1
|
Śmigiel J, Piszczek P, Wrzeszcz G, Jędrzejewski T, Golińska P, Radtke A. The Composites of PCL and Tetranuclear Titanium(IV)-Oxo Complex with Acetylsalicylate Ligands-Assessment of Their Biocompatibility and Antimicrobial Activity with the Correlation to EPR Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2022; 16:297. [PMID: 36614635 PMCID: PMC9822129 DOI: 10.3390/ma16010297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In our research, we have focused on the biological studies on composite materials produced by the dispersion of titanium(IV)-oxo complex (TOC) with acetylsalicylate ligands in a poly(ε-caprolactone) (PCL) matrix, which is a biodegradable thermoplastic polymer increasingly used in the production of medical devices. Using PCL as a matrix for the biologically active compounds, such as antimicrobial agents, antibiotics or other active medical substances, from which these individuals can be gradually released is fully understable. Composites of PCL + nTOC (n = 10, 15 and 20 wt.%) have been produced and, in such a form, the biological properties of TOCs have been estimated. Direct and indirect cytotoxicity studies have been performed in vitro on L929 and human umbilical vein endothelial cells (HUVEC) cell lines. The antibacterial and antifungal activity of the PCL + TOC samples have been assessed against two Staphylococcus aureus (ATCC 6538 and ATCC 25923) reference strains, two Escherichia coli (ATCC 8739 and ATCC 25922) reference strains and yeast of Candida albicans ATCC 10231. Obtained results have been correlated with electron paramagnetic resonance (EPR) spectroscopy data. We could conclude that photoexcitation by visible light of the surface of PCL + nTOC composite foils lead to the formation of different paramagnetic species, mainly O-, which slowly disappears over time; however, their destructive effect on bacteria and cells has been proven.
Collapse
Affiliation(s)
- Julia Śmigiel
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Piotr Piszczek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Grzegorz Wrzeszcz
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Tomasz Jędrzejewski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
2
|
The effects of human platelet lysate versus commercial endothelial growth medium on the endothelial differentiation potential of human amniotic fluid mesenchymal stem cells. Heliyon 2020; 6:e04873. [PMID: 32995597 PMCID: PMC7509187 DOI: 10.1016/j.heliyon.2020.e04873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/01/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023] Open
Abstract
To differentiate stem cells into endothelial cells, vascular endothelia growth factors (VEGF) serve as the major signal for stimulating the cells. However, there are other cytokines or growth factors associated with endothelial cell development and differentiation. Human platelet lysate (hPL) has been a promising reagent in cell-based therapy since it is considered as a source of bioactive molecules and growth factors. The aim of this study was to investigate the in vitro differentiation of human amniotic fluid mesenchymal stem cells (hAF-MSCs) into endothelial-like cells under hPL together with VEGF or endothelial cell growth medium 2 (EGM-2), a commercially induced medium. In this study, hAF-MSCs were isolated from human amniotic fluid cells (hAFCs) using the direct adherence method. The cells expressed CD44, CD73, CD90, and HLA-ABC at high levels and expressed Oct-4 (octamer-binding transcription factor 4) at low levels. The cells were negative for CD31, CD34, CD45, CD105 and HLA-DR. This study found that hAF-MSCs induced with hPL and VEGF had the ability to differentiate into endothelial-like cells by presenting endothelial specific markers (vWF, VEGFR2 and eNOS), forming a network-like structure on Matrigel, and producing nitric oxide (NO). This outcome was similar to those of experiments involving EGM-2 induced cells. The present findings indicate that hPL + VEGF can induce hAF-MSCs to express endothelial cell characteristics. Our findings represent an important step forward in the development of a clinically compliant process for the production of endothelial cell-derived hAF-MSCs, and their subsequent testing in future clinical trials.
Collapse
|
3
|
Caveolin-1 Knockdown Decreases SMMC7721 Human Hepatocellular Carcinoma Cell Invasiveness by Inhibiting Vascular Endothelial Growth Factor-Induced Angiogenesis. Can J Gastroenterol Hepatol 2020; 2020:8880888. [PMID: 32676485 PMCID: PMC7336196 DOI: 10.1155/2020/8880888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recently, several studies have demonstrated that caveolin-1 overexpression is involved in apoptosis resistance, angiogenesis, and invasiveness in hepatocellular carcinoma (HCC). However, the mechanisms underlying caveolin-1-mediated tumor progression remain unclear. Methodogy. Lentiviral vectors were used to construct caveolin-1 small interfering RNA- (siRNA-) expressing cells. Secreted VEGF levels in SMMC7721 cells were evaluated by enzyme-linked immunosorbent assay (ELISA). SMMC7721 cell proliferation, cycle, apoptosis, and invasiveness were detected by MTT, flow cytometry, Annexin V-FITC/PI, and invasion assay, respectively. Phospho-eNOS levels in human umbilical vein endothelial cells (HUVECs) cocultured with SMMC7721 cell supernatants were analyzed by Western blot. Capillary-like tubule formation assay was performed to analyze endothelial tubular structure formation in HUVECs treated with supernatants from caveolin-1 siRNA-expressing SMMC7721 cells. SMMC7721 implantation and growth in nude mice were observed. Angiogenesis in vivo was analyzed by immunohistochemical angiogenesis assay. RESULTS Caveolin-1 siRNA-expressing SMMC7721 cells secreted reduced levels of VEGF. Caveolin-1 RNAi also caused an inhibition of SMMC7721 cell proliferation and cell cycle progression that was accompanied by increased apoptosis. Supernatants from caveolin-1 siRNA-expressing SMMC7721 cells inhibited cell cycle progression and decreased phospho-eNOS levels in HUVECs. Endothelial tubular structure formation in HUVECs treated with supernatants from caveolin-1 siRNA-expressing SMMC7721 cells was considerably reduced. Caveolin-1 siRNA-expressing SMMC7721 cells also showed reduced tumorigenicity and angiogenesis induction in vivo. CONCLUSION Our results reveal a novel mechanism, whereby caveolin-1 positively regulates human HCC cell invasiveness by coordinating VEGF-induced angiogenesis.
Collapse
|
4
|
Clauder F, Czerniak AS, Friebe S, Mayr SG, Scheinert D, Beck-Sickinger AG. Endothelialization of Titanium Surfaces by Bioinspired Cell Adhesion Peptide Coatings. Bioconjug Chem 2019; 30:2664-2674. [DOI: 10.1021/acs.bioconjchem.9b00573] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Franziska Clauder
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Anne Sophie Czerniak
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Sabrina Friebe
- Leibniz-Institute of Surface Engineering (IOM), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Stefan G. Mayr
- Leibniz-Institute of Surface Engineering (IOM), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Dierk Scheinert
- Department of Angiology, University Hospital Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Gordon-Weeks A, Lim SY, Yuzhalin A, Lucotti S, Vermeer JAF, Jones K, Chen J, Muschel RJ. Tumour-Derived Laminin α5 (LAMA5) Promotes Colorectal Liver Metastasis Growth, Branching Angiogenesis and Notch Pathway Inhibition. Cancers (Basel) 2019; 11:E630. [PMID: 31064120 PMCID: PMC6562694 DOI: 10.3390/cancers11050630] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 12/27/2022] Open
Abstract
Hepatic metastatic growth is dependent upon stromal factors including the matrisomal proteins that make up the extracellular matrix (ECM). Laminins are ECM glycoproteins with several functions relevant to tumour progression including angiogenesis. We investigated whether metastatic colon cancer cells produce the laminins required for vascular basement membrane assembly as a mechanism for the promotion of angiogenesis and liver metastasis growth. qPCR was performed using human-specific primers to laminin chains on RNA from orthotopic human colorectal liver metastases. Laminin α5 (LAMA5) expression was inhibited in colon cancer cells using shRNA. Notch pathway gene expression was determined in endothelia from hepatic metastases. Orthotopic hepatic metastases expressed human laminin chains α5, β1 and γ1 (laminin 511), all of which are required for vascular basement membrane assembly. The expression of Laminin 511 was associated with reduced survival in several independent colorectal cancer cohorts and angiogenesis signatures or vessel density significantly correlated with LAMA5 expression. Colorectal cancer cells in culture made little LAMA5, but its levels were increased by culture in a medium conditioned by tumour-derived CD11b+ myeloid cells through TNFα/NFκB pathway signalling. Down-regulation of LAMA5 in cancer cells impaired liver metastatic growth and resulted in reduced intra-tumoural vessel branching and increased the expression of Notch pathway genes in metastasis-derived endothelia. This data demonstrates a mechanism whereby tumour inflammation induces LAMA5 expression in colorectal cancer cells. LAMA5 is required for the successful growth of hepatic metastases where it promotes branching angiogenesis and modulates Notch signalling.
