-IRGs). A protein-protein interaction (PPI) network was established, with the molecular complex detection (MCODE) plug-in pinpointing six chemokine genes (CCR7, CCL2, CCL19, CXCL8, CXCL1, and CXCL2) as central hub genes. These genes demonstrated pronounced immunohistochemical staining in psoriatic tissues compared to normal skin. Notably, the CCR7 gene exhibited the highest potential for m6A modification sites. Furthermore, we constructed transcription factor-microRNA-mRNA networks, identifying 139 microRNAs and 52 transcription factors associated with the hub genes. For the LASSO logistic regression model, the area under the curve (AUC) in the training set was 1, and in the two validation cohorts GSE78097 and GSE14905 were 1 and 0.872, respectively. In conclusion, our study highlights six chemokine genes (CCR7, CCL2, CCL19, CXCL8, CXCL1, and CXCL2) as potential biomarkers in psoriasis, providing insights into the immune and inflammatory responses as pivotal instances in disease pathogenesis. These findings pave the way for exploring new therapeutic targets, particularly focusing on chemokine-associated pathways in psoriasis treatment.
Collapse
Affiliation(s)
- Huidan Li
- Clinical Laboratory Medicine Center, Shanghai General Hospital, Shanghai, China
| | - Xiaorui Wang
- Clinical Laboratory Medicine Center, Shanghai General Hospital, Shanghai, China
| | - Jing Zhu
- Clinical Laboratory Medicine Center, Jiading Branch of Shanghai General Hospital, Shanghai, China
| | - Bingzhe Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiatao Lou
- Clinical Laboratory Medicine Center, Shanghai General Hospital, Shanghai, China
| |
Collapse
|
8
|
DeVore SB, Schuetz M, Alvey L, Lujan H, Ochayon DE, Williams L, Chang WC, Filuta A, Ruff B, Kothari A, Hahn JM, Brandt E, Satish L, Roskin K, Herr AB, Biagini JM, Martin LJ, Cagdas D, Keles S, Milner JD, Supp DM, Khurana Hershey GK. Regulation of MYC by CARD14 in human epithelium is a determinant of epidermal homeostasis and disease. Cell Rep 2024; 43:114589. [PMID: 39110589 PMCID: PMC11469028 DOI: 10.1016/j.celrep.2024.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Caspase recruitment domain family member 14 (CARD14) and its variants are associated with both atopic dermatitis (AD) and psoriasis, but their mechanistic impact on skin barrier homeostasis is largely unknown. CARD14 is known to signal via NF-κB; however, CARD14-NF-κB signaling does not fully explain the heterogeneity of CARD14-driven disease. Here, we describe a direct interaction between CARD14 and MYC and show that CARD14 signals through MYC in keratinocytes to coordinate skin barrier homeostasis. CARD14 directly binds MYC and influences barrier formation in an MYC-dependent fashion, and this mechanism is undermined by disease-associated CARD14 variants. These studies establish a paradigm that CARD14 activation regulates skin barrier function by two distinct mechanisms, including activating NF-κB to bolster the antimicrobial (chemical) barrier and stimulating MYC to bolster the physical barrier. Finally, we show that CARD14-dependent MYC signaling occurs in other epithelia, expanding the impact of our findings beyond the skin.
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Matthew Schuetz
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lauren Alvey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Henry Lujan
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - David E Ochayon
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lindsey Williams
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wan Chi Chang
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alyssa Filuta
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Brandy Ruff
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Arjun Kothari
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jennifer M Hahn
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Eric Brandt
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Latha Satish
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Krishna Roskin
- Division of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Andrew B Herr
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Immunobiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jocelyn M Biagini
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lisa J Martin
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ihsan Dogramaci Children's Hospital, Institutes of Child Health, Ankara 06230, Turkey
| | - Sevgi Keles
- Division of Pediatric Immunology and Allergy, Necmettin Erbakan University, Konya 42090, Turkey
| | - Joshua D Milner
- Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Scientific Staff, Shriners Children's Ohio, Dayton, OH 45404, USA
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
9
|
Chen G, Chen X, Duan X, Zhang R, Bai C. Unraveling the roles of IFIT3 gene and immune-metabolic pathways in psoriasis: a bioinformatics exploration for diagnostic markers and therapeutic targets. Front Mol Biosci 2024; 11:1439837. [PMID: 39239353 PMCID: PMC11374644 DOI: 10.3389/fmolb.2024.1439837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Background The functions and related signal pathways of the IFIT3 gene in the skin lesions of patients with psoriasis were explored through bioinformatics methods to determine the potential specific molecular markers of psoriasis. Methods The "limma" R package was used to analyze three datasets from the Gene Expression Omnibus database (GSE13355, GSE30999 and GSE106992), and the differential genes were screened. The STRING database was used for gene ontology (GO) enrichment analysis, Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis, and protein-protein interaction network integration. Then, the IFIT3 subnetwork was extracted and analyzed by gene set enrichment analysis (GSEA) using the Metascape database to verify the effectiveness of gene differentiation and disease tissue identification. Results In this study, 426 differential genes were obtained, of which 322 were significantly upregulated and 104 were significantly downregulated. GO enrichment analysis showed that the differential genes were mainly involved in immunity and metabolism; the KEGG pathway enrichment analysis mainly included the chemokine signal pathway, PPAR signal pathway, and IL-17 signal pathway, among others. Based on the IFIT3 subnetwork analysis, it was found that IFIT3 was mainly involved in the biological processes of viruses, bacteria, and other microorganisms. The pathways obtained by GSEA were mainly related to immunity, metabolism, and antiviral activities. IFIT3 was highly expressed in psoriatic lesions and may thus be helpful in the diagnosis of psoriasis. Conclusion The differential genes, biological processes, and signal pathways of psoriasis, especially information related to and diagnostic efficiency of the IFIT3 gene, were obtained by bioinformatics analysis. These results are expected to provide the theoretical basis and new directions for exploring the pathogenesis of psoriasis, in addition to helping with finding diagnostic markers and developing drug treatment targets.
Collapse
Affiliation(s)
- Guangshan Chen
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xi Chen
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xingwu Duan
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Runtian Zhang
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chunxiao Bai
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Berekmeri A, Macleod T, Hyde I, Ojak GJ, Mann C, Kramer D, Stacey M, Wittmann M. Epidermal proteomics demonstrates Elafin as a psoriasis-specific biomarker and highlights increased anti-inflammatory activity around psoriatic plaques. J Eur Acad Dermatol Venereol 2024. [PMID: 39157924 DOI: 10.1111/jdv.20289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Eczema and psoriasis are common diseases. Despite both showing active epidermal contribution to the inflammatory process, their molecular aetiology and pathological mechanisms are different. OBJECTIVE Further molecular insight into these differences is therefore needed to enable effective future diagnostic and treatment strategies. The majority of our mechanistic and clinical understanding of psoriasis and eczema is derived from RNA, immunohistology and whole skin biopsy data. METHODS In this study, non-invasive epidermal sampling of lesional, perilesional and non-lesional skin from diseased and healthy skin was used to perform an in depth proteomic analysis of epidermal proteins. RESULTS Our findings confirmed the psoriasis-associated cytokine IL-36γ as an excellent protein biomarker for lesional psoriasis. However, ELISA and ROC curve analysis of 53 psoriasis and 42 eczema derived samples showed that the sensitivity and specificity were outperformed by elastase-specific protease inhibitor, elafin. Of note, elafin was also found upregulated in non-lesional psoriatic skin at non-predilection sites demonstrating inherent differences between the non-involved skin of healthy and psoriatic individuals. Mass spectrometry and ELISA analysis also demonstrated the upregulation of the anti-inflammatory molecule IL-37 in psoriatic perilesional but not lesional skin. The high expression of IL-37 surrounding psoriatic plaque may contribute to the sharp demarcation of inflammatory morphology changes observed in psoriasis. This finding was also specific for psoriasis and not seen in atopic dermatitis or autoimmune blistering perilesional skin. Our results confirm IL-36γ and add elafin as robust, hallmark molecules distinguishing psoriasis and eczema-associated inflammation even in patients under systemic treatment. CONCLUSIONS Overall, these findings highlight the potential of epidermal non-invasive sampling and proteomic analysis to increase our diagnostic and pathophysiologic understanding of skin diseases. Moreover, the identification of molecular differences in healthy-looking skin between patients and healthy controls highlights potential disease susceptibility markers and proteins involved in the initial stages of disease.
Collapse
Affiliation(s)
- Anna Berekmeri
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), The Leeds Teaching Hospitals, Leeds, UK
| | - Tom Macleod
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Isabel Hyde
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Gregor Jan Ojak
- Department of Dermatology, University Medical Centre, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Caroline Mann
- Department of Dermatology, University Medical Centre, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Centre, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Stacey
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Miriam Wittmann
- Department of Dermatology, University Medical Centre, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Sprang M, Möllmann J, Andrade-Navarro MA, Fontaine JF. Overlooked poor-quality patient samples in sequencing data impair reproducibility of published clinically relevant datasets. Genome Biol 2024; 25:222. [PMID: 39152483 PMCID: PMC11328481 DOI: 10.1186/s13059-024-03331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/08/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Reproducibility is a major concern in biomedical studies, and existing publication guidelines do not solve the problem. Batch effects and quality imbalances between groups of biological samples are major factors hampering reproducibility. Yet, the latter is rarely considered in the scientific literature. RESULTS Our analysis uses 40 clinically relevant RNA-seq datasets to quantify the impact of quality imbalance between groups of samples on the reproducibility of gene expression studies. High-quality imbalance is frequent (14 datasets; 35%), and hundreds of quality markers are present in more than 50% of the datasets. Enrichment analysis suggests common stress-driven effects among the low-quality samples and highlights a complementary role of transcription factors and miRNAs to regulate stress response. Preliminary ChIP-seq results show similar trends. Quality imbalance has an impact on the number of differential genes derived by comparing control to disease samples (the higher the imbalance, the higher the number of genes), on the proportion of quality markers in top differential genes (the higher the imbalance, the higher the proportion; up to 22%) and on the proportion of known disease genes in top differential genes (the higher the imbalance, the lower the proportion). We show that removing outliers based on their quality score improves the resulting downstream analysis. CONCLUSIONS Thanks to a stringent selection of well-designed datasets, we demonstrate that quality imbalance between groups of samples can significantly reduce the relevance of differential genes, consequently reducing reproducibility between studies. Appropriate experimental design and analysis methods can substantially reduce the problem.
