1
|
Chandler JC, Jafree DJ, Malik S, Pomeranz G, Ball M, Kolatsi-Joannou M, Piapi A, Mason WJ, Benest AV, Bates DO, Letunovska A, Al-Saadi R, Rabant M, Boyer O, Pritchard-Jones K, Winyard PJ, Mason AS, Woolf AS, Waters AM, Long DA. Single-cell transcriptomics identifies aberrant glomerular angiogenic signalling in the early stages of WT1 kidney disease. J Pathol 2024; 264:212-227. [PMID: 39177649 DOI: 10.1002/path.6339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 08/24/2024]
Abstract
WT1 encodes a podocyte transcription factor whose variants can cause an untreatable glomerular disease in early childhood. Although WT1 regulates many podocyte genes, it is poorly understood which of them are initiators in disease and how they subsequently influence other cell-types in the glomerulus. We hypothesised that this could be resolved using single-cell RNA sequencing (scRNA-seq) and ligand-receptor analysis to profile glomerular cell-cell communication during the early stages of disease in mice harbouring an orthologous human mutation in WT1 (Wt1R394W/+). Podocytes were the most dysregulated cell-type in the early stages of Wt1R394W/+ disease, with disrupted angiogenic signalling between podocytes and the endothelium, including the significant downregulation of transcripts for the vascular factors Vegfa and Nrp1. These signalling changes preceded glomerular endothelial cell loss in advancing disease, a feature also observed in biopsy samples from human WT1 glomerulopathies. Addition of conditioned medium from murine Wt1R394W/+ primary podocytes to wild-type glomerular endothelial cells resulted in impaired endothelial looping and reduced vascular complexity. Despite the loss of key angiogenic molecules in Wt1R394W/+ podocytes, the pro-vascular molecule adrenomedullin was upregulated in Wt1R394W/+ podocytes and plasma and its further administration was able to rescue the impaired looping observed when glomerular endothelium was exposed to Wt1R394W/+ podocyte medium. In comparative analyses, adrenomedullin upregulation was part of a common injury signature across multiple murine and human glomerular disease datasets, whilst other gene changes were unique to WT1 disease. Collectively, our study describes a novel role for altered angiogenic signalling in the initiation of WT1 glomerulopathy. We also identify adrenomedullin as a proangiogenic factor, which despite being upregulated in early injury, offers an insufficient protective response due to the wider milieu of dampened vascular signalling that results in endothelial cell loss in later disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jennifer C Chandler
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Daniyal J Jafree
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
- UCL MB/PhD Programme, Faculty of Medical Sciences, University College London, London, UK
| | - Saif Malik
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Gideon Pomeranz
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Mary Ball
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Alice Piapi
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
| | - William J Mason
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Andrew V Benest
- Endothelial Quiescence Group and Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - David O Bates
- Endothelial Quiescence Group and Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Pan-African Cancer Research Institute, University of Pretoria, Hatfield, South Africa
| | - Aleksandra Letunovska
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Reem Al-Saadi
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marion Rabant
- Pathology department, Hôpital Universitaire Necker-Enfants Malades, Institut Imagine, Université Paris Cité, Paris, France
| | - Olivia Boyer
- APHP, Service de Néphrologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, Institut Imagine, Université Paris Cité, Paris, France
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Paul J Winyard
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Andrew S Mason
- Department of Biology and York Biomedical Research Institute, University of York, UK
| | - Adrian S Woolf
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Aoife M Waters
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
| | - David A Long
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| |
Collapse
|
2
|
Smith C, du Toit R, Ollewagen T. Potential of bone morphogenetic protein-7 in treatment of lupus nephritis: addressing the hurdles to implementation. Inflammopharmacology 2023; 31:2161-2172. [PMID: 37626268 PMCID: PMC10518293 DOI: 10.1007/s10787-023-01321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Up to 50% of systemic lupus erythematosus (SLE) patients world-wide develop lupus nephritis (LN). In low to middle income countries and in particular in sub-Saharan Africa, where SLE is prevalent with a more aggressive course, LN and end stage renal disease is a major cause of mortality. While developed countries have the funding to invest in SLE and LN research, patients of African descent are often underrepresented in clinical trials. Thus, the complex influence of ethnicity and genetic background on outcome of LN and SLE as a whole, is not fully understood. Several pathophysiological mechanisms including major role players driving LN have been identified. A large body of literature suggest that prevention of fibrosis-which contributes to chronicity of LN-may significantly improve long-term prognosis. Bone morphogenetic protein-7 (BMP-7) was first identified as a therapeutic option in this context decades ago and evidence of its benefit in various conditions, including LN, is ever-increasing. Despite these facts, BMP-7 is not being implemented as therapy in the context of renal disease. With this review, we briefly summarise current understanding of LN pathology and discuss the evidence in support of therapeutic potential of BMP-7 in this context. Lastly, we address the obstacles that need to be overcome, before BMP-7 may become available as LN treatment.