Collapse
Affiliation(s)
- Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX39DU, UK.
| | - Su Yin Lim
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Arseniy Yuzhalin
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX37LE, UK.
| | - Serena Lucotti
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX37LE, UK.
| | | | - Keaton Jones
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX37LE, UK.
| | - Jianzhou Chen
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX37LE, UK.
| | - Ruth J Muschel
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX37LE, UK.
| |
Collapse
|
6
|
Xi HQ, Zhang KC, Li JY, Cui JX, Gao YH, Wei B, Huang D, Chen L. RNAi-mediated inhibition of Lgr5 leads to decreased angiogenesis in gastric cancer. Oncotarget 2018; 8:31581-31591. [PMID: 28404940 PMCID: PMC5458231 DOI: 10.18632/oncotarget.15770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) is a novel gastric cancer marker. However, it is unclear whether it can play roles in tumor angiogenesis. In this study, we aim to investigate the role of Lgr5 on gastric cancer angiogenesis. Lgr5, VEGF expression levels and microvessel density (MVD) were detected in tumor tissue. Then, Lgr5 mRNA was downregulated by small interference RNA technique. Western blotting and real-time quantitative PCR (qRT-PCR) were performed to detect the expression of Lgr5 and VEGF protein and mRNA in Lgr5 siRNA-transfected gastric cancer cells. The effect of silencing Lgr5 on angiogenesis was examined by assessing human umbilical vein endothelia cell (HUVEC) capillary tube formation. The results indicated that Lgr5 expression was upregulated in gastric cancer and positively correlated with VEGF (r=0.305, P=0.001) and MVD (r=0.312, P=0.001). Silencing of Lgr5 expression resulted in suppression of VEGF mRNA and protein (all P=0.001). Moreover, when HUVECs were stimulated with conditioned medium from Lgr5 siRNA-transfected gastric cancer cells, tube formation was significantly decreased (2.51 ± 0.19 mm/mm2) compared with the treatment with regular cell culture medium (DMEM) (7.34 ± 0.30 mm/mm2) or medium from control siRNA-transfected cells (7.18 ± 0.33 mm/mm2) (all P=0.001). In conclusion, Lgr5 plays important roles in angiogenesis. Lgr5-specific siRNA could be designed into an effective therapeutic agent to inhibit gastric cancer angiogenesis.
Collapse
Affiliation(s)
- Hong-Qing Xi
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ke-Cheng Zhang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ji-Yang Li
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Jian-Xin Cui
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yun-He Gao
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Bo Wei
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Dongsheng Huang
- Department of General Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Lin Chen
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
7
|
Lee PH, Kim BG, Lee SH, Leikauf GD, Jang AS. Proteomic identification of moesin upon exposure to acrolein. Proteome Sci 2018; 16:2. [PMID: 29375273 PMCID: PMC5773073 DOI: 10.1186/s12953-017-0130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/22/2017] [Indexed: 11/10/2022] Open
Abstract
Background Acrolein (allyl Aldehyde) as one of smoke irritant exacerbates chronic airway diseases and increased in sputum of patients with asthma and chronic obstructive lung disease. But underlying mechanism remains unresolved. The aim of study was to identify protein expression in human lung microvascular endothelial cells (HMVEC-L) exposed to acrolein. Methods A proteomic approach was used to determine the different expression of proteins at 8 h and 24 h after treatment of acrolein 30 nM and 300 nM to HMVEC-L. Treatment of HMVEC-L with acrolein 30 nM and 300 nM altered 21 protein spots on the two-dimensional gel, and these were then analyzed by MALDI-TOF MS. Results These proteins included antioxidant, signal transduction, cytoskeleton, protein transduction, catalytic reduction. The proteins were classified into four groups according to the time course of their expression patterns such as continually increasing, transient increasing, transient decreasing, and continually decreasing. For validation immunohistochemical staining and Western blotting was performed on lung tissues from acrolein exposed mice. Moesin was expressed in endothelium, epithelium, and inflammatory cells and increased in lung tissues of acrolein exposed mice compared with sham treated mice. Conclusions These results indicate that some of proteins may be an important role for airway disease exacerbation caused by acrolein exposure. Electronic supplementary material The online version of this article (10.1186/s12953-017-0130-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pureun-Haneul Lee
- 1Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, Gyeonggi-do 420-767 South Korea
| | - Byeong-Gon Kim
- 1Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, Gyeonggi-do 420-767 South Korea
| | - Sun-Hye Lee
- 1Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, Gyeonggi-do 420-767 South Korea
| | - George D Leikauf
- 2Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
| | - An-Soo Jang
- 1Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, Gyeonggi-do 420-767 South Korea
| |
Collapse
|
8
|
PEG-Immobilized Keratin for Protein Drug Sequestration and pH-Mediated Delivery. JOURNAL OF DRUG DELIVERY 2016; 2016:7843951. [PMID: 26904294 PMCID: PMC4745968 DOI: 10.1155/2016/7843951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 11/17/2022]
Abstract
Protein drugs like growth factors are promising therapeutics for damaged-tissue repair. Their local delivery often requires biomaterial carriers for achieving the therapeutic dose range while extending efficacy. In this study, polyethylene glycol (PEG) and keratin were crosslinked and used as sponge-like scaffolds (KTN-PEG) to absorb test proteins with different isoelectric points (pI): albumin (~5), hemoglobin (~7), and lysozyme (~11). The protein release kinetics was influenced by charge at physiological pH 7.4. The keratin network, with pI 5.3, electrostatically attracted lysozyme and repulsed albumin generating the release rate profile: albumin > hemoglobin > lysozyme. However, under acidic conditions (pH 4), all proteins including keratins were positively charged and consequently intermolecular repulsion altered the release hierarchy, now determined by size (MW) diffusion: lysozyme (14 kDa) > hemoglobin (64 kDa) > albumin (66 kDa). Vascular endothelial growth factor C (VEGF-C), with properties comparable to lysozyme, was absorbed into the KTN-PEG scaffold. Endothelial cells cultured on this substrate had significantly larger numbers than on scaffolds without VEGF-C suggesting that the ionically bound and retained growth factor at neutral pH indirectly increased acute cell attachment and viability. PEG and keratin based sequestrations of proteins with basic pIs are therefore a feasible strategy with potential applications for selective biologics delivery.
Collapse
|
9
|
Teichmann J, Nitschke M, Pette D, Valtink M, Gramm S, Härtel FV, Noll T, Funk RHW, Engelmann K, Werner C. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)-the effect of biomolecular ligands to balance cell adhesion and stimulated detachment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:045003. [PMID: 27877823 PMCID: PMC5090182 DOI: 10.1088/1468-6996/16/4/045003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 06/06/2023]
Abstract
Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty.