Collapse
Affiliation(s)
- Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany
| | - Jannik Möllmann
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany.
| | - Jean-Fred Fontaine
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany
- Central Institute for Decision Support Systems in Crop Protection (ZEPP), Rüdesheimer Str. 60-68, Bad Kreuznach, 55545, Germany
| |
Collapse
|
12
|
Rusiñol L, Puig L. A Narrative Review of the IL-18 and IL-37 Implications in the Pathogenesis of Atopic Dermatitis and Psoriasis: Prospective Treatment Targets. Int J Mol Sci 2024; 25:8437. [PMID: 39126010 PMCID: PMC11312859 DOI: 10.3390/ijms25158437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Atopic dermatitis and psoriasis are prevalent inflammatory skin conditions that significantly impact the quality of life of patients, with diverse treatment options available. Despite advances in understanding their underlying mechanisms, recent research highlights the significance of interleukins IL-18 and IL-37, in Th1, Th2, and Th17 inflammatory responses, closely associated with the pathogenesis of psoriasis and atopic dermatitis. Hence, IL-18 and IL-37 could potentially become therapeutic targets. This narrative review synthesizes knowledge on these interleukins, their roles in atopic dermatitis and psoriasis, and emerging treatment strategies. Findings of a literature search up to 30 May 2024, underscore a research gap in IL-37-targeted therapies. Conversely, IL-18-focused treatments have demonstrated promise in adult-onset Still's Disease, warranting further exploration for their potential efficacy in psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lluís Puig
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
13
|
Jiang J, Shao X, Liu W, Wang M, Li Q, Wang M, Xiao Y, Li K, Liang H, Wang N, Xu X, Wu Y, Gao X, Xie Q, Xiang X, Liu W, Wu W, Yang L, Gu ZZ, Chen J, Lei M. The mechano-chemical circuit in fibroblasts and dendritic cells drives basal cell proliferation in psoriasis. Cell Rep 2024; 43:114513. [PMID: 39003736 DOI: 10.1016/j.celrep.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/13/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Psoriasis is an intractable immune-mediated disorder that disrupts the skin barrier. While studies have dissected the mechanism by which immune cells directly regulate epidermal cell proliferation, the involvement of dermal fibroblasts in the progression of psoriasis remains unclear. Here, we identified that signals from dendritic cells (DCs) that migrate to the dermal-epidermal junction region enhance dermal stiffness by increasing extracellular matrix (ECM) expression, which further promotes basal epidermal cell hyperproliferation. We analyzed cell-cell interactions and observed stronger interactions between DCs and fibroblasts than between DCs and epidermal cells. Using single-cell RNA (scRNA) sequencing, spatial transcriptomics, immunostaining, and stiffness measurement, we found that DC-secreted LGALS9 can be received by CD44+ dermal fibroblasts, leading to increased ECM expression that creates a stiffer dermal environment. By employing mouse psoriasis and skin organoid models, we discovered a mechano-chemical signaling pathway that originates from DCs, extends to dermal fibroblasts, and ultimately enhances basal cell proliferation in psoriatic skin.
Collapse
Affiliation(s)
- Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xinyi Shao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Weiwei Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Mengyue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Miaomiao Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yang Xiao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Li
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Huan Liang
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Nian'ou Wang
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Xuegang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xiao Xiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wang Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhong-Ze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China.
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
14
|
Mangum KD, Li Q, Bauer TM, Wolf SJ, Shadiow J, Moon JY, Barrett EC, Joshi AD, Ahmed Z, Wasikowski R, Boyer K, Obi AT, Davis FM, Chang L, Tsoi LC, Gudjonsson J, Gallagher KA. Epigenetic Alteration of Smooth Muscle Cells Regulates Endothelin-Dependent Blood Pressure and Hypertensive Arterial Remodeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.09.24310178. [PMID: 39040193 PMCID: PMC11261912 DOI: 10.1101/2024.07.09.24310178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Long-standing hypertension (HTN) affects multiple organ systems and leads to pathologic arterial remodeling, which is driven largely by smooth muscle cell (SMC) plasticity. Although genome wide association studies (GWAS) have identified numerous variants associated with changes in blood pressure in humans, only a small percentage of these variants actually cause HTN. In order to identify relevant genes important in SMC function in HTN, we screened three separate human GWAS and Mendelian randomization studies to identify SNPs located within non-coding gene regions, focusing on genes encoding epigenetic enzymes, as these have been recently identified to control SMC fate in cardiovascular disease. We identified SNPs rs62059712 and rs74480102 in the promoter of the human JMJD3 gene and show that the minor C allele increases JMJD3 transcription in SMCs via increased SP1 binding to the JMJD3 promoter. Using our novel SMC-specific Jmjd3-deficient murine model ( Jmjd3 flox/flox Myh11 CreERT ), we show that loss of Jmjd3 in SMCs results in HTN, mechanistically, due to decreased EDNRB expression and a compensatory increase in EDNRA expression. As a translational corollary, through single cell RNA-sequencing (scRNA-seq) of human arteries, we found strong correlation between JMJD3 and EDNRB expression in SMCs. Further, we identified that JMJD3 is required for SMC-specific gene expression, and loss of JMJD3 in SMCs in the setting of HTN results in increased arterial remodeling by promoting the SMC synthetic phenotype. Our findings link a HTN-associated human DNA variant with regulation of SMC plasticity, revealing therapeutic targets that may be used in the screening and/or personalized treatment of HTN.
Collapse
|
15
|
Aghaieabiane N, Koutis I. SGCP: a spectral self-learning method for clustering genes in co-expression networks. BMC Bioinformatics 2024; 25:230. [PMID: 38956463 PMCID: PMC11221046 DOI: 10.1186/s12859-024-05848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND A widely used approach for extracting information from gene expression data employs the construction of a gene co-expression network and the subsequent computational detection of gene clusters, called modules. WGCNA and related methods are the de facto standard for module detection. The purpose of this work is to investigate the applicability of more sophisticated algorithms toward the design of an alternative method with enhanced potential for extracting biologically meaningful modules. RESULTS We present self-learning gene clustering pipeline (SGCP), a spectral method for detecting modules in gene co-expression networks. SGCP incorporates multiple features that differentiate it from previous work, including a novel step that leverages gene ontology (GO) information in a self-leaning step. Compared with widely used existing frameworks on 12 real gene expression datasets, we show that SGCP yields modules with higher GO enrichment. Moreover, SGCP assigns highest statistical importance to GO terms that are mostly different from those reported by the baselines. CONCLUSION Existing frameworks for discovering clusters of genes in gene co-expression networks are based on relatively simple algorithmic components. SGCP relies on newer algorithmic techniques that enable the computation of highly enriched modules with distinctive characteristics, thus contributing a novel alternative tool for gene co-expression analysis.
Collapse
Affiliation(s)
- Niloofar Aghaieabiane
- Computer Science Department, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Ioannis Koutis
- Computer Science Department, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
16
|
Zhang H, Raymundo JR, Daly KE, Zhu W, Senapati B, Zhong H, Ahilan AR, Marneros AG. AP-2α/AP-2β Transcription Factors Are Key Regulators of Epidermal Homeostasis. J Invest Dermatol 2024; 144:1505-1521.e12. [PMID: 38237728 PMCID: PMC11193656 DOI: 10.1016/j.jid.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
AP-2 transcription factors regulate ectodermal development, but their roles in epidermal homeostasis in adult skin are unknown. We find that AP-2α is the predominant AP-2 family member in adult epidermis, followed by AP-2β. Through inactivation of AP-2α, AP-2β, or both in keratinocytes, we assessed the effects of a gradient of epidermal AP-2 activity on skin function. We find that (i) loss of AP-2β in keratinocytes is compensated for by AP-2α, (ii) loss of AP-2α impairs terminal keratinocyte differentiation and hair morphogenesis, and (iii) the combined loss of AP-2α/AP-2β results in more severe skin and hair abnormalities. Keratinocyte differentiation defects precede progressive neutrophilic skin inflammation. Inducible inactivation of AP-2α/AP-2β in the adult phenocopies these manifestations. Transcriptomic analyses of epidermis lacking AP-2α or AP-2α/AP-2β in keratinocytes demonstrate a terminal keratinocyte differentiation defect with upregulation of alarmin keratins and of several immune pathway regulators. Moreover, our analyses suggest a key role of reduced AP-2α-dependent gene expression of CXCL14 and the keratin 15 gene K15 as an early pathogenic event toward the manifestation of skin inflammation. Thus, AP-2α and AP-2β are critical regulators of epidermal homeostasis in adult skin.
Collapse
Affiliation(s)
- Hui Zhang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jackelyn R Raymundo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kathleen E Daly
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Wenjuan Zhu
- Stanford Cardiovascular Institute, Stanford Univeristy, Stanford, California, USA
| | - Bill Senapati
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hanyu Zhong
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Arjun R Ahilan
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Alexander G Marneros
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
17
|
Köhler I, Bivik Eding C, Kasic NK, Verma D, Enerbäck C. NOS2-derived low levels of NO drive psoriasis pathogenesis. Cell Death Dis 2024; 15:449. [PMID: 38926337 PMCID: PMC11208585 DOI: 10.1038/s41419-024-06842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Psoriasis is an IL-23/Th17-mediated skin disorder with a strong genetic predisposition. The impact of its susceptibility gene nitric oxide synthase 2 (NOS2) remains unknown. Here, we demonstrate strong NOS2 mRNA expression in psoriatic epidermis, an effect that is IL-17 dependent. However, its complete translation to protein is prevented by the IL-17-induced miR-31 implying marginally upregulated NO levels in psoriatic skin. We demonstrate that lower levels of NO, as opposed to higher levels, increase keratinocyte proliferation and mediate IL-17 downstream effects. We hypothesized that the psoriatic phenotype may be alleviated by either eliminating or increasing cellular NO levels. In fact, using the imiquimod psoriasis mouse model, we found a profound impact on the psoriatic inflammation in both IMQ-treated NOS2 KO mice and wild-type mice treated with IMQ and the NO-releasing berdazimer gel. In conclusion, we demonstrate that IL-17 induces NOS2 and fine-tunes its translation towards a window of proinflammatory and hyperproliferative effects and identify NO donor therapy as a new treatment modality for psoriasis.
Collapse
Affiliation(s)
- Ines Köhler
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Bivik Eding
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Nada-Katarina Kasic
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Deepti Verma
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Enerbäck
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
18
|
Audu CO, Wolf SJ, Joshi AD, Moon JY, Melvin WJ, Sharma SB, Davis FM, Obi AT, Wasikowski R, Tsoi LC, Barrett EC, Mangum KD, Bauer TM, Kunkel SL, Moore BB, Gallagher KA. Histone demethylase JARID1C/KDM5C regulates Th17 cells by increasing IL-6 expression in diabetic plasmacytoid dendritic cells. JCI Insight 2024; 9:e172959. [PMID: 38912581 PMCID: PMC11383169 DOI: 10.1172/jci.insight.172959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are first responders to tissue injury, where they prime naive T cells. The role of pDCs in physiologic wound repair has been examined, but little is known about pDCs in diabetic wound tissue and their interactions with naive CD4+ T cells. Diabetic wounds are characterized by increased levels of inflammatory IL-17A cytokine, partly due to increased Th17 CD4+ cells. This increased IL-17A cytokine, in excess, impairs tissue repair. Here, using human tissue and murine wound healing models, we found that diabetic wound pDCs produced excess IL-6 and TGF-β and that these cytokines skewed naive CD4+ T cells toward a Th17 inflammatory phenotype following cutaneous injury. Further, we identified that increased IL-6 cytokine production by diabetic wound pDCs is regulated by a histone demethylase, Jumonji AT-rich interactive domain 1C histone demethylase (JARID1C). Decreased JARID1C increased IL-6 transcription in diabetic pDCs, and this process was regulated upstream by an IFN-I/TYK2/JAK1,3 signaling pathway. When inhibited in nondiabetic wound pDCs, JARID1C skewed naive CD4+ T cells toward a Th17 phenotype and increased IL-17A production. Together, this suggests that diabetic wound pDCs are epigenetically altered to increase IL-6 expression that then affects T cell phenotype. These findings identify a therapeutically manipulable pathway in diabetic wounds.