Collapse
Affiliation(s)
- Carine Smith
- Experimental Medicine Research Group, Department Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.
| | - Riette du Toit
- Division Rheumatology, Department Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| | - Tracey Ollewagen
- Experimental Medicine Research Group, Department Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| |
Collapse
|
3
|
Abstract
The fibrocartilage chondrocyte phenotype has been recognized to attribute to osteoarthritis (OA) development. These chondrocytes express genes related to unfavorable OA outcomes, emphasizing its importance in OA pathology. BMP7 is being explored as a potential disease-modifying molecule and attenuates the chondrocyte hypertrophic phenotype. On the other hand, BMP7 has been demonstrated to relieve organ fibrosis by counteracting the pro-fibrotic TGFβ-Smad3-PAI1 axis and increasing MMP2-mediated Collagen type I turnover. Whether BMP7 has anti-fibrotic properties in chondrocytes is unknown. Human OA articular chondrocytes (HACs) were isolated from end-stage OA femoral cartilage (total knee arthroplasty; n = 18 individual donors). SW1353 cells and OA HACs were exposed to 1 nM BMP7 for 24 h, after which gene expression of fibrosis-related genes and fibrosis-mediating factors was determined by RT-qPCR. In SW1353, Collagen type I protein levels were determined by immunocytochemistry and western blotting. PAI1 and MMP2 protein levels and activity were measured with an ELISA and activity assays, respectively. MMP2 activity was inhibited with the selective MMP-2 inhibitor OA-Hy. SMAD3 activity was determined by a (CAGA)12-reporter assay, and pSMAD2 levels by western blotting. Following BMP7 exposure, the expression of fibrosis-related genes was reduced in SW1353 cells and OA HACs. BMP7 reduced Collagen type I protein levels in SW1353 cells. Gene expression of MMP2 was increased in SW1353 cells following BMP7 treatment. BMP7 reduced PAI1 protein levels and -activity, while MMP2 protein levels and -activity were increased by BMP7. BMP7-dependent inhibition of Collagen type I protein levels in SW1353 cells was abrogated when MMP2 activity was inhibited. Finally, BMP7 reduced pSMAD2 levels determined by western blotting and reduced SMAD3 transcriptional activity as demonstrated by decreased (CAGA)12 luciferase reporter activity. Our data demonstrate that short-term exposure to BMP7 decreases the fibrocartilage chondrocyte phenotype. The BMP7-dependent reduction of Collagen type I protein expression seems MMP2-dependent and inhibition of Smad2/3-PAI1 activity was identified as a potential pathway via which BMP7 exerts its anti-fibrotic action. This indicates that in chondrocytes BMP7 may have a double mode-of-action by targeting both the hypertrophic as well as the fibrotic chondrocyte phenotype, potentially adding to the clinical relevance of using BMP7 as an OA disease-modifying molecule.
Collapse
|
4
|
Li H, Chen Z, Chen W, Li J, Liu Y, Ma H, Shi M, Sun X, Yao X, Li Z, Pawluczyk IZ, Zhang S, Barratt J, Lv J, Wang K, Zhao B. MicroRNA-23b-3p Deletion Induces an IgA Nephropathy-like Disease Associated with Dysregulated Mucosal IgA Synthesis. J Am Soc Nephrol 2021; 32:2561-2578. [PMID: 34479967 PMCID: PMC8722801 DOI: 10.1681/asn.2021010133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/16/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common primary GN worldwide. Circulating immune complexes form that are prone to deposition in the mesangium, where they trigger glomerular inflammation. A growing body of evidence suggests that dysregulated expression of microRNAs in IgAN may play a significant role in establishing the disease phenotype. METHODS We generated single miR-23b-3p(miR-23b) knockout mice using CRISPR-Cas9. RESULTS In humans, miR-23b levels are downregulated in kidney biopsies and sera of patients with IgAN, and serum miR-23b levels are negatively correlated with serum IgA1 levels. We show that miR-23b-/- mice develop an IgAN-like phenotype of mesangial IgA and C3 deposition associated with development of albuminuria, hypertension, an elevated serum creatinine, and dysregulated mucosal IgA synthesis. Dysregulation of IgA production is likely mediated by the loss of miR-23b-mediated suppression of activation-induced cytidine deaminase in mucosal B cells. In addition, we show that loss of miR-23b increases the susceptibility of the kidney to progressive fibrosis through loss of regulation of expression of gremlin 2 and IgA accumulation through downregulation of the transferrin receptor. CONCLUSIONS Our findings suggest an indispensable role for miR-23b in kidney disease, and in particular, IgAN. miR-23b may in the future offer a novel therapeutic target for the treatment of IgAN.
Collapse
Affiliation(s)
- Hongzhi Li
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin 132011, Jilin, China
| | - Zhichao Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weitian Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China,Correspondence: Dr. Binghai Zhao, Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin 132011, 3999 Binjiang Dong Road, Jilin, Jilin 132011, China; or Dr. Kai Wang, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 North Xiang'an Street, Harbin, Heilongjiang 150028, China. or
| | - Yunshuang Liu
- Department of Ultrasound, Affiliated Hong Qi Hospital, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Hongchuang Ma
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin 132011, Jilin, China,Correspondence: Dr. Binghai Zhao, Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin 132011, 3999 Binjiang Dong Road, Jilin, Jilin 132011, China; or Dr. Kai Wang, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 North Xiang'an Street, Harbin, Heilongjiang 150028, China. or
| | - Mingming Shi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelian Sun
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin 132011, Jilin, China
| | - Xiusong Yao
- Nephrology Department of Jinlin Central Hospital, Jinlin 132011, Jilin, China
| | - Zhijun Li
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin 132011, Jilin, China
| | | | - Shuchen Zhang
- Electron Microscopy Center, Basic Medical Science College, Harbin Medical University, Harbin, 150081, China
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Jicheng Lv
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Kai Wang
- Molecular Imaging Research Center, Harbin Medical University (MIRC), Harbin, Heilongjiang 150028, China
| | - Binghai Zhao
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin 132011, Jilin, China
| |
Collapse
|
5
|
PPARγ and TGFβ-Major Regulators of Metabolism, Inflammation, and Fibrosis in the Lungs and Kidneys. Int J Mol Sci 2021; 22:ijms221910431. [PMID: 34638771 PMCID: PMC8508998 DOI: 10.3390/ijms221910431] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a type II nuclear receptor, initially recognized in adipose tissue for its role in fatty acid storage and glucose metabolism. It promotes lipid uptake and adipogenesis by increasing insulin sensitivity and adiponectin release. Later, PPARγ was implicated in cardiac development and in critical conditions such as pulmonary arterial hypertension (PAH) and kidney failure. Recently, a cluster of different papers linked PPARγ signaling with another superfamily, the transforming growth factor beta (TGFβ), and its receptors, all of which play a major role in PAH and kidney failure. TGFβ is a multifunctional cytokine that drives inflammation, fibrosis, and cell differentiation while PPARγ activation reverses these adverse events in many models. Such opposite biological effects emphasize the delicate balance and complex crosstalk between PPARγ and TGFβ. Based on solid experimental and clinical evidence, the present review summarizes connections and their implications for PAH and kidney failure, highlighting the similarities and differences between lung and kidney mechanisms as well as discussing the therapeutic potential of PPARγ agonist pioglitazone.