Collapse
Affiliation(s)
- Juliane Teichmann
- Institute of Anatomy, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Hohe Straße 6, D-01069 Dresden, Germany
| | - Mirko Nitschke
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Hohe Straße 6, D-01069 Dresden, Germany
| | - Dagmar Pette
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Hohe Straße 6, D-01069 Dresden, Germany
| | - Monika Valtink
- Institute of Anatomy, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Stefan Gramm
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Hohe Straße 6, D-01069 Dresden, Germany
- Herlac Coswig GmbH, Industriestraße 28, D-01640 Coswig, Germany
| | - Frauke V Härtel
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Thomas Noll
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Richard H W Funk
- Institute of Anatomy, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden—Cluster of Excellence, Fetscherstraße 105, D-01307 Dresden, Germany
| | - Katrin Engelmann
- Institute of Anatomy, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden—Cluster of Excellence, Fetscherstraße 105, D-01307 Dresden, Germany
- Department of Ophthalmology, Klinikum Chemnitz gGmbH, Flemmingstraße 2, D-09116 Chemnitz, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Hohe Straße 6, D-01069 Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden—Cluster of Excellence, Fetscherstraße 105, D-01307 Dresden, Germany
| |
Collapse
|
10
|
Combined effect of insulin-like growth factor-1 and CC chemokine ligand 2 on angiogenic events in endothelial cells. PLoS One 2015; 10:e0121249. [PMID: 25830234 PMCID: PMC4382320 DOI: 10.1371/journal.pone.0121249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/29/2015] [Indexed: 12/31/2022] Open
Abstract
Therapeutic angiogenesis may be applied in medical conditions to promote stimulation of angiogenesis. Angiogenesis is a multistep process, which includes endothelial cell proliferation, migration, and tube formation, which is mediated by various angiogenic polypeptides. Thus, studies that elucidate the cellular mechanisms involved in these processes are necessary to develop novel therapeutic strategies. This study investigated the in vitro effects of the pro-angiogenic factors, insulin-like growth factor-1 (IGF-1) and/or chemokine (CC motif) ligand 2 (CCL2), on endothelial cells. Flow cytometry analysis showed that IGF-1 and CCL2 treatment did not interfere with IGF-1 receptor (IGF-1R) expression, but CCL2 treatment increased CCL2 receptor (CCR2) expression. Immunofluorescence analysis revealed that the IGF-1/CCL2 combination induced a greater increase in fibronectin deposition, but the treatments did not alter the expression of the fibronectin receptors, CD49e and CD44. The interaction of fibronectin with cytokines demonstrated that IGF-1/CCL2 promoted changes in intermediate F-actin remodeling that may result in increased endothelial cell adhesion and cell migration mediated by fibronectin. Furthermore, IGF-1/CCL2 stimulated endothelial cells, grown on fibronectin, to form capillary-like structures and intercellular lumina with greater luminal area. These data suggest that IGF-1/CCL2 combination and a fibronectin matrix may contribute to the angiogenesis process to stimulate adhesion, migration, and tube formation by endothelial cells as a result of F-actin remodeling.
Collapse
|
11
|
Sankaran KK, Subramanian A, Krishnan UM, Sethuraman S. Nanoarchitecture of scaffolds and endothelial cells in engineering small diameter vascular grafts. Biotechnol J 2015; 10:96-108. [DOI: 10.1002/biot.201400415] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/27/2014] [Accepted: 12/03/2014] [Indexed: 12/14/2022]
|
12
|
Arginine-glycine-glutamine and serine-isoleucine-lysine-valine-alanine-valine modified poly(l-lactide) films: Bioactive molecules used for surface grafting to guide cellular contractile phenotype. Biointerphases 2014; 9:029002. [DOI: 10.1116/1.4864432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Girotto G, Abdulhadi K, Buniello A, Vozzi D, Licastro D, d'Eustacchio A, Vuckovic D, Alkowari MK, Steel KP, Badii R, Gasparini P. Linkage study and exome sequencing identify a BDP1 mutation associated with hereditary hearing loss. PLoS One 2013; 8:e80323. [PMID: 24312468 PMCID: PMC3846559 DOI: 10.1371/journal.pone.0080323] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022] Open
Abstract
Nonsyndromic Hereditary Hearing Loss is a common disorder accounting for at least 60% of prelingual deafness. GJB2 gene mutations, GJB6 deletion, and the A1555G mitochondrial mutation play a major role worldwide in causing deafness, but there is a high degree of genetic heterogeneity and many genes involved in deafness have not yet been identified. Therefore, there remains a need to search for new causative mutations. In this study, a combined strategy using both linkage analysis and sequencing identified a new mutation causing hearing loss. Linkage analysis identified a region of 40 Mb on chromosome 5q13 (LOD score 3.8) for which exome sequencing data revealed a mutation (c.7873 T>G leading to p.*2625Gluext*11) in the BDP1 gene (B double prime 1, subunit of RNA polymerase III transcription initiation factor IIIB) in patients from a consanguineous Qatari family of second degree, showing bilateral, post-lingual, sensorineural moderate to severe hearing impairment. The mutation disrupts the termination codon of the transcript resulting in an elongation of 11 residues of the BDP1 protein. This elongation does not contain any known motif and is not conserved across species. Immunohistochemistry studies carried out in the mouse inner ear showed Bdp1 expression within the endothelial cells in the stria vascularis, as well as in mesenchyme-derived cells surrounding the cochlear duct. The identification of the BDP1 mutation increases our knowledge of the molecular bases of Nonsyndromic Hereditary Hearing Loss and provides new opportunities for the diagnosis and treatment of this disease in the Qatari population.
Collapse
Affiliation(s)
- Giorgia Girotto
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Khalid Abdulhadi
- Audiology and Balance Unit, National Program for Early Detection of Hearing Loss, WH, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Annalisa Buniello
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Diego Vozzi
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”, Trieste, Italy
| | | | - Angela d'Eustacchio
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Moza Khalifa Alkowari
- Molecular Genetics Laboratory, Department of Laboratory of Medicine and Pathology, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Ramin Badii
- Molecular Genetics Laboratory, Department of Laboratory of Medicine and Pathology, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”, Trieste, Italy
| |
Collapse
|
14
|
Three-dimensional studies of Prop1-expressing cells in the rat pituitary just before birth. Cell Tissue Res 2013; 354:837-47. [DOI: 10.1007/s00441-013-1717-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/06/2013] [Indexed: 11/27/2022]
|
15
|
Khusal R, Da Costa Dias B, Moodley K, Penny C, Reusch U, Knackmuss S, Little M, Weiss SFT. In vitro inhibition of angiogenesis by antibodies directed against the 37kDa/67kDa laminin receptor. PLoS One 2013; 8:e58888. [PMID: 23554951 PMCID: PMC3595224 DOI: 10.1371/journal.pone.0058888] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/07/2013] [Indexed: 11/24/2022] Open
Abstract
The 37kDa/67kDa laminin receptor (LRP/LR) is a central receptor mediating interactions between tumour cells and the basement membrane and is thereby a key player in adhesion and invasion, essential processes in metastatic cancer. To affect continued tumour growth, tumours induce angiogenesis for the constant delivery of nutrients and oxygen. This study aims to determine the blocking effect of the anti-LRP/LR specific antibody, W3 on the angiogenic potential of HUVE (human umbilical vein endothelial) cells. Flow cytometric analysis revealed that 97% of HUVE cells display cell surface LRP/LR. An angiogenesis assay was conducted employing HUVE cells seeded on the basement membrane reconstituent Matrigel™ supplemented with the pro-angiogenic factor vascular endothelial growth factor (VEGF). Post 18h incubation at 37°C tubular structures, namely tube lengths were assessed. Treatment of established tubular structures with 100 µg/ml anti-LRP/LR specific antibody completely blocked angiogenesis. Our findings suggest a central role of the 37kDa/67kDa LRP/LR in tube formation and recommends anti-LRP/LR specific antibodies as potential therapeutic tools for treatment of tumour angiogenesis.
