1
|
Górriz JL, Górriz-Zambrano C, Pallarés-Carratalá V. [Renal pathophysiology and pharmacological mechanisms of nephroprotection]. Semergen 2023; 49 Suppl 1:102021. [PMID: 37355300 DOI: 10.1016/j.semerg.2023.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/26/2023]
Abstract
Several risk factors may affect the progression of chronic kidney disease (CKD). Arterial hypertension, proteinuria, obesity, intraglomerular hypertension, smoking and metabolic control in diabetes mellitus are the main modifiable risk factors for progression. The progression of CKD involves many cellular processes that originate in specific compartments of the kidney, the vascular compartment with nephroangiosclerosis and the tubulointerstitial compartment with fibrosis and tubulointerstitial atrophy, and there may be overlap between both mechanisms. Given the involvement of so many risk factors and so many pathogenic pathways in the progression of CKD, the best hope for delaying or preventing the progression of CKD lies in a combined and multidisciplinary therapeutic approach, based on the existing evidence and acting on all these processes and pathways from the mechanistic point of view, and on a global process that is cardiovascular and renal risk to improve the prognosis of patients.
Collapse
Affiliation(s)
- J L Górriz
- Servicio de Nefrología, Hospital Clínico Universitario, Valencia. INCLIVA, Universitat de València, Valencia, España.
| | | | - V Pallarés-Carratalá
- Unidad de Vigilancia de la Salud, Unión de Mutuas, Castellón. Departamento de Medicina, Universitat Jaume I, Castellón, España
| |
Collapse
|
2
|
Ataga KI, Saraf SL, Derebail VK. The nephropathy of sickle cell trait and sickle cell disease. Nat Rev Nephrol 2022; 18:361-377. [PMID: 35190716 PMCID: PMC9832386 DOI: 10.1038/s41581-022-00540-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 01/13/2023]
Abstract
Sickle cell syndromes, including sickle cell disease (SCD) and sickle cell trait, are associated with multiple kidney abnormalities. Young patients with SCD have elevated effective renal plasma flow and glomerular filtration rates, which decrease to normal ranges in young adulthood and subnormal levels with advancing age. The pathophysiology of SCD-related nephropathy is multifactorial - oxidative stress, hyperfiltration and glomerular hypertension are all contributing factors. Albuminuria, which is an early clinical manifestation of glomerular damage, is common in individuals with SCD. Kidney function declines more rapidly in individuals with SCD than in those with sickle cell trait or in healthy individuals. Multiple genetic modifiers, including APOL1, HMOX1, HBA1 and HBA2 variants are also implicated in the development and progression of SCD-related nephropathy. Chronic kidney disease and rapid decline in estimated glomerular filtration rate are associated with increased mortality in adults with SCD. Renin-angiotensin-aldosterone system inhibitors are the standard of care treatment for albuminuria in SCD, despite a lack of controlled studies demonstrating their long-term efficacy. Multiple studies of novel therapeutic agents are ongoing, and patients with SCD and kidney failure should be evaluated for kidney transplantation. Given the high prevalence and severe consequences of kidney disease, additional studies are needed to elucidate the pathophysiology, natural history and treatment of SCD-related nephropathy.
Collapse
Affiliation(s)
- Kenneth I Ataga
- Center for Sickle Cell Disease, University of Tennessee Health Scienter Center, Memphis, TN, USA.
| | - Santosh L Saraf
- Division of Hematology/Oncology, University of Illinois, Chicago, IL, USA
| | - Vimal K Derebail
- Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Han X, Kambham N, Dairiki Shortliffe LM. Pregnancy and Severely Reduced Renal Mass: A Stress Model Showing Renal Hyperfiltration. Pregnancy Hypertens 2022; 28:41-43. [DOI: 10.1016/j.preghy.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/24/2022]
|
4
|
Circadian rhythm of the intrarenal renin-angiotensin system is caused by glomerular filtration of liver-derived angiotensinogen depending on glomerular capillary pressure in adriamycin nephropathy rats. Hypertens Res 2021; 44:618-627. [PMID: 33558668 DOI: 10.1038/s41440-021-00620-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/04/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Circadian fluctuation disorder of the intrarenal renin-angiotensin system (RAS) causes that of blood pressure (BP) and renal damage. In renal damage with an impaired glomerular filtration barrier, liver-derived angiotensinogen (AGT) filtered through damaged glomeruli regulates intrarenal RAS activity. Furthermore, glomerular permeability is more strongly affected by glomerular hypertension than by systemic hypertension. Thus, we aimed to clarify whether the circadian rhythm of intrarenal RAS activity is influenced by AGT filtered through damaged glomeruli due to glomerular capillary pressure. Rats with adriamycin nephropathy and an impaired glomerular filtration barrier were compared with control rats. In adriamycin nephropathy rats, olmesartan medoxomil (an angiotensin II type 1 receptor blocker) or hydralazine (a vasodilator) was administered, and the levels of intrarenal RAS components in the active and rest phases were evaluated. Moreover, the diameter ratio of afferent to efferent arterioles (A/E ratio), an indicator of glomerular capillary pressure, and the glomerular sieving coefficient (GSC) based on multiphoton microscopy in vivo imaging, which reflects glomerular permeability, were determined. Mild renal dysfunction was induced, and the systemic BP increased, resulting in increased A/E ratios in the adriamycin nephropathy rats compared with the control rats. Fluctuations in intrarenal RAS activity occurred in parallel with circadian fluctuations in glomerular capillary pressure, which disappeared with olmesartan treatment and were maintained with hydralazine treatment. Furthermore, the GSCs for AGT also showed similar changes. In conclusion, intrarenal RAS activity is influenced by the filtration of liver-derived AGT from damaged glomeruli due to circadian fluctuation disorder of the glomerular capillary pressure.
Collapse
|
5
|
Mahmoud M, Bouche V, Collin P, Girault A. Effects of Keto-analogues on Phosphocalcic and Aminoacid Metabolism in Dialysed Patients: A Crossover Study. Int J Artif Organs 2018. [DOI: 10.1177/039139888901201105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been suggested that calcium salts of keto-analogues (KA) have beneficial effects on phosphocalcic and aminoacid (AA) metabolism. To confirm this, their short-term effects were evaluated on chronic dialyzed patients. In a prospective, randomised, crossover study, eight and seven patients were put on KA (200 mg/kg/d) and assigned either a low-protein diet (LP:0.4 g/kg/d) or a normal one (NP: 1 g/kg/d) for 15 days. The two treatments were interchanged after 15 days of washout. KA.LP was accompanied by: a) decreases in calorie intake (12%; p = 0.001) and in blood concentrations of albumin (5%, p = 0.004), urea (32 %, p = 0.001), phosphate (29%, p = 0.001), parathormone (27%, p = 0.008), isoleucine (24%, p = 0.04), 1 and 3 methyl-histidine (71%, p = 0.03,; 24%, p = 0.005), valine (19%, p = 0.004) and hydroxyproline (85%, p = 0.009); b) increases in calcemia (9%, p = 0.002), cystathionine (991%, p = 0.0001) and threonine (22%, p = 0.04). KA.NP was accompanied by: a) decreases in phosphatemia (15%, p = 0.03) and parathormone (18 %, p = 0.06); b) increases in calcemia (9%, p = 0.002), cystathionine (427 %, p = 0.0001), and phenylalanine (28%, p = 0.013). Calcium salts of keto-analogues together with a low or normal protein diet thus seem to reduce blood concentrations of phosphates and parathormone, and raise calcium; however their action on aminoacids needs further investigation.
Collapse
Affiliation(s)
- M.D. Mahmoud
- Hemodialysis Unit Centre Hospitalier, Cholet, Cedex
| | - V. Bouche
- Hemodialysis Unit Centre Hospitalier, Cholet, Cedex
| | - Ph. Collin
- Hemodialysis Unit Centre Hospitalier, Cholet, Cedex
| | - A. Girault
- Biochemistry Centre Hospitalier Regional, 49000, Angers - France
| |
Collapse
|
6
|
Circadian rhythm of blood pressure and the renin–angiotensin system in the kidney. Hypertens Res 2016; 40:413-422. [DOI: 10.1038/hr.2016.166] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/13/2023]
|
7
|
The conundrums of chronic kidney disease and aging. J Nephrol 2016; 30:477-483. [PMID: 27885585 DOI: 10.1007/s40620-016-0362-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/01/2016] [Indexed: 01/13/2023]
Abstract
Chronic kidney disease (CKD), as presently defined, is a common disorder. Aging is a nearly universal phenomenon that can affect renal anatomy and function, but at variable rates in individuals. Loss of nephrons and a decline in glomerular filtration rate (GFR) is a characteristic of normal aging, called renal senescence. Using fixed and absolute thresholds for defining CKD on the basis of GFR for all ages may lead to diagnostic uncertainty (a conundrum) in both young and older subjects. This brief review will consider the physiological and anatomical changes of the kidney occurring in the process of normal renal senescence focusing on GFR and will examine the relevance of these observation for the diagnosis of CKD using GFR as the distinguishing parameter. Once a better understanding of the pathobiology underlying renal senescence is obtained, specific interventions may become available to slow the process.