Collapse
|
6
|
Zhang G, Cui G, Tong S, Cao Q. Salvianolic acid A alleviates the renal damage in rats with chronic renal failure1. Acta Cir Bras 2019; 34:e201900204. [PMID: 30843937 PMCID: PMC6585911 DOI: 10.1590/s0102-8650201900204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/11/2019] [Indexed: 01/19/2023] Open
Abstract
Purpose To investigate the protective effects of salvianolic acid A (SAA) on renal
damage in rats with chronic renal failure (CRF). Methods The five-sixth nephrectomy model of CRF was successfully established in
group CRF (10 rats) and group CRF+SAA (10 rats). Ten rats were selected as
sham-operated group (group S), in which only the capsules of both kidneys
were removed. The rats in group CRF+SAA were intragastrically administrated
with 10 mg/kg SAA for 8 weeks. The blood urine nitrogen (BUN), urine
creatinine (Ucr), creatinine clearance rate (Ccr), and serum uperoxide
dismutase (SOD) and malondialdehyde (MDA) were tested. The expressions of
transforming growth factor-β1 (TGF-β1), bone morphogenetic protein 7 (BMP-7)
and Smad6 protein in renal tissue were determined. Results After treatment, compared with group CRF, in group CRF+SAA the BUN, Scr,
serum MDA and kidney/body weight ratio were decreased, the Ccr and serum SOD
were increased, the TGF-β1 protein expression level in renal tissue was
decreased, and the BMP-7 and Smad6 protein levels were increased (all P <
0.05). Conclusion SAA can alleviate the renal damage in CRF rats through anti-oxidant stress,
down-regulation of TGF-β1 signaling pathway and up-regulation of BMP-7/Smad6
signaling pathway.
Collapse
Affiliation(s)
- Guangming Zhang
- Master, Department of Urology, Affiliated Hospital, Beihua University, China. Technical procedures, final approval
| | - Guanghua Cui
- Bachelor, Department of Urology, Affiliated Hospital of Beihua University, China. Acquisition of data, statistics analysis, final approval
| | - Shuangxi Tong
- Master, Department of Urology, Affiliated Hospital, Beihua University, China. Manuscript preparation, final approval
| | - Qingxian Cao
- Master, Department of Urology, Affiliated Hospital, Beihua University, China. Design of the study, critical revision, final approval
| |
Collapse
|
7
|
Abstract
Fibrosis is a major player in cardiovascular disease, both as a contributor to the development of disease, as well as a post-injury response that drives progression. Despite the identification of many mechanisms responsible for cardiovascular fibrosis, to date no treatments have emerged that have effectively reduced the excess deposition of extracellular matrix associated with fibrotic conditions. Novel treatments have recently been identified that hold promise as potential therapeutic agents for cardiovascular diseases associated with fibrosis, as well as other fibrotic conditions. The purpose of this review is to provide an overview of emerging antifibrotic agents that have shown encouraging results in preclinical or early clinical studies, but have not yet been approved for use in human disease. One of these agents is bone morphogenetic protein-7 (BMP7), which has beneficial effects in multiple models of fibrotic disease. Another approach discussed involves altering the levels of micro-RNA (miR) species, including miR-29 and miR-101, which regulate the expression of fibrosis-related gene targets. Further, the antifibrotic potential of agonists of the peroxisome proliferator-activated receptors will be discussed. Finally, evidence will be reviewed in support of the polypeptide hormone relaxin. Relaxin is long known for its extracellular remodeling properties in pregnancy, and is rapidly emerging as an effective antifibrotic agent in a number of organ systems. Moreover, relaxin has potent vascular and renal effects that make it a particularly attractive approach for the treatment of cardiovascular diseases. In each case, the mechanism of action and the applicability to various fibrotic diseases will be discussed.