Collapse
Affiliation(s)
- Christopher O Audu
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Sonya J Wolf
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amrita D Joshi
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jadie Y Moon
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - William J Melvin
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sriganesh B Sharma
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Frank M Davis
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrea T Obi
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rachel Wasikowski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Emily C Barrett
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kevin D Mangum
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tyler M Bauer
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven L Kunkel
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pathology, School of Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Beth B Moore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katherine A Gallagher
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
He S, Liu L, Long X, Ge M, Cai M, Zhang J. Single-cell analysis and machine learning identify psoriasis-associated CD8 + T cells serve as biomarker for psoriasis. Front Genet 2024; 15:1387875. [PMID: 38915827 PMCID: PMC11194350 DOI: 10.3389/fgene.2024.1387875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, the etiology of which has not been fully elucidated, in which CD8+ T cells play an important role in the pathogenesis of psoriasis. However, there is a lack of in-depth studies on the molecular characterization of different CD8+ T cell subtypes and their role in the pathogenesis of psoriasis. This study aims to further expound the pathogenesy of psoriasis at the single-cell level and to explore new ideas for clinical diagnosis and new therapeutic targets. Our study identified a unique subpopulation of CD8+ T cells highly infiltrated in psoriasis lesions. Subsequently, we analyzed the hub genes of the psoriasis-specific CD8+ T cell subpopulation using hdWGCNA and constructed a machine-learning prediction model, which demonstrated good efficacy. The model interpretation showed the influence of each independent variable in the model decision. Finally, we deployed the machine learning model to an online website to facilitate its clinical transformation.
Collapse
Affiliation(s)
- Sijia He
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Lyuye Liu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyan Long
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, China
| | - Man Ge
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menghan Cai
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junling Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
20
|
Antonatos C, Georgakilas GK, Evangelou E, Vasilopoulos Y. Transcriptomic meta-analysis characterizes molecular commonalities between psoriasis and obesity. Genes Immun 2024; 25:179-187. [PMID: 38580831 DOI: 10.1038/s41435-024-00271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Despite the abundance of epidemiological evidence for the high comorbid rate between psoriasis and obesity, systematic approaches to common inflammatory mechanisms have not been adequately explored. We performed a meta-analysis of publicly available RNA-sequencing datasets to unveil putative mechanisms that are postulated to exacerbate both diseases, utilizing both late-stage, disease-specific meta-analyses and consensus gene co-expression network (cWGCNA). Single-gene meta-analyses reported several common inflammatory mechanisms fostered by the perturbed expression profile of inflammatory cells. Assessment of gene overlaps between both diseases revealed significant overlaps between up- (n = 170, P value = 6.07 × 10-65) and down-regulated (n = 49, P value = 7.1 × 10-7) genes, associated with increased T cell response and activated transcription factors. Our cWGCNA approach disentangled 48 consensus modules, associated with either the differentiation of leukocytes or metabolic pathways with similar correlation signals in both diseases. Notably, all our analyses confirmed the association of the perturbed T helper (Th)17 differentiation pathway in both diseases. Our novel findings through whole transcriptomic analyses characterize the inflammatory commonalities between psoriasis and obesity implying the assessment of several expression profiles that could serve as putative comorbid disease progression biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Georgios K Georgakilas
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece
- Information Management Systems Institute (IMSI), ATHENA Research Center, 15125, Athens, Greece
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, 45110, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110, Ioannina, Greece
- Department of Epidemiology & Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
21
|
Zhang Y, Zhang D, Jiao X, Yue X, Cai B, Lu S, Xu R. Uncovering the shared neuro-immune-related regulatory mechanisms between spinal cord injury and osteoarthritis. Heliyon 2024; 10:e30336. [PMID: 38707272 PMCID: PMC11068815 DOI: 10.1016/j.heliyon.2024.e30336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Adults with spinal cord injury (SCI), a destructive neurological injury, have a significantly higher incidence of osteoarthritis (OA), a highly prevalent chronic joint disorder. This study aimed to dissect the neuroimmune-related regulatory mechanisms of SCI and OA using bioinformatics analysis. Using microarray data from the Gene Expression Omnibus database, differentially expressed genes (DEGs) were screened between SCI and sham samples and between OA and control samples. Common DEGs were used to construct a protein-protein interaction (PPI) network. Weighted gene co-expression network analysis (WGCNA) was used to mine SCI- and OA-related modules. Shared miRNAs were identified, and target genes were predicted using the Human MicroRNA Disease Database (HMDD) database. A miRNA-gene-pathway regulatory network was constructed with overlapping genes, miRNAs, and significantly enriched pathways. Finally, the expression of the identified genes and miRNAs was verified using RT-qPCR. In both the SCI and OA groups, 185 common DEGs were identified, and three hub clusters were obtained from the PPI network. WGCNA revealed three SCI-related modules and two OA-related modules. There were 43 overlapping genes between the PPI network clusters and the WGCNA network modules. Seventeen miRNAs shared between patients with SCI and OA were identified. A regulatory network consisting of five genes, six miRNAs, and six signaling pathways was constructed. Upregulation of CD44, TGFBR1, CCR5, and IGF1, while lower levels of miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, and miR-204-3p in both SCI and OA were successfully verified using RT-qPCR. Our study suggests that a miRNA-gene-pathway network is implicated in the neuroimmune-related regulatory mechanisms of SCI and OA. CD44, TGFBR1, CCR5, and IGF1, and their related miRNAs (miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, and miR-204-3p) may serve as promising biomarkers and candidate therapeutic targets for SCI and OA.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Rehabilitation Medicine, Fengcheng branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xin Jiao
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bin Cai
- Department of Rehabilitation Medicine, Fengcheng branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shenji Lu
- Department of Rehabilitation Medicine, Fengcheng branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Renjie Xu
- Department of Rehabilitation Medicine, Kunshan Rehabilitation Hospital, Suzhou 210000, Jiangsu, China
| |
Collapse
|
22
|
Yasarbas SS, Inal E, Yildirim MA, Dubrac S, Lamartine J, Mese G. Connexins in epidermal health and diseases: insights into their mutations, implications, and therapeutic solutions. Front Physiol 2024; 15:1346971. [PMID: 38827992 PMCID: PMC11140265 DOI: 10.3389/fphys.2024.1346971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
The epidermis, the outermost layer of the skin, serves as a protective barrier against external factors. Epidermal differentiation, a tightly regulated process essential for epidermal homeostasis, epidermal barrier formation and skin integrity maintenance, is orchestrated by several players, including signaling molecules, calcium gradient and junctional complexes such as gap junctions (GJs). GJ proteins, known as connexins facilitate cell-to-cell communication between adjacent keratinocytes. Connexins can function as either hemichannels or GJs, depending on their interaction with other connexons from neighboring keratinocytes. These channels enable the transport of metabolites, cAMP, microRNAs, and ions, including Ca2+, across cell membranes. At least ten distinct connexins are expressed within the epidermis and mutations in at least five of them has been linked to various skin disorders. Connexin mutations may cause aberrant channel activity by altering their synthesis, their gating properties, their intracellular trafficking, and the assembly of hemichannels and GJ channels. In addition to mutations, connexin expression is dysregulated in other skin conditions including psoriasis, chronic wound and skin cancers, indicating the crucial role of connexins in skin homeostasis. Current treatment options for conditions with mutant or altered connexins are limited and primarily focus on symptom management. Several therapeutics, including non-peptide chemicals, antibodies, mimetic peptides and allele-specific small interfering RNAs are promising in treating connexin-related skin disorders. Since connexins play crucial roles in maintaining epidermal homeostasis as shown with linkage to a range of skin disorders and cancer, further investigations are warranted to decipher the molecular and cellular alterations within cells due to mutations or altered expression, leading to abnormal proliferation and differentiation. This would also help characterize the roles of each isoform in skin homeostasis, in addition to the development of innovative therapeutic interventions. This review highlights the critical functions of connexins in the epidermis and the association between connexins and skin disorders, and discusses potential therapeutic options.
Collapse
Affiliation(s)
- S. Suheda Yasarbas
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Ece Inal
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - M. Azra Yildirim
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jérôme Lamartine
- Skin Functional Integrity Group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Gulistan Mese
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| |
Collapse
|
23
|
Xia X, Zhu L, Xu M, Lei Z, Yu H, Li G, Wang X, Jia H, Yin Z, Huang F, Gao Y. ANKRD22 promotes resolution of psoriasiform skin inflammation by antagonizing NIK-mediated IL-23 production. Mol Ther 2024; 32:1561-1577. [PMID: 38454607 PMCID: PMC11081937 DOI: 10.1016/j.ymthe.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/13/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Inflammation resolution is an essential process for preventing the development of chronic inflammatory diseases. However, the mechanisms that regulate inflammation resolution in psoriasis are not well understood. Here, we report that ANKRD22 is an endogenous negative orchestrator of psoriasiform inflammation because ANKRD22-deficient mice are more susceptible to IMQ-induced psoriasiform inflammation. Mechanistically, ANKRD22 deficiency leads to excessive activation of the TNFRII-NIK-mediated noncanonical NF-κB signaling pathway, resulting in the hyperproduction of IL-23 in DCs. This is due to ANKRD22 being a negative feedback regulator for NIK because it physically binds to and assists in the degradation of accumulated NIK. Clinically, ANKRD22 is negatively associated with IL-23A expression and psoriasis severity. Of greater significance, subcutaneous administration of an AAV carrying ANKRD22-overexpression vector effectively hastens the resolution of psoriasiform skin inflammation. Our findings suggest ANKRD22, an endogenous supervisor of NIK, is responsible for inflammation resolution in psoriasis, and may be explored in the context of psoriasis therapy.
Collapse
Affiliation(s)
- Xichun Xia
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China; The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China
| | - Leqing Zhu
- Guangzhou Laboratory, Bioland, Guangzhou 510005, China
| | - Miaomiao Xu
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China
| | - Zhiwei Lei
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Hai Yu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guangqiang Li
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Xiao Wang
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China.