Collapse
|
8
|
Wang A, Sam R. Does significant renal ablation truly and invariably lead to hyperfiltration and progressive chronic kidney disease? Clin Exp Nephrol 2016; 21:367-374. [PMID: 27738776 DOI: 10.1007/s10157-016-1342-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/05/2016] [Indexed: 11/30/2022]
Abstract
It is generally believed that significant renal ablation leads to hyperfiltration and eventually progressively worsening chronic kidney disease. The data behind this belief have not been scrutinized intensively. More importantly, the above belief leads many physicians to manage patients differently than they otherwise would manage. Here, we examine the data behind whether hyperfiltration occurs when patients lose kidney mass (by excision or by disease) and whether the hyperfiltration is uniformly injurious.
Collapse
Affiliation(s)
- Andrew Wang
- Division of Nephrology, San Francisco General Hospital, University of California, 1001 Potrero Ave, Building 100, Rm 342, San Francisco, CA, 94110-1341, USA
| | - Ramin Sam
- Division of Nephrology, San Francisco General Hospital, University of California, 1001 Potrero Ave, Building 100, Rm 342, San Francisco, CA, 94110-1341, USA.
| |
Collapse
|
9
|
Comper WD, Russo LM, Vuchkova J. Are filtered plasma proteins processed in the same way by the kidney? J Theor Biol 2016; 410:18-24. [PMID: 27647256 DOI: 10.1016/j.jtbi.2016.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/24/2016] [Accepted: 09/15/2016] [Indexed: 11/19/2022]
Abstract
In order to understand the mechanism of albuminuria we have explored how other plasma proteins are processed by the kidney as compared to inert molecules like Ficolls. When fractional clearances are plotted versus protein radius there is a remarkable parallelism between protein (molecular weight range 30-150kDa) clearance in healthy controls, in Dent's disease, in nephrotic states and the clearance of Ficolls. Although there are significant differences in the levels of fractional clearances in these states. Dent's disease results in a 2-fold increase in the fractional clearance of proteins as compared to healthy controls whereas in nephrotic states there is a further 3-fold increase in fractional clearance. Previous thinking that albumin uptake was controlled primarily by the megalin/cubilin receptor does not explain the albumin urinary excretion data and is therefore an incorrect concept. Protein clearance in nephrotic states approach the fractional clearance of inert Ficolls for a given radius. It therefore appears that there are two pathways processing these proteins. A low capacity pathway associated with megalin/cubilin that degrades filtered protein (that is inhibited in Dent's disease) and a high capacity pathway that retrieves the filtered protein and returns it to the blood supply (without retrieval nephrotic protein excretion will occur and this will account for hypoproteinemia). On the other hand low molecular weight proteins (<20kDa) are processed entirely differently by the kidney. They are not retrieved but are comprehensively degraded in the kidney with the degradation products predominantly returned to the blood supply.
Collapse
Affiliation(s)
- W D Comper
- SalAqua Diagnostics, New York and Kantum Diagnostics, NH, United States.
| | - L M Russo
- Systems Biology, Massachusetts General Hospital, Boston, United States
| | - J Vuchkova
- Department Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Isobe S, Ohashi N, Ishigaki S, Tsuji T, Sakao Y, Kato A, Miyajima H, Fujigaki Y, Nishiyama A, Yasuda H. Augmented circadian rhythm of the intrarenal renin-angiotensin systems in anti-thymocyte serum nephritis rats. Hypertens Res 2016; 39:312-20. [PMID: 26739872 DOI: 10.1038/hr.2015.151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 01/13/2023]
Abstract
We report that disturbance to the circadian rhythm of urinary angiotensinogen (AGT) excretion may lead to renal damage, hypertension and diurnal blood pressure (BP) variations. We aim to clarify the circadian rhythm of the intrarenal renin-angiotensin system (RAS) and its contribution to renal damage, hypertension and BP variations, and to evaluate whether the administration of RAS blockers influences the circadian rhythms of intrarenal RAS components. Anti-thymocyte serum (ATS) nephritis rats were used as a chronic progressive glomerulonephritis model (group A) and compared with control rats (group C). Other rats with ATS nephritis received olmesartan medoxomil (an angiotensin II (AngII) type 1 receptor (AT1R) blocker; group AO) or hydralazine (a vasodilator; group AH). The levels of intrarenal RAS components were evaluated every 6 h. The expression levels of intrarenal AGT, AngII and AT1R were increased in group A and peaked at the same time as BP and urinary protein excretion during the rest phase. The amplitude of the circadian fluctuation of these proteins was more increased in group A than in group C. The circadian fluctuation of these proteins was reduced in groups AO and AH. However, renal function, proteinuria and augmentation of intrarenal RAS components were reduced only in group AO. Intrarenal RAS components, such as AGT, AngII and AT1R proteins, were increased and the amplitude of the oscillations of these proteins was augmented in ATS nephritis rats. Interestingly, renal damage may be linked to the activation of the intrarenal RAS independent of the amplitude of its oscillations and BP.
Collapse
Affiliation(s)
- Shinsuke Isobe
- Internal Medicine 1, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naro Ohashi
- Internal Medicine 1, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Sayaka Ishigaki
- Internal Medicine 1, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takayuki Tsuji
- Internal Medicine 1, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukitoshi Sakao
- Blood Purification Unit, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akihiko Kato
- Blood Purification Unit, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroaki Miyajima
- Internal Medicine 1, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshihide Fujigaki
- Internal Medicine 1, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Hideo Yasuda
- Internal Medicine 1, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
11
|
Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression. J Am Soc Nephrol 2015; 26:1765-76. [PMID: 25810494 PMCID: PMC4520181 DOI: 10.1681/asn.2015010006] [Citation(s) in RCA: 499] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transition of AKI to CKD has major clinical significance. As reviewed here, recent studies show that a subpopulation of dedifferentiated, proliferating tubules recovering from AKI undergo pathologic growth arrest, fail to redifferentiate, and become atrophic. These abnormal tubules exhibit persistent, unregulated, and progressively increasing profibrotic signaling along multiple pathways. Paracrine products derived therefrom perturb normal interactions between peritubular capillary endothelium and pericyte-like fibroblasts, leading to myofibroblast transformation, proliferation, and fibrosis as well as capillary disintegration and rarefaction. Although signals from injured endothelium and inflammatory/immune cells also contribute, tubule injury alone is sufficient to produce the interstitial pathology required for fibrosis. Localized hypoxia produced by microvascular pathology may also prevent tubule recovery. However, fibrosis is not intrinsically progressive, and microvascular pathology develops strictly around damaged tubules; thus, additional deterioration of kidney structure after the transition of AKI to CKD requires new acute injury or other mechanisms of progression. Indeed, experiments using an acute-on-chronic injury model suggest that additional loss of parenchyma caused by failed repair of AKI in kidneys with prior renal mass reduction triggers hemodynamically mediated processes that damage glomeruli to cause progression. Continued investigation of these pathologic mechanisms should reveal options for preventing renal disease progression after AKI.
