1
|
Yáñez AJ, Jaramillo K, Silva P, Yáñez A M, Sandoval M, Carpio D, Aguilar M. Sodium tungstate (NaW) decreases inflammation and renal fibrosis in diabetic nephropathy. Am J Med Sci 2024; 368:518-531. [PMID: 38944202 DOI: 10.1016/j.amjms.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Diabetic Nephropathy is one of the most severe complications of Diabetes Mellitus and the main cause of end-stage kidney disease worldwide. Despite the therapies available to control blood glucose and blood pressure, many patients continue to suffer from progressive kidney damage. Chronic hyperglycemia is the main driver of changes observed in diabetes; however, it was recently discovered that inflammation and oxidative stress contribute to the development and progression of kidney damage. Therefore, it is important to search for new pharmacological therapies that stop the progression of DN. Sodium tungstate (NaW) is an effective short and long-term antidiabetic agent in both type 1 and type 2 diabetes models. METHODS In this study, the effect of NaW on proinflammatory signalling pathways, proinflammatory proteins and fibrosis in the streptozotocin (STZ)-induced type 1 diabetic rat model was analysed using histological analysis, western blotting and immunohistochemistry. RESULTS NaW treatment in diabetic rats normalize parameters such as glycemia, glucosuria, albuminuria/creatinuria, glomerular damage, and tubulointerstitial damage. NaW decreased the proinflammatory signaling pathway NF-κB, inflammatory markers (ICAM-1, MCP-1 and OPN), profibrotic pathways (TGFβ1/Smad2/3), reduced epithelial-mesenchymal transition (α -SMA), and decreased renal fibrosis (type IV collagen). CONCLUSION NaW could be an effective drug therapy for treating human diabetic nephropathy.
Collapse
Affiliation(s)
- Alejandro J Yáñez
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Universidad de Concepción, Chile; Research and Development Department, Greenvolution SpA. Puerto Varas, Chile.
| | - Karen Jaramillo
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Pamela Silva
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Mariana Yáñez A
- Facultad de Medicina y Ciencias, Campus de la Patagonia, Universidad San Sebastian, 5480000 Puerto Montt, Chile
| | - Moises Sandoval
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Daniel Carpio
- Facultad de Medicina, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Marcelo Aguilar
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile.
| |
Collapse
|
2
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
3
|
Wang S, Chen S, Gao Y, Zhou H. Bioinformatics led discovery of biomarkers related to immune infiltration in diabetes nephropathy. Medicine (Baltimore) 2023; 102:e34992. [PMID: 37656997 PMCID: PMC10476789 DOI: 10.1097/md.0000000000034992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/08/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND The leading cause of end-stage renal disease is diabetic nephropathy (DN). A key factor in DN is immune cell infiltration (ICI). It has been shown that immune-related genes play a significant role in inflammation and immune cell recruitment. However, neither the underlying mechanisms nor immune-related biomarkers have been identified in DNs. Using bioinformatics, this study investigated biomarkers associated with immunity in DN. METHODS Using bioinformatic methods, this study aimed to identify biomarkers and immune infiltration associated with DN. Gene expression profiles (GSE30528, GSE47183, and GSE104948) were selected from the Gene Expression Omnibus database. First, we identified 23 differentially expressed immune-related genes and 7 signature genes, LYZ, CCL5, ALB, IGF1, CXCL2, NR4A2, and RBP4. Subsequently, protein-protein interaction networks were created, and functional enrichment analysis and genome enrichment analysis were performed using the gene ontology and Kyoto Encyclopedia of Genes and Genome databases. In the R software, the ConsensusClusterPlus package identified 2 different immune modes (cluster A and cluster B) following the consistent clustering method. The infiltration of immune cells between the 2 clusters was analyzed by applying the CIBERSORT method. And preliminarily verified the characteristic genes through in vitro experiments. RESULTS In this study, the samples of diabetes nephropathy were classified based on immune related genes, and the Hub genes LYZ, CCL5, ALB, IGF1, CXCL2, NR4A2 and RBP4 related to immune infiltration of diabetes nephropathy were obtained through the analysis of gene expression differences between different subtypes. CONCLUSIONS This study was based on bioinformatics technology to analyze the biomarkers of immune related genes in diabetes nephropathy. To analyze the pathogenesis of diabetes nephropathy at the RNA level, and ultimately provide guidance for disease diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Shuo Wang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, People’s Republic of China
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Shengwu Chen
- Department of Orthopaedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Yixuan Gao
- Department of Orthopaedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Hongli Zhou
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, People’s Republic of China
- Department of Nephrology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| |
Collapse
|
4
|
Jin S, Song Y, Zhou L, Jiang W, Qin L, Wang Y, Yu R, Liu Y, Diao Y, Zhang F, Liu K, Li P, Hu H, Jiang B, Tang W, Yi F, Gong Y, Liu G, Sun G. Depletion of CUL4B in macrophages ameliorates diabetic kidney disease via miR-194-5p/ITGA9 axis. Cell Rep 2023; 42:112550. [PMID: 37224018 DOI: 10.1016/j.celrep.2023.112550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/26/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most prevalent chronic kidney disease. Macrophage infiltration in the kidney is critical for the progression of DKD. However, the underlying mechanism is far from clear. Cullin 4B (CUL4B) is the scaffold protein in CUL4B-RING E3 ligase complexes. Previous studies have shown that depletion of CUL4B in macrophages aggravates lipopolysaccharide-induced peritonitis and septic shock. In this study, using two mouse models for DKD, we demonstrate that myeloid deficiency of CUL4B alleviates diabetes-induced renal injury and fibrosis. In vivo and in vitro analyses reveal that loss of CUL4B suppresses migration, adhesion, and renal infiltration of macrophages. Mechanistically, we show that high glucose upregulates CUL4B in macrophages. CUL4B represses expression of miR-194-5p, which leads to elevated integrin α9 (ITGA9), promoting migration and adhesion. Our study suggests the CUL4B/miR-194-5p/ITGA9 axis as an important regulator for macrophage infiltration in diabetic kidneys.
Collapse
Affiliation(s)
- Shiqi Jin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yu Song
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Li Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liping Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ruiqi Yu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuting Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yujie Diao
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kaixuan Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peishan Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guangyi Liu
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Sinha SK, Mellody M, Carpio MB, Damoiseaux R, Nicholas SB. Osteopontin as a Biomarker in Chronic Kidney Disease. Biomedicines 2023; 11:1356. [PMID: 37239027 PMCID: PMC10216241 DOI: 10.3390/biomedicines11051356] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Osteopontin (OPN) is a ubiquitously expressed protein with a wide range of physiological functions, including roles in bone mineralization, immune regulation, and wound healing. OPN has been implicated in the pathogenesis of several forms of chronic kidney disease (CKD) where it promotes inflammation and fibrosis and regulates calcium and phosphate metabolism. OPN expression is increased in the kidneys, blood, and urine of patients with CKD, particularly in those with diabetic kidney disease and glomerulonephritis. The full-length OPN protein is cleaved by various proteases, including thrombin, matrix metalloproteinase (MMP)-3, MMP-7, cathepsin-D, and plasmin, producing N-terminal OPN (ntOPN), which may have more detrimental effects in CKD. Studies suggest that OPN may serve as a biomarker in CKD, and while more research is needed to fully evaluate and validate OPN and ntOPN as CKD biomarkers, the available evidence suggests that they are promising candidates for further investigation. Targeting OPN may be a potential treatment strategy. Several studies show that inhibition of OPN expression or activity can attenuate kidney injury and improve kidney function. In addition to its effects on kidney function, OPN has been linked to cardiovascular disease, which is a major cause of morbidity and mortality in patients with CKD.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Division of Endocrinology, Molecular Medicine and Metabolism, Charles R. Drew University of Science and Medicine, Los Angeles, CA 90059, USA
| | - Michael Mellody
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA;
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
6
|
Zhu B, Fang J, Ju Z, Chen Y, Wang L, Wang H, Xing L, Cao A. Zuogui Wan ameliorates high glucose-induced podocyte apoptosis and improves diabetic nephropathy in db/db mice. Front Pharmacol 2022; 13:991976. [PMID: 36386214 PMCID: PMC9663993 DOI: 10.3389/fphar.2022.991976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Zuogui Wan (ZGW), a well-known traditional Chinese medicine (TCM), has been used to nourish “Kidney-Yin” for a long time in China, implying a protective effect on the kidney. The aim of the present study is to investigate the effect of ZGW on high glucose-induced podocyte apoptosis and diabetic nephropathy (DN) in db/db mice. ZGW (1 g/kg−1/day−1) was administered intragastrically to db/db mice for 8 weeks. HPLC was used for identifying the components of ZGW, biochemical and histopathological approaches were used for evaluating its therapeutic effects, and cultured mouse podocytes were used for further exploring its underlying mechanism in vitro. ZGW improved renal function and podocyte loss and also normalized kidney reactive oxygen species production in db/db mice. The cytotoxicity of ZGW on mouse podocytes was assessed by the LDH assay. The effect of ZGW on podocyte viability and apoptosis was determined with CCK-8 and Annexin-V/PI staining by treatment with high glucose. ZGW attenuated podocyte apoptosis, and oxidative stress was detected by the peroxide-sensitive fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA) staining in a dose-dependent manner. Furthermore, ZGW decreased the expression of caspase-3 and phospho-p38 in both the kidney cortex and high glucose-treated podocytes. Thus, our data from in vivo and in vitro studies demonstrated that ZGW improved renal injury in diabetes by inhibiting oxidative stress and podocyte apoptosis.
Collapse
Affiliation(s)
- Bingbing Zhu
- Department of Nephrology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji Fang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengcai Ju
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Chen
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Xing
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Lina Xing, ; Aili Cao,
| | - Aili Cao
- Department of Nephrology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Lina Xing, ; Aili Cao,
| |
Collapse
|
7
|
Polat R, Özdemir Ö. Spondyloenchondrodysplasia Due to Mutation in ACP5 Gene Presenting
with Nephrotic Syndrome: A Case Report. AKTUEL RHEUMATOL 2022. [DOI: 10.1055/a-1806-0918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractSpondyloenchondrodysplasia (SPENCD) with immune dysregulation (SPENCDI) is a rare
autosomal recessive inherited immuno-osseous dysplasia characterized by
spondylo-metaphyseal enchondromas, along with immune dysregulation ranging from
immunodeficiency to autoimmune disorder. Here, we present two cousins with
ACP5 gene mutation who had severe short stature with mild
hypogammaglobulinemia, nephrotic syndrome, autoimmune thyroiditis and cerebral
calcification (Case 1); and in the other (Case 2), there was no clinical
findings other than severe short stature, CD4+−T cell
lymphopenia and non-autoimmune compensated hypothyroidism. We wanted to
emphasize that monogenic causes should be considered in the etiology of
early-onset nephrotic syndrome due to the detection of a mutation in the
ACP5 gene (her actual diagnosis was changed to SPENCDI.) 5 years
after the diagnosis of nephrotic syndrome in the first case, and that the renal
involvement may occur without SLE in patients with ACP5 mutation. Severe
short stature was a common finding in both cases. We underlined that the clinic
can be different even in the same mutation, due to the absence of cerebral
calcification and renal involvement in the second case, which is a cousin with
Case 1. As a result, endocrinologists, immunologists, rheumatologists,
nephrologists and orthopedists should be aware of this syndrome, because SPENCDI
causes a pleiotropic (due to more than one phenotypic effect of a gene) clinical
picture. Severe short stature may be the only presenting sign of patients with
SPENCDI. In addition, in the presence of early-onset nephrotic syndrome and
autoimmune thyroiditis, the patient should be evaluated for this type of
monogenic disorders as well.