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China.
| | - Yunfei Gao
- Department of Oncology, Research Center of Cancer Diagnosis and Therapy, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China; The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| |
Collapse
|
24
|
Ghosh S, Mohanty R, Santra A, Saha A, Agrawal A, Shrivastava S, Roy C, Mazumder I, Das D, Mahmood SH. Unlocking the genetic tapestry of autoimmune diseases: Unveiling common genes across multiple conditions. Int J Rheum Dis 2024; 27:e15185. [PMID: 38742742 DOI: 10.1111/1756-185x.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVES This study aimed to unravel the complexities of autoimmune diseases by conducting a comprehensive analysis of gene expression data across 10 conditions, including systemic lupus erythematosus (SLE), psoriasis, Sjögren's syndrome, sclerosis, immune-associated diseases, osteoarthritis, cystic fibrosis, inflammatory bowel disease (IBD), type 1 diabetes, and Guillain-Barré syndrome. METHODS Gene expression profiles were rigorously examined to identify both upregulated and downregulated genes specific to each autoimmune disease. The study employed visual representation techniques such as heatmaps, volcano plots, and contour-MA plots to provide an intuitive understanding of the complex gene expression patterns in these conditions. RESULTS Distinct gene expression profiles for each autoimmune condition were uncovered, with psoriasis and osteoarthritis standing out due to a multitude of both upregulated and downregulated genes, indicating intricate molecular interplays in these disorders. Notably, common upregulated and downregulated genes were identified across various autoimmune conditions, with genes like SELENBP1, MMP9, BNC1, and COL1A1 emerging as pivotal players. CONCLUSION This research contributes valuable insights into the molecular signatures of autoimmune diseases, highlighting the unique gene expression patterns characterizing each condition. The identification of common genes shared among different autoimmune conditions, and their potential role in mitigating the risk of rare diseases in patients with more prevalent conditions, underscores the growing significance of genetics in healthcare and the promising future of personalized medicine.
Collapse
Affiliation(s)
- Soujanya Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Rupali Mohanty
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Arunava Santra
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Anisha Saha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Anubha Agrawal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | - Chandrashish Roy
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Ishanee Mazumder
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Debarup Das
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | |
Collapse
|
25
|
Sieminska I, Pieniawska M, Grzywa TM. The Immunology of Psoriasis-Current Concepts in Pathogenesis. Clin Rev Allergy Immunol 2024; 66:164-191. [PMID: 38642273 PMCID: PMC11193704 DOI: 10.1007/s12016-024-08991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Psoriasis is one of the most common inflammatory skin diseases with a chronic, relapsing-remitting course. The last decades of intense research uncovered a pathological network of interactions between immune cells and other types of cells in the pathogenesis of psoriasis. Emerging evidence indicates that dendritic cells, TH17 cells, and keratinocytes constitute a pathogenic triad in psoriasis. Dendritic cells produce TNF-α and IL-23 to promote T cell differentiation toward TH17 cells that produce key psoriatic cytokines IL-17, IFN-γ, and IL-22. Their activity results in skin inflammation and activation and hyperproliferation of keratinocytes. In addition, other cells and signaling pathways are implicated in the pathogenesis of psoriasis, including TH9 cells, TH22 cells, CD8+ cytotoxic cells, neutrophils, γδ T cells, and cytokines and chemokines secreted by them. New insights from high-throughput analysis of lesional skin identified novel signaling pathways and cell populations involved in the pathogenesis. These studies not only expanded our knowledge about the mechanisms of immune response and the pathogenesis of psoriasis but also resulted in a revolution in the clinical management of patients with psoriasis. Thus, understanding the mechanisms of immune response in psoriatic inflammation is crucial for further studies, the development of novel therapeutic strategies, and the clinical management of psoriasis patients. The aim of the review was to comprehensively present the dysregulation of immune response in psoriasis with an emphasis on recent findings. Here, we described the role of immune cells, including T cells, B cells, dendritic cells, neutrophils, monocytes, mast cells, and innate lymphoid cells (ILCs), as well as non-immune cells, including keratinocytes, fibroblasts, endothelial cells, and platelets in the initiation, development, and progression of psoriasis.
Collapse
Affiliation(s)
- Izabela Sieminska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz M Grzywa
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland.
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
26
|
Jiang Y, Gruszka D, Zeng C, Swindell WR, Gaskill C, Sorensen C, Brown W, Gangwar RS, Tsoi LC, Webster J, Sigurðardóttir SL, Sarkar MK, Uppala R, Kidder A, Xing X, Plazyo O, Xing E, Billi AC, Maverakis E, Kahlenberg JM, Gudjonsson JE, Ward NL. Suppression of TCF4 promotes a ZC3H12A-mediated self-sustaining inflammatory feedback cycle involving IL-17RA/IL-17RE epidermal signaling. JCI Insight 2024; 9:e172764. [PMID: 38470486 PMCID: PMC11141873 DOI: 10.1172/jci.insight.172764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
IL-17C is an epithelial cell-derived proinflammatory cytokine whose transcriptional regulation remains unclear. Analysis of the IL17C promoter region identified TCF4 as putative regulator, and siRNA knockdown of TCF4 in human keratinocytes (KCs) increased IL17C. IL-17C stimulation of KCs (along with IL-17A and TNF-α stimulation) decreased TCF4 and increased NFKBIZ and ZC3H12A expression in an IL-17RA/RE-dependent manner, thus creating a feedback loop. ZC3H12A (MCPIP1/Regnase-1), a transcriptional immune-response regulator, also increased following TCF4 siRNA knockdown, and siRNA knockdown of ZC3H12A decreased NFKBIZ, IL1B, IL36G, CCL20, and CXCL1, revealing a proinflammatory role for ZC3H12A. Examination of lesional skin from the KC-Tie2 inflammatory dermatitis mouse model identified decreases in TCF4 protein concomitant with increases in IL-17C and Zc3h12a that reversed following the genetic elimination of Il17c, Il17ra, and Il17re and improvement in the skin phenotype. Conversely, interference with Tcf4 in KC-Tie2 mouse skin increased Il17c and exacerbated the inflammatory skin phenotype. Together, these findings identify a role for TCF4 in the negative regulation of IL-17C, which, alone and with TNF-α and IL-17A, feed back to decrease TCF4 in an IL-17RA/RE-dependent manner. This loop is further amplified by IL-17C-TCF4 autocrine regulation of ZC3H12A and IL-17C regulation of NFKBIZ to promote self-sustaining skin inflammation.
Collapse
Affiliation(s)
- Yanyun Jiang
- Department of Dermatology, Ann Arbor, Michigan, USA
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dennis Gruszka
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chang Zeng
- Department of Dermatology, Ann Arbor, Michigan, USA
| | - William R. Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christa Gaskill
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christian Sorensen
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Whitney Brown
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roopesh Singh Gangwar
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lam C. Tsoi
- Department of Dermatology, Ann Arbor, Michigan, USA
| | - Joshua Webster
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | - Enze Xing
- Department of Dermatology, Ann Arbor, Michigan, USA
| | | | - Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nicole L. Ward
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4) and Vanderbilt Center for Immunobiology (VCI), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
27
|
Kuwano T, Murase T. Interleukin-36γ/interleukin-37 ratio in the stratum corneum correlates with facial redness. J Dermatol Sci 2024; 113:77-79. [PMID: 38155021 DOI: 10.1016/j.jdermsci.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Affiliation(s)
- Tetsuya Kuwano
- Biological Science Research, Kao Corporation, Tochigi, Japan.
| | | |
Collapse
|
28
|
Wu D, Hailer AA, Wang S, Yuan M, Chan J, El Kurdi A, Rahim M, Kondo A, Han D, Ali H, D'Angio B, Mayer A, Klufas D, Kim E, Shain AH, Choi J, Bhutani T, Simpson G, Grekin RC, Ricardo-Gonzalez R, Purdom E, North JP, Cheng JB, Cho RJ. A single-cell atlas of IL-23 inhibition in cutaneous psoriasis distinguishes clinical response. Sci Immunol 2024; 9:eadi2848. [PMID: 38277466 DOI: 10.1126/sciimmunol.adi2848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/22/2023] [Indexed: 01/28/2024]
Abstract
Psoriasis vulgaris and other chronic inflammatory diseases improve markedly with therapeutic blockade of interleukin-23 (IL-23) signaling, but the genetic mechanisms underlying clinical responses remain poorly understood. Using single-cell transcriptomics, we profiled immune cells isolated from lesional psoriatic skin before and during IL-23 blockade. In clinically responsive patients, a psoriatic transcriptional signature in skin-resident memory T cells was strongly attenuated. In contrast, poorly responsive patients were distinguished by persistent activation of IL-17-producing T (T17) cells, a mechanism distinct from alternative cytokine signaling or resistance isolated to epidermal keratinocytes. Even in IL-23 blockade-responsive patients, we detected a recurring set of recalcitrant, disease-specific transcriptional abnormalities. This irreversible immunological state may necessitate ongoing IL-23 inhibition. Spatial transcriptomic analyses also suggested that successful IL-23 blockade requires dampening of >90% of IL-17-induced response in lymphocyte-adjacent keratinocytes, an unexpectedly high threshold. Collectively, our data establish a patient-level paradigm for dissecting responses to immunomodulatory treatments.
Collapse
Affiliation(s)
- David Wu
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Ashley A Hailer
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA 94121, USA
| | - Sijia Wang
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA 94121, USA
- Department of Dermatology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Michelle Yuan
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Jamie Chan
- Dermatopathology Service, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Abdullah El Kurdi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Maha Rahim
- Enable Medicine, Menlo Park, CA 94025, USA
| | | | - David Han
- Enable Medicine, Menlo Park, CA 94025, USA
| | - Hira Ali
- Enable Medicine, Menlo Park, CA 94025, USA
| | | | | | - Daniel Klufas
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Esther Kim
- Department of Plastic Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - A Hunter Shain
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Jaehyuk Choi
- Departments of Dermatology and Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tina Bhutani
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Gregory Simpson
- Department of Dermatology, University of California, Fresno, CA 93701,USA
| | - Roy C Grekin
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Roberto Ricardo-Gonzalez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffrey P North
- Dermatopathology Service, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Jeffrey B Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA 94121, USA
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| |
Collapse
|
29
|
Chagan-Yasutan H, He N, Arlud S, Fang J, Hattori T. The elevation of plasma galectin-9 levels in patients with psoriasis and its associations with inflammatory and immune checkpoint molecules in skin tissues. Hum Immunol 2024; 85:110741. [PMID: 38092632 DOI: 10.1016/j.humimm.2023.110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
Psoriasis is a chronic, immune-mediated disorder that mainly affects the skin, with an estimated global prevalence of 2-3%. Galectin-9 (Gal-9) is a β-galactoside-binding lectin capable of promoting or suppressing the progression of infectious and immune-mediated diseases. Here, we determined if the expression of Gal-9 is observed in psoriasis. Gal-9 levels were measured in plasma of psoriasis (n = 62) and healthy control (HC) (n = 31) using an enzyme-linked immunosorbent assay. In addition, skin samples from seven patients were screened for RNA transcriptomes and the expression of Gal-9 was compared with inflammatory, immune checkpoint molecules (ICMs) and Foxp3. The plasma Gal-9 levels in patients with psoriasis were significantly higher (841 pg/mL) than in HCs (617 pg/mL) (P < 0.0001) and were associated with white blood cell numbers, eosinophils (%) and alanine transaminase. The levels of inflammatory molecules IL-36B, IL-17RA, IL-6R, IL-10, IRF8, TGFb1, and IL-37, and those of ICMs of Tim-3, CTLA-4, CD86, CD80, PD-1LG2, CLEC4G, and Foxp3 were significantly correlated with Gal-9 (LGALS9) in skin. However, HMGB1, CD44, CEACAM1 and PDL1-known to be associated with a variety of Gal-9 biological functions were not correlated with LGALS9. Thus, it is likely that Gal-9 expression affects the disease state of PS.