Collapse
Affiliation(s)
- Benita L McVicker
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, OmahaNE, United States
| | - Robert G Bennett
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,The Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, OmahaNE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, OmahaNE, United States
| |
Collapse
|
8
|
Salvadori M, Rosso G. Update on immunoglobulin A nephropathy, Part I: Pathophysiology. World J Nephrol 2015; 4:455-467. [PMID: 26380197 PMCID: PMC4561843 DOI: 10.5527/wjn.v4.i4.455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/08/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy is one of the most common glomerulonephritis and its frequency is probably underestimated because in most patients the disease has an indolent course and the kidney biopsy is essential for the diagnosis. In the last years its pathogenesis has been better identified even if still now several questions remain to be answered. The genetic wide association studies have allowed to identifying the relevance of genetics and several putative genes have been identified. The genetics has also allowed explaining why some ancestral groups are affected with higher frequency. To date is clear that IgA nephropathy is related to auto antibodies against immunoglobulin A1 (IgA1) with poor O-glycosylation. The role of mucosal infections is confirmed, but which are the pathogens involved and which is the role of Toll-like receptor polymorphism is less clear. Similarly to date whether the disease is due to the circulating immunocomplexes deposition on the mesangium or whether the antigen is already present on the mesangial cell as a “lanthanic” deposition remains to be clarified. Finally also the link between the mesangial and the podocyte injury and the tubulointerstitial scarring, as well as the mechanisms involved need to be better clarified.
Collapse
|
9
|
Abstract
Bone morphogenetic protein 7 (BMP7) has been reported to confer renoprotective effects in acute and chronic kidney disease models, but its potential role in Type 2 diabetic nephropathy remains unknown. In cultured human proximal tubular epithelial cells (PTECs), exposure to advanced glycation end-products (AGEs) induced overexpression of intercellular adhesion molecule 1 (ICAM1), monocyte chemoattractant protein 1 (MCP1), interleukin 8 (IL-8) and interleukin 6 (IL-6), involving activation of p44/42 and p38 mitogen-activated protein kinase (MAPK) signalling. BMP7 dose-dependently attenuated AGE-induced up-regulation of ICAM1, MCP1, IL-8 and IL-6 at both mRNA and protein levels. Moreover, BMP7 suppressed AGE-induced p38 and p44/42 MAPK phosphorylation and reactive oxygen species production in PTECs. Compared with vehicle control, uninephrectomized db/db mice treated with BMP7 for 8 weeks had significantly lower urinary albumin-to-creatinine ratio (3549±816.2 μg/mg compared with 8612±2037 μg/mg, P=0.036), blood urea nitrogen (33.26±1.09 mg/dl compared with 37.49±0.89 mg/dl, P=0.006), and renal cortical expression of ICAM1 and MCP1 at both gene and protein levels. In addition, BMP7-treated animals had significantly less severe tubular damage, interstitial inflammatory cell infiltration, renal cortical p38 and p44/42 phosphorylation and lipid peroxidation. Our results demonstrate that BMP7 attenuates tubular pro-inflammatory responses in diabetic kidney disease by suppressing oxidative stress and multiple inflammatory signalling pathways including p38 and p44/42 MAPK. Its potential application as a therapeutic molecule in diabetic nephropathy warrants further investigation.
Collapse
|
10
|
Li RX, Yiu WH, Tang SCW. Role of bone morphogenetic protein-7 in renal fibrosis. Front Physiol 2015; 6:114. [PMID: 25954203 PMCID: PMC4407503 DOI: 10.3389/fphys.2015.00114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/26/2015] [Indexed: 01/09/2023] Open
Abstract
Renal fibrosis is final common pathway of end stage renal disease. Irrespective of the primary cause, renal fibrogenesis is a dynamic process which involves a large network of cellular and molecular interaction, including pro-inflammatory cell infiltration and activation, matrix-producing cell accumulation and activation, and secretion of profibrogenic factors that modulate extracellular matrix (ECM) formation and cell-cell interaction. Bone morphogenetic protein-7 is a protein of the TGF-β super family and increasingly regarded as a counteracting molecule against TGF-β. A large variety of evidence shows an anti-fibrotic role of BMP-7 in chronic kidney disease, and this effect is largely mediated via counterbalancing the profibrotic effect of TGF-β. Besides, BMP-7 reduced ECM formation by inactivating matrix-producing cells and promoting mesenchymal-to-epithelial transition (MET). BMP-7 also increased ECM degradation. Despite these observations, the anti-fibrotic effect of BMP-7 is still controversial such that fine regulation of BMP-7 expression in vivo might be a great challenge for its ultimate clinical application.
Collapse
Affiliation(s)
- Rui Xi Li
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong China
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong China
| |
Collapse
|
11
|
Khajuria A, Tay C, Shi J, Zhao H, Ma D. Anesthetics attenuate ischemia–reperfusion induced renal injury: Effects and mechanisms. ACTA ACUST UNITED AC 2014; 52:176-84. [DOI: 10.1016/j.aat.2014.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/01/2014] [Indexed: 12/17/2022]
|
12
|
Urbina P, Singla DK. BMP-7 attenuates adverse cardiac remodeling mediated through M2 macrophages in prediabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2014; 307:H762-72. [PMID: 24993041 DOI: 10.1152/ajpheart.00367.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The main objective of this study was to determine whether or not monocyte infiltration occurs in the prediabetic (PD) heart and its role in PD cardiomyopathy. We hypothesized that the PD heart is significantly populated with monocytes and that bone morphogenetic protein (BMP)-7, a novel mediator of monocyte polarization, activates infiltrated monocytes into anti-inflammatory M2 macrophages, thereby inhibiting apoptosis and fibrosis and improving cardiac function. C57Bl6 mice were assigned to control, PD, or PD + BMP-7 groups. PD and PD + BMP-7 groups were administered streptozotocin (50 mg/kg), whereas control animals received sodium citrate buffer. Afterward, the PD + BMP-7 group was administered BMP-7 (200 μg/kg) for 3 days. Our data showed significantly increased infiltrated monocytes and associated pro-inflammatory cytokines, adverse cardiac remodeling, and heart dysfunction in the PD group (P < 0.05). Interestingly, M2 macrophage differentiation and associated anti-inflammatory cytokines were enhanced and there were reduced adverse cardiac remodeling and improved cardiac function in the PD + BMP-7 group (P < 0.05). In conclusion, our data suggest that PD cardiomyopathy is associated with increased monocyte infiltration and released proinflammatory cytokines, which contributes to adverse cardiac remodeling and cardiac dysfunction. Moreover, we report that BMP-7 possesses novel therapeutic potential in its ability to differentiate monocytes into M2 macrophages and confer cardiac protection in the PD heart.