Collapse
Affiliation(s)
- Recep Polat
- Department of Pediatric Endocrinology, Sakarya Training and Research
Hospital, Sakarya, Turkey
- Division of Allergy and Immunology, Department of Pediatrics, Sakarya
Training and Research Hospital, Sakarya, Turkey
| | - Öner Özdemir
- Division of Allergy and Immunology, Department of Pediatrics, Sakarya
Training and Research Hospital, Sakarya, Turkey
| |
Collapse
|
8
|
Sinha SK, Sun L, Didero M, Martins D, Norris KC, Lee JE, Meng YX, Sung JH, Sayre M, Carpio MB, Nicholas SB. Vitamin D3 Repletion Improves Vascular Function, as Measured by Cardiorenal Biomarkers in a High-Risk African American Cohort. Nutrients 2022; 14:3331. [PMID: 36014837 PMCID: PMC9414215 DOI: 10.3390/nu14163331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background: 25-hydroxy vitamin D (Vit D)-deficiency is common among patients with chronic kidney disease (CKD) and contributes to cardiovascular disease (CVD). African Americans (AAs) suffer disproportionately from CKD and CVD, and 80% of AAs are Vit D-deficient. The impact of Vit D repletion on cardio-renal biomarkers in AAs is unknown. We examined Vit D repletion on full-length osteopontin (flOPN), c-terminal fibroblast growth factor-23 (FGF-23), and plasminogen activator inhibitor-1 (PAI-1), which are implicated in vascular and kidney pathology. Methods: We performed a randomized, placebo-controlled study of high-risk AAs with Vit D deficiency, treated with 100,000 IU Vit D3 (cholecalciferol; n = 65) or placebo (n = 65) every 4 weeks for 12 weeks. We measured kidney function (CKD-EPI eGFR), protein-to-creatinine ratio, vascular function (pulse wave velocity; PWV), augmentation index, waist circumference, sitting, and 24-h-ambulatory blood pressure (BP), intact parathyroid hormone (iPTH) and serum calcium at baseline and study end, and compared Vit D levels with laboratory variables. We quantified plasma FGF-23, PAI-1, and flOPN by enzyme-linked immunosorbent assay. Multiple regression analyzed the relationship between log flOPN, FGF-23, and PAI-1 with vascular and renal risk factors. Results: Compared to placebo, Vit D3 repletion increased Vit D3 2-fold (p < 0.0001), decreased iPTH by 12% (p < 0.01) and was significantly correlated with PWV (p < 0.009). Log flOPN decreased (p = 0.03), log FGF-23 increased (p = 0.04), but log PAI-1 did not change. Multiple regression indicated association between log flOPN and PWV (p = 0.04) and diastolic BP (p = 0.02), while log FGF-23 was associated with diastolic BP (p = 0.05), and a trend with eGFR (p = 0.06). Conclusion: Vit D3 repletion may reduce flOPN and improve vascular function in high risk AAs with Vit D deficiency.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Ling Sun
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Michelle Didero
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - David Martins
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Keith C. Norris
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Jae Eun Lee
- Department of Epidemiology and Biostatistics, School of Health, Jackson State University, Jackson, MS 39217, USA
| | - Yuan-Xiang Meng
- Department of Family Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Jung Hye Sung
- Department of Epidemiology and Biostatistics, School of Health, Jackson State University, Jackson, MS 39217, USA
| | - Michael Sayre
- National Institute of Health, National Institute of Minority Health and Health Disparities, Bethesda, MD 20892, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Investigating Polyphenol Nanoformulations for Therapeutic Targets against Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5649156. [PMID: 35832521 PMCID: PMC9273389 DOI: 10.1155/2022/5649156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a fatal metabolic disorder, and its prevalence has escalated in recent decades to a greater extent. Since the incidence and severity of the disease are constantly increasing, plenty of therapeutic approaches are being considered as a promising solution. Many dietary polyphenols have been reported to be effective against diabetes along with its accompanying vascular consequences by targeting multiple therapeutic targets. Additionally, the biocompatibility of these polyphenols raises questions about their use as pharmacological mediators. Nevertheless, the pharmacokinetic and biopharmaceutical properties of these polyphenols limit their clinical benefit as therapeutics. Pharmaceutical industries have attempted to improve compliance and therapeutic effects. However, nanotechnological approaches to overcome the pharmacokinetic and biopharmaceutical barriers associated with polyphenols as antidiabetic medications have been shown to be effective to improve clinical compliance and efficacy. Therefore, this review highlighted a comprehensive and up-to-date assessment of polyphenol nanoformulations in the treatment of diabetes and vascular consequences.
Collapse
|
10
|
The Most Promising Biomarkers of Allogeneic Kidney Transplant Rejection. J Immunol Res 2022; 2022:6572338. [PMID: 35669103 PMCID: PMC9167141 DOI: 10.1155/2022/6572338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022] Open
Abstract
Clinical transplantology is a constantly evolving field of medicine. Kidney transplantation has become standard clinical practice, and it has a significant impact on reducing mortality and improving the quality of life of patients. Allogenic transplantation induces an immune response, which may lead to the rejection of the transplanted organ. The gold standard for evaluating rejection of the transplanted kidney by the recipient's organism is a biopsy of this organ. However, due to the high invasiveness of this procedure, alternative diagnostic methods are being sought. Therefore, the biomarkers may play an essential predictive role in transplant rejection. A review of the most promising biomarkers for early diagnosis and prognosis prediction of allogenic kidney transplant rejection summarizes novel data on neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), C-X-C motif chemokine 10 (CXCL-10), cystatin C (CysC), osteopontin (OPN), and clusterin (CLU) and analyses the dynamics of changes of the biomarkers mentioned above in kidney diseases and the mechanism of rejection of the transplanted kidney.
Collapse
|
11
|
Collins KS, Eadon MT, Cheng YH, Barwinska D, Melo Ferreira R, McCarthy TW, Janosevic D, Syed F, Maier B, El-Achkar TM, Kelly KJ, Phillips CL, Hato T, Sutton TA, Dagher PC. Alterations in Protein Translation and Carboxylic Acid Catabolic Processes in Diabetic Kidney Disease. Cells 2022; 11:cells11071166. [PMID: 35406730 PMCID: PMC8997785 DOI: 10.3390/cells11071166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease despite decades of study. Alterations in the glomerulus and kidney tubules both contribute to the pathogenesis of DKD although the majority of investigative efforts have focused on the glomerulus. We sought to examine the differential expression signature of human DKD in the glomerulus and proximal tubule and corroborate our findings in the db/db mouse model of diabetes. A transcriptogram network analysis of RNAseq data from laser microdissected (LMD) human glomerulus and proximal tubule of DKD and reference nephrectomy samples revealed enriched pathways including rhodopsin-like receptors, olfactory signaling, and ribosome (protein translation) in the proximal tubule of human DKD biopsy samples. The translation pathway was also enriched in the glomerulus. Increased translation in diabetic kidneys was validated using polyribosomal profiling in the db/db mouse model of diabetes. Using single nuclear RNA sequencing (snRNAseq) of kidneys from db/db mice, we prioritized additional pathways identified in human DKD. The top overlapping pathway identified in the murine snRNAseq proximal tubule clusters and the human LMD proximal tubule compartment was carboxylic acid catabolism. Using ultra-performance liquid chromatography–mass spectrometry, the fatty acid catabolism pathway was also found to be dysregulated in the db/db mouse model. The Acetyl-CoA metabolite was down-regulated in db/db mice, aligning with the human differential expression of the genes ACOX1 and ACACB. In summary, our findings demonstrate that proximal tubular alterations in protein translation and carboxylic acid catabolism are key features in both human and murine DKD.
Collapse
Affiliation(s)
- Kimberly S. Collins
- Division of Nephrology and Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.S.C.); (M.T.E.); (R.M.F.)
| | - Michael T. Eadon
- Division of Nephrology and Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.S.C.); (M.T.E.); (R.M.F.)
| | - Ying-Hua Cheng
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Ricardo Melo Ferreira
- Division of Nephrology and Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.S.C.); (M.T.E.); (R.M.F.)
| | - Thomas W. McCarthy
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Danielle Janosevic
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Farooq Syed
- Department of Pediatrics and Herman B. Wells Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Bernhard Maier
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Tarek M. El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Katherine J. Kelly
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Carrie L. Phillips
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Takashi Hato
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
| | - Timothy A. Sutton
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
- Correspondence: (T.A.S.); (P.C.D.); Tel.: +1-317-274-7543 (T.A.S.); +1-317-278-2867 (P.C.D.); Fax: 317-274-8575 (T.A.S. & P.C.D.)
| | - Pierre C. Dagher
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.-H.C.); (D.B.); (T.W.M.); (D.J.); (B.M.); (T.M.E.-A.); (K.J.K.); (T.H.)
- Correspondence: (T.A.S.); (P.C.D.); Tel.: +1-317-274-7543 (T.A.S.); +1-317-278-2867 (P.C.D.); Fax: 317-274-8575 (T.A.S. & P.C.D.)
| |
Collapse
|
12
|
Fu J, Yi Z, Cai M, Yuan W, Zhang W, Lee K, He JC. Global transcriptomic changes in glomerular endothelial cells in mice with podocyte depletion and glomerulosclerosis. Cell Death Dis 2021; 12:687. [PMID: 34244474 PMCID: PMC8270962 DOI: 10.1038/s41419-021-03951-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
Podocytes are a key component of the glomerular filtration barrier, and its dysfunction and eventual loss drive glomerular disease progression. Recent research has demonstrated the importance of podocyte cross-talk with other glomerular cells, such as glomerular endothelial cells (GECs), in both glomerular homeostasis and in disease settings. However, how GECs are affected globally by podocyte injury and loss in disease settings remains unclear. Therefore, to characterize the molecular changes occurring in GECs in response to the podocyte loss, we performed the transcriptomic profiling of isolated GECs after diphtheria toxin (DT)-mediated podocyte depletion in transgenic mice with podocyte-specific human DT receptor and endothelial-specific enhanced yellow fluorescent protein (EYFP) expression. DT administration led to nearly 40% of podocyte loss with the development of glomerulosclerosis. Differential gene expression analysis of isolated GECs in the diseased mice showed significant changes in pathways related to cell adhesion and actin cytoskeleton, proliferation, and angiogenesis, as well as apoptosis and cell death. However, quantification of EYFP + GECs indicated that there was a reduction in GECs in the diseased mice, suggesting that despite the ongoing proliferation, the concomitant injury and the activation of cell death program results in their overall net loss. The upstream regulator analysis strongly indicated the involvement of p53, TGF-β1, and TNF-α as key mediators of the molecular changes occurring in GECs in the diseased mice. Our findings demonstrate significant molecular changes in GECs as a secondary consequence of podocyte loss and provide a valuable resource for further in-depth analysis of potential glomerular cross-talk mediators.