Collapse
Affiliation(s)
- Haorile Chagan-Yasutan
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot 010065, China; Research Institute of Health and Welfare, Kibi International University, 8-Iga-machi, Takahashi, Okayama 716-8508, Japan.
| | - Nagongbilige He
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot 010065, China; The Inner Mongolia Institute of Chinese and Mongolian Medicine, Hohhot 010010, China.
| | - Sarnai Arlud
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot 010065, China
| | - Jun Fang
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot 010065, China; The Inner Mongolia Institute of Chinese and Mongolian Medicine, Hohhot 010010, China
| | - Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, 8-Iga-machi, Takahashi, Okayama 716-8508, Japan; Shizuoka Graduate University of Public Health, 4-27-2 Kita Ando Aoi-ku, Shizuoka City 420-0881, Japan.
| |
Collapse
|
30
|
Eyermann CE, Chen X, Somuncu OS, Li J, Joukov AN, Chen J, Alexandrova EM. ΔNp63 Regulates Homeostasis, Stemness, and Suppression of Inflammation in the Adult Epidermis. J Invest Dermatol 2024; 144:73-83.e10. [PMID: 37543242 DOI: 10.1016/j.jid.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
The p63 transcription factor is critical for epidermis formation in embryonic development, but its role in the adult epidermis is poorly understood. In this study, we show that acute genetic ablation of ΔNp63, the main p63 isoform, in adult epidermis disrupts keratinocyte proliferation and self-maintenance and, unexpectedly, triggers an inflammatory psoriasis-like condition. Mechanistically, single-cell RNA sequencing revealed the downregulation of cell cycle genes, upregulation of differentiation markers, and induction of several proinflammatory pathways in ΔNp63-ablated keratinocytes. Intriguingly, ΔNp63-ablated cells disappear by 3 weeks after ablation, at the expense of the remaining nonablated cells. This is not associated with active cell death and is likely due to reduced self-maintenance and enhanced differentiation. Indeed, in vivo wound healing, a physiological readout of the epidermal stem cell function, is severely impaired upon ΔNp63 ablation. We found that the Wnt signaling pathway (Wnt10A, Fzd6, Fzd10) and the activator protein 1 (JunB, Fos, FosB) factors are the likely ΔNp63 effectors responsible for keratinocyte proliferation/stemness and suppression of differentiation, respectively, whereas IL-1a, IL-18, IL-24, and IL-36γ are the likely negative effectors responsible for suppression of inflammation. These data establish ΔNp63 as a critical node that coordinates epidermal homeostasis, stemness, and suppression of inflammation, upstream of known regulatory pathways.
Collapse
Affiliation(s)
- Christopher E Eyermann
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Xi Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Ozge S Somuncu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Jinyu Li
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | | | - Jiang Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Evguenia M Alexandrova
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA.
| |
Collapse
|
31
|
Patrick MT, Sreeskandarajan S, Shefler A, Wasikowski R, Sarkar MK, Chen J, Qin T, Billi AC, Kahlenberg JM, Prens E, Hovnanian A, Weidinger S, Elder JT, Kuo CC, Gudjonsson JE, Tsoi LC. Large-scale functional inference for skin-expressing lncRNAs using expression and sequence information. JCI Insight 2023; 8:e172956. [PMID: 38131377 PMCID: PMC10807743 DOI: 10.1172/jci.insight.172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate the expression of protein-coding genes and have been shown to play important roles in inflammatory skin diseases. However, we still have limited understanding of the functional impact of lncRNAs in skin, partly due to their tissue specificity and lower expression levels compared with protein-coding genes. We compiled a comprehensive list of 18,517 lncRNAs from different sources and studied their expression profiles in 834 RNA-Seq samples from multiple inflammatory skin conditions and cytokine-stimulated keratinocytes. Applying a balanced random forest to predict involvement in biological functions, we achieved a median AUROC of 0.79 in 10-fold cross-validation, identifying significant DNA binding domains (DBDs) for 39 lncRNAs. G18244, a skin-expressing lncRNA predicted for IL-4/IL-13 signaling in keratinocytes, was highly correlated in expression with F13A1, a protein-coding gene involved in macrophage regulation, and we further identified a significant DBD in F13A1 for G18244. Reflecting clinical implications, AC090198.1 (predicted for IL-17 pathway) and AC005332.6 (predicted for IFN-γ pathway) had significant negative correlation with the SCORAD metric for atopic dermatitis. We also utilized single-cell RNA and spatial sequencing data to validate cell type specificity. Our research demonstrates lncRNAs have important immunological roles and can help prioritize their impact on inflammatory skin diseases.
Collapse
Affiliation(s)
- Matthew T. Patrick
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sutharzan Sreeskandarajan
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alanna Shefler
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachael Wasikowski
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mrinal K. Sarkar
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiahan Chen
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- College of Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Tingting Qin
- Department of Computational Medicine & Bioinformatics and
| | - Allison C. Billi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J. Michelle Kahlenberg
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Errol Prens
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - James T. Elder
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Chao-Chung Kuo
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Johann E. Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C. Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Zhang H, Raymundo J, Daly KE, Zhu W, Senapati B, Marneros AG. AP-2α/AP-2β transcription factors are key regulators of epidermal homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569763. [PMID: 38105942 PMCID: PMC10723278 DOI: 10.1101/2023.12.03.569763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
AP-2 transcription factors regulate ectodermal development but their roles for epidermal homeostasis in the adult skin are unknown. We find that AP-2α is the predominant AP-2 family member in adult epidermis, followed by AP-2β. Through inactivation of AP-2α, AP-2β, or both in keratinocytes we assessed the effects of a gradient of epidermal AP-2 activity on skin function. We find that (1) loss of AP-2β in keratinocytes is compensated for by AP-2α, (2) loss of AP-2α impairs terminal keratinocyte differentiation and hair morphogenesis, and (3) the combined loss of AP-2α/AP-2β results in more severe skin and hair abnormalities. Keratinocyte differentiation defects precede a progressive neutrophilic skin inflammation. Inducible inactivation of AP-2α/AP-2β in the adult phenocopies these manifestations. Transcriptomic analyses of epidermis lacking AP-2α or AP-2α/AP-2β in keratinocytes demonstrate a terminal keratinocyte differentiation defect with upregulation of alarmin keratins and of several immune pathway regulators. Moreover, our analyses suggest a key role of loss of AP-2α-dependent gene expression of CXCL14 and KRT15 as an early pathogenic event towards the manifestation of skin inflammation. Thus, AP-2α/AP-2β are critical regulators of epidermal homeostasis in the adult skin.
Collapse
Affiliation(s)
- Hui Zhang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jackelyn Raymundo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kathleen E. Daly
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Wenjuan Zhu
- Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Bill Senapati
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alexander G. Marneros
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
33
|
Krishnan VS, Kõks S. Transcriptional Landscape of Repetitive Elements in Psoriatic Skin from Large Cohort Studies: Relevance to Psoriasis Pathophysiology. Int J Mol Sci 2023; 24:16725. [PMID: 38069048 PMCID: PMC10706217 DOI: 10.3390/ijms242316725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
While studies demonstrating the expression of repetitive elements (REs) in psoriatic skin using RNA-seq have been published before, not many studies have focused on the genome-wide expression patterns using larger cohorts. This study investigated the transcriptional landscape of differentially expressed REs in lesional and non-lesional skin from two previously published large datasets. We observed significant differential expression of REs in lesional psoriatic skin as well as the skin of healthy controls. Significant downregulation of several ERVs, HERVs (including HERV-K) and LINEs was observed in lesional psoriatic skin from both datasets. The upregulation of a small subset of HERV-Ks and Alus in lesional psoriatic skin was also reported. An interesting finding from this expression data was the significant upregulation and overlapping of tRNA repetitive elements in lesional and non-lesional psoriatic skin. The data from this study indicate the potential role of REs in the immunopathogenesis of psoriasis. The expression data from the two independent large study cohorts are powerful enough to confidently verify the differential expression of REs in relation to psoriatic skin pathology. Further studies are warranted to understand the functional impact of these repetitive elements in psoriasis pathogenesis, thereby expanding their significance as a potential targeting pathway for the disease treatment of psoriasis and other inflammatory diseases.
Collapse
Affiliation(s)
- Vidya S. Krishnan
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Discovery Way, Murdoch, WA 1650, Australia;
- Perron Institute for Neurological and Translational Science, 8 Verdun St., Nedlands, WA 6009, Australia
| | - Sulev Kõks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Discovery Way, Murdoch, WA 1650, Australia;
- Perron Institute for Neurological and Translational Science, 8 Verdun St., Nedlands, WA 6009, Australia
| |
Collapse
|
34
|
Stacey VM, Kõks S. Genome-Wide Differential Transcription of Long Noncoding RNAs in Psoriatic Skin. Int J Mol Sci 2023; 24:16344. [PMID: 38003532 PMCID: PMC10671291 DOI: 10.3390/ijms242216344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/11/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) may contribute to the formation of psoriatic lesions. The present study's objective was to identify long lncRNA genes that are differentially expressed in patient samples of psoriasis through computational analysis techniques. By using previously published RNA sequencing data from psoriatic and healthy patients (n = 324), we analysed the differential expression of lncRNAs to determine transcripts of heightened expression. We computationally screened lncRNA transcripts as annotated by GENCODE across the human genome and compared transcription in psoriatic and healthy samples from two separate studies. We observed 54 differentially expressed genes as seen in two independent datasets collected from psoriasis and healthy patients. We also identified the differential expression of LINC01215 and LINC1206 associated with the cell cycle pathway and psoriasis pathogenesis. SH3PXD2A-AS1 was identified as a participant in the STAT3/SH3PXD2A-AS1/miR-125b/STAT3 positive feedback loop. Both the SH3PXD2A-AS1 and CERNA2 genes have already been recognised as part of the IFN-γ signalling pathway regulation. Additionally, EPHA1-AS1, CYP4Z2P and SNHG12 gene upregulation have all been previously linked to inflammatory skin diseases. Differential expression of various lncRNAs affects the pathogenesis of psoriasis. Further characterisation of lncRNAs and their functions are important for developing our understanding of psoriasis.