Collapse
Affiliation(s)
- Princess Urbina
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | - Dinender K Singla
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| |
Collapse
|
13
|
Lim AI, Chan LYY, Tang SCW, Yiu WH, Li R, Lai KN, Leung JCK. BMP-7 represses albumin-induced chemokine synthesis in kidney tubular epithelial cells through destabilization of NF-κB-inducing kinase. Immunol Cell Biol 2014; 92:427-35. [PMID: 24418819 DOI: 10.1038/icb.2013.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/28/2013] [Accepted: 12/12/2013] [Indexed: 01/28/2023]
Abstract
Protein overload activates proximal tubule epithelial cells (PTECs) to release chemokines. Bone morphogenetic protein-7 (BMP-7) reduces infiltrating cells and tissue damage in acute and chronic renal injuries. The present study examines the inhibitory effect and related molecular mechanism of BMP-7 on chemokine and adhesion molecule synthesis by PTECs activated with human serum albumin (HSA). The expression profiles of chemokines and adhesion molecules in cultured human PTECs were screened by PCR array. Expression of CXCL1, CXCL2 and vascular cell adhesion protein 1 (VCAM-1) by PTECs was significantly upregulated by HSA and reduced by BMP-7. HSA activated both the canonical and noncanonical nuclear factor (NF)-κB pathways in PTECs, as indicated by the increased nuclear translocation of NF-κB p50 and p52 subunits. The nuclear translocation of NF-κB p52 was completely abrogated by BMP-7, whereas NF-κB p50 activation was only partially repressed. BMP-7 increased the expression of cellular inhibitor of apoptosis 1 (cIAP1), tumor necrosis factor receptor-associated factor (TRAF)2 and TRAF3, but not of NF-κB-inducing kinase (NIK) that was significantly upregulated by HSA. Silencing NIK recapitulated the partial inhibitory effect on HSA-induced chemokine synthesis by BMP-7. Complete abolishment of the chemokine synthesis was only achieved by including additional blockade of the NF-κB p65 translocation on top of NIK silencing. Our data suggest that BMP-7 represses the NIK-dependent chemokine synthesis in PTECs activated with HSA through blocking the noncanonical NF-κB pathway and partially interfering with the canonical NF-κB pathway.
Collapse
Affiliation(s)
- Ai Ing Lim
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Loretta Y Y Chan
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Sydney C W Tang
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Wai Han Yiu
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Ruixi Li
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Kar Neng Lai
- Nephrology Center, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| | - Joseph C K Leung
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
14
|
Hsing CH, Lin CF, So E, Sun DP, Chen TC, Li CF, Yeh CH. α2-Adrenoceptor agonist dexmedetomidine protects septic acute kidney injury through increasing BMP-7 and inhibiting HDAC2 and HDAC5. Am J Physiol Renal Physiol 2012; 303:F1443-53. [DOI: 10.1152/ajprenal.00143.2012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bone morphogenetic protein (BMP)-7 protects sepsis-induced acute kidney injury (AKI). Dexmedetomidine (DEX), an α2-adrenoceptor (α2-AR) agonist, has anti-inflammatory effects. We investigated the protective effects of DEX on sepsis-induced AKI and the expression of BMP-7 and histone deacetylases (HDACs). In vitro , the effects of DEX or trichostatin A (TSA, an HDAC inhibitor) on TNF-α, monocyte chemotactic protein (MCP-1), BMP-7, and HDAC mRNA expression in LPS-stimulated rat renal tubular epithelial NRK52E cells, was determined using real-time PCR. In vivo, mice were intraperitoneally injected with DEX (25 μg/kg) or saline immediately and 12 h after cecal ligation and puncture (CLP) surgery. Twenty-four hours after CLP, we examined kidney injury and renal TNF-α, MCP-1, BMP-7, and HDAC expression. Survival was monitored for 120 h. LPS increased HDAC2, HDAC5, TNF-α, and MCP-1 expression, but decreased BMP-7 expression in NRK52E cells. DEX treatment decreased the HDAC2, HDAC5, TNF-α, and MCP-1 expression, but increased BMP-7 and acetyl histone H3 expression, whose effects were blocked by yohimbine, an α2-AR antagonist. With DEX treatment, the LPS-induced TNF-α expression and cell death were attenuated in scRNAi-NRK52E but not BMP-7 RNAi-NRK52E cells. In CLP mice, DEX treatment increased survival and attenuated AKI. The expression of HDAC2, HDAC5, TNF-α, and MCP-1 mRNA in the kidneys of CLP mice was increased, but BMP-7 was decreased. However, DEX treatment reduced those changes. DEX reduces sepsis-induced AKI by decreasing TNF-α and MCP-1 and increasing BMP-7, which is associated with decreasing HDAC2 and HDAC5, as well as increasing acetyl histone H3.