Collapse
Affiliation(s)
- Raksha Khusal
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Bianca Da Costa Dias
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Kiashanee Moodley
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Clement Penny
- Department of Internal Medicine, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Uwe Reusch
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, Heidelberg, Germany
| | - Stefan Knackmuss
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, Heidelberg, Germany
| | - Melvyn Little
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, Heidelberg, Germany
| | - Stefan F. T. Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
16
|
Simmons CS, Ribeiro AJS, Pruitt BL. Formation of composite polyacrylamide and silicone substrates for independent control of stiffness and strain. LAB ON A CHIP 2013; 13:646-9. [PMID: 23287818 PMCID: PMC3605189 DOI: 10.1039/c2lc41110e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cells that line major tissues in the body such as blood vessels, lungs and gastrointestinal tract experience deformation from mechanical strain with our heartbeat, breathing, and other daily activities. Tissues also remodel in both development and disease, changing their mechanical properties. Taken together, cells can experience vastly different mechanical cues resulting from the combination of these interdependent stimuli. To date, most studies of cellular mechanotransduction have been limited to assays in which variations in substrate stiffness and strain were not combined. Here, we address this technological gap by implementing a method that can simultaneously tune both substrate stiffness and mechanical strain. Substrate stiffness is controlled with different monomer and crosslinker ratios during polyacrylamide gel polymerization, and strain is transferred from the underlying silicone platform when stretched. We demonstrate this platform with polyacrylamide gels with elastic moduli at 6 kPa and 20 kPa in combination with two different silicone formulations. The gels remain attached with up to 50% applied strains. To validate strain transfer through the gels into cells, we employ particle-tracking methods and observe strain transmission via cell morphological changes.
Collapse
Affiliation(s)
- Chelsey S. Simmons
- Department of Mechanical Engineering and Cardiovascular Institute, Stanford University
| | | | - Beth L. Pruitt
- Department of Mechanical Engineering and Cardiovascular Institute, Stanford University
| |
Collapse
|
17
|
Assal Y, Mie M, Kobatake E. The promotion of angiogenesis by growth factors integrated with ECM proteins through coiled-coil structures. Biomaterials 2013; 34:3315-23. [PMID: 23388150 DOI: 10.1016/j.biomaterials.2013.01.067] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
An appropriate method to bind extracellular matrix (ECM) proteins and growth factors using advanced protein engineering techniques has the potential to enhance cell proliferation and differentiation for tissue regeneration and repair. In this study we developed a method to co-immobilize non-covalently an ECM protein to three different types of growth factors: basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and single-chain vascular endothelial growth factor (scVEGF121) through a coiled-coil structure formed by helixA/helixB in order to promote angiogenesis. The designed ECM was established by fusing two repeats of elastin-derived unit (APGVGV)(12), cell-adhesive sequence (RGD), laminin-derived IKVAV sequence and collagen-binding domain (CBD) to obtain CBDEREI2. HelixA was fused to each growth factor and helixB to the engineered ECM. Human umbilical vein endothelial cells (HUVECs) were cultured on engineered ECM and growth factors connected through the coiled-coil formation between helixA and helixB. Cell proliferation and capillary tube-like formation were monitored. Moreover, the differentiated cells with high expression of Ang-2 suggested the ECM remodeling. Our approach of non-covalent coupling method should provide a protein-release control system as a new contribution in biomaterial for tissue engineering field.
Collapse
Affiliation(s)
- Yasmine Assal
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8051, Japan
| | | | | |
Collapse
|
18
|
Boccafoschi F, Fusaro L, Mosca C, Bosetti M, Chevallier P, Mantovani D, Cannas M. The biological response of poly(L-lactide) films modified by different biomolecules: role of the coating strategy. J Biomed Mater Res A 2012; 100:2373-81. [PMID: 22528472 DOI: 10.1002/jbm.a.34180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 11/08/2022]
Abstract
The interactions between the surface of synthetic scaffolds and cells play an important role in tissue engineering applications. To improve these interactions, two strategies are generally followed: surface coating with large proteins and surface grafting with small peptides. The proteins and peptides more often used and derived from the extracellular matrix, are fibronectin, laminin, and their active peptides, RGD and SIKVAV, respectively. The aim of this work was to compare the effects of coating and grafting of poly(L-lactide) (PLLA) films on MRC5 fibroblast cells. Grafting reactions were verified by X-ray photoelectron spectroscopy. Cell adhesion and proliferation on coated and grafted PLLA surfaces were measured by cell counting. Vinculin localization and distribution were performed on cell cultured on PLLA samples using a fluorescence microscopy technique. Finally, western blot was performed to compare signals of cell adhesion proteins, such as vinculin, Rac1, and RhoA, as well as cell proliferation, such as PCNA. These tests showed similar results for fibronectin and laminin coated PLLA, while RGD grafting is more effective compared with SIKVAV grafting. Considering the overall view of these results, although coating and grafting can both be regarded as effective methods for surface modification to enhance cell adhesion and proliferation on a biomaterial, RGD grafted PLLA show better cell adhesion and proliferation than coated PLLA, while SIKVAV grafted PLLA show similar adhesion but worse proliferation. These data verified different biological effects depending on the surface modification method used.
Collapse
Affiliation(s)
- F Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale A. Avogadro, Novara, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Bruggeman LA, Doan RP, Loftis J, Darr A, Calabro A. A cell culture system for the structure and hydrogel properties of basement membranes; Application to capillary walls. Cell Mol Bioeng 2012; 5:194-204. [PMID: 23087767 DOI: 10.1007/s12195-012-0221-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In specialized capillary beds such as the kidney glomerulus, the sheet-like structure of the basement membrane in conjunction with opposing monolayers of endothelium and epithelium form the functioning filtration unit of the kidney. Using a novel cross-linking method on a collagen substrate, we have created a novel hydrogel scaffold to substitute for the basement membrane. Using a simple casting method to create thin films of the hydrogel scaffold (1-5μm), the scaffolds were suitable for long-term static culture, and supported cell attachment and long term cell viability similar to a standard type I collagen substrate. Bulk diffusion and protein permeability of the hydrogel scaffold were evaluated, in addition to its use in a perfusion chamber where it withstood hydraulic pressures typical for glomerular capillaries. This system thus provided a suitable cell substrate for the co-culture of renal epithelial podocytes and endothelial cells in a device that replicates the geometry of the in vivo juxtaposition of the two cell types in relation to their basement membrane.
Collapse
Affiliation(s)
- Leslie A Bruggeman
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109
| | | | | | | | | |
Collapse
|
20
|
Anderson JM, Andukuri A, Lim DJ, Jun HW. Modulating the gelation properties of self-assembling peptide amphiphiles. ACS NANO 2009; 3:3447-54. [PMID: 19791757 PMCID: PMC2787687 DOI: 10.1021/nn900884n] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Peptide amphiphiles (PAs) are self-assembling molecules that form interwoven nanofiber gel networks. They have gained a lot of attention because of their excellent biocompatibility, adaptable peptide structure that allows for specific biochemical functionality, and nanofibrous assembly that mimics natural tissue formation. However, variations in molecule length, charge, and intermolecular bonding between different bioactive PAs cause contrasting mechanical properties. This potentially limits cell-delivery therapies because scaffold durability is needed to withstand the rigors of clinician handling and transport to wound implant sites. Additionally, the mechanical properties have critical influence on cellular behavior, as the elasticity and stiffness of biomaterials have been shown to affect cell spreading, migration, contraction, and differentiation. Several different PAs have been synthesized, each endowed with specific cellular adhesive ligands for directed biological response. We have investigated mechanical means for modulating and stabilizing the gelation properties of PA hydrogels in a controlled manner. A more stable, biologically inert PA (PA-S) was synthesized and combined with each of the bioactive PAs. Molar ratio (M(r) = PA/PA-S) combinations of 3:1, 1:1, and 1:3 were tested. All PA composites were characterized by observed nanostructure and rheological analysis measuring viscoelasticity. It was found that the PAs could be combined to successfully control and stabilize the gelation properties, allowing for a mechanically tunable scaffold with increased durability. Thus, the biological functionality and natural degradability of PAs can be provided in a more physiologically relevant microenvironment using our composite approach to modulate the mechanical properties, thereby improving the vast potential for cell encapsulation and other tissue engineering applications.