Collapse
Affiliation(s)
- Valerie M. Stacey
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
35
|
Wulamujiang A, Ozkanli S, Coskunpinar E, Canbaz HT, Yesilay G, Tekayev M, Sevgin K. Lowered IL-37 gene expression and elevated IL-37-producing tissue-resident immune cells in psoriasis lesional biopsies. Pathol Int 2023; 73:490-496. [PMID: 37589439 DOI: 10.1111/pin.13364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/17/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023]
Abstract
Psoriasis is an immune cell-dependent chronic autoimmune skin disorder. Interleukin 37 (IL-37) is a cytokine belonging to the IL-1 family that shows anti-inflammatory and protective effects in various mouse models of psoriasis. Even though various animal models are used to investigate the pathogenic mechanisms of psoriasis, human clinical studies are still needed to make up for the deficiencies, as animal models generally do not exhibit the complex phenotypic features of human psoriasis. Our study aims to demonstrate the relationship between IL-37-producing tissue-resident immune cells with the pathogenesis of psoriasis. The present study was performed on 28 psoriasis patients and 17 healthy volunteers. The ability of anti-inflammatory cytokine IL-37 to impede inflammation and regulate metabolic pathways was assessed by real-time quantitative polymerase chain reaction. Finally, immunofluorescence double staining for CD4+ IL-37b+ , CD68+ IL-37b+ , and (forkhead box protein P3) Foxp3+ IL-37b+ was performed. The proportion of CD4+ IL-37b+ T cells, CD68+ IL-37b+ macrophages, and Foxp3+ IL-37b+ T regulatory (Treg) cells was significantly increased in the psoriasis group compared to the control group. IL-37 gene expression was downregulated in psoriasis when contrasted to the control group. Our findings disclosed that IL-37-producing tissue-resident immune cells might be involved in the pathogenesis of psoriasis, and thus may be a therapeutic target for individuals with psoriasis.
Collapse
Affiliation(s)
- Aini Wulamujiang
- Department of Histology and Embryology, Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Seyma Ozkanli
- Department of Pathology, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Ender Coskunpinar
- Department of Medical Biology, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Halime Tuba Canbaz
- Department of Histology and Embryology, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Gamze Yesilay
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Science, University of Health Sciences, Istanbul, Turkey
- Experimental Medicine Application & Research Center, Validebag Research Park, University of Health Sciences, Istanbul, Turkey
| | - Muhammetnur Tekayev
- Department of Histology and Embryology, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Kubra Sevgin
- Department of Histology and Embryology, Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
36
|
Jiang X, Shi R, Ma R, Tang X, Gong Y, Yu Z, Shi Y. The role of microRNA in psoriasis: A review. Exp Dermatol 2023; 32:1598-1612. [PMID: 37382420 DOI: 10.1111/exd.14871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease that involves a complex interplay between infiltrated immune cells and keratinocytes. Great progress has been made in the research on the molecular mechanism of coding and non-coding genes, which has helped in clinical treatment. However, our understanding of this complex disease is far from clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that are involved in post-transcriptional regulation, characterised by their role in mediating gene silencing. Recent studies on miRNAs have revealed their important role in the pathogenesis of psoriasis. We reviewed the current advances in the study of miRNAs in psoriasis; the existing research has found that dysregulated miRNAs in psoriasis notably affect keratinocyte proliferation and/or differentiation processes, as well as inflammation progress. In addition, miRNAs also influence the function of immune cells in psoriasis, including CD4+ T cells, dendritic cells, Langerhans cells and so on. In addition, we discuss possible miRNA-based therapy for psoriasis, such as the topical delivery of exogenous miRNAs, miRNA antagonists and miRNA mimics. Our review highlights the potential role of miRNAs in the pathogenesis of psoriasis, and we expect more research progress with miRNAs in the future, which will help us understand this complex skin disease more accurately.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rongcan Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rui Ma
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Xinyi Tang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yu Gong
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Zengyang Yu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Galimova E, Rätsep R, Traks T, Chernov A, Gaysina D, Kingo K, Kõks S. Polymorphisms in corticotrophin-releasing hormone-proopiomalanocortin (CRH-POMC) system genes: Neuroimmune contributions to psoriasis disease. J Eur Acad Dermatol Venereol 2023; 37:2028-2040. [PMID: 37319102 DOI: 10.1111/jdv.19257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Skin is a target organ and source of the corticotropin-releasing hormone-proopiomelanocortin (CRH-POMC) system, operating as a coordinator and executor of responses to stress. Environmental stress exacerbates and triggers inflammatory skin diseases through modifying the cellular components of the immune system supporting the importance of CRH-POMC system in the pathogenesis of psoriasis. The aim of this study was to analyse the association of CRH-POMC polymorphisms with psoriasis and evaluate transcript expression of lesional psoriatic and normal skin in RNA-seq data. METHODS Samples of 104 patients with psoriasis and 174 healthy controls were genotyped for 42 single nucleotide polymorphisms (SNPs) of CRH-POMC using Applied Biosystems SNPlex™ method. The transcript quantification was performed using Salmon software v1.3.0. RESULTS This study demonstrated the associations between melanocortin 1 receptor (MC1R) polymorphisms rs2228479, rs3212369, dopachrome tautomerase (DCT) polymorphisms rs7987802, rs2031526, rs9524501 and psoriasis in the Tatar population. Very strong association was evident for the SNP rs7987802 in the DCT gene (pc = 5.95е-006) in psoriasis patients. Additionally, the haplotype analysis provided AT DCT (rs7992630 and rs7987802) and AGA MC1R (rs3212358, 2228479 and 885479) haplotypes significantly associated (pc ˂ 0.05) with psoriasis in the Tatar population, supporting the involvement of DCT and MC1R to the psoriasis susceptibility. Moreover, MC1R-203 and DCT-201 expression levels were decreased in psoriasis lesional skin compared with healthy control skin. CONCLUSIONS This study is the first to identify genetic variants of the MC1R and DCT genes significantly associated with psoriasis in Tatar population. Our results support potential roles of CRH-POMC system genes and DCT in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Elvira Galimova
- Department of Physiology, University of Tartu, Tartu, Estonia
| | - Ranno Rätsep
- Department of Physiology, University of Tartu, Tartu, Estonia
| | - Tanel Traks
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia
| | - Alexandr Chernov
- Department of Life Sciences, Ben-Gurion University, Beer Sheva, Israel
| | - Darya Gaysina
- School of Psychology, University of Sussex, Brighton, UK
| | - Külli Kingo
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, Western Australia, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
38
|
Tsuji G, Yamamura K, Kawamura K, Kido-Nakahara M, Ito T, Nakahara T. Regulatory Mechanism of the IL-33-IL-37 Axis via Aryl Hydrocarbon Receptor in Atopic Dermatitis and Psoriasis. Int J Mol Sci 2023; 24:14633. [PMID: 37834081 PMCID: PMC10572928 DOI: 10.3390/ijms241914633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Interleukin (IL)-33 and IL-37 have been identified as novel cytokines involved in various inflammatory diseases. However, their specific roles remain largely unknown. Recent studies have shown that IL-33, which triggers inflammation, and IL-37, which suppresses it, cooperatively regulate the balance between inflammation and anti-inflammation. IL-33 and IL-37 are also deeply involved in the pathogenesis of inflammatory skin diseases such as atopic dermatitis (AD) and psoriasis. Furthermore, a signaling pathway by which aryl hydrocarbon receptor (AHR), a receptor for dioxins, regulates the expression of IL-33 and IL-37 has been revealed. Here, we outline recent findings on the mechanisms regulating IL-33 and IL-37 expression in AD and psoriasis. IL-33 expression is partially dependent on mitogen-activated protein kinase (MAPK) activation, and IL-37 has a role in suppressing MAPK in human keratinocytes. Furthermore, IL-33 downregulates skin barrier function proteins including filaggrin and loricrin, thereby downregulating the expression of IL-37, which colocalizes with these proteins. This leads to an imbalance of the IL-33-IL-37 axis, involving increased IL-33 and decreased IL-37, which may be associated with the pathogenesis of AD and psoriasis. Therefore, AHR-mediated regulation of the IL-33-IL-37 axis may lead to new therapeutic strategies for the treatment of AD and psoriasis.
Collapse
Affiliation(s)
- Gaku Tsuji
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (M.K.-N.); (T.I.)
| | - Kazuhiko Yamamura
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (M.K.-N.); (T.I.)
| | - Koji Kawamura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (M.K.-N.); (T.I.)
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (M.K.-N.); (T.I.)
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (M.K.-N.); (T.I.)
| | - Takeshi Nakahara
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (M.K.-N.); (T.I.)
| |
Collapse
|
39
|
Romhányi D, Szabó K, Kemény L, Groma G. Histone and Histone Acetylation-Related Alterations of Gene Expression in Uninvolved Psoriatic Skin and Their Effects on Cell Proliferation, Differentiation, and Immune Responses. Int J Mol Sci 2023; 24:14551. [PMID: 37833997 PMCID: PMC10572426 DOI: 10.3390/ijms241914551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Psoriasis is a chronic immune-mediated skin disease in which the symptom-free, uninvolved skin carries alterations in gene expression, serving as a basis for lesion formation. Histones and histone acetylation-related processes are key regulators of gene expression, controlling cell proliferation and immune responses. Dysregulation of these processes is likely to play an important role in the pathogenesis of psoriasis. To gain a complete overview of these potential alterations, we performed a meta-analysis of a psoriatic uninvolved skin dataset containing differentially expressed transcripts from nearly 300 individuals and screened for histones and histone acetylation-related molecules. We identified altered expression of the replication-dependent histones HIST2H2AA3 and HIST2H4A and the replication-independent histones H2AFY, H2AFZ, and H3F3A/B. Eight histone chaperones were also identified. Among the histone acetyltransferases, ELP3 and KAT5 and members of the ATAC, NSL, and SAGA acetyltransferase complexes are affected in uninvolved skin. Histone deacetylation-related alterations were found to affect eight HDACs and members of the NCOR/SMRT, NURD, SIN3, and SHIP HDAC complexes. In this article, we discuss how histone and histone acetylation-related expression changes may affect proliferation and differentiation, as well as innate, macrophage-mediated, and T cell-mediated pro- and anti-inflammatory responses, which are known to play a central role in the development of psoriasis.