Collapse
Affiliation(s)
| | - Joel M Weinberg
- Department of Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan Medical Center, Ann Arbor, Michigan
| | - Wilhelm Kriz
- Medical Fakultät Mannheim, Abteilung Anatomie und Entwicklungsbiologie Mannheim, University of Heidelberg, Baden-Wuerttemberg, Germany; and
| | - Anil K Bidani
- Department of Medicine, Loyola University and Hines Veterans Affairs Hospital, Maywood, Illinois
| |
Collapse
|
12
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
13
|
Fotheringham J, Odudu A, McKane W, Ellam T. Modification of the Relationship Between Blood Pressure and Renal Albumin Permeability by Impaired Excretory Function and Diabetes. Hypertension 2015; 65:510-6. [DOI: 10.1161/hypertensionaha.114.04656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- James Fotheringham
- From the Sheffield Kidney Institute, Northern General Hospital, Sheffield, UK (J.F., W.M., T.E.); Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK (A.O.); and Department of Cardiovascular Science, University of Sheffield, Sheffield, UK (T.E.)
| | - Aghogho Odudu
- From the Sheffield Kidney Institute, Northern General Hospital, Sheffield, UK (J.F., W.M., T.E.); Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK (A.O.); and Department of Cardiovascular Science, University of Sheffield, Sheffield, UK (T.E.)
| | - William McKane
- From the Sheffield Kidney Institute, Northern General Hospital, Sheffield, UK (J.F., W.M., T.E.); Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK (A.O.); and Department of Cardiovascular Science, University of Sheffield, Sheffield, UK (T.E.)
| | - Timothy Ellam
- From the Sheffield Kidney Institute, Northern General Hospital, Sheffield, UK (J.F., W.M., T.E.); Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK (A.O.); and Department of Cardiovascular Science, University of Sheffield, Sheffield, UK (T.E.)
| |
Collapse
|
14
|
Lenihan CR, Busque S, Derby G, Blouch K, Myers BD, Tan JC. The association of predonation hypertension with glomerular function and number in older living kidney donors. J Am Soc Nephrol 2014; 26:1261-7. [PMID: 25525178 DOI: 10.1681/asn.2014030304] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/01/2014] [Indexed: 11/03/2022] Open
Abstract
The effect of preexisting hypertension on living donor nephron number has not been established. In this study, we determined the association between preexisting donor hypertension and glomerular number and volume and assessed the effect of predonation hypertension on postdonation BP, adaptive hyperfiltration, and compensatory glomerular hypertrophy. We enrolled 51 living donors to undergo physiologic, morphometric, and radiologic evaluations before and after kidney donation. To estimate the number of functioning glomeruli (NFG), we divided the whole-kidney ultrafiltration coefficient (Kf) by the single-nephron ultrafiltration coefficient (SNKf). Ten donors were hypertensive before donation. We found that, in donors ages >50 years old, preexisting hypertension was associated with a reduction in NFG. In a comparison of 10 age- and sex-matched hypertensive and normotensive donors, we observed more marked glomerulopenia in hypertensive donors (NFG per kidney, 359,499±128,929 versus 558,239±205,152; P=0.02). Glomerulopenia was associated with a nonsignificant reduction in GFR in the hypertensive group (89±12 versus 95±16 ml/min per 1.73 m(2)). We observed no difference in the corresponding magnitude of postdonation BP, hyperfiltration capacity, or compensatory renocortical hypertrophy between hypertensive and normotensive donors. Nevertheless, we propose that the greater magnitude of glomerulopenia in living kidney donors with preexisting hypertension justifies the need for long-term follow-up studies.
Collapse
Affiliation(s)
| | - Stephan Busque
- Department of Surgery, Stanford University School of Medicine, Palo Alto, California
| | | | | | | | - Jane C Tan
- Division of Nephrology, Department of Medicine and
| |
Collapse
|
15
|
Wang X, Johnson AC, Williams JM, White T, Chade AR, Zhang J, Liu R, Roman RJ, Lee JW, Kyle PB, Solberg-Woods L, Garrett MR. Nephron Deficiency and Predisposition to Renal Injury in a Novel One-Kidney Genetic Model. J Am Soc Nephrol 2014; 26:1634-46. [PMID: 25349207 DOI: 10.1681/asn.2014040328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/08/2014] [Indexed: 11/03/2022] Open
Abstract
Some studies have reported up to 40% of patients born with a single kidney develop hypertension, proteinuria, and in some cases renal failure. The increased susceptibility to renal injury may be due, in part, to reduced nephron numbers. Notably, children who undergo nephrectomy or adults who serve as kidney donors exhibit little difference in renal function compared with persons who have two kidneys. However, the difference in risk between being born with a single kidney versus being born with two kidneys and then undergoing nephrectomy are unclear. Animal models used previously to investigate this question are not ideal because they require invasive methods to model congenital solitary kidney. In this study, we describe a new genetic animal model, the heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, which demonstrates 50%-75% spontaneous incidence of a single kidney. The HSRA model is characterized by reduced nephron number (more than would be expected by loss of one kidney), early kidney/glomerular hypertrophy, and progressive renal injury, which culminates in reduced renal function. Long-term studies of temporal relationships among BP, renal hemodynamics, and renal function demonstrate that spontaneous single-kidney HSRA rats are more likely than uninephrectomized normal littermates to exhibit renal impairment because of the combination of reduced nephron numbers and prolonged exposure to renal compensatory mechanisms (i.e., hyperfiltration). Future studies with this novel animal model may provide additional insight into the genetic contributions to kidney development and agenesis and the factors influencing susceptibility to renal injury in individuals with congenital solitary kidney.
Collapse
Affiliation(s)
| | | | - Jan M Williams
- Departments of *Pharmacology and Toxicology, Medicine (Nephrology)
| | | | - Alejandro R Chade
- Physiology and Biophysics, Radiology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | | | | | - Richard J Roman
- Departments of *Pharmacology and Toxicology, Medicine (Nephrology)
| | | | | | - Leah Solberg-Woods
- Department of Pediatrics, Medical College of Wisconsin, Madison, Wisconsin
| | | |
Collapse
|
16
|
Ataga KI, Derebail VK, Archer DR. The glomerulopathy of sickle cell disease. Am J Hematol 2014; 89:907-14. [PMID: 24840607 PMCID: PMC4320776 DOI: 10.1002/ajh.23762] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 01/03/2023]
Abstract
Sickle cell disease (SCD) produces many structural and functional abnormalities in the kidney, including glomerular abnormalities. Albuminuria is the most common manifestation of glomerular damage, with a prevalence between 26 and 68% in adult patients. The pathophysiology of albuminuria in SCD is likely multifactorial, with contributions from hyperfiltration, glomerular hypertension, ischemia-reperfusion injury, oxidative stress, decreased nitric oxide (NO) bioavailability, and endothelial dysfunction. Although its natural history in SCD remains inadequately defined, albuminuria is associated with increased echocardiography-derived tricuspid regurgitant jet velocity, systemic blood pressure, and hypertension, as well as history of stroke, suggesting a shared vasculopathic pathophysiology. While most patients with albuminuria are treated with angiotensin converting enzyme inhibitors/angiotensin receptor blockers, there are no published long-term data on the efficacy of these agents. With the improved patient survival following kidney transplantation, SCD patients with end-stage renal disease should be considered for this treatment modality. Given the high prevalence of albuminuria and its association with multiple SCD-related clinical complications, additional studies are needed to answer several clinically important questions in a bid to adequately elucidate its pathophysiology, natural history, and treatment.