Collapse
Affiliation(s)
- Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Zhengzi Yi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minchao Cai
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Renal Program, James J. Peters Veterans Affairs Medical Center at Bronx, New York, NY, USA.
| |
Collapse
|
13
|
Moratal C, Laurain A, Naïmi M, Florin T, Esnault V, Neels JG, Chevalier N, Chinetti G, Favre G. Regulation of Monocytes/Macrophages by the Renin-Angiotensin System in Diabetic Nephropathy: State of the Art and Results of a Pilot Study. Int J Mol Sci 2021; 22:ijms22116009. [PMID: 34199409 PMCID: PMC8199594 DOI: 10.3390/ijms22116009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy (DN) is characterized by albuminuria, loss of renal function, renal fibrosis and infiltration of macrophages originating from peripheral monocytes inside kidneys. DN is also associated with intrarenal overactivation of the renin-angiotensin system (RAS), an enzymatic cascade which is expressed and controlled at the cell and/or tissue levels. All members of the RAS are present in the kidneys and most of them are also expressed in monocytes/macrophages. This review focuses on the control of monocyte recruitment and the modulation of macrophage polarization by the RAS in the context of DN. The local RAS favors the adhesion of monocytes on renal endothelial cells and increases the production of monocyte chemotactic protein-1 and of osteopontin in tubular cells, driving monocytes into the kidneys. There, proinflammatory cytokines and the RAS promote the differentiation of macrophages into the M1 proinflammatory phenotype, largely contributing to renal lesions of DN. Finally, resolution of the inflammatory process is associated with a phenotype switch of macrophages into the M2 anti-inflammatory subset, which protects against DN. The pharmacologic interruption of the RAS reduces albuminuria, improves the trajectory of the renal function, decreases macrophage infiltration in the kidneys and promotes the switch of the macrophage phenotype from M1 to M2.
Collapse
Affiliation(s)
- Claudine Moratal
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
- Correspondence:
| | - Audrey Laurain
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Mourad Naïmi
- Université Côte d’Azur, CHU, 06000 Nice, France;
| | - Thibault Florin
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Vincent Esnault
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Jaap G. Neels
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
| | - Nicolas Chevalier
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Giulia Chinetti
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Guillaume Favre
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| |
Collapse
|
14
|
Zhang L, Huang C, Fan S. Mangiferin and organ fibrosis: A mini review. Biofactors 2021; 47:59-68. [PMID: 33217771 DOI: 10.1002/biof.1693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is the end stage of many chronic diseases, which results in organ function failure and high mortality. Mangiferin is a major constituent in mango and other 16 plants, and has been shown a variety of pharmacological effects, such as antioxidant, antibacterial, anti-tumor, anti-inflammation. The emerging evidence has shown that mangiferin can improve renal interstitial fibrosis, pulmonary fibrosis, myocardial fibrosis and hepatic fibrosis through the inhibition of inflammation, oxidative stress and fibrogenesis effects, indicating that mangiferin is promising therapeutic choice for organ fibrosis. The aim of this review is to summarize the therapeutic effects of mangiferin on fibrosis of various organs and the underlying mechanisms.
Collapse
Affiliation(s)
- Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Zhang Y, Li W, Zhou Y. Identification of hub genes in diabetic kidney disease via multiple-microarray analysis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:997. [PMID: 32953797 PMCID: PMC7475500 DOI: 10.21037/atm-20-5171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease; however, the underlying molecular mechanisms remain unclear. Recently, bioinformatics analysis has provided a comprehensive insight toward the molecular mechanisms of DKD. Here, we re-analyzed three mRNA microarray datasets including a single-cell RNA sequencing (scRNA-seq) dataset, with the aim of identifying crucial genes correlated with DKD and contribute to a better understanding of DKD pathogenesis. Methods Three datasets including GSE131882, GSE30122, and GSE30529 were utilized to find differentially expressed genes (DEGs). The potential functions of DEGs were analyzed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. A protein-protein interaction (PPI) network was constructed, and hub genes were selected with the top three molecular complex detection (MCODE) score. A correlation analysis between hub genes and clinical indicators was also performed. Results In total, 84 upregulated DEGs and 49 downregulated DEGs were identified. Enriched pathways of the upregulated DEGs included extracellular matrix (ECM) receptor interaction, focal adhesion, human papillomavirus infection, malaria, and cell adhesion molecules. The downregulated DEGs were mainly enriched in ascorbate and aldarate metabolism, arginine and proline metabolism, endocrine- and other factor-regulated calcium reabsorption, mineral absorption and longevity regulating pathway, and multiple species signaling pathway. Seventeen hub genes were identified, and correlation analysis between unexplored hub genes and clinical features of DKD suggested that EGF, KNG1, GADD45B, and CDH2 might have reno-protective roles in DKD. Meanwhile, ATF3, B2M, VCAM1, CLDN4, SPP1, SOX9, JAG1, C3, and CD24 might promote the progression of DKD. Finally, most hub genes were found present in the immune cells of diabetic kidneys, which suggest the important role of inflammation infiltration in DKD pathogenesis. Conclusions In this study, we found seventeen hub genes using a scRNA-seq contained multiple-microarray analysis, which enriched the present understanding of molecular mechanisms underlying the pathogenesis of DKD in cells' level and provided candidate targets for diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Wei Li
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Diabetes, Medical School, Southeast University, Nanjing, China.,Suzhou Hospital Affiliated To Anhui Medical University, Suzhou, China
| | - Yunting Zhou
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Diabetes, Medical School, Southeast University, Nanjing, China.,Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Nardo AD, Grün NG, Zeyda M, Dumanic M, Oberhuber G, Rivelles E, Helbich TH, Markgraf DF, Roden M, Claudel T, Trauner M, Stulnig TM. Impact of osteopontin on the development of non-alcoholic liver disease and related hepatocellular carcinoma. Liver Int 2020; 40:1620-1633. [PMID: 32281248 PMCID: PMC7384114 DOI: 10.1111/liv.14464] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Osteopontin, a multifunctional protein and inflammatory cytokine, is overexpressed in adipose tissue and liver in obesity and contributes to the induction of adipose tissue inflammation and non-alcoholic fatty liver (NAFL). Studies performed in both mice and humans also point to a potential role for OPN in malignant transformation and tumour growth. To fully understand the role of OPN on the development of NAFL-derived hepatocellular carcinoma (HCC), we applied a non-alcoholic steatohepatitis (NASH)-HCC mouse model on osteopontin-deficient (Spp1-/- ) mice analysing time points of NASH, fibrosis and HCC compared to wild-type mice. METHODS Two-day-old wild-type and Spp1-/- mice received a low-dose streptozotocin injection in order to induce diabetes, and were fed a high-fat diet starting from week 4. Different cohorts of mice of both genotypes were sacrificed at 8, 12 and 19 weeks of age to evaluate the NASH, fibrosis and HCC phenotypes respectively. RESULTS Spp1-/- animals showed enhanced hepatic lipid accumulation and aggravated NASH, as also increased hepatocellular apoptosis and accelerated fibrosis. The worse steatotic and fibrotic phenotypes observed in Spp1-/- mice might be driven by enhanced hepatic fatty acid influx through CD36 overexpression and by a pathological accumulation of specific diacylglycerol species during NAFL. Lack of osteopontin lowered systemic inflammation, prevented HCC progression to less differentiated tumours and improved overall survival. CONCLUSIONS Lack of osteopontin dissociates NASH-fibrosis severity from overall survival and HCC malignant transformation in NAFLD, and is therefore a putative therapeutic target only for advanced chronic liver disease.
Collapse
Affiliation(s)
- Alexander D. Nardo
- Christian Doppler Laboratory for Cardio‐Metabolic Immunotherapy and Clinical Division of Endocrinology and MetabolismDepartment of Medicine IIIMedical University of ViennaViennaAustria,Present address:
Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology & HepatologyMedical University of ViennaVienna1090Austria
| | - Nicole G. Grün
- Christian Doppler Laboratory for Cardio‐Metabolic Immunotherapy and Clinical Division of Endocrinology and MetabolismDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Maximilian Zeyda
- Christian Doppler Laboratory for Cardio‐Metabolic Immunotherapy and Clinical Division of Endocrinology and MetabolismDepartment of Medicine IIIMedical University of ViennaViennaAustria,Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Monika Dumanic
- Division of Nuclear MedicineDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Georg Oberhuber
- Department of PathologyGeneral Hospital of InnsbruckInnsbruckAustria
| | - Elisa Rivelles
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Thomas H. Helbich
- Division of Nuclear MedicineDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria,Division of Molecular and Gender ImagingDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Daniel F. Markgraf
- German Diabetes CenterLeibniz Center for Diabetes ResearchInstitute for Clinical DiabetologyHeinrich Heine UniversityDüsseldorfGermany
| | - Michael Roden
- German Diabetes CenterLeibniz Center for Diabetes ResearchInstitute for Clinical DiabetologyHeinrich Heine UniversityDüsseldorfGermany,German Center of Diabetes Research (DZD e.V.)München‐NeuherbergGermany,Division of Endocrinology and DiabetologyMedical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology & HepatologyMedical University of ViennaViennaAustria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology & HepatologyMedical University of ViennaViennaAustria
| | - Thomas M. Stulnig
- Christian Doppler Laboratory for Cardio‐Metabolic Immunotherapy and Clinical Division of Endocrinology and MetabolismDepartment of Medicine IIIMedical University of ViennaViennaAustria,Present address:
Third Department of Medicine and Karl Landsteiner Institute for Metabolic Diseases and NephrologyHietzing HospitalVienna1130Austria
| |
Collapse
|
17
|
Duan P, Chen S, Zeng Y, Xu H, Liu Y. Osteopontin Upregulates Col IV Expression by Repressing miR-29a in Human Retinal Capillary Endothelial Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:242-251. [PMID: 32182570 PMCID: PMC7078126 DOI: 10.1016/j.omtn.2020.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 01/04/2023]
Abstract
Abnormal synthesis of extracellular matrix (ECM), especially collagen type IV (Col IV), in human retinal capillary endothelial cells (HRCECs) and resultant basement membrane (BM) thickening is the most prominent and characteristic feature of early diabetic retinopathy (DR). Osteopontin (OPN) has been shown to play an important role in the pathogenesis of DR and specifically, found to be critically involved in diabetic nephropathy, as it can upregulate many factors, like collagen IV. However, the precise role of OPN in the pathogenesis of DR and the underlying mechanisms remain unclear. In this study, 51 differentially expressed microRNAs (miRNAs; 42 miRNAs upregulated and 9 miRNAs downregulated) were first identified in retina of streptozotocin (STZ)-induced diabetic mice with DR. Among these miRNAs, we identified miRNA (miR)-29a as a prominent miRNA that targeted and directly downregulated Col IV expression through database prediction and dual-luciferase reporter assay, which was further confirmed in HRCECs using miR-29a mimic, miR-29a inhibitor, and pre-miR-29a transfection. Furthermore, OPN upregulated Col IV expression via a miR-29a-repressed pathway in HRCECs. Taken together, these results provided a miR-29a-repressing mechanism through which OPN plays roles in abnormal synthesis of Col IV in HRCECs and resultant BM thickening, contributing to the pathogenesis of DR.