Collapse
Affiliation(s)
- Dóra Romhányi
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
| | - Kornélia Szabó
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Gergely Groma
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| |
Collapse
|
40
|
Ochsner SA, Pedroza M, Pillich RT, Krishnan V, Konicek BW, Dow ER, Park SY, Agarwal SK, McKenna NJ. IL17A Blockade with Ixekizumab Suppresses MuvB Signaling in Clinical Psoriasis. J Invest Dermatol 2023; 143:1689-1699. [PMID: 36967086 DOI: 10.1016/j.jid.2023.03.1658] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Unbiased informatics approaches have the potential to generate insights into uncharacterized signaling pathways in human disease. In this study, we generated longitudinal transcriptomic profiles of plaque psoriasis lesions from patients enrolled in a clinical trial of the anti-IL17A antibody ixekizumab (IXE). This dataset was then computed against a curated matrix of over 700 million data points derived from published psoriasis and signaling node perturbation transcriptomic and chromatin immunoprecipitation-sequencing datasets. We observed substantive enrichment within both psoriasis-induced and IXE-repressed gene sets of transcriptional targets of members of the MuvB complex, a master regulator of the mitotic cell cycle. These gene sets were similarly enriched for pathways involved in the regulation of the G2/M transition of the cell cycle. Moreover, transcriptional targets for MuvB nodes were strongly enriched within IXE-repressed genes whose expression levels correlated strongly with the extent and severity of the psoriatic disease. In models of human keratinocyte proliferation, genes encoding MuvB nodes were transcriptionally repressed by IXE, and depletion of MuvB nodes reduced cell proliferation. Finally, we made the expression and regulatory networks that supported this study available as a freely accessible, cloud-based hypothesis generation platform. Our study positions inhibition of MuvB signaling as an important determinant of the therapeutic impact of IXE in psoriasis.
Collapse
Affiliation(s)
- Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Mesias Pedroza
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, California, USA
| | | | | | - Ernst R Dow
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Sandeep K Agarwal
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
41
|
Deng J, Leijten E, Zhu Y, Nordkamp MO, Ye S, Pouw J, Tao W, Balak D, Zheng G, Radstake T, Han L, Borghans JAM, Lu C, Pandit A. Multi-omics approach identifies PI3 as a biomarker for disease severity and hyper-keratinization in psoriasis. J Dermatol Sci 2023; 111:101-108. [PMID: 37543503 DOI: 10.1016/j.jdermsci.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/06/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Psoriasis is an immune-mediated inflammatory skin disease. Psoriasis severity evaluation is important for clinicians in the assessment of disease severity and subsequent clinical decision making. However, no objective biomarker is available for accurately evaluating disease severity in psoriasis. OBJECTIVE To define and compare biomarkers of disease severity and progression in psoriatic skin. METHODS We performed proteome profiling to study the proteins circulating in the serum from patients with psoriasis, psoriatic arthritis and ankylosing spondylitis, and transcriptome sequencing to investigate the gene expression in skin from the same cohort. We then used machine learning approaches to evaluate different biomarker candidates across several independent cohorts. In order to reveal the cell-type specificity of different biomarkers, we also analyzed a single-cell dataset of skin samples. In-situ staining was applied for the validation of biomarker expression. RESULTS We identified that the peptidase inhibitor 3 (PI3) was significantly correlated with the corresponding local skin gene expression, and was associated with disease severity. We applied machine learning methods to confirm that PI3 was an effective psoriasis classifier, Finally, we validated PI3 as psoriasis biomarker using in-situ staining and public datasets. Single-cell data and in-situ staining indicated that PI3 was specifically highly expressed in keratinocytes from psoriatic lesions. CONCLUSION Our results suggest that PI3 may be a psoriasis-specific biomarker for disease severity and hyper-keratinization.
Collapse
Affiliation(s)
- Jingwen Deng
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Emmerik Leijten
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Yongzhan Zhu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Michel Olde Nordkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Shuyan Ye
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Juliëtte Pouw
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Weiyang Tao
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Deepak Balak
- Department of Dermatology, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Guangjuan Zheng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Timothy Radstake
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ling Han
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - José A M Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Chuanjian Lu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Aridaman Pandit
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
42
|
Wang Y, Wu Y, Gu C, Wang S, Yin H, Zhu R, Wang C, Li Z, Yao X, Li W. Peripheral blood mononuclear cell- transcriptome signatures of atopic dermatitis and prediction for the efficacy of dupilumab. J Dermatol Sci 2023; 111:83-92. [PMID: 37349237 DOI: 10.1016/j.jdermsci.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Few studies have explored transcriptome of the peripheral blood mononuclear cells (PBMCs) of atopic dermatitis (AD). Parameters for prediction of the efficacy of dupilumab in AD remain obscure. OBJECTIVE To explore transcriptome signature of the PBMCs from Chinese AD patients and the usage in predication for the efficacy of dupilumab. METHODS A total of 56 moderate-to-severe adult AD patients were enrolled and followed up for 16 week-dupilumab treatment. PBMCs samples were collected at baseline and 16 weeks after dupilumab treatment. Thirty-five patients were subjected to RNA-sequencing. Weighted gene co-expression network analysis (WGCNA) was used to find genes for prediction of dupilumab efficacy, which was validated in the rest 21 AD patients. Another 30 healthy individuals were enrolled and subjected to RNA-sequencing as healthy controls. RESULTS Upregulation of the T helper (Th) 2/Th22 pathway, Th17 antimicrobial genes, and natural T-regulatory cell abundance in the PBMCs of AD cases was observed, whereas TGF-β signaling and NK-cell signaling were decreased. Dupilumab treatment reversed the increase in the expression of Th2 cytokine receptors. WGCNA identified two immune-related modules that were correlated significantly with the efficacy of dupilumab. Hub gene MAP2K3 and UBE2L3 of these two modules demonstrated potential predictive ability for efficacy in the RNA-sequencing group by Spearman correlation, ROC analysis, and regression analysis, which was further validated in additional 21 AD cases. CONCLUSION We firstly revealed the molecular phenotype of PBMCs in Chinese patients with AD, and uncovered two molecules that might be useful for prediction of the efficacy of dupilumab.
Collapse
Affiliation(s)
- Yu Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Yuemeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Chaoying Gu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Shangshang Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Huibin Yin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Ronghui Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Ce Wang
- Department of Biostatistics, School of Public Health, and The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, PR China
| | - Zheng Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China.
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China.
| |
Collapse
|
43
|
Zhu L, Xia X, Li G, Zhu C, Li Q, Wang B, Shi NX, Lei Z, Yang S, Zhang Z, Li H, Tan J, Liu Z, Wen Q, Zhong H, Lin XJ, Sun G, Bao X, Wang Q, Deng L, Bin L, Cao G, Yin Z. SLC38A5 aggravates DC-mediated psoriasiform skin inflammation via potentiating lysosomal acidification. Cell Rep 2023; 42:112910. [PMID: 37531255 DOI: 10.1016/j.celrep.2023.112910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Amino acid (aa) metabolism is closely correlated with the pathogenesis of psoriasis; however, details on aa transportation during this process are barely known. Here, we find that SLC38A5, a sodium-dependent neutral aa transporter that counter-transports protons, is markedly upregulated in the psoriatic skin of both human patients and mouse models. SLC38A5 deficiency significantly ameliorates the pathogenesis of psoriasis, indicating a pathogenic role of SLC38A5. Surprisingly, SLC38A5 is almost exclusively expressed in dendritic cells (DCs) when analyzing the psoriatic lesion and mainly locates on the lysosome. Mechanistically, SLC38A5 potentiates lysosomal acidification, which dictates the cleavage and activation of TLR7 with ensuing production of pro-inflammatory cytokines such as interleukin-23 (IL-23) and IL-1β from DCs and eventually aggravates psoriatic inflammation. In summary, this work uncovers an auxiliary mechanism in driving lysosomal acidification, provides inspiring insights for DC biology and psoriasis etiology, and reveals SLC38A5 as a promising therapeutic target for treating psoriasis.
Collapse
Affiliation(s)
- Leqing Zhu
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Department of Dermatology, First Affiliated Hospital, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangzhou National Laboratory, Guangzhou International BioIsland, Guangzhou 510005, China
| | - Xichun Xia
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Guangqiang Li
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Chuyun Zhu
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Qingqing Li
- Department of Dermatology, Guangdong Women's and Children's Hospital, Guangzhou 511442, China
| | - Baocheng Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Nan-Xi Shi
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Zhiwei Lei
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China; Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Shuxian Yang
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Zhanpeng Zhang
- Department of Dermatology, First Affiliated Hospital, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Haishan Li
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Jingyi Tan
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Zonghua Liu
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Qiong Wen
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Hui Zhong
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Xue-Jia Lin
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Guodong Sun
- Guandgong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Xiucong Bao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Qian Wang
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China.
| | - Liehua Deng
- Department of Dermatology, First Affiliated Hospital, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| | - Lianghua Bin
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| | - Guangchao Cao
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China.
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China.
| |
Collapse
|
44
|
Mortlock RD, Ma EC, Cohen JM, Damsky W. Assessment of Treatment-Relevant Immune Biomarkers in Psoriasis and Atopic Dermatitis: Toward Personalized Medicine in Dermatology. J Invest Dermatol 2023; 143:1412-1422. [PMID: 37341663 PMCID: PMC10830170 DOI: 10.1016/j.jid.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 06/22/2023]
Abstract
Immunologically targeted therapies have revolutionized the treatment of inflammatory dermatoses, including atopic dermatitis and psoriasis. Although immunologic biomarkers hold great promise for personalized classification of skin disease and tailored therapy selection, there are no approved or widely used approaches for this in dermatology. This review summarizes the translational immunologic approaches to measuring treatment-relevant biomarkers in inflammatory skin conditions. Tape strip profiling, microneedle-based biomarker patches, molecular profiling from epidermal curettage, RNA in situ hybridization tissue staining, and single-cell RNA sequencing have been described. We discuss the advantages and limitations of each and open questions for the future of personalized medicine in inflammatory skin disease.
Collapse
Affiliation(s)
- Ryland D Mortlock
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Medical Scientist Training Program, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emilie C Ma
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Jeffrey M Cohen
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
45
|
Antal D, Pór Á, Kovács I, Dull K, Póliska S, Ujlaki G, Demény MÁ, Szöllősi AG, Kiss B, Szegedi A, Bai P, Szántó M. PARP2 promotes inflammation in psoriasis by modulating estradiol biosynthesis in keratinocytes. J Mol Med (Berl) 2023; 101:987-999. [PMID: 37351597 PMCID: PMC10400701 DOI: 10.1007/s00109-023-02338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Poly(ADP-ribose) polymerase 2 (PARP2) alongside PARP1 are responsible for the bulk of cellular PARP activity, and they were first described as DNA repair factors. However, research in past decades implicated PARPs in biological functions as diverse as the regulation of cellular energetics, lipid homeostasis, cell death, and inflammation. PARP activation was described in Th2-mediated inflammatory processes, but studies focused on the role of PARP1, while we have little information on PARP2 in inflammatory regulation. In this study, we assessed the role of PARP2 in a Th17-mediated inflammatory skin condition, psoriasis. We found that PARP2 mRNA expression is increased in human psoriatic lesions. Therefore, we studied the functional consequence of decreased PARP2 expression in murine and cellular human models of psoriasis. We observed that the deletion of PARP2 attenuated the imiquimod-induced psoriasis-like dermatitis in mice. Silencing of PARP2 in human keratinocytes prevented their hyperproliferation, maintained their terminal differentiation, and reduced their production of inflammatory mediators after treatment with psoriasis-mimicking cytokines IL17A and TNFα. Underlying these observations, we found that aromatase was induced in the epidermis of PARP2 knock-out mice and in PARP2-deficient human keratinocytes, and the resulting higher estradiol production suppressed NF-κB activation, and hence, inflammation in keratinocytes. Steroidogenic alterations have previously been described in psoriasis, and we extend these observations by showing that aromatase expression is reduced in psoriatic lesions. Collectively, our data identify PARP2 as a modulator of estrogen biosynthesis by epidermal keratinocytes that may be relevant in Th17 type inflammation. KEY MESSAGES : PARP2 mRNA expression is increased in lesional skin of psoriasis patients. PARP2 deletion in mice attenuated IMQ-induced psoriasis-like dermatitis. NF-κB activation is suppressed in PARP2-deficient human keratinocytes. Higher estradiol in PARP2-deficient keratinocytes conveys anti-inflammatory effect.