Collapse
Affiliation(s)
- Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Edmund So
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Ding-Ping Sun
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Tai-Chi Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Hua Yeh
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan, Taiwan; and
| |
Collapse
|
15
|
PPARγ as a therapeutic target in diabetic nephropathy and other renal diseases. Curr Opin Nephrol Hypertens 2012; 21:97-105. [PMID: 22143250 DOI: 10.1097/mnh.0b013e32834de526] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear transcription factor that regulates many important physiological processes including glucose and lipid metabolism, energy homeostasis, cell proliferation, inflammation, immunity and reproduction. The current review aims to summarize and discuss recent findings evaluating the protective effects of PPARγ against kidney diseases with a focus on diabetic nephropathy. We will also delineate the potential underlying mechanisms. RECENT FINDINGS PPARγ plays important roles in renal physiology and pathophysiology. Agonists of PPARγ exert protective effects against various kidney diseases including diabetic nephropathy, ischemic renal injury, IgA nephropathy, chemotherapy-associated kidney damage, polycystic kidney diseases and age-related kidney diseases via both systemic and renal actions. SUMMARY PPARγ agonists are effective in delaying and even preventing the progression of many renal diseases, especially diabetic nephropathy. PPARγ may represent a promising target for the treatment of renal diseases.
Collapse
|
16
|
Abstract
Since its first description more than 40 years ago, IgA nephropathy has become the most common pattern of primary glomerulonephritis identified in all areas of the world where renal biopsy is routinely performed. This review discusses advances in our understanding of the pathogenesis of IgA nephropathy, principally focusing on work published in the past 5 years. It has been recognized for some time that one of the most consistent features of IgA nephropathy is an alteration in the complement of serum IgA1 O-glycoforms, with an overrepresentation of poorly galactosylated IgA1 O-glycoforms both in the serum and mesangial deposits of patients with IgA nephropathy. New data suggest that poorly galactosylated IgA1 O-glycoforms might act either as autoantigens driving the formation of glycan-specific antibodies, or antigens for cross-reactive antimicrobial antibodies. Formation of these circulating and mesangial IgA-containing immune complexes appears pivotal to the pathogenesis of IgA nephropathy and there is strong in vitro data to support their role in activation of mesangial cells, induction of podocyte injury, and activation of proximal tubular epithelial cells. Genetic factors are likely to influence many facets of pathogenesis both in primary and familial IgA nephropathy, however, to date work in this area has failed to identify consistent candidate genes.
Collapse
Affiliation(s)
- Jonathan Barratt
- The John Walls Renal Unit, Leicester General Hospital and Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
17
|
Suh JS, Hahn WH, Lee JS, Park HJ, Kim MJ, Kang SW, Chung JH, Cho BS. Coding polymorphisms of bone morphogenetic protein 2 contribute to the development of childhood IgA nephropathy. Exp Ther Med 2011; 2:337-341. [PMID: 22977507 DOI: 10.3892/etm.2011.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/04/2011] [Indexed: 01/04/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor β (TGFB) superfamily and are important in both preservation of kidney function and resistance to injury. BMP2 is highly regulated in the kidney, and high affinity binding sites for BMP2 have been identified in kidney epithelial cells. BMP2 has been demonstrated to play various roles in the pathogenesis of renal diseases. However, the role of the BMP2 gene in glomerulonephritis has not been previously investigated. We aimed to evaluate the association of BMP2 gene polymorphisms with immunoglobulin A nephropathy (IgAN) in children. We evaluated 187 pediatric patients with biopsy-confimed IgAN and 262 healthy controls. Two coding single nucleotide polymorphisms (cSNPs) in the BMP2 gene [rs235768 (missense, Arg190Ser) and rs1049007 (synonymous, Ser87Ser)] were selected and genotyped by direct sequencing. Genotypes of rs1049007 were associated with childhood IgAN in the codominant model II (GG vs. AA) [p=0.02; OR (95% CI), 0.16 (0.04-0.70)] and in the recessive model [p=0.0023; OR (95% CI), 0.16 (0.04-0.69)]. We also found an association between rs235768 and IgAN in the codominant model II (TT vs. AA) [p=0.01; OR (95% CI), 0.08 (0.01-0.57)] and in the recessive model [p=0.0002; OR (95% CI), 0.07 (0.01-0.55)]. After Bonferroni correction, these associations of rs235768 and rs1049007 with IgAN risk remained significant. In the haplotype analysis, the TG haplotype [p=0.01; OR (95% CI), 6.76 (1.55-29.50) in the dominant model] and AA haplotype [p=0.01; OR (95% CI), 0.08 (0.01-0.59) in the recessive model] showed associations with IgAN. The BMP2 gene may contribute to susceptibility to IgAN in Korean children.