Collapse
Affiliation(s)
- Ping Duan
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| | - Siyu Chen
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| | - Yuxiao Zeng
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China.
| | - Yong Liu
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
18
|
Pierre TH, Reynolds AS, Seise I, Pilz Z, McHale BJ, Gato WE. Evaluation of renal markers of T1D in Sprague-Dawley exposed to 2-aminoanthracene. ENVIRONMENTAL TOXICOLOGY 2020; 35:203-212. [PMID: 31714650 DOI: 10.1002/tox.22857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
The incidence of type 1 diabetes (T1D) and its associated risks of chronic kidney disease or end-stage renal disease development are on the rise. T1D is an autoimmune disease in which insulin-producing beta cells are destroyed. Increased incidence of T1D has been suggested to be a result of environmental factors such as exposure to polycyclic aromatic hydrocarbons (PAHs). 2-aminoanthracene (2AA) is a PAH that has been associated with the onset of early diabetic symptoms. This study was conducted to assess if 2AA dietary ingestion would induce T1D renal injuries. To accomplish study goals, Sprague-Dawley rats were assigned into three 2AA dietary (0, 50, and 100 mg/kg-2AA) ingestion groups for 12 weeks. Animals were evaluated for various morphometric indices, clinical markers, and gene expression. The rats in the 100 mg/kg group lost 5% less weight than the other treatment groups and converted roughly 3% more of their food intake into body mass. Renal histopathology indicated no significant difference between groups. The kidney weight per bodyweight of the 100 mg/kg treatment group was 30.1% greater than the control group. Creatinine concentration of the 100 mg/kg group was 46.2% greater than the control group. Serum glucose levels were significantly elevated in rats exposed to 2AA. On the contrary, serum albumin concentration was significantly reduced in 2AA-treated rats. T1D and genetic markers of renal injury such as FABP1, SPP1, IL-1B, and IL-7 were elevated in treated groups. These results suggest that 2AA may induce the early diabetic renal injuries.
Collapse
Affiliation(s)
- Tanya H Pierre
- Department of Biology and Chemistry, Agnes Scott College, Decatur, Georgia
| | - Ashley S Reynolds
- Department of Biology and Chemistry, King University, Bristol, Tennessee
| | - Isaiah Seise
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia
| | - Zach Pilz
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia
| | - Brittany J McHale
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, Georgia
| | - Worlanyo E Gato
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia
| |
Collapse
|
19
|
Jiang W, Ma T, Zhang C, Tang X, Xu Q, Meng X, Ma T. Identification of urinary candidate biomarkers of cisplatin-induced nephrotoxicity in patients with carcinoma. J Proteomics 2020; 210:103533. [DOI: 10.1016/j.jprot.2019.103533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022]
|
20
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
21
|
Bai L, Li X, He L, Zheng Y, Lu H, Li J, Zhong L, Tong R, Jiang Z, Shi J, Li J. Antidiabetic Potential of Flavonoids from Traditional Chinese Medicine: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:933-957. [PMID: 31248265 DOI: 10.1142/s0192415x19500496] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders in which high blood sugar levels occur over a prolonged period. Approximately 4% of the global population is affected by DM. Western medical treatment methods for diabetes including injection or oral hypoglycemic drugs have some toxic or side effects, economic pressures, and so on. Many researchers turn to discover new drugs from natural products or Traditional Chinese Medicine (TCM). Flavonoids are widely distributed in plants, and many studies have shown that flavonoids possess antidiabetic properties, exhibiting not only well-recognized antidiabetic and hypoglycemic activities but also activity in the treatment of diabetic complications. In this review, we systematically summarized anti-diabetic flavonoid compounds based on structure classification by examining the PubMed, Springer Link, Web of Science, and CNKI databases. There are 13 flavonoid compounds listed which have been studied extensively and have antidiabetic features respectively. Apigenin, baicalein, and catechin mainly reduces blood glucose via anti-oxidation; hesperidin is good for diabetic neuropathy; glycyrrhiza flavonoids have a significant effect on gestational DM; quercetin takes advantage of crossing the blood–brain barrier and improving renal function. Some compounds have protective and preventive effects on diabetic complications, such as kaempferol and puerarin which are beneficial to cardiomyopathy; myricetin has therapeutic potential in the treatment of DN; dihydromyricetin might improve CI. It is a pity or might be a pointcut that most studies remain in the animal experimental stage, and further investigation should be carried out.
Collapse
Affiliation(s)
- Lan Bai
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Xiaofang Li
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Li He
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yu Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Haiying Lu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Jinqi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Lei Zhong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Zhongliang Jiang
- Department of Hematology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Jian Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
22
|
Unraveling the Role of Inflammation in the Pathogenesis of Diabetic Kidney Disease. Int J Mol Sci 2019; 20:ijms20143393. [PMID: 31295940 PMCID: PMC6678414 DOI: 10.3390/ijms20143393] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Diabetic kidney disease (DKD) remains the leading cause of end-stage renal disease (ESRD) and is therefore a major burden on the healthcare system. Patients with DKD are highly susceptible to developing cardiovascular disease, which contributes to increased morbidity and mortality rates. While progress has been made to inhibit the acceleration of DKD, current standards of care reduce but do not eliminate the risk of DKD. There is growing appreciation for the role of inflammation in modulating the process of DKD. The focus of this review is on providing an overview of the current status of knowledge regarding the pathologic roles of inflammation in the development of DKD. Finally, we summarize recent therapeutic advances to prevent DKD, with a focus on the anti-inflammatory effects of newly developed agents.
Collapse
|
23
|
Kaleta B, Krata N, Zagożdżon R, Mucha K. Osteopontin Gene Polymorphism and Urinary OPN Excretion in Patients with Immunoglobulin A Nephropathy. Cells 2019; 8:cells8060524. [PMID: 31159229 PMCID: PMC6628186 DOI: 10.3390/cells8060524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022] Open
Abstract
Osteopontin (OPN) is a glycoprotein involved in the pathogenesis of multiple autoimmune and inflammatory conditions. However, the association of variants of secreted phosphoprotein 1 gene (SPP1), which encodes OPN, with immunoglobulin A nephropathy (IgAN) has not been examined up to date. Moreover, the role of OPN in disease pathogenesis and clinical manifestations is not fully known. Therefore, the aim of the study was to determine the frequency of four single nucleotide polymorphisms (SNiPs) of SPP1 gene, as well as the urinary OPN excretion in IgAN patients and healthy controls. In total, 58 Caucasian patients with biopsy-proven IgAN and 184 gender-, age-, and ethnically-matched healthy controls were genotyped for rs1126616, rs1126772, rs9138, and rs7687316/rs3841116 polymorphisms by real time polymerase chain reaction (RT-PCR). Urinary OPN concentration was determined by enzyme-linked immunosorbent assay (ELISA) in 58 IgAN patients and 19 controls. SPP1 SNiPs, as well as urinary OPN excretion, were analyzed in relation to their possible associations with the clinicopathological parameters. The frequency of the minor TT/CT genotypes of rs1126616 was significantly higher in IgAN patients compared to controls (P = 0.0217). Similarly, the minor (CC/AC) genotypes and the C allele of rs9138 were more frequent in IgAN patients (P = 0.0425 and P = 0.0112, respectively). Moreover, these two SNiPs were associated with the higher urinary OPN excretion (P < 0.05). These findings suggest that rs1126616, as well as rs9138, may be associated with IgAN development, however future studies in this field are required.
Collapse
Affiliation(s)
- Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| | - Natalia Krata
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| | - Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| |
Collapse
|
24
|
Chen J, Zhang D, Ji MF, Liu T, Mei CL, Tang XJ. Activation of liver X receptor suppresses osteopontin expression and ameliorates nephrolithiasis. J Cell Physiol 2019; 234:14109-14122. [PMID: 30623435 DOI: 10.1002/jcp.28101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022]
Abstract
Nephrolithiasis is a common disease of the urinary system, of which idiopathic calcium oxalate (CaOx) kidney stones, in particular, are one of the special types. In the initial stages of CaOx kidney stone formation, Randall's plaques (RPs) develop. Liver X receptors (LXRs) inhibit oxidative stress and inflammatory in other diseases; nevertheless, the role of LXRs in nephrolithiasis has yet to be elucidated. In this study, the role of LXRs in the progression of RP formation was investigated. Microarray analysis revealed that LXR/RXR levels were significantly greater in low-plaque tissues (<5%) than in high-plaque tissues (>5%), confirming the link between LXR activation and RP formation. Correspondingly, expression levels of two LXR target genes, LXRα and LXRβ, were lower in high-plaque tissues than in low-plaque tissues. In vitro, LXR agonist alleviated calcium oxalate monohydrate-induced cellular calcium deposits and apoptosis. LXR activation decreased reactive oxygen species production and gene expression of inflammatory mediators, including osteopontin that has recently been demonstrated to correlate with the development of RPs. Moreover, p38 MAPK and JNK signaling may mediate LXR-regulated expression in HK-2 cells. In an animal model, the deposition was reduced by activating LXR, and osteopontin expression was also inhibited. Our findings suggest a role for LXRs in the progression of idiopathic CaOx kidney stones; LXR agonists may have therapeutic potential for the treatment of nephrolithiasis.
Collapse
Affiliation(s)
- Jie Chen
- Division of Urology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Di Zhang
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ming-Fei Ji
- Division of Urology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Liu
- Division of Urology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chang-Lin Mei
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Jing Tang
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
25
|
Du Z, Hua J, Song D. A Peptidomic Analysis of the Potential Comorbidity Biomarkers for Type 2 Diabetes Mellitus and Alzheimer’s Disease. Health (London) 2019. [DOI: 10.4236/health.2019.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Kaleta B. The role of osteopontin in kidney diseases. Inflamm Res 2018; 68:93-102. [PMID: 30456594 DOI: 10.1007/s00011-018-1200-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Osteopontin (OPN) is a pleiotropic glycoprotein expressed in various cell types in animals and in humans, including bone, immune, smooth muscle, epithelial and endothelial cells. Moreover, OPN is found in kidneys (in the thick ascending limbs of the loop of Henle and in distal nephrons) and urine. The protein plays an important role in mineralization and bone resorption. In addition, OPN is involved in the regulation of immunity and inflammation, angiogenesis and apoptosis. It was demonstrated that OPN and some OPN gene polymorphic variants are associated with the pathogenesis and progression of multiple disorders, such as cancer, autoimmune, neurodegenerative and cardiovascular diseases. Moreover, recent studies suggested that OPN is associated with the pathogenesis of renal failure. METHODS In this review, I briefly discussed the role of OPN and its gene polymorphisms in kidney physiology, as well as in various kidney diseases. FINDINGS AND CONCLUSION Most studies reported that OPN expression is elevated in urolithiasis, and also in acute and chronic kidney diseases, and in renal allograft dysfunction. Moreover, it was demonstrated that polymorphic variants of the OPN gene may be associated with renal failure. However, some reports suggested that OPN is essential for tubulogenesis, and that it inhibits calcium oxalate crystal formation and retention, nitric oxide synthesis, cell apoptosis and promotes cell regeneration. Thus, further studies are required to fully understand the role of OPN in kidney physiology and pathology. Eventually, these studies may result in the identification of OPN as a valuable marker for renal dysfunction prognosis and treatment.