Collapse
Affiliation(s)
- Kenneth I Ataga
- Division of Hematology/Oncology, University of North CarolinaChapel Hill, NC
- *
Correspondence to: Kenneth I. Ataga, MBBS; Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Physicians' Office Bldg., 3rd Floor, CB# 7305, 170 Manning Drive, Chapel Hill, NC 27599-7305. E-mail:
| | - Vimal K Derebail
- Division of Nephrology and Hypertension, University of North CarolinaChapel Hill, NC
| | | |
Collapse
|
17
|
Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 2014; 26:258-69. [PMID: 25060060 DOI: 10.1681/asn.2014030278] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Loss of podocytes underlies progression of CKD. Detachment of podocytes from the glomerular basement membrane (GBM) rather than apoptosis or necrosis seems to be the major mechanism of podocyte loss. Such detachment of viable podocytes may be caused by increased mechanical distending and shear forces and/or impaired adhesion to the GBM. This review considers the mechanical challenges that may lead to podocyte loss by detachment from the GBM under physiologic and pathophysiologic conditions, including glomerular hypertension, hyperfiltration, hypertrophy, and outflow of filtrate from subpodocyte spaces. Furthermore, we detail the cellular mechanisms by which podocytes respond to these challenges, discuss the protective effects of angiotensin blockade, and note the questions that must be addressed to better understand the relationship between podocyte detachment and progression of CKD.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Institutes of Transfusion Medicine and Immunology and Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; and
| | - Kevin V Lemley
- Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, California; and Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
18
|
Kriz W, Hähnel B, Hosser H, Rösener S, Waldherr R. Structural analysis of how podocytes detach from the glomerular basement membrane under hypertrophic stress. Front Endocrinol (Lausanne) 2014; 5:207. [PMID: 25566184 PMCID: PMC4264519 DOI: 10.3389/fendo.2014.00207] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/17/2014] [Indexed: 01/09/2023] Open
Abstract
Podocytes are lost by detachment from the GBM as viable cells; details are largely unknown. We studied this process in the rat after growth stimulation with FGF-2. Endothelial and mesangial cells responded by hyperplasia, podocytes underwent hypertrophy, but, in the long run, developed various changes that could either be interpreted showing progressing stages in detachment from the GBM or stages leading to a tighter attachment by foot process effacement (FPE). This occurred in microdomains within the same podocyte; thus, features of detachment and of reinforced attachment may simultaneously be found in the same podocyte. (1) Initially, hypertrophied podocytes underwent cell body attenuation and formed large pseudocysts, i.e., expansions of the subpodocyte space. (2) Podocytes entered the process of FPE starting with the retraction of foot processes (FPs) and the replacement of the slit diaphragm by occluding junctions, thereby sealing the filtration slits. Successful completion of this process led to broad attachments of podocyte cell bodies to the GBM. (3) Failure of sealing the slits led to gaps of varying width between retracting FPs facilitating the outflow of the filtrate from the GBM. (4) Since those gaps are frequently overarched by broadened primary processes, the drainage of the filtrate into the Bowman's space may be hindered leading to the formation of small pseudocysts associated with bare areas of GBM. (5) The merging of pseudocysts created a system of communicating chambers through which the filtrate has to pass to reach Bowman's space. Multiple flow resistances in series likely generated an expansile force on podocytes contributing to detachment. (6) Such a situation appears to proceed to complete disconnection generally of a group of podocytes owing to the junctional connections between them. (7) Since such groups of detaching podocytes generally make contact to parietal cells, they start the formation of tuft adhesions to Bowman's capsule.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Institute of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- *Correspondence: Wilhelm Kriz, Zentrum für Biomedizin und Medizintechnik Mannheim, Institut für Neuroanatomie, Ludolf-Krehl-Str. 13-17, Tridomus C, Ebene 6, Mannheim D68167, Germany e-mail:
| | - Brunhilde Hähnel
- Institute of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hiltraud Hosser
- Institute of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Pathologie Heidelberg, Heidelberg, Germany
| | - Sigrid Rösener
- Global Non-Clinical Safety, Merck KGaA, Merck Serono, Darmstadt, Germany
| | | |
Collapse
|
19
|
Srivastava T, Celsi GE, Sharma M, Dai H, McCarthy ET, Ruiz M, Cudmore PA, Alon US, Sharma R, Savin VA. Fluid flow shear stress over podocytes is increased in the solitary kidney. Nephrol Dial Transplant 2013; 29:65-72. [PMID: 24166460 DOI: 10.1093/ndt/gft387] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Glomerular hyperfiltration is emerging as the key risk factor for progression of chronic kidney disease (CKD). Podocytes are exposed to fluid flow shear stress (FFSS) caused by the flow of ultrafiltrate within Bowman's space. The mechanism of hyperfiltration-induced podocyte injury is not clear. We postulated that glomerular hyperfiltration in solitary kidney increases FFSS over podocytes. METHODS Infant Sprague-Dawley rats at 5 days of age and C57BL/6J 14-week-old adult mice underwent unilateral nephrectomy. Micropuncture and morphological studies were then performed on 20- and 60-day-old rats. FFSS over podocytes in uninephrectomized rats and mice was calculated using the recently published equation by Friedrich et al. which includes the variables-single nephron glomerular filtration rate (SNGFR), filtration fraction (f), glomerular tuft diameter (2RT) and width of Bowman's space (s). RESULTS Glomerular hypertrophy was observed in uninephrectomized rats and mice. Uninephrectomized rats on Day 20 showed a 2.0-fold increase in SNGFR, 1.0-fold increase in 2RT and 2.1-fold increase in FFSS, and on Day 60 showed a 1.9-fold increase in SNGFR, 1.3-fold increase in 2RT and 1.5-fold increase in FFSS, at all values of modeled 's'. Similarly, uninephrectomized mice showed a 2- to 3-fold increase in FFSS at all values of modeled SNGFR. CONCLUSIONS FFSS over podocytes is increased in solitary kidneys in both infant rats and adult mice. This increase is a consequence of increased SNGFR. We speculate that increased FFSS caused by reduced nephron number contributes to podocyte injury and promotes the progression of CKD.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Thanks to remarkable advances in neonatal intensive care, infants who once had little chance for survival can now enter adulthood. Yet the consequences of premature birth or low birth weight (LBW) on nephrogenesis, final nephron number, and long-term kidney function are unclear. This review focuses on the theory, experimental evidence, and observational data that suggest an increased risk of chronic kidney disease (CKD) for infants born prematurely. Many premature and LBW infants begin life with an incomplete complement of immature nephrons. They are then exposed to a variety of external stressors that can hinder ongoing kidney development or cause additional nephron loss such as hemodynamic alterations, nephrotoxic medications, infections, and suboptimal nutrition. Acute kidney injury, in particular, may be a significant risk factor for the development of CKD. According to Brenner's hypothesis, patients with decreased nephron number develop hyperfiltration that results in sodium retention, hypertension, nephron loss, and CKD due to secondary focal segmental glomerulosclerosis. Because the risk of CKD in premature and LBW infants has not been accurately determined, there are no evidence-based recommendations for screening or management. Yet with the first generation of infants from the surfactant era only now reaching adulthood, it is possible that there is already an unrecognized epidemic of CKD. We suggest individualized, risk-based assessments of premature and LBW infants due to the increased risk of CKD and call for additional research into the long-term risk for CKD these infants face.
Collapse
Affiliation(s)
- J Bryan Carmody
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
21
|
DiBartola SP. Veterinary nephrology - yesterday and today. J Vet Emerg Crit Care (San Antonio) 2013; 23:111-4. [PMID: 23566107 DOI: 10.1111/vec.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Balasubramanian S. Progression of chronic kidney disease: Mechanisms and interventions in retardation. APOLLO MEDICINE 2013. [DOI: 10.1016/j.apme.2013.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
23
|
Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV. The podocyte's response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol 2013; 304:F333-47. [DOI: 10.1152/ajprenal.00478.2012] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Progressive loss of podocytes is the most frequent cause accounting for end-stage renal failure. Podocytes are complex, terminally differentiated cells incapable of replicating. Thus lost podocytes cannot be replaced by proliferation of neighboring undamaged cells. Moreover, podocytes occupy a unique position as epithelial cells, adhering to the glomerular basement membrane (GBM) only by their processes, whereas their cell bodies float within the filtrate in Bowman's space. This exposes podocytes to the danger of being lost by detachment as viable cells from the GBM. Indeed, podocytes are continually excreted as viable cells in the urine, and the rate of excretion dramatically increases in glomerular diseases. Given this situation, it is likely that evolution has developed particular mechanisms whereby podocytes resist cell detachment. Podocytes respond to stress and injury by undergoing tremendous changes in shape. Foot process effacement is the most prominent and, yet in some ways, the most enigmatic of those changes. This review summarizes the various structural responses of podocytes to injury, focusing on foot process effacement and detachment. We raise the hypothesis that foot process effacement represents a protective response of podocytes to escape detachment from the GBM.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isao Shirato
- Division of Nephrology, Department of Internal Medicine, Juntendo University, School of Medicine, Tokyo, Japan
| | - Michio Nagata
- Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba-City, Japan
| | - Michel LeHir
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; and
| | - Kevin V. Lemley
- Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
24
|
Grabias BM, Konstantopoulos K. Epithelial-mesenchymal transition and fibrosis are mutually exclusive reponses in shear-activated proximal tubular epithelial cells. FASEB J 2012; 26:4131-41. [PMID: 22744866 DOI: 10.1096/fj.12-207324] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Renal fibrosis (RF) is thought to be a direct consequence of dedifferentiation of resident epithelial cells via an epithelial-mesenchymal transition (EMT). Increased glomerular flow is a critical initiator of fibrogenesis. Yet, the responses of proximal tubular epithelial cells (PTECs) to fluid flow remain uncharacterized. Here, we investigate the effects of pathological shear stresses on the development of fibrosis in PTECs. Our data reveal that type I collagen accumulation in shear-activated PTECs is accompanied by a ∼40-60% decrease in cell motility, thus excluding EMT as a relevant pathological process. In contrast, static incubation of PTECs with TGFβ1 increases cell motility by ∼50%, and induces stable expression of key mesenchymal markers, including Snail1, N-cadherin, and vimentin. Ectopic expression of TGFβ1 in shear-activated PTECs fails to induce EMT-associated changes but abrogates collagen accumulation via SMAD2-dependent mechanisms. Shear-mediated inhibition of EMT occurs via cyclic oscillations in both ERK2 activity and downstream expression of EMT genes. A constitutive ERK2 mutant induces stable expression of Snail1, N-cadherin, and vimentin, and increases cell motility in shear-activated PTECs by 250% without concomitant collagen deposition. Collectively, our data reveal that RF not only occurs without EMT but also that these two responses represent mutually exclusive cell fates.