Collapse
Affiliation(s)
- Joel M. Anderson
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294-2182
| | - Adinarayana Andukuri
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294-2182
| | - Dong Jin Lim
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294-2182
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294-2182
| |
Collapse
|
21
|
Jung JP, Nagaraj AK, Fox EK, Rudra JS, Devgun JM, Collier JH. Co-assembling peptides as defined matrices for endothelial cells. Biomaterials 2009; 30:2400-10. [PMID: 19203790 PMCID: PMC2677558 DOI: 10.1016/j.biomaterials.2009.01.033] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 01/19/2009] [Indexed: 12/20/2022]
Abstract
Self-assembling peptides and peptide derivatives bearing cell-binding ligands are increasingly being investigated as defined cell culture matrices and as scaffolds for regenerative medicine. In order to systematically refine such scaffolds to elicit specific desired cell behaviors, ligand display should ideally be achieved without inadvertently altering other physicochemical properties such as viscoelasticity. Moreover, for in vivo applications, self-assembled biomaterials must exhibit low immunogenicity. In the present study, multi-peptide co-assembling hydrogels based on the beta-sheet fibrillizing peptide Q11 (QQKFQFQFEQQ) were designed such that they presented RGDS or IKVAV ligands on their fibril surfaces. In co-assemblies of the ligand-bearing peptides with Q11, ligand incorporation levels capable of influencing the attachment, spreading, morphology, and growth of human umbilical vein endothelial cells (HUVECs) did not significantly alter the materials' fibrillization, beta-turn secondary structure, or stiffness. RGDS-Q11 specifically increased HUVEC attachment, spreading, and growth when co-assembled into Q11 gels, whereas IKVAV-Q11 exerted a more subtle influence on attachment and morphology. Additionally, Q11 and RGDS-Q11 were minimally immunogenic in mice, making Q11-based biomaterials attractive candidates for further investigation as defined, modular extracellular matrices for applications in vitro and in vivo.
Collapse
Affiliation(s)
- Jangwook P. Jung
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
- Department of Biomedical Engineering, University of Cincinnati, 2901 Woodside Dr., Cincinnati, OH 45221-0048, USA
| | - Arun K. Nagaraj
- Department of Biomedical Engineering, University of Cincinnati, 2901 Woodside Dr., Cincinnati, OH 45221-0048, USA
| | - Emily K. Fox
- Department of Biomedical Engineering, University of Cincinnati, 2901 Woodside Dr., Cincinnati, OH 45221-0048, USA
| | - Jai S. Rudra
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Jason M. Devgun
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Joel H. Collier
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
- Committee on Molecular Medicine, Biological Science Division, University of Chicago
- Department of Biomedical Engineering, University of Cincinnati, 2901 Woodside Dr., Cincinnati, OH 45221-0048, USA
| |
Collapse
|
22
|
Sterin M, Ringel I, Lecht S, Lelkes PI, Lazarovici P. 31P magnetic resonance spectroscopy of endothelial cells grown in three-dimensional matrigel construct as an enabling platform technology: I. The effect of glial cells and valproic acid on phosphometabolite levels. ACTA ACUST UNITED AC 2009; 15:288-98. [PMID: 19065320 DOI: 10.1080/10623320802487841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Very few studies describe endothelial cell (EC) properties under three-dimensional (3D) conditions using (31)P magnetic resonance spectroscopy (MRS). The authors developed a model in which living ECs growing in Matrigel threads (3D conditions) for 5 days are monitored by (31)P MRS, providing the fingerprint of the major EC phosphometabolites. Organic extracts of membranal phospholipids were also analyzed by (31)P MRS. For comparison and as a model for two-dimensional (2D) tissue culture conditions, (31)P MRS spectra of aqueous extracts of EC phosphometabolites grown under 2D conditions were also evaluated. The phosphometabolites fingerprint of the cells cultured under 3D was significantly different from that of ECs maintained under 2D. Moreover, the pattern of phosphometabolites was affected by coculture with C6-glioma cells and upon treatment with valproic acid, which is under clinical investigation as an antioangiogenic anticancer drug. The major effects were modulation of (i) energy metabolism intermediates such as phosphocreatine, (ii) precursors of phospholipids such as phosphomonoesters, and (iii) degradation products of phospholipids such as glycerophosphocholine. This endothelial model will be usefull as an enabling platform technology for tissue engineering.
Collapse
Affiliation(s)
- M Sterin
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
23
|
Abstract
OBJECTIVES/HYPOTHESIS Abnormal interaction of epithelial cells with laminin component of basement membrane may account for altered biological behavior of cells, influencing proliferation, adhesion, and motility. In the current study, we investigated the role of 67-kDa laminin receptor (67LR), a high affinity receptor for laminin, in aggressiveness of laryngeal squamous cell carcinoma. METHODS Thirty paraffin-embedded specimens and 20 fresh tissues of patients with laryngeal squamous cell carcinoma were analyzed using immunohistologic and reverse-transcriptase polymerase chain reaction techniques, respectively. Expression of 67LR on the surface of AMC-HN-8 cells was examined by flow cytometry. The effect of 67LR monoclonal antibody (MLuC5) on the adhesive and invasive abilities of AMC-HN-8 cells was determined by adherence and invasion inhibition assay in vitro. RESULTS Both at the mRNA and protein level, laryngeal carcinoma cells expressed higher level of 67LR than normal epithelial cells (P < .01). The expression of 67LR correlated inversely with differentiation extent of tumor (P < .05). 67LR level was significantly increased in patients with lymph node metastases than those without lymph node involvement (P < .05). Flow cytometry showed 80.9 +/- 0.9% of AMC-HN-8 cells expressed 67LR. After 60 minutes and 120 minutes of incubation, MluC5 induced 57.1 +/- 3.6% and 63.2 +/- 2.8% inhibition of adhesion, respectively. The invasive ability of AMC-HN-8 cells to matrigel was reduced by MLuC5. CONCLUSIONS Laryngeal carcinoma cells over-expressing 67LR have a stronger aggressive potential, which might make 67LR a promising target for the treatment of metastatic tumor.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Otolaryngology, Eye and ENT Hospital, FuDan University, Shanghai, China.
| | | | | | | |
Collapse
|
24
|
Labat-Robert J, Robert L. The extracellular matrix during normal development and neoplastic growth. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 40:79-106. [PMID: 17153481 DOI: 10.1007/3-540-27671-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- J Labat-Robert
- Laboratoire de Recherche Ophtalmologique, Hôtel-Dieu, Université Paris 5, 1 place du parvis Notre Dame, 75181 Paris cedex 04, France
| | | |
Collapse
|
25
|
Dixelius J, Jakobsson L, Genersch E, Bohman S, Ekblom P, Claesson-Welsh L. Laminin-1 Promotes Angiogenesis in Synergy with Fibroblast Growth Factor by Distinct Regulation of the Gene and Protein Expression Profile in Endothelial Cells. J Biol Chem 2004; 279:23766-72. [PMID: 15044497 DOI: 10.1074/jbc.m311675200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Laminins are widely distributed extracellular matrix proteins. Certain laminin isoforms are predominant in vascular basement membranes and may be critical in maintaining the stability of the mature vessel. On the other hand, formation of new vessels during angiogenesis requires degradation of the basement membrane, exposing the endothelial cells to other laminin isoforms in the surrounding extracellular matrix. We studied the effects of laminin-1 (LN-1) in different in vitro and in vivo models for angiogenesis. LN-1 induced angiogenesis in the chicken chorioallantoic membrane to the same extent as fibroblast growth factor-2 (FGF-2), and vascular development in embryoid bodies was stimulated in a synergistic manner by FGF-2 and LN-1. LN-1 promoted differentiation of endothelial cells in three-dimensional collagen gels, both in the absence and presence of FGF-2. Formation of tubular structures induced by LN-1 was accompanied by increased expression of Jagged-1, a marker of endothelial differentiation, and increased levels of FGF-2 and FGFR-1 transcripts. LN-1 did not regulate signal transduction pathways known to operate down stream of FGF-2. Thus, phosphorylation of ERK was detected in FGF-2- but not in LN-1-treated cells. Taken together, this suggests that laminins may play a fundamental role in angiogenesis by directly affecting gene and protein expression profiles in endothelial cells.