Collapse
Affiliation(s)
- Beata Kaleta
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 59 Nowogrodzka St., 02-006, Warsaw, Poland.
| |
Collapse
|
27
|
Trostel J, Truong LD, Roncal-Jimenez C, Miyazaki M, Miyazaki-Anzai S, Kuwabara M, McMahan R, Andres-Hernando A, Sato Y, Jensen T, Lanaspa MA, Johnson RJ, Garcia GE. Different effects of global osteopontin and macrophage osteopontin in glomerular injury. Am J Physiol Renal Physiol 2018; 315:F759-F768. [PMID: 29717936 DOI: 10.1152/ajprenal.00458.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Osteopontin (OPN) is a pro-and anti-inflammatory molecule that simultaneously attenuates oxidative stress. Both inflammation and oxidative stress play a role in the pathogenesis of glomerulonephritis and in the progression of kidney injury. Importantly, OPN is highly induced in nephritic kidneys. To characterize further the role of OPN in kidney injury we used OPN-/- mice in antiglomerular basement membrane reactive serum-induced immune (NTS) nephritis, an inflammatory and progressive model of kidney disease. Normal wild-type (WT) and OPN-/- mice did not show histological differences. However, nephritic kidneys from OPN-/- mice showed severe damage compared with WT mice. Glomerular proliferation, necrotizing lesions, crescent formation, and tubulointerstitial injury were significantly higher in OPN-/- mice. Macrophage infiltration was increased in the glomeruli and interstitium in OPN-/- mice, with higher expression of IL-6, CCL2, and chemokine CXCL1. In addition, collagen (Col) I, Col III, and Col IV deposition were increased in kidneys from OPN-/- mice. Elevated expression of the reactive oxygen species-generating enzyme Nox4 and blunted expression of Nrf2, a molecule that inhibits reactive oxygen species and inflammatory pathways, was observed in nephritic kidneys from OPN-/- mice. Notably, CD11b diphteria toxin receptor mice with NTS nephritis selectively depleted of macrophages and reconstituted with OPN-/- macrophages showed less kidney injury compared with mice receiving WT macrophages. These findings suggest that in global OPN-/- mice there is increased inflammation and redox imbalance that mediate kidney damage. However, absence of macrophage OPN is protective, indicating that macrophage OPN plays a role in the induction and progression of kidney injury in NTS nephritis.
Collapse
Affiliation(s)
- Jessica Trostel
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Luan D Truong
- Department of Pathology, Baylor College of Medicine, and Department of Pathology, The Methodist Hospital , Houston, Texas
| | | | - Makoto Miyazaki
- Department of Medicine, Division of Renal Diseases and Hypertension
| | | | | | - Rachel McMahan
- Division of Gastroenterology University of Colorado Denver, Aurora, Colorado
| | | | - Yuka Sato
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Thomas Jensen
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Miguel A Lanaspa
- Department of Medicine, Division of Renal Diseases and Hypertension
| | | | | |
Collapse
|
28
|
Guillén-Gómez E, Bardají-de-Quixano B, Ferrer S, Brotons C, Knepper MA, Carrascal M, Abian J, Mas JM, Calero F, Ballarín JA, Fernández-Llama P. Urinary Proteome Analysis Identified Neprilysin and VCAM as Proteins Involved in Diabetic Nephropathy. J Diabetes Res 2018; 2018:6165303. [PMID: 29854824 PMCID: PMC5949160 DOI: 10.1155/2018/6165303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/12/2018] [Accepted: 04/04/2018] [Indexed: 01/13/2023] Open
Abstract
Urinary proteome was analyzed and quantified by tandem mass tag (TMT) labeling followed by bioinformatics analysis to study diabetic nephropathy (DN) pathophysiology and to identify biomarkers of a clinical outcome. We included type 2 diabetic normotensive non-obese males with (n = 9) and without (n = 11) incipient DN (microalbuminuria). Sample collection included blood and urine at baseline (control and DN basal) and, in DN patients, after 3 months of losartan treatment (DN treated). Urinary proteome analysis identified 166 differentially abundant proteins between controls and DN patients, 27 comparing DN-treated and DN-basal patients, and 182 between DN-treated patients and controls. The mathematical modeling analysis predicted 80 key proteins involved in DN pathophysiology and 15 in losartan effect, a total of 95 proteins. Out of these 95, 7 are involved in both processes. VCAM-1 and neprilysin stand out of these 7 for being differentially expressed in the urinary proteome. We observed an increase of VCAM-1 urine levels in DN-basal patients compared to diabetic controls and an increase of urinary neprilysin in DN-treated patients with persistent albuminuria; the latter was confirmed by ELISA. Our results point to neprilysin and VCAM-1 as potential candidates in DN pathology and treatment.
Collapse
Affiliation(s)
- Elena Guillén-Gómez
- Molecular Biology Laboratory, Fundació Puigvert, Barcelona, Spain
- Universitat Autònoma de Barcelona, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Beatriz Bardají-de-Quixano
- Universitat Autònoma de Barcelona, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Renal Transplantation Unit, Nephrology Department, Fundació Puigvert, Barcelona, Spain
| | - Sílvia Ferrer
- Maragall Primary Health Care Center, Barcelona, Spain
| | - Carlos Brotons
- Universitat Autònoma de Barcelona, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Sardenya Primary Health Care Center, Barcelona, Spain
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute (NIH), Bethesda, MD, USA
| | - Montserrat Carrascal
- Proteomics Laboratory CSIC/UAB, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS), Barcelona, Spain
| | - Joaquin Abian
- Proteomics Laboratory CSIC/UAB, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS), Barcelona, Spain
| | | | - Francesca Calero
- Universitat Autònoma de Barcelona, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Hypertension Unit, Nephrology Department, Fundació Puigvert, Barcelona, Spain
| | - José A. Ballarín
- Universitat Autònoma de Barcelona, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Hypertension Unit, Nephrology Department, Fundació Puigvert, Barcelona, Spain
| | - Patricia Fernández-Llama
- Universitat Autònoma de Barcelona, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Hypertension Unit, Nephrology Department, Fundació Puigvert, Barcelona, Spain
| |
Collapse
|
29
|
Viloria K, Hill NJ. Embracing the complexity of matricellular proteins: the functional and clinical significance of splice variation. Biomol Concepts 2017; 7:117-32. [PMID: 27135623 DOI: 10.1515/bmc-2016-0004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/24/2016] [Indexed: 01/02/2023] Open
Abstract
Matricellular proteins influence wide-ranging fundamental cellular processes including cell adhesion, migration, growth and differentiation. They achieve this both through interactions with cell surface receptors and regulation of the matrix environment. Many matricellular proteins are also associated with diverse clinical disorders including cancer and diabetes. Alternative splicing is a precisely regulated process that can produce multiple isoforms with variable functions from a single gene. To date, the expression of alternate transcripts for the matricellular family has been reported for only a handful of genes. Here we analyse the evidence for alternative splicing across the matricellular family including the secreted protein acidic and rich in cysteine (SPARC), thrombospondin, tenascin and CCN families. We find that matricellular proteins have double the average number of splice variants per gene, and discuss the types of domain affected by splicing in matricellular proteins. We also review the clinical significance of alternative splicing for three specific matricellular proteins that have been relatively well characterised: osteopontin (OPN), tenascin-C (TNC) and periostin. Embracing the complexity of matricellular splice variants will be important for understanding the sometimes contradictory function of these powerful regulatory proteins, and for their effective clinical application as biomarkers and therapeutic targets.
Collapse
|
30
|
Oligo-fucoidan prevents renal tubulointerstitial fibrosis by inhibiting the CD44 signal pathway. Sci Rep 2017; 7:40183. [PMID: 28098144 PMCID: PMC5241801 DOI: 10.1038/srep40183] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022] Open
Abstract
Tubulointerstitial fibrosis is recognized as a key determinant of progressive chronic kidney disease (CKD). Fucoidan, a sulphated polysaccharide extracted from brown seaweed, exerts beneficial effects in some nephropathy models. The present study evaluated the inhibitory effect of oligo-fucoidan (800 Da) on renal tubulointerstitial fibrosis. We established a mouse CKD model by right nephrectomy with transient ischemic injury to the left kidney. Six weeks after the surgery, we fed the CKD mice oligo-fucoidan at 10, 20, and 100 mg/kg/d for 6 weeks and found that the oligo-fucoidan doses less than 100 mg/kg/d improved renal function and reduced renal tubulointerstitial fibrosis in CKD mice. Oligo-fucoidan also inhibited pressure-induced fibrotic responses and the expression of CD44, β-catenin, and TGF-β in rat renal tubular cells (NRK-52E). CD44 knockdown downregulated the expression of β-catenin and TGF-β in pressure-treated cells. Additional ligands for CD44 reduced the anti-fibrotic effect of oligo-fucoidan in NRK-52E cells. These data suggest that oligo-fucoidan at the particular dose prevents renal tubulointerstitial fibrosis in a CKD model. The anti-fibrotic effect of oligo-fucoidan may result from interfering with the interaction between CD44 and its extracellular ligands.
Collapse
|
31
|
Yadranji Aghdam S, Mahmoudpour A. Proteasome Activators, PA28 α and PA28 β, Govern Development of Microvascular Injury in Diabetic Nephropathy and Retinopathy. Int J Nephrol 2016; 2016:3846573. [PMID: 27830089 PMCID: PMC5088333 DOI: 10.1155/2016/3846573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/08/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are major complications of type 1 and type 2 diabetes. DN and DR are mainly caused by injury to the perivascular supporting cells, the mesangial cells within the glomerulus, and the pericytes in the retina. The genes and molecular mechanisms predisposing retinal and glomerular pericytes to diabetic injury are poorly characterized. In this study, the genetic deletion of proteasome activator genes, PA28α and PA28β genes, protected the diabetic mice in the experimental STZ-induced diabetes model against renal injury and retinal microvascular injury and prolonged their survival compared with wild type STZ diabetic mice. The improved wellbeing and reduced renal damage was associated with diminished expression of Osteopontin (OPN) and Monocyte Chemoattractant Protein-1 (MCP-1) in the glomeruli of STZ-injected PA28α/PA28β double knockout (Pa28αβDKO) mice and also in cultured mesangial cells and retinal pericytes isolated from Pa28αβDKO mice that were grown in high glucose. The mesangial PA28-mediated expression of OPN under high glucose conditions was suppressed by peptides capable of inhibiting the binding of PA28 to the 20S proteasome. Collectively, our findings demonstrate that diabetic hyperglycemia promotes PA28-mediated alteration of proteasome activity in vulnerable perivascular cells resulting in microvascular injury and development of DN and DR.