Collapse
Affiliation(s)
- Bryan M Grabias
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, New Engineering Bldg. 114, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
25
|
Weening JJ, Jennette JC. Historical milestones in renal pathology. Virchows Arch 2012; 461:3-11. [PMID: 22661128 PMCID: PMC3400763 DOI: 10.1007/s00428-012-1254-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 01/01/2023]
|
26
|
Delanaye P, Weekers L, Dubois BE, Cavalier E, Detry O, Squifflet JP, Krzesinski JM. Outcome of the living kidney donor. Nephrol Dial Transplant 2012; 27:41-50. [DOI: 10.1093/ndt/gfr669] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
27
|
Kosugi T, Sato W. Midkine and the kidney: health and diseases. Nephrol Dial Transplant 2011; 27:16-21. [DOI: 10.1093/ndt/gfr652] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
White JD, Malik R, Norris JM. Feline chronic kidney disease: Can we move from treatment to prevention? Vet J 2011; 190:317-22. [DOI: 10.1016/j.tvjl.2010.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/06/2010] [Accepted: 12/12/2010] [Indexed: 12/22/2022]
|
29
|
Matsusaka T, Sandgren E, Shintani A, Kon V, Pastan I, Fogo AB, Ichikawa I. Podocyte injury damages other podocytes. J Am Soc Nephrol 2011; 22:1275-85. [PMID: 21719786 DOI: 10.1681/asn.2010090963] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Loss of podocytes promotes glomerulosclerosis, but whether this results from a continued primary insult or a secondary mechanism triggered by the initial loss of podocytes is unknown. We generated chimeric mice in which only a subpopulation of podocytes expressed hCD25, which is the receptor for the immunotoxin LMB2. In addition, genetic labeling of hCD25-negative cells with human placental alkaline phosphatase allowed the study of these two distinct podocyte populations. Administration of LMB2 did not cause podocyte injury in hCD25-negative control mice. In contrast, LMB2 severely damaged or sloughed off the subpopulation of hCD25-positive podocytes within the chimeric glomeruli. Moreover, hCD25-negative podocytes, which were immune to the initial toxin injury, developed injury as early as 4 d after LMB2 injection, evidenced by foot process effacement, upregulation of desmin, and downregulation of nephrin, podocin, and podocalyxin. Furthermore, the magnitude of secondary injury correlated with the magnitude of primary injury, supporting the concept of an amplified cascade of podocyte injury. In conclusion, podocyte damage can propagate injury by triggering secondary damage of "remnant" intact podocytes, even when the primary insult is short-lived. This transmission of podocyte injury may form a vicious cycle leading to accelerated podocyte deterioration and glomerulosclerosis.
Collapse
Affiliation(s)
- Taiji Matsusaka
- Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Sangalli F, Carrara F, Gaspari F, Corna D, Zoja C, Botti L, Remuzzi G, Remuzzi A. Effect of ACE inhibition on glomerular permselectivity and tubular albumin concentration in the renal ablation model. Am J Physiol Renal Physiol 2011; 300:F1291-300. [PMID: 21454255 DOI: 10.1152/ajprenal.00656.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite the central role of tubular plasma proteins that characterize progressive kidney diseases, protein concentrations along the nephron in pathological conditions have not been quantified so far. We combined experimental techniques and theoretical analysis to estimate glomerular and tubular levels of albumin in the experimental model of 5/6 nephrectomy (Nx) in the rat, with or without angiotensin-converting enzyme (ACE) inhibition. We measured glomerular permselectivity by clearance of fluorescent Ficoll and albumin and used theoretical analysis to estimate tubular albumin. As expected, 5/6 Nx induced an elevation of the fractional clearance of the largest Ficoll molecules (radii >56 Å, P < 0.05), increasing the importance of the shunt pathway of the glomerular membrane and the albumin excretion rate (119 ± 41 vs. 0.6 ± 0.2 mg/24 h, P < 0.01). ACE inhibition normalized glomerular permselectivity and urinary albumin (0.5 ± 0.3 mg/24 h). Theoretical analysis indicates that with 5/6 Nx, an increased albumin filtration overcomes proximal tubule reabsorption, with a massive increase in average albumin concentration along the tubule, reaching the highest value of >2,500 μg/ml at the end of the collecting duct. ACE inhibition improved glomerular permselectivity, limiting albumin filtration under proximal tubule reabsorption capacity, with low albumin concentration along the entire nephron, averaging <13 μg/ml at the end of the collecting duct. These results reinforce our understanding of the mechanisms of renal disease progression and the effects of angiotensin II antagonism. They also suggest that evaluation of tubular protein concentration levels could help to identify patients at risk of kidney disease progression and to improve clinical management.
Collapse
Affiliation(s)
- Fabio Sangalli
- Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Glodny B, Nasseri P, Rehder P, Unterholzner V, Plaikner M, Koppelstätter C, Petersen J. Reduced glomerular filtration rate due to loss of nephron mass may be an independent risk factor for atherosclerosis. Nephrol Dial Transplant 2010; 26:1882-7. [PMID: 21068141 DOI: 10.1093/ndt/gfq678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Whether living with reduced nephron mass (RNM) poses a risk to humans is the subject of ongoing controversy. The aim of this study was to discover whether or not RNMs are associated with greater atherosclerotic plaque burdens. METHODS Using the post-operative abdominal CT scans of 739 nephrectomized patients [NP; 315 women and 424 men; mean age 64.5 ± 15.0 years; observation period 4.9 ± 5.7 years (3675.9 patient-years)] and of an age- and a gender-matched control group, a retrospective observational and case-control study was conducted. The V600 calcium scoring method was used to determine the aortic calcium volume score (ACS) and thus the APB. RESULTS The ACS was 0.47 ± 0.77 mm(3) in the NPs compared with 0.41 ± 0.69 mm(3) in the control group (P <0.0001). The ACS and the glomerular filtration rate (GFR using the CKD-EPI formula) after nephrectomy correlated inversely (P = - 0.3652; P <0.0001), and the ACS and the time since nephrectomy correlated positively (P = 0.2919; P <0.0001). In linear regression models, age, time interval and GFR after nephrectomy proved to be independent factors of influence on ACS (P <0.05 each). Including the control group, age, GFR after nephrectomy and nephrectomy were independent factors of influence on the ACS. The factor GFR after nephrectomy explains ~ 10.7% in NPs, and 28% of the variance of the ACS in all patients. CONCLUSIONS The factors 'low GFR' and RNM are risk factors for greater atherosclerotic plaque burden. Patients with RNM should undergo regular control examinations to monitor arterial blood pressure and treat hypertension if it occurs.
Collapse
Affiliation(s)
- Bernhard Glodny
- Department of Radiology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
33
|
Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK. Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol 2010; 298:F1078-94. [PMID: 20200097 DOI: 10.1152/ajprenal.00017.2010] [Citation(s) in RCA: 387] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently published epidemiological and outcome analysis studies have brought to our attention the important role played by acute kidney injury (AKI) in the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD). AKI accelerates progression in patients with CKD; conversely, CKD predisposes patients to AKI. This research gives credence to older, well-thought-out wisdom that recovery from AKI is often not complete and is marked by residual structural damage. It also mirrors older experimental observations showing that unilateral nephrectomy, a surrogate for loss of nephrons by disease, compromises structural recovery and worsens tubulointerstitial fibrosis after ischemic AKI. Moreover, review of a substantial body of work on the relationships among reduced renal mass, hypertension, and pathology associated with these conditions suggests that impaired myogenic autoregulation of blood flow in the setting of hypertension, the arteriolosclerosis that results, and associated recurrent ischemic AKI in microscopic foci play important roles in the development of progressively increasing tubulointerstitial fibrosis. How nutrition, an additional factor that profoundly affects renal disease progression, influences these events needs reevaluation in light of information on the effects of calories vs. protein and animal vs. vegetable protein on injury and progression. Considerations based on published and emerging data suggest that a pathology that develops in regenerating tubules after AKI characterized by failure of differentiation and persistently high signaling activity is the proximate cause that drives downstream events in the interstitium: inflammation, capillary rarefaction, and fibroblast proliferation. In light of this information, we advance a comprehensive hypothesis regarding the pathophysiology of AKI as it relates to the progression of kidney disease. We discuss the implications of this pathophysiology for developing efficient therapeutic strategies to delay progression and avert ESRD.