Collapse
Affiliation(s)
- Johan Dixelius
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsvaüg 20, S-751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Sanders JE, Wang YN, Malcolm SG, Lamont SE. Biomaterial Mesh Seeded with Vascular Remnants from a Quail Embryo Has a Significant and Fast Vascular Templating Effect on Host Implant Tissue. ACTA ACUST UNITED AC 2003; 9:1271-9. [PMID: 14670115 DOI: 10.1089/10763270360728189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Seeding biomaterial implants with vascular remnants has the potential to facilitate host vessel ingrowth via a vascular templating effect. Vessels from quail embryo were grown into a polyurethane fibroporous mesh and the samples were frozen-thawed and then implanted in rat subcutaneous dorsum. Results show that the process of revascularization, using the quail vessel remnants, occurred over the first 3 days after implantation and resulted in functional vessels. Rat endothelial cells were found in the quail templates on day 1. On day 2 the endothelial cells formed a confluent layer and started producing laminin. By this time approximately 70% of the rat vessel tissue in the implant had grown into quail vascular remnants, indicating that the quail vessels were extensively used as templates for host vessel ingrowth. Laminin production was increased and collagen production started by day 3, at which time the vessels were functional in that rat blood flowed through them. At 2 weeks host vessel density was approximately twice that of control samples; thus the implant substantially enhanced the size of the vascular network. For meshes that additionally received vascular endothelial growth factor (VEGF) seeding before implantation, vessel density at 2 weeks was enhanced over samples with quail embryo alone. However, the quail was found to have the greatest angiogenic effect above any of the implant components-quail, VEGF, and collagen. Tissue engineering of vessel templates may thus be a realistic solution to effective fast vascularization of biomaterials.
Collapse
Affiliation(s)
- J E Sanders
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
27
|
Patarroyo M, Tryggvason K, Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 2002; 12:197-207. [PMID: 12083850 DOI: 10.1016/s1044-579x(02)00023-8] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Laminins are a growing family of alphabetagamma heterotrimeric proteins, commonly found in basement membranes (BMs). These large molecules promote cell adhesion and migration via integrins and other cell-surface receptors. Over 12 laminin isoforms are presently known. The various isoforms have a cell- and tissue-specific expression and are differentially recognized by integrins. Expression of laminin isoforms in tumors usually reflects expression in their normal counterparts. However, during tumor invasion, loss of the BM barrier occurs and a discontinuous pattern of laminin staining is observed. In carcinomas, tumor cells at the invading front strongly express intracellularly the gamma2 chain, a component of laminin-5. Remodeling of the vascular BM is observed during angiogenesis, and penetration of several BMs occurs during tumor dissemination and metastasis. Thus, disregulated cell-laminin interactions are major traits of malignant disorders.
Collapse
Affiliation(s)
- Manuel Patarroyo
- Microbiology and Tumorbiology Center/Odontology, Karolinska Institutet, S 171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
28
|
Liu J, Wang XB, Park DS, Lisanti MP. Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem 2002; 277:10661-8. [PMID: 11748236 DOI: 10.1074/jbc.m110354200] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The level of caveolin-1 expression closely correlates with the oncogenic transformation of NIH 3T3 cells, the proliferation of human cancer cells, and the differentiation of adipocytes and muscle cells. However, the role of caveolin-1 in endothelial cell proliferation and differentiation remains unknown. Here, we have shown that angiogenic growth factors that stimulate endothelial cell proliferation lead to dramatic reductions in caveolin-1 expression. In addition, using an in vitro Matrigel assay system, we studied the potential role of caveolin-1 in capillary-like tubule formation (i.e. endothelial cell differentiation) using human microvascular endothelial cells (HMEC-1). We showed that the level of endogenous caveolin-1 expression increased in a time-dependent manner when endothelial cells underwent differentiation and that the maximum level of caveolin-1 expression occurred just prior to the formation of capillary-like tubules. Interestingly, overexpression of caveolin-1, via an adenoviral gene delivery system, clearly accelerated endothelial cell differentiation/tubule formation and led to a dramatic approximately 3-fold increase in the number of capillary-like tubular structures. Conversely, down-regulation of caveolin-1 expression, via an antisense adenoviral approach, reduced the number of capillary-like tubules formed by >10-fold. Consistent with the unique function of caveolin-1 in interacting with key signaling molecules, delivery of the caveolin-1 scaffolding domain into the cytoplasm of living endothelial cells was also sufficient to enhance capillary-like tubule formation. Taken together, these results clearly demonstrate that caveolin-1 and the caveolin-1 scaffolding domain play an important positive role in the regulation of endothelial cell differentiation, a prerequisite step in the process of angiogenesis.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
29
|
Gebarowska D, Stitt AW, Gardiner TA, Harriott P, Greer B, Nelson J. Synthetic peptides interacting with the 67-kd laminin receptor can reduce retinal ischemia and inhibit hypoxia-induced retinal neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:307-13. [PMID: 11786424 PMCID: PMC1867145 DOI: 10.1016/s0002-9440(10)64374-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The high-affinity 67-kd laminin receptor (67LR) is expressed by proliferating endothelial cells during retinal neovascularization. The role of 67LR has been further examined experimentally by administration of selective 67LR agonists and antagonists in a murine model of proliferative retinopathy. These synthetic 67LR ligands have been previously shown to stimulate or inhibit endothelial cell motility in vitro without any direct effect on proliferation. In the present study, a fluorescently labeled 67LR antagonist (EGF(33-42)) was injected intraperitoneally into mice and its distribution in the retina was assessed by confocal scanning laser microscopy. Within 2 hours this peptide was localized to the retinal vasculature, including preretinal neovascular complexes, and a significant amount had crossed the blood retinal barrier. For up to 24 hours postinjection, the peptide was still present in the retinal vascular walls and, to a lesser extent, in the neural retina. Non-labeled EGF(33-42) significantly inhibited pre-retinal neovascularization in comparison to controls treated with phosphate-buffered saline or scrambled peptide (P < 0.0001). The agonist peptide (Lam beta 1(925-933)) also significantly inhibited proliferative retinopathy; however, it caused a concomitant reduction in retinal ischemia in this model by promoting significant revascularization of the central retina (P < 0.001). Thus, 67LR appears to be an important target receptor for the modulation of retinal neovascularization. Agonism of this receptor may be valuable in reducing the hypoxia-stimulated release of angiogenic growth factors which drives retinal angiogenesis.
Collapse
Affiliation(s)
- Dorota Gebarowska
- Centre of Ophthalmology and Vision Science and the School of Biology and Biochemistry, The Queen's University of Belfast, Royal Victoria Hospital, Belfast, Northern Ireland, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
McKenna DJ, Simpson DA, Feeney S, Gardiner TA, Boyle C, Nelson J, Stitt AW. Expression of the 67 kDa laminin receptor (67LR) during retinal development: correlations with angiogenesis. Exp Eye Res 2001; 73:81-92. [PMID: 11428865 DOI: 10.1006/exer.2001.1013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interaction of vascular cells with the laminin component of basement membranes is important for normal cell function. Likewise, abnormal interactions may have a critical role in vascular pathology. It has been previously demonstrated that the 67 kDa laminin receptor (67LR) is expressed at high levels during proliferative retinopathy in a mouse model and in the current study we have examined 67LR in the neonatal mouse to determine if this receptor plays a role in aspects of developmental angiogenesis in the developing murine retina. Groups of C57/BL6 mice were killed at postnatal day P1, P3, P5, P7, P9 and P11 to assess the retinal vasculature. A number of mice were perfused with FITC-dextran and the eyes removed, fixed in 4% paraformaldehyde (PFA) and flat-mounted for confocal scanning laser microscopy. The eyes from the remaining mice were either placed in 4% PFA and embedded in paraffin-wax, or had the neural retina dissected off and total RNA or protein extracted. Immunofluorescence, in situ hybridization, quantitative reverse transcriptase polymerase chain reaction and Western blotting analysis were employed to locate and determine expression levels of 67LR. Both 67LR mRNA and protein expression showed a characteristic bi-phasic expression pattern which correlated with key stages of retinal vascular development in the murine retina. 67LR showed high expression levels at P1 (P < 0.05) (correlating with superficial vascular plexus formation) and at P7 (P < 0.05) (correlating with deep vascular plexus formation). Conversely, 67LR expression was decreased when active angiogenic activity was lowest. Significantly, optical sectioning of retinal flat-mounts revealed high levels of 67LR expression in developing segments of both superficial and deep capillary plexi, a pattern which co-localized strongly with laminin. 67LR is regulated during post-natal development of the retinal vasculature. High levels of 67LR during the two well-defined phases of retinal capillary plexus formation suggests that this receptor may play an important role in retinal angiogenesis.