Collapse
Affiliation(s)
- Jin-Soon Suh
- Department of Pediatrics, East West Kidney Disease Research Institute
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hsing CH, Chou W, Wang JJ, Chen HW, Yeh CH. Propofol increases bone morphogenetic protein-7 and decreases oxidative stress in sepsis-induced acute kidney injury. Nephrol Dial Transplant 2010; 26:1162-72. [PMID: 20864551 DOI: 10.1093/ndt/gfq572] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pro-inflammatory cytokines and free radicals damage renal tissue leading to acute kidney injury (AKI) during sepsis. Bone morphogenetic protein-7 (BMP-7) represses tumour necrosis factor (TNF)-α-induced inflammatory responses and protects kidney from injury. The sedative agent, propofol, has immunomodulatory and antioxidative properties. The present study investigated whether propofol could reduce AKI in caecal ligation and puncture (CLP) mice and the possible mechanism behind this. METHODS Mice were treated with propofol or saline immediately and 12 h after CLP surgery. Kidney injury, survival and cytokine expressions of CLP mice were observed 24 h after CLP surgery. In vitro, lipopolysaccharide (LPS)-stimulated rat mesangial cells (RMCs) or hydrogen peroxide (H(2)O(2))-exposed murine kidney epithelial cells (M1) were treated with propofol. The expression of BMP-7, TNF-α and monocyte chemotactic protein (MCP)-1 in CLP mice kidney, RMCs or M1 cells was determined by RT-PCR. Free radical generation and cell death of RMCs and M1 cells were analysed. Nuclear factor (NF)-κB and peroxisome proliferator-activated receptor (PPAR)-γ expressions in LPS-stimulated RMCs were determined by western blotting. RESULTS Propofol increased survival and ameliorated AKI in CLP mice. Propofol increased BMP-7 expression but decreased TNF-α and MCP-1 expressions in the kidney of CLP mice and LPS-stimulated RMCs. Propofol also inhibited free radical generation and cell death in LPS-stimulated RMCs and decreased the TNF-α expression and cell death in H(2)O(2)-exposed M1 cells. Moreover, propofol decreased NF-κB but increased PPAR-γ expression in LPS-stimulated RMCs. CONCLUSIONS Propofol treatment could protect kidney from sepsis-induced AKI by increasing BMP-7 expression, decreasing inflammatory cytokines and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Chung-Hsi Hsing
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Protective effect of BMP-7 against aristolochic acid-induced renal tubular epithelial cell injury. Toxicol Lett 2010; 198:348-57. [PMID: 20696222 DOI: 10.1016/j.toxlet.2010.07.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/05/2010] [Accepted: 07/29/2010] [Indexed: 11/23/2022]
Abstract
Aristolochic acid nephropathy (AAN) is regarded as a kind of rapidly progressive renal fibrosis caused by the ingestion of herbal remedies containing aristolochic acid (AA). Recent studies showed that bone morphogenetic protein-7 (BMP-7) exerts beneficial effects on acute and chronic kidney injuries induced by different pathological conditions. We examined whether BMP-7 protects human renal tubular epithelial cells (HK-2) against AA-induced injury in vitro. HK-2 cells were cultured with different concentrations of AA and BMP-7 for 48h. Cell viability was determined by Cell Counting Kit-8 assay and lactate dehydrogenase (LDH) release. The apoptosis rate and the activity of caspase 3 protease were also examined. Epithelial-to-mesenchymal transition (EMT) was determined by cell morphology, E-cadherin and α-smooth muscle actin (α-SMA) protein expression, and TGF-β(1) and collagen III secretion. Additionally, the effect of anti-TGF-β1 antibody on AA-induced EMT was assessed. Our results indicated that BMP-7 significantly increased cell proliferation, decreased apoptosis rate and attenuated activation of caspase-3, resulting in the protection of HK-2 cells from AA-induced cytotoxicity. In addition, studies on EMT revealed that BMP-7 could inhibit AA-induced myofibroblast phenotype and restored the epithelial morphology in a dose-dependent manner. It was partially through reducing the activation of a myofibroblast phenotype and production TGF-β1. Treatment with neutralizing anti-TGF-β1 antibody also blocked AA-induced EMT and collagen III secretion. Together, these observations strongly suggest that BMP-7 is a potent inhibitor of AA-induced renal tubular epithelial cell injury and might be a promising agent for aristolochic acid-induced kidney damage.
Collapse
|
20
|
Targeting bone morphogenetic protein signaling on renal and vascular diseases. Curr Opin Nephrol Hypertens 2010; 19:26-31. [PMID: 19823085 DOI: 10.1097/mnh.0b013e328332fc13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Normal development and adult physiology of the kidney and vasculature rely heavily on bone morphogenetic proteins (BMPs). Here we compile evidence that favors the notion that BMPs are also critically involved in the process of generation and maintenance of renal and vascular diseases. RECENT FINDINGS Molecular manipulation of BMP signaling in vivo and in vitro has been instrumental in showing the protective role of BMPs on renal fibrosis and diabetic nephropathy. Similarly, activation of those pathways produces phenotypic changes in vascular smooth muscle and endothelial cells, tightly linked to the pathogenesis of vascular calcification, hypertrophy and atherosclerosis. SUMMARY Gain-of-function and loss-of-function experiments targeting BMP pathway agonists and inhibitors lead to significant progress in the comprehension of renal and vascular normal and altered behavior. The demonstration that BMP signaling plays an important part in pathological conditions of the vasculature and the kidney opens up possibilities for the development of diagnostic and therapeutic tools.