Collapse
Affiliation(s)
- Manjeri A Venkatachalam
- Dept. of Pathology, Univ. of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Sasaki S, Yokozawa T, Cho EJ, Oowada S, Kim M. Protective role of γ-aminobutyric acid against chronic renal failure in rats. J Pharm Pharmacol 2010; 58:1515-25. [PMID: 17132215 DOI: 10.1211/jpp.58.11.0013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The protective effect of γ-aminobutyric acid (GABA) against chronic renal failure (CRF) was investigated using a remnant kidney model with 5/6 nephrectomized rats. Nephrectomy led to renal dysfunction, which was evaluated via several parameters including serum urea nitrogen, creatinine (Cr) and Cr clearance. However, the administration of GABA ameliorated renal dysfunction, and a longer administration period of GABA increased its protective effect. In addition, nephrectomized control rats showed an elevation in the fractional excretion of sodium (FENa) with an increase in urinary sodium, while GABA led to a significant decline in FENa. Moreover, nephrectomy resulted in a decrease of serum albumin and an increase of urinary protein with a change in the urinary protein pattern, whereas the rats administered GABA showed improvement in these changes associated with CRF caused by nephrectomy. This suggests that GABA would inhibit the disease progression and have a protective role against CRF. As one of the risk factors for CRF progression, hypertension was also regulated by GABA. The results also indicate that GABA may play a protective role against CRF through improvement of the serum lipid profile, with reductions in triglyceride and total cholesterol. Furthermore, nephrectomy led to renal oxidative stress with a decrease in the activity of antioxidative enzymes and elevation of lipid peroxidation. The administration of GABA attenuated oxidative stress induced by nephrectomy through an increase in superoxide dismutase and catalase, and decrease in lipid peroxidation. The histopathological lesions, including glomerular, tubular and interstitial lesions, under nephrectomy were also improved by GABA with the inhibition of fibronectin expression. This study demonstrated that GABA attenuated renal dysfunction via regulation of blood pressure and lipid profile, and it also ameliorated the oxidative stress induced by nephrectomy, suggesting the promising potential of GABA in protecting against renal failure progression.
Collapse
Affiliation(s)
- Sumiyo Sasaki
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Japan
| | | | | | | | | |
Collapse
|
35
|
Kökény G, Németh Z, Godó M, Hamar P. The Rowett rat strain is resistant to renal fibrosis. Nephrol Dial Transplant 2009; 25:1458-62. [PMID: 20028828 DOI: 10.1093/ndt/gfp689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Genetic susceptibility to renal fibrosis may determine the individual rate of progression to renal failure. We aimed to study the progression in Rowett (RO) rats, a strain we found resistant to subtotal nephrectomy (SNX), comparing to Sprague-Dawley (SD) rats, a strain with established sensitivity in a radical ablation/infarction and diet-induced SNX model. METHODS Eight-week-old male RO (RO-SNX) and SD (SD-SNX, n = 5/group) rats underwent SNX and were kept on high protein and salt diet. Kidney function was monitored and the kidneys were evaluated by histology and immunohistochemistry 5 weeks after SNX. RESULTS RO-SNX rats had only mild proteinuria and less glomerulosclerosis, accompanied by less fibronectin and TGF-beta staining as compared to SD-SNX rats. Glomerular nitrotyrosine staining was less intense in RO-SNX vs SD-SNX, accompanied by less podocyte damage as demonstrated by desmin staining. CONCLUSION Our results demonstrate the importance of podocyte damage in glomerulosclerosis and that Rowett rats are protected from renal fibrosis. To our knowledge, this is the first strain of rats with unknown genetic resistance, which makes the strain attractive for studying the genetic background of renal fibrosis.
Collapse
Affiliation(s)
- Gábor Kökény
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
36
|
Hobo A, Yuzawa Y, Kosugi T, Kato N, Asai N, Sato W, Maruyama S, Ito Y, Kobori H, Ikematsu S, Nishiyama A, Matsuo S, Kadomatsu K. The growth factor midkine regulates the renin-angiotensin system in mice. J Clin Invest 2009; 119:1616-25. [PMID: 19451697 DOI: 10.1172/jci37249] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 03/25/2009] [Indexed: 12/24/2022] Open
Abstract
The renin-angiotensin system plays a pivotal role in regulating blood pressure and is involved in the pathogenesis of kidney disorders and other diseases. Here, we report that the growth factor midkine is what we believe to be a novel regulator of the renin-angiotensin system. The hypertension induced in mice by 5/6 nephrectomy was accompanied by renal damage and elevated plasma angiotensin II levels and was ameliorated by an angiotensin-converting enzyme (ACE) inhibitor and an angiotensin receptor blocker. Notably, ACE activity in the lung, midkine expression in the lung, and midkine levels in the plasma were all increased after 5/6 nephrectomy. Exposure to midkine protein enhanced ACE expression in primary cultured human lung microvascular endothelial cells. Furthermore, hypertension was not induced and renal damage was less severe in midkine-deficient mice. Supplemental administration of midkine protein to midkine-deficient mice restored ACE expression in the lung and hypertension after 5/6 nephrectomy. Oxidative stress might be involved in midkine expression, since expression of NADH/NADPH oxidase-1, -2, and -4 was induced in the lung after 5/6 nephrectomy. Indeed, the antioxidative reagent tempol reduced midkine expression and plasma angiotensin II levels and consequently ameliorated hypertension. These results suggest that midkine regulates the renin-angiotensin system and mediates the kidney-lung interaction after 5/6 nephrectomy.
Collapse
Affiliation(s)
- Akinori Hobo
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jacobson SH, Lins LE. Renal hemodynamics and blood pressure control in patients with pyelonephritic renal scarring. ACTA MEDICA SCANDINAVICA 2009; 224:39-45. [PMID: 3414407 DOI: 10.1111/j.0954-6820.1988.tb16736.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pyelonephritic renal scarring is a common cause of renal failure and hypertension. We studied glomerular filtration rate (GFR), renal plasma flow (RPF), filtration fraction (FF), total renal area (TRA), systolic (SBP) and diastolic (DBP) blood pressure in 22 female patients with verified renal scarring and a history of febrile urinary tract infection (UTI) and in 9 healthy age-matched women with normal urograms and no history of symptomatic UTI. The patients with renal scarring had significantly lower GFR, smaller TRA and higher SBP than the healthy controls, but not significantly different RPF or FF. A decrease in GFR and RPF was associated with higher SBP and DBP in the patients with renal scarring. RPF/TRA, representing an approximation of the perfusion of renal tissue and GFR/TRA, were similar in patients with renal scarring and healthy controls. A reduction of renal parenchyma was accompanied by a proportional decrease in GFR and RPF, resulting in unchanged FF. These findings do not support the concept of hyperfiltration as a main cause of renal insufficiency in patients with pyelonephritis renal scarring. An increase in FF and a decrease in GFR/TRA and RPF/TRA was associated with higher DBP and a decrease in GFR/TRA and RPF/TRA with an increase in the urinary albumin excretion. We conclude that renal hemodynamics play an important part in the blood pressure control of patients with renal scarring and that in these patients with various degrees of renal failure there was no evidence of hyperfiltration or hyperperfusion by remnant glomeruli.