Collapse
Affiliation(s)
- D J McKenna
- Department of Ophthalmology, The Queen's University of Belfast, The Royal Victoria Hospital, Belfast BT12 6BA, Northern Ireland, U.K
| | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- M E Beckner
- Robert C. Byrd Health Science Center, West Virginia University, Morgantown, USA.
| |
Collapse
|
32
|
Thomopoulos GN, Spicer SS, Gratton MA, Schulte BA. Age-related thickening of basement membrane in stria vascularis capillaries. Hear Res 1997; 111:31-41. [PMID: 9307309 DOI: 10.1016/s0378-5955(97)00080-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ultrastructural examination was undertaken to investigate the pathogenesis of age-related atrophy of the stria vascularis (StV). Basement membrane (BM) thickness was increased in 65-85% of strial capillaries in gerbils aged 33 months or older and often exceeded by several-fold that observed in young controls. In an early stage of thickening the BM expanded slightly around the full capillary profile, after which nodular expansions of BM encircling slender cell processes were often observed at or near one or both poles of the elliptical vessel profile. As widening progressed, the BM consisted of 2-3 layers separated by cell processes in the nodules but fewer strata elsewhere. Association of slender processes of both endothelial cells and pericytes with focal thickening outside the process suggested their participation in genesis of the capillary lesion. In later stages of atrophy, pericytes degenerated and disappeared, while endothelial cells remained intact. Eventually, thick multilayered BM devoid of endothelial cells surrounded a narrow lumen occluded by debris. The age-related change in BM in the inner ear was confined to StV capillaries. Degenerative changes in StV epithelial cells occurred apparently as a secondary consequence of the capillary lesion. The pathologic alterations in marginal cells included extrusion of blebs from the luminal surface, separation and loss of basolateral interfoldings, alteration and depletion of mitochondria and nuclear pyknosis. At the end-stage of degeneration, the StV consisted of a simple or multiple layer of squamous cells lining the scala media.
Collapse
Affiliation(s)
- G N Thomopoulos
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | |
Collapse
|
33
|
Sakaguchi N, Spicer SS, Thomopoulos GN, Schulte BA. Increased laminin deposition in capillaries of the stria vascularis of quiet-aged gerbils. Hear Res 1997; 105:44-56. [PMID: 9083803 DOI: 10.1016/s0378-5955(96)00180-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The distribution of laminin (LA) and type IV collagen (IV-C) in the gerbil inner ear was investigated by light and electron microscopic immunohistochemistry. Changes in protein expression were assessed from birth to old age to determine the relation of these constituents to maturation of the cochlea and development of presbyacusis. The distribution of LA paralleled that of IV-C during postnatal development, and both were visualized in the basement membrane (BM) of endothelial, epithelial and spiral ganglion cells in neonatal and young adult gerbils. Immunopositive BM underlying the stria vascularis disappeared at 8-12 days after birth coincident with the development and maturation of the strial capillaries. Immunoreactivity for LA afforded an index to the thickness of the BM and was found to increase with age only in the BM of strial capillaries. At 6 months of age, occasional strial capillaries in the apex of the cochlea showed thickening of the LA-positive BM. Abnormal deposition of LA in strial capillary BM spread to lower turns and increased in prevalence with advancing age, affecting apical and basal more than middle cochlear turns. Thickening of the capillary BM appeared to precede capillary obstruction which eventuated in complete strial atrophy. Staining for IV-C in the walls of the strial capillaries did not increase with age. The data show that LA and IV-C play important roles in postnatal development of the cochlea and that LA deposition increases with age only in the BM of strial capillaries.
Collapse
Affiliation(s)
- N Sakaguchi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | |
Collapse
|
34
|
Grant DS, Kleinman HK. Regulation of capillary formation by laminin and other components of the extracellular matrix. EXS 1997; 79:317-33. [PMID: 9002225 DOI: 10.1007/978-3-0348-9006-9_13] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The process of angiogenesis (vessel formation) and the resulting stabilization of the mature vessel are complex events that are highly regulated and require signals from both serum and the extracellular matrix. Endothelial cells rest on a specialized thin extracellular matrix known as the basement membrane. Endothelial cells lining normal blood vessels are usually quiescent. When a proper stimulus is present, angiogenesis beings when endothelial cells degrade their basement membrane and invade the surrounding extravascular matrix. Formation of new vessels involves the migration and proliferation of cells. To assist the cells in their migration, the extravascular matrix provides an environment rich in stromal collagen fibers, fibrin, hyaluoronic acid, vitronectin and fibronectin. Once the endothelial cells assemble to form a new vessel, the cells secrete a basement membrane that helps to stabilize and maintain the vessel wall. The basement membrane adheres tightly to cells comprising the vessel wall, provides inductive signals, and plays a important role in the homeostasis of new vessels. We have demonstrated that two major components of the basement membrane, laminin and collagen IV, possess endothelial cell binding sites which regulate vessel stability. In this chapter, we will define the role of these molecules in endothelial cell behavior.
Collapse
Affiliation(s)
- D S Grant
- Cardeza Foundation for Hematological Research, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
35
|
Affiliation(s)
- P C Brooks
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
36
|
Gittes GK, Galante PE, Hanahan D, Rutter WJ, Debase HT. Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development 1996; 122:439-47. [PMID: 8625795 DOI: 10.1242/dev.122.2.439] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pancreatic organogenesis has been a classic example of epitheliomesenchymal interactions. The nature of this interaction, and the way in which endocrine, acinar and ductal cell lineages are generated from the embryonic foregut has not been determined. It has generally been thought that mesenchyme is necessary for all aspects of pancreatic development. In addition islets have been thought to derive, at least in part, from ducts. We microdissected 11-day embryonic mouse pancreas and developed several culture systems for assays of differentiation: (i) on transparent filters; (ii) suspended in a collagen I gel; (iii) suspended in a basement membrane rich gel; (iv) under the renal capsule of an adult mouse. Epithelia were grown either with or without mesenchyme, and then assayed histologically and immunohistochemically. Epithelium with its mesenchyme (growth systems i-iv) always grew into fully differentiated pancreas (acinar, endocrine, adn ductal elements). In the basement membrane-rich gel, epithelium without mesenchyme formed ductal structures. Under the renal capsule of the adult mouse the epithelium without mesenchyme exclusively formed clusters of mature islets. These latter results represent the first demonstration of pure islets grown from early pancreatic precursor cells. In addition, these islets seemed not to have originated from ducts. We propose that the default path for growth of embryonic pancreatic epithelium is to form islets. In the presence of basement membrane constituents, however, the pancreatic analage epithelium appears to be programmed to form ducts. Mesenchyme seems not to be required for all aspects of pancreatic development, but rather only for the formation of acinar structures. In addition, the islets seem to form from early embryonic epithelium (which only express non-acinar genes). This formation occurs without any specific embryonic signals, and without any clear duct or acinus formation.