Collapse
Affiliation(s)
- Saeed Yadranji Aghdam
- Reynolds Institute on Aging, Room No. 4151, 629 Jack Stephens Drive, Little Rock, AR 72205, USA
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ali Mahmoudpour
- Norgen Biotek Corp., 3430 Schmon Parkway, Thorold, ON, Canada L2V 4Y6
| |
Collapse
|
32
|
Interleukin-18 deficiency protects against renal interstitial fibrosis in aldosterone/salt-treated mice. Clin Sci (Lond) 2016; 130:1727-39. [DOI: 10.1042/cs20160183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022]
Abstract
Interleukin (IL)-18 is a member of the IL-1 family of cytokines and was described originally as an interferon γ-inducing factor. Aldosterone plays a central role in the regulation of sodium and potassium homoeostasis by binding to the mineralocorticoid receptor and contributes to kidney and cardiovascular damage. Aldosterone has been reported to induce IL-18, resulting in cardiac fibrosis with induced IL-18-mediated osteopontin (OPN). We therefore hypothesized that aldosterone-induced renal fibrosis via OPN may be mediated by IL-18. To verify this hypothesis, we compared mice deficient in IL-18 and wild-type (WT) mice in a model of aldosterone/salt-induced hypertension. IL-18−/− and C57BL/6 WT mice were used for the uninephrectomized aldosterone/salt hypertensive model, whereas NRK-52E cells (rat kidney epithelial cells) were used in an in vitro model. In the present in vivo study, IL-18 protein expression was localized in medullary tubules in the WT mice, whereas in aldosterone-infused WT mice this expression was up-regulated markedly in the proximal tubules, especially in injured and dilated tubules. This renal damage caused by aldosterone was attenuated significantly by IL-18 knockout with down-regulation of OPN expression. In the present in vitro study, aldosterone directly induced IL-18 gene expression in renal tubular epithelial cells in a concentration- and time-dependent manner. These effects were inhibited completely by spironolactone. IL-18 may be a key mediator of aldosterone-induced renal fibrosis by inducing OPN, thereby exacerbating renal interstitial fibrosis. Inhibition of IL-18 may therefore provide a potential target for therapeutic intervention aimed at preventing the progression of renal injury.
Collapse
|
33
|
Gopal N, Rajagambeeram R, Venkatkumar S, Vijayan MV, Murugaiyan SB, Gopal SP, Ramsamy S, Alwar V. Association of Salivary Osteopontin Levels with Glycaemic Status and Microalbuminuria - in Patients with Type 2 Diabetes Mellitus. J Clin Diagn Res 2016; 10:BC06-8. [PMID: 27656430 DOI: 10.7860/jcdr/2016/20156.8257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/09/2016] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The monitoring of glycaemic status in patients with T2DM is mainly through blood tests (Fasting plasma glucose and HbA1c), which are invasive and involves painful pricks. This leads to poor patient compliance and soon could lead to various micro and macro vascular complications, which hamper the quality of life. There are no sensitive and specific markers to predict these complications at the earliest. Sialochemistry has recently gained attention for monitoring chronic diseases. Osteopontin is a phospho-glycoprotein molecule, elevated in many inflammatory conditions. AIM The aim of the study was to evaluate the role of serum and salivary osteopontin in Type 2 Diabetes mellitus (T2DM). MATERIALS AND METHODS In this case-control study, we recruited 33 cases of T2DM and 31 age and gender matched healthy controls. Body Mass Index (BMI), Waist/Hip Ratio (WHR), Waist Circumference (WC) and blood pressure was recorded. Fasting Plasma Glucose (FPG), salivary glucose, HbA1c, microalbuminuria, systolic BP, serum and salivary osteopontin levels were estimated. RESULTS FPG, salivary glucose, HbA1c, microalbuminuria, systolic BP, BMI, waist / hip ratio serum and salivary osteopontin levels were significantly high in T2DM cases compared to control subjects. Serum and salivary osteopontin levels were significantly correlated with HbA1c and microalbuminuria in T2DM cases. CONCLUSION Serum and salivary osteopontin levels are significantly elevated in subjects with T2DM and are associated with glycaemic control and microalbuminuria.
Collapse
Affiliation(s)
- Niranjan Gopal
- Associate Professor, Department of Biochemistry, Mahatma Gandhi Medical College & Research Institute , Pondicherry, India
| | - Reeta Rajagambeeram
- Assistant Professor, Department of Biochemistry, Mahatma Gandhi Medical College & Research Institute , Pondicherry, India
| | - Shruthi Venkatkumar
- Student, Indira Gandhi Institute of Dental Sciences (IGIDS) , SBV (NAAC 'A' Grade), Pillaiyarkuppam, Pondicherry, India
| | - Mohana Valli Vijayan
- Tutor, Department of Biochemistry, Mahatma Gandhi Medical College & Research Institute , Pondicherry, India
| | - Sathish Babu Murugaiyan
- Assistant Professor, Department of Biochemistry, Mahatma Gandhi Medical College & Research Institute , Pondicherry, India
| | - Shyam Prakash Gopal
- Student, M Pharm in Pharmacology, Mother Theresa Post Graduate and Research Institute of Health sciences , Indira Nagar, Gorimedu, Puducherry, India
| | - Sathiya Ramsamy
- Tutor, Department of Biochemistry, Mahatma Gandhi Medical College & Research Institute , Pondicherry, India
| | - Velayutharaj Alwar
- Assistant Professor, Department of Biochemistry, Chennai Medical College , Hospital & Research Centre, Trichy- Tamil Nadu, India
| |
Collapse
|
34
|
Pei Z, Okura T, Nagao T, Enomoto D, Kukida M, Tanino A, Miyoshi KI, Kurata M, Higaki J. Osteopontin deficiency reduces kidney damage from hypercholesterolemia in Apolipoprotein E-deficient mice. Sci Rep 2016; 6:28882. [PMID: 27353458 PMCID: PMC4926090 DOI: 10.1038/srep28882] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/17/2016] [Indexed: 02/06/2023] Open
Abstract
Hypercholesterolemia is a well-established risk factor for kidney injury, which can lead to chronic kidney disease (CKD). Osteopontin (OPN) has been implicated in the pathology of several renal conditions. This study was to evaluate the effects of OPN on hypercholesterolemia induced renal dysfunction. Eight-week-old male mice were divided into 4 groups: apolipoprotein E knockout (ApoE−/−) and ApoE/OPN knockout (ApoE−/−/OPN−/−) mice fed a normal diet (ND) or high cholesterol diet (HD). After 4 weeks, Periodic acid-Schiff (PAS) and oil red O staining revealed excessive lipid deposition in the glomeruli of ApoE−/−HD mice, however, significantly suppressed in ApoE−/−/OPN−/−HD mice. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression was lower in the glomeruli of ApoE−/−/OPN−/−HD mice than ApoE−/−HD mice. In vitro study, primary mesangial cells were incubated with recombinant mouse OPN (rmOPN). RmOPN induced LOX-1 mRNA and protein expression in primary mesangial cells. Pre-treatment with an ERK inhibitor suppressed the LOX-1 gene expression induced by rmOPN. These results indicate that OPN contributes to kidney damage in hypercholesterolemia and suggest that inhibition of OPN may provide a potential therapeutic target for the prevention of hypercholesterolemia.
Collapse
Affiliation(s)
- Zouwei Pei
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takafumi Okura
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Tomoaki Nagao
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Daijiro Enomoto
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masayoshi Kukida
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Akiko Tanino
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ken-Ichi Miyoshi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Proteo-Science Center and Graduate School of Medicine, Ehime, Japan
| | - Jitsuo Higaki
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
35
|
Xu J, Zheng S, Kralik PM, Krishnan L, Huang H, Hoying JB, Cai L, Carlson EC, Tan Y, Epstein PN. Diabetes Induced Changes in Podocyte Morphology and Gene Expression Evaluated Using GFP Transgenic Podocytes. Int J Biol Sci 2016; 12:210-8. [PMID: 26884718 PMCID: PMC4737677 DOI: 10.7150/ijbs.13057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/26/2015] [Indexed: 01/15/2023] Open
Abstract
The effect of diabetes in vivo has not been examined on isolated podocytes. To achieve this, GFP was expressed constitutively in podocytes of PGFP transgenic mice which were bred to OVE mice to produce diabetic OVE-GFP mice. Viewing GFP fluorescence, foot processes of OVE-GFP podocytes were visually and measurably effaced, which did not occur with less severe STZ diabetes. Over 300,000 podocytes were purified from each PGFP mouse but only 49,000 podocytes per diabetic OVE-GFP mouse. The low yield from OVE-GFP mice appeared to be due to more fragile state of most OVE-GFP diabetic podocytes which did not survive the isolation process. Diabetic podocytes that were isolated had high levels of the lipid peroxidation product 4-HNE and they were more sensitive to death due to oxidative stress. Gene array analysis of OVE-GFP podocytes showed strong diabetes induction of genes involved in inflammation. Four CXC chemokines were induced at least 3-fold and the chemokine CXCL1 was shown for the first time to be specifically induced in podocytes by OVE, dbdb and STZ diabetes.
Collapse
Affiliation(s)
- Jianxiang Xu
- 1. Department of Pediatrics, University of Louisville
| | - Shirong Zheng
- 1. Department of Pediatrics, University of Louisville
| | | | | | - Hui Huang
- 1. Department of Pediatrics, University of Louisville;; 4. Children's Hospital of Jiangxi Province, China
| | - James B Hoying
- 2. Cardiovascular Innovations Institute, University of Louisville
| | - Lu Cai
- 1. Department of Pediatrics, University of Louisville
| | | | - Yi Tan
- 1. Department of Pediatrics, University of Louisville
| | | |
Collapse
|
36
|
Cai M, Bompada P, Atac D, Laakso M, Groop L, De Marinis Y. Epigenetic regulation of glucose-stimulated osteopontin (OPN) expression in diabetic kidney. Biochem Biophys Res Commun 2016; 469:108-113. [DOI: 10.1016/j.bbrc.2015.11.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/18/2015] [Indexed: 11/26/2022]
|
37
|
Nozako M, Koyama T, Nagano C, Sato M, Matsumoto S, Mitani K, Yasufuku R, Kohashi M, Yoshikawa T. An Atherogenic Paigen-Diet Aggravates Nephropathy in Type 2 Diabetic OLETF Rats. PLoS One 2015; 10:e0143979. [PMID: 26606054 PMCID: PMC4659596 DOI: 10.1371/journal.pone.0143979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/11/2015] [Indexed: 11/18/2022] Open
Abstract
Diabetic nephropathy develops in association with hyperglycemia, is aggravated by atherogenic factors such as dyslipidemia, and is sometimes initiated before obvious hyperglycemia is seen. However, the precise mechanisms of progression are still unclear. In this study, we investigated the influence of an atherogenic Paigen diet (PD) on the progression of nephropathy in spontaneous type 2 diabetic OLETF rats. Feeding PD to male OLETF rats for 12 weeks caused an extensive increase in excretion of urinary albumin and markers of tubular injury such as KIM-1 and L-FABP, accompanied by mesangial expansion and tubular atrophy. PD significantly increased plasma total cholesterol concentration, which correlates well with increases in urine albumin excretion and mesangial expansion. Conversely, PD did not change plasma glucose and free fatty acid concentrations. PD enhanced renal levels of mRNA for inflammatory molecules such as KIM-1, MCP-1, TLR4 and TNF-α and promoted macrophage infiltration and lipid accumulation in the tubulointerstitium and glomeruli in OLETF rats. Intriguingly, PD had little effect on urine albumin excretion and renal morphology in normal control LETO rats. This model may be useful in studying the complex mechanisms that aggravate diabetic nephropathy in an atherogenic environment.