Collapse
Affiliation(s)
- S H Jacobson
- Department of Internal Medicine, Karolinska Hospital, Stockholm, Sweden
| | | |
Collapse
|
38
|
Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia 2009; 52:691-7. [PMID: 19198800 DOI: 10.1007/s00125-009-1268-0] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 12/21/2008] [Indexed: 01/03/2023]
Abstract
AIMS/HYPOTHESIS Glomerular hyperfiltration is a well-established phenomenon occurring early in some patients with type 1 diabetes. However, there is no consistent answer regarding whether hyperfiltration predicts later development of nephropathy. We performed a systematic review and meta-analysis of observational studies that compared the risk of developing diabetic nephropathy in patients with and without glomerular hyperfiltration and also explored the impact of baseline GFR. METHODS A systematic review and meta-analysis was carried out. Cohort studies in type 1 diabetic participants were included if they contained data on the development of incipient or overt nephropathy with baseline measurement of GFR and presence or absence of hyperfiltration. RESULTS We included ten cohort studies following 780 patients. After a study median follow-up of 11.2 years, 130 patients had developed nephropathy. Using a random effects model, the pooled odds of progression to a minimum of microalbuminuria in patients with hyperfiltration was 2.71 (95% CI 1.20-6.11) times that of patients with normofiltration. There was moderate heterogeneity (heterogeneity test p = 0.05, measure of degree of inconsistency = 48%) and some evidence of funnel plot asymmetry, possibly due to publication bias. The pooled weighted mean difference in baseline GFR was 13.8 ml min(-1) 1.73 m(-2) (95% CI 5.0-22.7) greater in the group progressing to nephropathy than in those not progressing (heterogeneity test p < 0.01). CONCLUSIONS/INTERPRETATION In published studies, individuals with glomerular hyperfiltration were at increased risk of progression to diabetic nephropathy using study level data. Further larger studies are required to explore this relationship and the role of potential confounding variables.
Collapse
Affiliation(s)
- G M Magee
- Regional Centre for Diabetes and Endocrinology, Level 1, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Renal agenesis and unilateral nephrectomy: what are the risks of living with a single kidney? Pediatr Nephrol 2009; 24:439-46. [PMID: 18612657 DOI: 10.1007/s00467-008-0924-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 04/25/2008] [Accepted: 05/14/2008] [Indexed: 12/17/2022]
Abstract
The long-term outlook for patients with unilateral renal agenesis or following unilateral nephrectomy in childhood is controversial. Animal studies suggest that the resultant compensatory increase in glomerular filtration might lead to progressive damage to the remaining renal tissue and may generate hypertension. Human studies addressing these concerns are limited in number and are difficult to interpret because they are small, retrospective, or cross sectional with significant variations in duration and completeness of follow-up. The published studies suggest that renal function remains stable for several decades in the majority of subjects. The clinical significance of mild-grade proteinuria and hypertension seen in some patients is unknown. Longitudinal studies are needed to understand the long-term effect and significance of the several pathophysiological changes observed in the solitary kidney.
Collapse
|
40
|
van Hoek I, Daminet S. Interactions between thyroid and kidney function in pathological conditions of these organ systems: a review. Gen Comp Endocrinol 2009; 160:205-15. [PMID: 19133263 DOI: 10.1016/j.ygcen.2008.12.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 11/25/2022]
Abstract
Thyroidal status affects kidney function already in the embryonic stage. Thyroid hormones influence general tissue growth as well as tubular functions, electrolyte handling and neural input. Hyper- and hypo-functioning of the thyroid influences mature kidney function indirectly by affecting the cardiovascular system and the renal blood flow, and directly by affecting glomerular filtration, electrolyte pumps, the secretory and absorptive capacity of the tubuli, and the structure of the kidney. Hyperthyroidism accelerates several physiologic processes, a fact which is reflected in the decreased systemic vascular resistance, increased cardiac output (CO), increased renal blood flow (RBF), hypertrophic and hyperplastic tubuli, and increased glomerular filtration rate (GFR). Renal failure can progress due to glomerulosclerosis, proteinuria and oxidative stress. Hypothyroidism has a more negative influence on kidney function. Peripheral vascular resistance is increased with intrarenal vasoconstriction, and CO is decreased, causing decreased RBF. The influence on the different tubular functions is modest, although the transport capacity is below normal. The GFR is decreased up to 40% in hypothyroid humans. Despite the negative influences on glomerular and tubular kidney function, a hypothyroid state has been described as beneficial in kidney disease. Kidney disease is associated with decreased thyroid hormone concentrations caused by central effects and by changes in peripheral hormone metabolism and thyroid hormone binding proteins. Geriatric cats form an animal model of disease because both hyperthyroidism and chronic kidney disease (CKD) have high prevalence among them, and the link between thyroid and kidney affects the evaluation of clinical wellbeing and the possible treatment options.
Collapse
Affiliation(s)
- Ingrid van Hoek
- Department of Medicine & Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | |
Collapse
|
41
|
Scheinman JI. Sickle cell disease and the kidney. ACTA ACUST UNITED AC 2008; 5:78-88. [DOI: 10.1038/ncpneph1008] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 10/17/2008] [Indexed: 11/09/2022]
|
42
|
Tsuboi N, Kawamura T, Ishii T, Utsunomiya Y, Hosoya T. Changes in the glomerular density and size in serial renal biopsies during the progression of IgA nephropathy. Nephrol Dial Transplant 2008; 24:892-9. [DOI: 10.1093/ndt/gfn572] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Otaki Y, Miyauchi N, Higa M, Takada A, Kuroda T, Gejyo F, Shimizu F, Kawachi H. Dissociation of NEPH1 from nephrin is involved in development of a rat model of focal segmental glomerulosclerosis. Am J Physiol Renal Physiol 2008; 295:F1376-87. [PMID: 18715943 DOI: 10.1152/ajprenal.00075.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a disease showing severe proteinuria, and the disease progresses to end-stage kidney failure in many cases. However, the pathogenic mechanism of FSGS is not well understood. The slit diaphragm (SD), which bridges the neighboring foot processes of glomerular epithelial cells, is understood to function as a barrier of the glomerular capillary wall. To investigate the role of SD dysfunction in the development of FSGS, we analyzed the expression of SD-associated molecules in rat adriamycin-induced nephropathy, a mimic of FSGS. The staining of the SD molecules nephrin, podocin, and NEPH1 had already shifted to a discontinuous dotlike pattern at the initiation phase of the disease, when neither proteinuria nor any morphological alterations were detected yet. The alteration of NEPH1 expression was the most evident among the molecules examined, and NEPH1 was dissociated from nephrin at the initiation phase. On day 28, when severe proteinuria was detected and sclerotic changes were already observed, alteration of the expressions of nephrin, podocin, and NEPH1 worsened, but no alteration in the expression of other SD-associated molecules or other podocyte molecules was detected. It is postulated that the dissociation of NEPH1 from nephrin initiates proteinuria and that the SD alteration restricted in these molecules plays a critical role in the development of sclerotic changes in FSGS.
Collapse
Affiliation(s)
- Yasuhiro Otaki
- Department of Cell Biology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata, 951-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lutaif NA, Rocha EM, Veloso LA, Bento LM, Gontijo JAR. Renal contribution to thermolability in rats: role of renal nerves. Nephrol Dial Transplant 2008; 23:3798-805. [PMID: 18593740 DOI: 10.1093/ndt/gfn368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Body temperature is closely regulated via the integration of a number of mechanisms, the study of which has been greatly assisted by the exploitation of comparative physiology. Previous studies have demonstrated that chronic renal failure patients have significantly lower body temperatures than healthy subjects when artifacts from circadian changes were taken into consideration. We hypothesize that the blunting of renal sensory neurons after kidney partial ablation may contribute to the lack of suppression of sympathetic efferent outflow towards BAT, modifying the glucose metabolism signaling pathway, UCP 1 expression and liver mitocondrial respiratory chain activity. METHODS To evaluate the influence of renal mass reduction, renal denervation and chronic deafferentation by capsaicin on thermoregulation, glucose metabolism, UCP1 expression and liver mitocondrial respiration, was used respectively, the blocking of heat dissipation by thermoneutral body water immersion, the oxygen consumption by Clark-type electrode, and western blot method. RESULTS The study confirmed that, following 5/6 nephrectomy, the basal core temperature of rats was significantly lower than that of control animals when maintained in a thermoneutral body water immersion recipient, as compared to controls. Additionally, we demonstrated that exposure of bilateral renal denervated or of renal chronic capsaicin-treated rats to a similar experimental protocol results in a fast and high rise in rectal temperature response, and this is associated with a significant increase in the basal serine phosphorylation and protein levels of Akt and protein levels of UCP1. This was observed despite unchanged liver mitochondria respiratory control and ADP/O ratios in 5/6 Nx, as well as DNx, when compared to control mitochondria. CONCLUSIONS Speculatively, it may be suggested that one of the renal sensory nerve signal defects associated with decreased kidney energy generation, induced by kidney ablation, may result in an inability to control the body temperature.