Collapse
Affiliation(s)
- G K Gittes
- Department of Surgery, University of California, San Francisco, USA
| | | | | | | | | |
Collapse
|
37
|
Donovan KL, Coles GA, Williams JD. Tumor necrosis factor-alpha augments the pro-inflammatory interaction between PMN and GBM via a CD18 dependent mechanism. Kidney Int 1995; 48:698-704. [PMID: 7474654 DOI: 10.1038/ki.1995.340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acute glomerulonephritis is frequently associated with intraglomerular neutrophil (PMN) accumulation and the intensity of the inflammatory reaction is correlated with elevated concentrations of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF alpha). PMN are thought to damage glomeruli due to a combination of reactive oxygen species and proteolytic enzymes. Using an in vitro model of anti-GBM nephritis the effects of TNF alpha on GBM damage by PMN were evaluated. The interaction of GBM and PMN resulted in a low grade respiratory burst that was significantly augmented by the addition of TNF alpha. Luminol dependent chemiluminescence (LCL) was increased from 2.4 x 10(6) to 48.1 x 10(6) (P < 0.05). The GBM induced LCL could be > 85% inhibited by blocking with monoclonal antibodies (mAbs) to the common beta chain of the PMN beta 2 integrin family (CD18), but was unaffected by mAbs to CD11a or CD11b subunits. Degradation of GBM, however, was not influenced by either TNF alpha priming of PMN or anti-beta 2 integrin mAbs. When PMN were incubated with GBM-anti-GBM IgG complex they underwent an increase in LCL from 2.4 x 10(6) to 31.1 x 10(6). They also degraded more GBM than controls (10.1% vs. 1.8%). These aspects of PMN activation were Fc receptor mediated, dependent upon anti-GBM IgG being bound to GBM and inhibited by mAb to the PMN Fc receptor. These studies show that TNF alpha can modulate the inflammatory response of PMN in contact with GBM in a CD18 dependent manner. In contrast, Fc receptor mediated events are uninfluenced by TNF alpha.
Collapse
Affiliation(s)
- K L Donovan
- Institute of Nephrology, University of Wales College of Medicine, Royal Infirmary, Cardiff, United Kingdom
| | | | | |
Collapse
|
38
|
Bellamkonda R, Ranieri JP, Bouche N, Aebischer P. Hydrogel-based three-dimensional matrix for neural cells. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1995; 29:663-71. [PMID: 7622552 DOI: 10.1002/jbm.820290514] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability to organize cells in three dimensions (3D) is an important component of tissue engineering. This study sought to develop an extracellular matrix (ECM) equivalent with a physicochemical structure capable of supporting neurite extension from primary neural cells in 3D. Rat embryonic day 14 striatal cells and chick embryonic day 9 dorsal root ganglia extended neurites in 3D in agarose hydrogels in a gel concentration-dependent manner. Primary neural cells did not extend neurites above a threshold agarose gel concentration of 1.25% wt/vol. Gel characterization by hydraulic permeability studies revealed that the average pore radius of a 1.25% agarose gel was 150 mm. Hydraulic permeability studies for calculating average gel pore radius and gel morphology studies by environmental and scanning electron micrography showed that the average agarose gel por size decreased exponentially as the gel concentration increased. It is hypothesized that the average gel porosity plays an important role in determining the ability of agarose gels to support neurite extension. Lamination of alternating nonpermissive, permissive, and nonpermissive gel layers facilitated the creation of 3D neural tracts in vitro. This ability of agarose hydrogels to organize, support, and direct neurite extension from neural cells may be useful for applications such as 3D neural cell culture and nerve regeneration. Agarose hydrogel substrates also offer the possibility of manipulating cells in 3D, and may be used as 3D templates for tissue engineering efforts in vitro and in vivo.
Collapse
Affiliation(s)
- R Bellamkonda
- Division of Surgical Research, Centre Hospitalier Universitaire Vaudois, Lausanne University Medical School, Switzerland
| | | | | | | |
Collapse
|
39
|
Moyer JH, Lee-Tischler MJ, Kwon HY, Schrick JJ, Avner ED, Sweeney WE, Godfrey VL, Cacheiro NL, Wilkinson JE, Woychik RP. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 1994; 264:1329-33. [PMID: 8191288 DOI: 10.1126/science.8191288] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A line of transgenic mice was generated that contains an insertional mutation causing a phenotype similar to human autosomal recessive polycystic kidney disease. Homozygotes displayed a complex phenotype that included bilateral polycystic kidneys and an unusual liver lesion. The mutant locus was cloned and characterized through use of the transgene as a molecular marker. Additionally, a candidate polycystic kidney disease (PKD) gene was identified whose structure and expression are directly associated with the mutant locus. A complementary DNA derived from this gene predicted a peptide containing a motif that was originally identified in several genes involved in cell cycle control.
Collapse
Affiliation(s)
- J H Moyer
- University of Tennessee Graduate School of Biomedical Sciences, Biology Division, Oak Ridge National Laboratory, TN 37831-8077
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yang B, Yang BL, Savani RC, Turley EA. Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein. EMBO J 1994; 13:286-96. [PMID: 7508860 PMCID: PMC394807 DOI: 10.1002/j.1460-2075.1994.tb06261.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have previously identified two hyaluronan (HA) binding domains in the HA receptor, RHAMM, that occur near the carboxyl-terminus of this protein. We show here that these two HA binding domains are the only HA binding regions in RHAMM, and that they contribute approximately equally to the HA binding ability of this receptor. Mutation of domain II using recombinant polypeptides of RHAMM demonstrates that K423 and R431, spaced seven amino acids apart, are critical for HA binding activity. Domain I contains two sets of two basic amino acids, each spaced seven residues apart, and mutation of these basic amino acids reduced their binding to HA--Sepharose. These results predict that two basic amino acids flanking a seven amino acid stretch [hereafter called B(X7)B] are minimally required for HA binding activity. To assess whether this motif predicts HA binding in the intact RHAMM protein, we mutated all basic amino acids in domains I and II that form part of these motifs using site-directed mutagenesis and prepared fusion protein from the mutated cDNA. The altered RHAMM protein did not bind HA, confirming that the basic amino acids and their spacing are critical for binding. A specific requirement for arginine or lysine residues was identified since mutation of K430, R431 and K432 to histidine residues abolished binding. Clustering of basic amino acids either within or at either end of the motif enhanced HA binding activity while the occurrence of acidic residues between the basic amino acids reduced binding. The B(X7)B motif, in which B is either R or K and X7 contains no acidic residues and at least one basic amino acid, was found in all HA binding proteins molecularly characterized to date. Recombinant techniques were used to generate chimeric proteins containing either the B(X7)B motifs present in CD44 or link protein, with the amino-terminus of RHAMM (amino acids 1-238) that does not bind HA. All chimeric proteins containing the motif bound HA in transblot analyses. Site-directed mutations of these motifs in CD44 sequences abolished HA binding. Collectively, these results predict that the motif of B(X7)B as a minimal binding requirement for HA in RHAMM, CD44 and link protein, and occurs in all HA binding proteins described to date.
Collapse
Affiliation(s)
- B Yang
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
41
|
Peters DJ, Spruit L, Saris JJ, Ravine D, Sandkuijl LA, Fossdal R, Boersma J, van Eijk R, Nørby S, Constantinou-Deltas CD. Chromosome 4 localization of a second gene for autosomal dominant polycystic kidney disease. Nat Genet 1993; 5:359-62. [PMID: 8298643 DOI: 10.1038/ng1293-359] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder. A gene defect located on the short arm of chromosome 16 is responsible for the disease in roughly 86% of affected European families. Using highly polymorphic microsatellite DNA markers, we have assigned a second gene for ADPKD to chromosome 4. In eight families with clear evidence against linkage to chromosome 16 markers, linkage analysis with the markers D4S231 and D4S423, demonstrated a multipoint lod score of 22.42.
Collapse
Affiliation(s)
- D J Peters
- Department of Human Genetics, Leiden University, Sylvius Laboratories, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|