Collapse
Affiliation(s)
- Masanori Nozako
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Takashi Koyama
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Chifumi Nagano
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Makoto Sato
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Satoshi Matsumoto
- Department of Toxicology, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Kiminobu Mitani
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Reiko Yasufuku
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Masayuki Kohashi
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
| | - Tomohiro Yoshikawa
- Free Radical Research Project, Otsuka Pharmaceutical Co., Ltd., Tokushima, Tokushima, Japan
- * E-mail:
| |
Collapse
|
38
|
Zhang Q, Ji Y, Lv W, He T, Wang J. Protective effects of leflunomide on renal lesions in a rat model if diabetic nephropathy. Ren Fail 2015; 38:124-30. [DOI: 10.3109/0886022x.2015.1105024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
39
|
Abstract
Obesity and being overweight are linked with a cluster of metabolic and vascular disorders that have been termed the metabolic syndrome. This syndrome promotes the incidence of cardiovascular diseases that are an important public health problem because they represent a major cause of death worldwide. Whereas there is not a universally-accepted set of diagnostic criteria, most expert groups agree that this syndrome is defined by an endothelial dysfunction, an impaired insulin sensitivity and hyperglycemia, dyslipidemia, abdominal obesity and hypertension. Epidemiological studies suggest that the beneficial cardiovascular health effects of diets rich in green tea are, in part, mediated by their flavonoid content, with particular benefits provided by members of this family such as epigallocatechin gallate (EGCG). Although their bioavailability is discussed, various studies suggest that EGCG modulates cellular and molecular mechanisms of various symptoms leading to metabolic syndrome. Therefore, according to in vitro and in vivo model data, this review attempts to increase our understanding about the beneficial properties of EGCG to prevent metabolic syndrome.
Collapse
|
40
|
Weber CE, Kothari AN, Wai PY, Li NY, Driver J, Zapf MAC, Franzen CA, Gupta GN, Osipo C, Zlobin A, Syn WK, Zhang J, Kuo PC, Mi Z. Osteopontin mediates an MZF1-TGF-β1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer. Oncogene 2014; 34:4821-33. [PMID: 25531323 PMCID: PMC4476970 DOI: 10.1038/onc.2014.410] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 10/20/2014] [Accepted: 11/08/2014] [Indexed: 12/18/2022]
Abstract
Interactions between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TMEN) significantly influence cancer growth and metastasis. Transforming growth factor-β (TGF-β) is known to be a critical mediator of the CAF phenotype, and osteopontin (OPN) expression in tumors is associated with more aggressive phenotypes and poor patient outcomes. The potential link between these two pathways has not been previously addressed. Utilizing in vitro studies using human mesenchymal stem cells (MSCs) and MDA-MB231 (OPN+) and MCF7 (OPN−) human breast cancer cell lines, we demonstrate that OPN induces integrin-dependent MSC expression of TGF-β1 to mediate adoption of the CAF phenotype. This OPN-TGF-β1 pathway requires the transcription factor, myeloid zinc finger 1 (MZF1). In vivo studies with xenotransplant models in NOD-scid mice showed that OPN expression increases cancer growth and metastasis by mediating MSC-to-CAF transformation in a process that is MZF1- and TGF-β1-dependent. We conclude that tumor-derived OPN engenders MSC-to-CAF transformation in the microenvironment to promote tumor growth and metastasis via the OPN-MZF1-TGF-β1 pathway.
Collapse
Affiliation(s)
- C E Weber
- Department of Surgery, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, USA.,The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - A N Kothari
- Department of Surgery, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, USA.,The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - P Y Wai
- Department of Surgery, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, USA.,The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - N Y Li
- Department of Surgery, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, USA.,The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - J Driver
- Department of Surgery, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, USA.,The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - M A C Zapf
- Department of Surgery, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, USA.,The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - C A Franzen
- The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA.,Department of Urology, Loyola University Medical Center, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - G N Gupta
- Department of Surgery, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, USA.,The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA.,Department of Urology, Loyola University Medical Center, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - C Osipo
- The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - A Zlobin
- The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - W K Syn
- Department of Surgery, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, USA.,Liver Unit, Barts Health NHS Trust, London, UK.,Regeneration and Repair, The Institute of Hepatology, London, UK
| | - J Zhang
- The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - P C Kuo
- Department of Surgery, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, USA.,The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - Z Mi
- Department of Surgery, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, USA.,The Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
41
|
Zhu X, Cheng YQ, Du L, Li Y, Zhang F, Guo H, Liu YW, Yin XX. Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats. Phytother Res 2014; 29:295-302. [PMID: 25380391 DOI: 10.1002/ptr.5254] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 09/25/2014] [Accepted: 10/10/2014] [Indexed: 12/24/2022]
Abstract
This study was designed to investigate the effects of mangiferin on renal fibrosis, osteopontin production, and inflammation in the kidney of diabetic rats. Diabetes was induced through the single administration of streptozotocin (55 mg/kg, i.p.). Diabetic rats were treated with mangiferin (15, 30, and 60 mg/kg/day, i.g.) for 9 weeks. The kidney was fixed in 10% formalin for glomerulus fibrosis examination using Masson trichrome staining. Kidney and blood were obtained for assays of the associated biochemical parameters. Chronic mangiferin treatment prevented renal glomerulus fibrosis evidenced by decreases in Mason-stained positive area of glomeruli, protein expression of type IV collagen, and α-smooth muscle actin in the kidney of diabetic rats, in comparison with decreases in mRNA and protein expression of osteopontin as well as protein expression of cyclooxygenase 2 and NF-кB p65 subunit in the renal cortex of diabetic rats. Moreover, mangiferin reduced the levels of interleukin 1β in both the serum and the kidney of diabetic rats. Our findings demonstrate that mangiferin prevents the renal glomerulus fibrosis of diabetic rats, which is realized through the suppression of osteopontin overproduction and inflammation likely via inactivation of NF-кB.
Collapse
Affiliation(s)
- Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Xiong X, Mei W, Xie Y, Liu J, Lu M, Peng X, Yang C, Zhang X, Xie M, Luo R, Yuan X, Huang L, Wu L, Qin J, Peng Y, Jia X, Hu G, Tang D, Tao L. Fluorofenidone offers improved renoprotection at early interventions during the course of diabetic nephropathy in db/db mice via multiple pathways. PLoS One 2014; 9:e111242. [PMID: 25347392 PMCID: PMC4210223 DOI: 10.1371/journal.pone.0111242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 09/30/2014] [Indexed: 11/19/2022] Open
Abstract
Diabetic nephropathy (DN) remains the leading cause of end-stage renal disease (ESRD), a situation that is in part attributable to the lack of effective treatments. Fluorofenidone is a newly developed reagent with anti-fibrotic activity. While fluorofenidone was previously demonstrated to possess renoprotection from DN pathogenesis in db/db mice, the protective process and its underlying mechanisms have not been well studied. To characterize fluorofenidone-derived renoprotection, we treated 5, 8, or 12-week old db/db mice with daily doses of placebo, fluorofenidone, or losartan until 24 weeks of age; the time at which diabetes and DN were fully developed in placebo-treated animals. In comparison to db/db mice receiving fluorofenidone at 12-weeks old, those treated at 5-weeks had less glomerular expansion and better preservation of renal functions, judged by serum creatinine levels, albumin to creatinine ratio, and urinary albumin excretion (mg/24 hours). These benefits of early treatment were associated with significant reductions of multiple DN-promoting events, such as decreased expression of TGF-β1 and the p22phox subunit of NADPH oxidase as well as downregulated activation of protein kinase C-zeta (ζ), ERK and AKT. This improvement in renoprotection following early interventions is not a unique property of DN pathogenesis, as losartan does not apparently offer the same benefits and is not more renoprotective than fluorofenidone. Additionally, the enhanced renoprotection provided by fluorofenidone did not affect the diabetic process, as it did not alter serum levels of glycated serum proteins, glucose, triglyceride or cholesterol. Collectively, we provide evidence that fluorofenidone offers improved renoprotection at early stages of DN pathogenesis.
Collapse
Affiliation(s)
- Xuan Xiong
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenjuan Mei
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyun Xie
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jishi Liu
- Department of Nephrology, The Third Xiangya Hospital, Changsha, Hunan, China
| | - Miaomiao Lu
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiongqun Peng
- Department of Gastroenterology, Xiangya Hospital, Changsha, Hunan, China
| | - Congyin Yang
- Department of Gastroenterology, Xiangya Hospital, Changsha, Hunan, China
| | - Xin Zhang
- Department of Gastroenterology, Xiangya Hospital, Changsha, Hunan, China
| | - Mingyan Xie
- Department of Gastroenterology, Xiangya Hospital, Changsha, Hunan, China
| | - Renna Luo
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangning Yuan
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Huang
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Wu
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiao Qin
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Peng
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiujie Jia
- Department of Respiratory Medicine, The second Xiangya Hospital, Changsha, Hunan, China
| | - Gaoyun Hu
- Chemistry Section, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- * E-mail: (DT); (LT)
| | - Lijian Tao
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan, China
- * E-mail: (DT); (LT)
| |
Collapse
|
43
|
Protective effects of epigallocatechin gallate (EGCG) on streptozotocin-induced diabetic nephropathy in mice. Acta Histochem 2014; 116:1210-5. [PMID: 25154791 DOI: 10.1016/j.acthis.2014.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/13/2023]
Abstract
There is increasing evidence suggesting that antioxidants in green tea extracts may protect kidneys on the progression of end-stage renal disease. We investigated the protective impacts of (-)-epigallocatechin 3-O-gallate (EGCG) against streptozotocin (STZ)-induced diabetic nephropathy in mice. The mice were divided into 5 groups (n=10 per group): control (saline, i.p.), STZ (200mg/kg, i.p.), EGCG50 (50mg/kg, S.Q.), EGCG100 (100mg/kg, S.Q.), and EGCG200 (200mg/kg, S.Q.). Animals were sacrificed at scheduled times after EGCG administration and then quantitative and qualitative analysis were performed. Compared with the control group, the STZ group showed an increase in levels of blood glucose, blood urea nitrogen, creatinine and urine protein amounts with a decrease in body weight. All the above parameters were significantly reversed with EGCG treatment, especially in the EGCG100 group. After STZ injection, there was a mesangial proliferation with increased renal osteopontin accumulation and its protein expression in the glomeruli and the proximal tubules. Mice kidneys after EGCG-treatment showed a reduced expression of above parameters and relatively improved histopathological findings. These results indicated that EGCG 100mg/kg might provide an effective protection against STZ-induced diabetic nephropathy in mice by osteopontin suppression.
Collapse
|
44
|
Chen CH, Cheng CY, Chen YC, Sue YM, Liu CT, Cheng TH, Hsu YH, Chen TH. MicroRNA-328 inhibits renal tubular cell epithelial-to-mesenchymal transition by targeting the CD44 in pressure-induced renal fibrosis. PLoS One 2014; 9:e99802. [PMID: 24919189 PMCID: PMC4068774 DOI: 10.1371/journal.pone.0099802] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) occurs in stressed tubular epithelial cells, contributing to renal fibrosis. Initial mechanisms promoting EMT are unknown. Pressure force is an important mechanism contributing to the induction and progression of renal fibrogenesis in ureteric obstruction. In our study of cultured rat renal tubular cells (NRK-52E) under 60 mmHg of pressure, we found that the epithelial marker E-cadherin decreased and mesenchymal markers, e.g., α-smooth muscle actin, fibronectin and Snail, increased. Pressure also induced the expression of connective tissue growth factor and transforming growth factor-β. MicroRNA array assays showed that pressure reduced miR-328 at the initial stage of pressurization. We identified a potential target sequence of miR-328 in rat CD44 3′-untranslated regions. In contrast with the miR-328 expression, CD44 expression was up-regulated at the initial pressurization stage. We also found that miR-328 expression decreased and CD44 increased in ureteric obstruction kidneys in the animal study. CD44 siRNA transfection significantly increased E-cadherin expression and inhibited pressure-induced EMT. Both hyaluronan binding peptide pep-1 and osteopontin neutralizing antibody inhibited pressure-induced EMT. Our results suggest that miR-328-mediated CD44 transient upregulation is an important trigger of the pressure-induced EMT in renal fibrosis.