Collapse
Affiliation(s)
- Dóra Antal
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
| | - Ágnes Pór
- Department of Pathology, Gyula Kenézy Campus, Clinical Centre, University of Debrecen, Debrecen, Hungary
| | - Ilona Kovács
- Department of Pathology, Gyula Kenézy Campus, Clinical Centre, University of Debrecen, Debrecen, Hungary
| | - Katalin Dull
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
| | - Máté Ágoston Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Borbála Kiss
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group ELKH, Debrecen, Hungary
| | - Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary.
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary.
| |
Collapse
|
46
|
Young KZ, Sarkar MK, Gudjonsson JE. Pathophysiology of generalized pustular psoriasis. Exp Dermatol 2023; 32:1194-1203. [PMID: 36779688 PMCID: PMC10423307 DOI: 10.1111/exd.14768] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Psoriasis is a chronic, immune-mediated skin disease that affects over 3% of adults in the United States. Psoriasis can present in several clinical forms. Of these, generalized pustular psoriasis is an acute, severe form, associated with increased morbidity and mortality. Unlike the more common plaque psoriasis, which is thought to feature dysregulation of the adaptive immune system, generalized pustular psoriasis reflects heightened autoinflammatory responses. Recent advances in genetic and immunological studies highlight a key role of the IL-36 immune axis in the pathogenesis of generalized pustular psoriasis. In this article, we review the psoriatic subtypes and discuss diagnostic criteria of generalized pustular psoriasis, discuss several newly identified genetic variants associated with pustular disease in the skin, and discuss how these mutations shed light on pustular disease mechanisms. Furthermore, we gather insights from recent transcriptomic studies that similarly implicate a pathogenic role of the IL-36 immune axis in generalized pustular psoriasis.
Collapse
Affiliation(s)
| | - Mrinal K. Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
47
|
Amar Y, Rogner D, Silva RL, Foesel BU, Ud-Dean M, Lagkouvardos I, Steimle-Grauer SA, Niedermeier S, Kublik S, Jargosch M, Heinig M, Thomas J, Eyerich S, Wikström JD, Schloter M, Eyerich K, Biedermann T, Köberle M. Darier's disease exhibits a unique cutaneous microbial dysbiosis associated with inflammation and body malodour. MICROBIOME 2023; 11:162. [PMID: 37496039 PMCID: PMC10369845 DOI: 10.1186/s40168-023-01587-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Darier's disease (DD) is a genodermatosis caused by mutations of the ATP2A2 gene leading to disrupted keratinocyte adhesion. Recurrent episodes of skin inflammation and infections with a typical malodour in DD indicate a role for microbial dysbiosis. Here, for the first time, we investigated the DD skin microbiome using a metabarcoding approach of 115 skin swabs from 14 patients and 14 healthy volunteers. Furthermore, we analyzed its changes in the context of DD malodour and the cutaneous DD transcriptome. RESULTS We identified a disease-specific cutaneous microbiome with a loss of microbial diversity and of potentially beneficial commensals. Expansion of inflammation-associated microbes such as Staphylococcus aureus and Staphylococcus warneri strongly correlated with disease severity. DD dysbiosis was further characterized by abundant species belonging to Corynebacteria, Staphylococci and Streptococci groups displaying strong associations with malodour intensity. Transcriptome analyses showed marked upregulation of epidermal repair, inflammatory and immune defence pathways reflecting epithelial and immune response mechanisms to DD dysbiotic microbiome. In contrast, barrier genes including claudin-4 and cadherin-4 were downregulated. CONCLUSIONS These findings allow a better understanding of Darier exacerbations, highlighting the role of cutaneous dysbiosis in DD inflammation and associated malodour. Our data also suggest potential biomarkers and targets of intervention for DD. Video Abstract.
Collapse
Affiliation(s)
- Yacine Amar
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Danielle Rogner
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Rafaela L Silva
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Bärbel U Foesel
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Minhaz Ud-Dean
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Ilias Lagkouvardos
- Core Facility Microbiome, Technical University of Munich, 85354, Freising, Germany
| | - Susanne A Steimle-Grauer
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sebastian Niedermeier
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Susanne Kublik
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Manja Jargosch
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Jenny Thomas
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Jakob D Wikström
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Kilian Eyerich
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany.
| | - Martin Köberle
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| |
Collapse
|
48
|
Burkhart JG, Wu G, Song X, Raimondi F, McWeeney S, Wong MH, Deng Y. Biology-inspired graph neural network encodes reactome and reveals biochemical reactions of disease. PATTERNS (NEW YORK, N.Y.) 2023; 4:100758. [PMID: 37521042 PMCID: PMC10382942 DOI: 10.1016/j.patter.2023.100758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/20/2022] [Accepted: 05/01/2023] [Indexed: 08/01/2023]
Abstract
Functional heterogeneity of healthy human tissues complicates interpretation of molecular studies, impeding precision therapeutic target identification and treatment. Considering this, we generated a graph neural network with Reactome-based architecture and trained it using 9,115 samples from Genotype-Tissue Expression (GTEx). Our graph neural network (GNN) achieves adjusted Rand index (ARI) = 0.7909, while a Resnet18 control model achieves ARI = 0.7781, on 370 held-out healthy human tissue samples from The Cancer Genome Atlas (TCGA), despite the Resnet18 using over 600 times the parameters. Our GNN also succeeds in separating 83 healthy skin samples from 95 lesional psoriasis samples, revealing that upregulation of 26S- and NUB1-mediated degradation of NEDD8, UBD, and their conjugates is central to the largest perturbed reaction network component in psoriasis. We show that our results are not discoverable using traditional differential expression and hypergeometric pathway enrichment analyses yet are supported by separate human multi-omics and small-molecule mouse studies, suggesting future molecular disease studies may benefit from similar GNN analytical approaches.
Collapse
Affiliation(s)
- Joshua G. Burkhart
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xubo Song
- Department of Computer Science and Electrical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Shannon McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa H. Wong
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| |
Collapse
|
49
|
Wolf S, Melo D, Garske KM, Pallares LF, Lea AJ, Ayroles JF. Characterizing the landscape of gene expression variance in humans. PLoS Genet 2023; 19:e1010833. [PMID: 37410774 DOI: 10.1371/journal.pgen.1010833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
Gene expression variance has been linked to organismal function and fitness but remains a commonly neglected aspect of molecular research. As a result, we lack a comprehensive understanding of the patterns of transcriptional variance across genes, and how this variance is linked to context-specific gene regulation and gene function. Here, we use 57 large publicly available RNA-seq data sets to investigate the landscape of gene expression variance. These studies cover a wide range of tissues and allowed us to assess if there are consistently more or less variable genes across tissues and data sets and what mechanisms drive these patterns. We show that gene expression variance is broadly similar across tissues and studies, indicating that the pattern of transcriptional variance is consistent. We use this similarity to create both global and within-tissue rankings of variation, which we use to show that function, sequence variation, and gene regulatory signatures contribute to gene expression variance. Low-variance genes are associated with fundamental cell processes and have lower levels of genetic polymorphisms, have higher gene-gene connectivity, and tend to be associated with chromatin states associated with transcription. In contrast, high-variance genes are enriched for genes involved in immune response, environmentally responsive genes, immediate early genes, and are associated with higher levels of polymorphisms. These results show that the pattern of transcriptional variance is not noise. Instead, it is a consistent gene trait that seems to be functionally constrained in human populations. Furthermore, this commonly neglected aspect of molecular phenotypic variation harbors important information to understand complex traits and disease.
Collapse
Affiliation(s)
- Scott Wolf
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Diogo Melo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Kristina M Garske
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Luisa F Pallares
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Child and Brain Development, Canadian Institute for Advanced Research, Toronto, Canada
| | - Julien F Ayroles
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
50
|
Xiao Z, Wang S, Tian Y, Lv W, Sheng H, Zhan M, Huang Q, Zhang Z, Zhu L, Zhu C, Zhong H, Wen Q, Liu Z, Tan J, Xu Y, Yang M, Liu Y, Flavell RA, Yang Q, Cao G, Yin Z. METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells. Cell Rep 2023; 42:112684. [PMID: 37355989 DOI: 10.1016/j.celrep.2023.112684] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/13/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
γδ T cells make key contributions to tissue physiology and immunosurveillance through two main functionally distinct subsets, γδ T1 and γδ T17. m6A methylation plays critical roles in controlling numerous aspects of mRNA metabolism that govern mRNA turnover, gene expression, and cellular functional specialization; however, its role in γδ T cells remains less well understood. Here, we find that m6A methylation controls the functional specification of γδ T17 vs. γδ T1 cells. Mechanistically, m6A methylation prevents the formation of endogenous double-stranded RNAs and promotes the degradation of Stat1 transcripts, which converge to prevent over-activation of STAT1 signaling and ensuing inhibition of γδ T17. Deleting Mettl3, the key enzyme in the m6A methyltransferases complex, in γδ T cells reduces interleukin-17 (IL-17) production and ameliorates γδ T17-mediated psoriasis. In summary, our work shows that METTL3-mediated m6A methylation orchestrates mRNA stability and double-stranded RNA (dsRNA) contents to equilibrate γδ T1 and γδ T17 cells.
Collapse
Affiliation(s)
- Zhiqiang Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Shanshan Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Yixia Tian
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Wenkai Lv
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Hao Sheng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518172, China
| | - Mingjie Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Qiongxiao Huang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou 510095, China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, China
| | - Zhanpeng Zhang
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Leqing Zhu
- The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Chuyun Zhu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Hui Zhong
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Qiong Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Jingyi Tan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Yan Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Meixiang Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Yumei Liu
- Institute of Dermatology, Guangzhou Medical University, Guangzhou 510095, China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, China.
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| | - Guangchao Cao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| |
Collapse
|