Collapse
Affiliation(s)
- Nelson A Lutaif
- Departamento de Clínica Médica, Laboratório de Metabolismo Hidro-Salino, Núcleo de Medicina e Cirurgia Experimental, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, 13083-592 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
45
|
Comper WD, Hilliard LM, Nikolic-Paterson DJ, Russo LM. Disease-dependent mechanisms of albuminuria. Am J Physiol Renal Physiol 2008; 295:F1589-600. [PMID: 18579704 DOI: 10.1152/ajprenal.00142.2008] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanism of albuminuria is perhaps one of the most complex yet important questions in renal physiology today. Recent studies have directly demonstrated that the normal glomerulus filters substantial amounts of albumin and that charge selectivity plays little or no role in preventing this process. This filtered albumin is then processed by proximal tubular cells by two distinct pathways; dysfunction in either one of these pathways gives rise to discrete forms of albuminuria. Most of the filtered albumin is returned to the peritubular blood supply by a retrieval pathway. Albuminuria in the nephrotic range would arise from retrieval pathway dysfunction. The small quantities of filtered albumin that are not retrieved undergo obligatory lysosomal degradation before urinary excretion as small peptide fragments. This degradation pathway is sensitive to metabolic factors responsible for hypertrophy and fibrosis, particularly molecules such as angiotensin II and transforming growth factor-beta1, whose production is stimulated by hyperglycemic and hypertensive environments. Dysfunction in this degradation pathway leads to albuminuria below the nephrotic range. These new insights into albumin filtration and processing argue for a reassessment of the role of podocytes and the slit diaphragm as major direct determinants governing albuminuria, provide information on how glomerular morphology and "tubular" albuminuria may be interrelated, and offer a new rationale for drug development.
Collapse
Affiliation(s)
- Wayne D Comper
- Dept. of Biochemistry and Molecular Biology, Monash Univ., Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
46
|
D'Agati VD. Podocyte injury in focal segmental glomerulosclerosis: Lessons from animal models (a play in five acts). Kidney Int 2007; 73:399-406. [PMID: 17989648 DOI: 10.1038/sj.ki.5002655] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genetic engineering in the mouse has ushered in a new era of disease modeling that has advanced our understanding of podocyte injury in the pathogenesis of focal segmental glomerulosclerosis. Historically, the major animal models of focal segmental glomerulosclerosis involve direct podocyte injury (exemplified by toxin models) and indirect podocyte injury due to adaptive responses (exemplified by renal ablation models). In both paradigms, recent evidence indicates that podocyte depletion is a major pathomechanism mediating proteinuria and glomerulosclerosis. Podocyte-specific toxin models support that podocyte loss is sufficient to cause focal segmental glomerulosclerosis in a dose-dependent manner. Knockout and transgenic models have provided proof of concept that mutations in specific podocyte proteins mediate genetic forms of focal segmental glomerulosclerosis. Transgenic models of HIV-associated nephropathy have helped to elucidate the role of direct viral infection and podocyte expression of viral gene products in the pathogenesis of this form of collapsing glomerulopathy. Taken together, emerging data support that injury directed to or inherent within the podocyte constitutes the critical event in diverse pathways to glomerulosclerosis.
Collapse
Affiliation(s)
- V D D'Agati
- Department of Pathology, Columbia University, College of Physicians & Surgeons, New York, New York 10032, USA.
| |
Collapse
|
47
|
Corna D, Sangalli F, Cattaneo D, Carrara F, Gaspari F, Remuzzi A, Zoja C, Benigni A, Perico N, Remuzzi G. Effects of rosuvastatin on glomerular capillary size-selectivity function in rats with renal mass ablation. Am J Nephrol 2007; 27:630-8. [PMID: 17851231 DOI: 10.1159/000108359] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/27/2007] [Indexed: 01/15/2023]
Abstract
BACKGROUND Evidence is accumulating that statins can reduce proteinuria and disease progression in chronic kidney disease. However, some safety concerns have been recently raised on the use of these agents, mainly due to transient episodes of proteinuria observed in patients receiving high doses of rosuvastatin. METHODS We investigated in rats with renal mass ablation (RMR) whether rosuvastatin (5 or 20 mg/day) worsens proteinuria as compared to untreated RMR animals. Moreover, we also examined whether rosuvastatin-induced changes in proteinuria would be due to the effect of the drug on permselective properties of glomerular capillary barrier, measured by the fractional clearance of graded-size Ficoll molecules and/or by proximal tubular mechanisms, by assessing urinary excretion of beta(2)-microglobulin. RESULTS RMR rats given rosuvastatin for 28 days showed a progressive increase in proteinuria, with values numerically but not significantly higher than those in RMR animals given the vehicle. In RMR rats, rosuvastatin did not significantly affect the fractional clearance of Ficoll as compared to vehicle-treated RMR animals. A significant correlation was found between urinary protein and beta(2)-microglobulin excretion in rats treated with rosuvastatin (r = 0.936, p < 0.001), but not in those given vehicle. Renal function, glomerular and tubulointerstitial injury were comparable in rosuvastatin-treated and untreated RMR rats at the end of the 28-day follow-up. CONCLUSION In rats with RMR, rosuvastatin mildly enhances urinary protein excretion rate. This, however, was not the result of further changes in the size-permselective function of glomerular capillary barrier.
Collapse
Affiliation(s)
- Daniela Corna
- Mario Negri Institute for Pharmacological Research, Ospedali Riuniti di Bergamo, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Sara Giunti
- Baker Medical Research Institute, 75 Commercial Rd, Prahran VIC 3181, Melbourne, Australia
| | | | | |
Collapse
|
49
|
Abstract
There is accumulating evidence of the impact of low birth weight in adult age. Thus, the Barker theory and Brenner hypothesis gain more power. This article reviews and analyzes the evidence that supports the intrauterine origin of chronic noncommunicable diseases in adult age, particularly systemic arterial hypertension and chronic renal insufficiency. These are possibly related to lower nephron numbers, acquired in utero or later in life, which can increase susceptibility to kidney damage from diseases such as hypertension and diabetes mellitus, or cause arterial hypertension and secondary renal damage.
Collapse
Affiliation(s)
- Leonardo Reyes
- Instituto de Nefrología, Ave 26 y Boyeros, Apdo. 6358, Havana 10600, Cuba.
| | | |
Collapse
|
50
|
Morigi M, Buelli S, Angioletti S, Zanchi C, Longaretti L, Zoja C, Galbusera M, Gastoldi S, Mundel P, Remuzzi G, Benigni A. In response to protein load podocytes reorganize cytoskeleton and modulate endothelin-1 gene: implication for permselective dysfunction of chronic nephropathies. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1309-20. [PMID: 15855633 PMCID: PMC1606387 DOI: 10.1016/s0002-9440(10)62350-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Effacement of podocyte foot processes occurs in many proteinuric nephropathies and is accompanied by rearrangement of the actin cytoskeleton. Here, we studied whether protein overload affects intracellular pathways, leading to cytoskeletal architecture changes and ultimately to podocyte dysfunction. Mouse podocytes bound and endocytosed both albumin and IgG via receptor-specific mechanisms. Protein overload caused redistribution of F-actin fibers instrumental to up-regulation of the prepro-endothelin (ET)-1 gene and production of the corresponding peptide. Increased DNA-binding activity for nuclear factor (NF)-kappaB and Ap-1 nuclear proteins was measured in nuclear extracts of podocytes exposed to excess proteins. Both Y27632, which inhibits Rho kinase-dependent stress fiber formation, and jasplakinolide, an F-actin stabilizer, decreased NF-kappaB and Ap-1 activity and reduced ET-1 expression. This suggested a role for the cytoskeleton, through activated Rho, in the regulation of the ET-1 peptide. Focal adhesion kinase (FAK), an integrin-associated nonreceptor tyrosine kinase, was phosphorylated by albumin treatment via Rho kinase-triggered actin reorganization. FAK activation led to NF-kappaB- and Ap-1-dependent ET-1 expression. These data suggest that reorganization of the actin cytoskeletal network in response to protein load is implicated in modulation of the ET-1 gene via Rho kinase-dependent FAK activation of NF-kappaB and Ap-1 in differentiated podocytes. Increased ET-1 generation might alter glomerular permselectivity and amplify the noxious effect of protein overload on dysfunctional podocytes.
Collapse
Affiliation(s)
- Marina Morigi
- Mario Negri Institute for Pharmacological Research, Via Gavazzeni 11, 24125 Bergamo, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|