Collapse
Affiliation(s)
- Cheng-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chung-Yi Cheng
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yen-Cheng Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Mou Sue
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chung-Te Liu
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
45
|
Quaglia M, Chiocchetti A, Cena T, Musetti C, Monti S, Clemente N, Dianzani U, Magnani C, Stratta P. Osteopontin circulating levels correlate with renal involvement in systemic lupus erythematosus and are lower in ACE inhibitor-treated patients. Clin Rheumatol 2014; 33:1263-71. [PMID: 24820147 DOI: 10.1007/s10067-014-2665-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 01/13/2023]
Abstract
Elevated serum levels of osteopontin have been associated with cardiovascular disease, diabetic nephropathy, and autoimmune disease activity. Aim of the study was to investigate the relationship between osteopontin serum levels and renal damage in a population of patients with systemic lupus erythematosus (SLE). Osteopontin serum levels were analyzed in 101 SLE patients and compared to those of 115 healthy controls. Associations between osteopontin levels and renal involvement, disease activity and damage index, biochemical parameters, and therapy were assessed. Overall osteopontin serum levels were higher in SLE patients (median, 17.93 ng/mL; interquartile range, 8.13-35.07 ng/mL) than in healthy controls (median, 5.62 ng/mL; interquartile range, 2.61-13.83 ng/mL). Univariate logistic analysis among cases showed that high osteopontin levels (higher vs medium-lower tertile) were associated with renal involvement (p = 0.012), renal function (p = 0.007), proteinuria (p = 0.011), anemia (p < 0.001), and SLICC/ACR Damage Index (p < 0.001). Multivariate analysis showed an independent association between high osteopontin serum levels (higher vs medium-lower tertile) and chronic kidney disease (OR = 4.89; 95 % CI, 1.24-19.24; p = 0.008), proteinuria (OR = 4.56; 95 % CI, 1.15-18.04; p = 0.027), anemia (OR = 4.66; 95 % CI, 1.25-17.43; p = 0.008), and use of renin-angiontensin system antagonists (OR = 0.234; 95 % CI, 0.06-0.98; p = 0.047). This study shows that elevated osteopontin serum levels significantly correlate with renal involvement and anemia in SLE. Moreover, it suggests that renin-angiontensin system antagonists decrease osteopontin levels-this effect is consistent with the inhibitory effect of these drugs on osteopontin renal expression, detected in animal models by other authors, and may provide a new rationale for their employment.
Collapse
Affiliation(s)
- Marco Quaglia
- Department of Translational Medicine, Nephrology and Renal Transplant Unit, University of Eastern Piedmont, Novara, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE The nature of biomedical research affords a broad range of investigational topics at the preclinical stage, not all of which may be explored in subsequent clinical studies. To provide a comprehensive perspective on the physiologic effects of the dipeptidyl peptidase-4 inhibitor linagliptin, this review will discuss the results of both preclinical and clinical research, summarizing data describing outcomes associated with its use. SUMMARY Clinical studies demonstrate an overall favorable safety profile, low risk for hypoglycemia, weight neutrality, primarily nonrenal clearance, and efficacy for glycosylated hemoglobin reduction, typically ranging from 0.6% to 0.8% depending on baseline levels. In addition to these characteristics, preclinical research on linagliptin has yielded several interesting findings such as improved wound healing, reduced hepatic fat content, decreased infarct size following myocardial infarction or intracranial stroke, and improved vascular function with decreased oxidative stress. In accordance with its preclinical profile, linagliptin is unique among available dipeptidyl peptidase-4 compounds because it does not require dose adjustment when used in patients with renal dysfunction. Reduction of albuminuria with linagliptin on top of inhibitors of the renin-angiotensin-aldosterone system in both preclinical and post hoc clinical analysis serves as the foundation for ongoing clinical trials. CONCLUSION In addition to its efficacy for glycemic control, current literature points to other potential opportunities associated with linagliptin therapy. These results warrant further investigation and underscore the importance of translational study based on findings from preclinical research. Moving forward, we can expect that future research on linagliptin and other incretin-based therapies will continue to expand their applications beyond the maintenance of glycemic control in patients with type 2 diabetes.
Collapse
Affiliation(s)
- John Doupis
- Iatriko Palaiou Falirou Medical Center, Division of Diabetes, Athens, Greece
| |
Collapse
|
47
|
Cannabinoid receptor 1 disturbance of PPARγ2 augments hyperglycemia induction of mesangial inflammation and fibrosis in renal glomeruli. J Mol Med (Berl) 2014; 92:779-92. [PMID: 24722948 DOI: 10.1007/s00109-014-1125-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 12/03/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Intensive fibrosis in the glomerular microenvironment is a prominent feature of diabetic nephropathy. Cannabinoid receptor 1 (CB1R) reportedly mediates diabetes-induced renal injury. However, studies on the molecular events underlying CB1R promotion of renal dysfunction are limited. This study is undertaken to investigate whether CB1R signaling via Ras or PPARγ pathway regulates mesangial fibrosis in diabetic kidneys. In streptozotocin-induced diabetic rats, hyperglycemia induced glomerular hypertrophy and fibrosis in association with increased IL-1β, fibronectin, and CB1R expressions and reduced PPARγ2 signaling. CB1R transgenic mice gained kidney weight, and renal glomeruli strongly displayed IL-1β and fibrotic matrices. Disruption of CB1R by antisense oligonucleotides or inverse agonist AM251 restored PPARγ2 signaling and reduced the promotional effects of hyperglycemia on the expression of fibrogenic transcription factor c-Jun, inflammation regulator SOCS3, proinflammatory cytokines, and accumulation of fibrotic matrix. PPARγ agonist rosiglitazone reduced the hyperglycemia-mediated enhancement of CB1R signaling, inflammation, and glomerular fibrosis in diabetic animals. In vitro, CB1R antagonism restored PPARγ2 action and reduced the promotional effects of high glucose on Ras, ERK, c-Jun, SOCS3 signaling, IL-1β, and fibronectin expression in renal mesangial cells. Activation of PPARγ2 reduced the high glucose-induced CB1R expression in mesangial cells. Taken together, CB1R signaling contributes to the hyperglycemia disturbance of PPARγ2 signaling and increases inflammatory cytokine secretion and fibrotic matrix deposition in renal glomeruli. CB1R mediates the hyperglycemia-induced inflammation and fibrosis in mesangial cells by regulating Ras, ERK, and PPARγ2 signaling. CB1R blockade has a therapeutic potential to reduce the deleterious actions of hyperglycemia on renal glomerular integrity. KEY MESSAGE Hyperglycemia increases glomerular fibrosis, inflammation, and CB1R signaling. CB1R signaling promotes fibrosis and inflammation of renal tissue. Loss of CB1R function alleviates diabetes-mediated renal deterioration. PPARγ agonist decreases CB1R expression in diabetic renal glomeruli. Ras and ERK mediated CB1R promotion of fibrosis matrix deposition in mesangial cells.
Collapse
|
48
|
Atorvastatin inhibits hyperglycemia-induced expression of osteopontin in the diabetic rat kidney via the p38 MAPK pathway. Mol Biol Rep 2014; 41:2551-8. [PMID: 24452713 DOI: 10.1007/s11033-014-3113-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/10/2014] [Indexed: 01/13/2023]
Abstract
Osteopontin (OPN), a large phosphoglycoprotein adhesion molecule, which is up-regulated in the kidneys of humans and mice with diabetes, has emerged as a potentially key pathophysiological contributor in diabetic nephropathy. Here, we investigated the role of OPN in kidney injury caused by diabetic nephropathy and the effect of atorvastatin on the expression of OPN and on diabetic nephropathy. Diabetes was induced with streptozotocin in rats, and atorvastatin (5 mg/kg) was orally administered once a day for 8 weeks. We analyzed the expression and regulation of OPN in the kidneys of streptozotocin-induced diabetic Sprague-Dawley albino rats by immunohistochemistry and western blot analysis. The expression of OPN was increased in diabetic rat kidney, and atorvastatin inhibited this process. Atorvastatin also decreased the expression and phosphorylation of p38. In vitro, atorvastatin inhibited the high glucose-induced OPN expression in Madin-Darby canine kidney epithelial cells through the p38 MAPK signaling pathway. These results suggested that atorvastatin reduced the expression of OPN through inhibition of the p38 MAPK pathway. The expression of OPN was associated with kidney injury. These molecules may represent therapeutic targets for the prevention of acute kidney injury induced by diabetes.
Collapse
|
49
|
Okamoto T, Sasaki S, Yamazaki T, Sato Y, Ito H, Ariga T. Prevalence of CD44-Positive Glomerular Parietal Epithelial Cells Reflects Podocyte Injury in Adriamycin Nephropathy. ACTA ACUST UNITED AC 2014; 124:11-8. [DOI: 10.1159/000357356] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022]
|
50
|
Maile LA, Gollahon K, Wai C, Dunbar P, Busby W, Clemmons D. Blocking αVβ3 integrin ligand occupancy inhibits the progression of albuminuria in diabetic rats. J Diabetes Res 2014; 2014:421827. [PMID: 25389530 PMCID: PMC4217341 DOI: 10.1155/2014/421827] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/07/2014] [Indexed: 12/18/2022] Open
Abstract
This study determined if blocking ligand occupancy of the αVβ3 integrin could inhibit the pathophysiologic changes that occur in the early stages of diabetic nephropathy (DN). Diabetic rats were treated with either vehicle or a monoclonal antibody that binds the β3 subunit of the αVβ3 integrin. After 4 weeks of diabetes the urinary albumin to creatinine ratio (UACR) increased in both diabetic animals that subsequently received vehicle and in the animals that subsequently received the anti-β3 antibody compared with control nondiabetic rats. After 8 weeks of treatment the UACR continued to rise in the vehicle-treated rats; however it returned to levels comparable to control nondiabetic rats in rats treated with the anti-β3 antibody. Treatment with the antibody prevented the increase of several profibrotic proteins that have been implicated in the development of DN. Diabetes was associated with an increase in phosphorylation of the β3 subunit in kidney homogenates from diabetic animals, but this was prevented by the antibody treatment. This study demonstrates that, when administered after establishment of early pathophysiologic changes in renal function, the anti-β3 antibody reversed the effects of diabetes normalizing albuminuria and profibrotic proteins in the kidney to the levels observed in nondiabetic control animals.
Collapse
Affiliation(s)
- Laura A. Maile
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
- Vascular Pharmaceuticals, Inc., 510 Meadowmont Village Circle, Suite 283, Chapel Hill, NC 27517, USA
- *Laura A. Maile:
| | - Katherine Gollahon
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Christine Wai
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Paul Dunbar
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Walker Busby
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - David Clemmons
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|