Collapse
|
21
|
Tanaka M, Asada M, Higashi AY, Nakamura J, Oguchi A, Tomita M, Yamada S, Asada N, Takase M, Okuda T, Kawachi H, Economides AN, Robertson E, Takahashi S, Sakurai T, Goldschmeding R, Muso E, Fukatsu A, Kita T, Yanagita M. Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome. J Clin Invest 2010; 120:768-77. [PMID: 20197625 DOI: 10.1172/jci39569] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The glomerular basement membrane (GBM) is a key component of the filtering unit in the kidney. Mutations involving any of the collagen IV genes (COL4A3, COL4A4, and COL4A5) affect GBM assembly and cause Alport syndrome, a progressive hereditary kidney disease with no definitive therapy. Previously, we have demonstrated that the bone morphogenetic protein (BMP) antagonist uterine sensitization-associated gene-1 (USAG-1) negatively regulates the renoprotective action of BMP-7 in a mouse model of tubular injury during acute renal failure. Here, we investigated the role of USAG-1 in renal function in Col4a3-/- mice, which model Alport syndrome. Ablation of Usag1 in Col4a3-/- mice led to substantial attenuation of disease progression, normalization of GBM ultrastructure, preservation of renal function, and extension of life span. Immunohistochemical analysis revealed that USAG-1 and BMP-7 colocalized in the macula densa in the distal tubules, lying in direct contact with glomerular mesangial cells. Furthermore, in cultured mesangial cells, BMP-7 attenuated and USAG-1 enhanced the expression of MMP-12, a protease that may contribute to GBM degradation. These data suggest that the pathogenetic role of USAG-1 in Col4a3-/- mice might involve crosstalk between kidney tubules and the glomerulus and that inhibition of USAG-1 may be a promising therapeutic approach for the treatment of Alport syndrome.
Collapse
Affiliation(s)
- Mari Tanaka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yeh CH, Chang CK, Cheng MF, Lin HJ, Cheng JT. The antioxidative effect of bone morphogenetic protein-7 against high glucose-induced oxidative stress in mesangial cells. Biochem Biophys Res Commun 2009; 382:292-7. [PMID: 19275892 DOI: 10.1016/j.bbrc.2009.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
Abstract
Bone morphogenetic protein-7 (BMP-7) protects kidneys from diabetic nephropathy (DN), and high glucose (HG)-induced oxidative stress is involved in DN. We investigated the antioxidative ability of BMP-7 using HG-treated mesangial cells. We treated rat mesangial cells (RMCs) with recombinant human BMP-7 (rhBMP-7) and examined changes in reactive oxygen species (ROS) levels and intracellular signals in response to HG-induced oxidative stress. rhBMP-7 decreased the level of ROS in HG-treated RMCs. In contrast, lowering endogenous BMP-7 by siRNA or BMP receptor II (BMP-RII) by anti-BMP-RII antibodies increased the level of ROS in HG-treated RMCs. rhBMP-7 increased Smad-1,5,8 phosphorylation, decreased PKCzeta and c-Jun N-terminal kinase (JNK) phosphorylation, and decreased fibronectin and collagen IV synthesis in HG-treated RMCs. In conclusion, we found that BMP-7 could protect mesangial cells from HG-induced oxidative stress by activating BMP-RII. The antioxidative activity of BMP-7 was primarily due to inhibition of PKCzeta, JNK phosphorylation, and c-jun activation.
Collapse
Affiliation(s)
- Ching-Hua Yeh
- Institute of Basic Medical Sciences and Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Xiao J, Leung JCK, Chan LYY, Guo H, Lai KN. Protective effect of peroxisome proliferator-activated receptor-gamma agonists on activated renal proximal tubular epithelial cells in IgA nephropathy. Nephrol Dial Transplant 2009; 24:2067-77. [PMID: 19155534 DOI: 10.1093/ndt/gfn746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We have previously demonstrated a glomerulo-tubular 'crosstalk' operating in the pathogenesis of tubulointerstitial injury in IgA nephropathy (IgAN). The present study aims to explore any possible beneficial effect of a peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist in alleviating the tubulointerstitial inflammation in IgAN. METHODS Human proximal tubular epithelial cells (PTEC) were pre-treated with increasing concentration of a PPAR-gamma agonist rosiglitazone or troglitazone (0-5 microM) followed by further incubation with the conditioned medium (IgA-HMC) collected from human mesangial cells (HMC) incubated with polymeric IgA isolated from IgAN patients. Gene expression of interleukin-6 (IL-6) and angiotensin II type 1 receptor (ATR1) was detected by reverse transcription-polymerase chain reaction (RT-PCR); protein expression of IL-6 and ATR1 was determined by ELISA and western blot, respectively. The mitogen-activated protein kinase extracellular signal-related kinase 1/2 (ERK1/2) activation was examined by western blot. RESULTS An IgA-HMC conditioned medium prepared from IgAN patients increased gene expression and protein synthesis of IL-6 and ATR1 in PTEC when compared with a conditioned medium prepared from healthy controls. The upregulated gene expression and protein synthesis of IL-6 and ATR1 in PTEC induced by the IgA-HMC conditioned medium were readily attenuated following pre-treatment with a PPAR-gamma agonist, thiazolidinedione (TZD). The ATR1-downregulating effect exerted by the PPAR-gamma agonist occurred through the inhibition of ERK1/2 activation. The PPAR-gamma antagonist, GW9662, significantly attenuated the inhibitory action of rosiglitazone on the increased synthesis of IL-6 and ATR1 protein. CONCLUSION Our current findings suggest that the PPAR-gamma agonist attenuates excessive inflammatory response in activated PTEC in IgAN through suppressing ATR1 expression. This ATR1-downregulating effect is likely through the inhibition of ERK1/2 activation and is found to be PPAR-gamma dependent. TZDs may possibly be new therapeutic additives to established treatment regime for renin-angiotensin system (RAS) blockade in IgAN.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|