1
|
Duque EJ, Crispilho SF, Oliveira IB, Dominguez WV, Silva C, Furukawa L, Teng AK, Avesani CM, Shinjo SK, Elias RM, Jorgetti V, Moysés RMA. The role of osteopontin and osteocyte-derived factors in secondary hyperparathyroidism-induced myopathy. JBMR Plus 2024; 8:ziae084. [PMID: 39070237 PMCID: PMC11273725 DOI: 10.1093/jbmrpl/ziae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Muscle weakness is a common symptom in CKD patients, and the pathway by which secondary hyperparathyroidism (SHPT) affects muscle function is unknown. Osteopontin (OPN), a bone matrix protein stimulated by PTH and phosphate, has been associated with inflammatory muscle diseases. In this observational and prospective cohort study, we evaluated 30 patients with severe SHPT (39 ± 12 yr; 18 women), before and 6 mo after parathyroidectomy (PTx). We examined the relationships among CKD-mineral and bone disorder parameters; myokine and inflammatory cytokine levels; and changes in resting energy expenditure (REE), muscle function, BMD, and muscle-related proteins. At baseline, the patients showed low gene expression of muscle turnover markers and irisin, as well as high protein expression of OPN, transforming growth factor beta (TGF-β), and fibroblast growth factor 21. Six months after PTx, REE and muscle mass had not changed, but physical performance, muscle strength, and bone mass improved, more so in patients undergoing total PTx. Also, there were reductions in the protein expression of OPN (11 vs 3%, p=.01) and TGF-β (21 vs 7%, p=.002) in muscle, together with a significant increase in irisin muscular levels (30 vs 35 pg/mg, p=.02). The gain in bone mass and the increase in irisin levels correlated with a reduction in PTH. The levels of interleukin (IL)-1β, tumor necrosis factor alpha, and IL-17 (markers of myositis) were also lower after PTx. Our data suggest that SHPT plays a role in CKD-induced muscle dysfunction, indirectly, via release of bone-specific proteins, which is partially reverted with PTx.
Collapse
Affiliation(s)
- Eduardo J Duque
- Nephrology Department, Laboratório de Fisiopatologia Renal 16 (LIM 16), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
| | - Shirley F Crispilho
- Department of Post Graduation, Universidade Nove de Julho, São Paulo, SP, 01156-050, Brazil
| | - Ivone B Oliveira
- Nephrology Department, Laboratório de Fisiopatologia Renal 16 (LIM 16), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
| | - Wagner V Dominguez
- Nephrology Department, Laboratório de Fisiopatologia Renal 16 (LIM 16), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
| | - Cleonice Silva
- Nephrology Department, Laboratório de Fisiopatologia Renal 16 (LIM 16), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
| | - Luzia Furukawa
- Nephrology Department, Laboratório de Fisiopatologia Renal 16 (LIM 16), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
| | - André K Teng
- Nephrology Department, Laboratório de Fisiopatologia Renal 16 (LIM 16), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
| | - Carla M Avesani
- Division of Renal Medicine – Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, 141 86, Sweden
| | - Samuel K Shinjo
- Rheumatology Department, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
| | - Rosilene M Elias
- Nephrology Department, Laboratório de Fisiopatologia Renal 16 (LIM 16), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
- Department of Post Graduation, Universidade Nove de Julho, São Paulo, SP, 01156-050, Brazil
| | - Vanda Jorgetti
- Nephrology Department, Laboratório de Fisiopatologia Renal 16 (LIM 16), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
| | - Rosa M A Moysés
- Nephrology Department, Laboratório de Fisiopatologia Renal 16 (LIM 16), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
| |
Collapse
|
2
|
Picciotto D, Macciò L, Verzola D, Baciga F, Momentè C, Russo E, Viazzi F, Battaglia Y, Esposito P. Pathophysiology of Physical Exercise in Kidney Patients: Unveiling New Players - The Role of Myokines. Kidney Blood Press Res 2024; 49:457-471. [PMID: 38815556 DOI: 10.1159/000539489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a progressive systemic condition characterized by numerous complications. Among these, alterations in skeletal muscle physiology, such as sarcopenia, are particularly significant, as they are associated with poor outcomes and reduced quality of life. SUMMARY Various interventions, including pharmacological approaches and lifestyle modifications have been investigated to slow CKD progression and prevent or treat its complications. Physical exercise, in particular, has emerged as a promising intervention with multiple beneficial effects. These include improvements in physical functioning, increased muscle mass, modulation of metabolic abnormalities, and reduced cardiovascular risk. However, the pathophysiology of physical exercise in patients with kidney disease is complex and remains only partially understood. A crucial advancement in understanding this phenomenon has been the identification of myokines - molecules expressed and released by skeletal muscle in response to physical activity. These myokines can exert both paracrine and systemic effects, influencing not only skeletal muscle physiology but also other processes such as energy metabolism and lipid regulation. KEY MESSAGES The interplay among skeletal muscle, physical activity, and myokines may act as a pivotal regulator in various physiological processes, including aging, as well as in pathological conditions like cachexia and sarcopenia, frequently observed in CKD patients at different stages, including patients on dialysis. Despite the potential importance of this relationship, only a limited number of studies have explored the relationship between exercise and myokine, and the effect of this interaction on experimental models or individuals with kidney disease. In the following sections, we review and discuss this topic.
Collapse
Affiliation(s)
- Daniela Picciotto
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Macciò
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| | - Daniela Verzola
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| | - Federica Baciga
- Department of Medicine, University of Verona, Verona, Italy
- Nephrology and Dialysis Unit, Pederzoli Hospital, Peschiera del Garda, Italy
| | | | - Elisa Russo
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| | - Francesca Viazzi
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| | - Yuri Battaglia
- Department of Medicine, University of Verona, Verona, Italy
- Nephrology and Dialysis Unit, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Pasquale Esposito
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| |
Collapse
|
3
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
4
|
Ibrahim AH, Kasim SA, Ezzat AA, Ibrahim NE, Hassan DA, Ibrahim AS, Abouelgreed TA, Abdo EM, Aboelsoud NM, Abdelmonem NM, Alnajem MT, Aboomar AA. Relation between myostatin levels and malnutrition and muscle wasting in hemodialysis patients. Arch Ital Urol Androl 2023; 95:11869. [PMID: 38117215 DOI: 10.4081/aiua.2023.11869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND AND AIM Malnutrition is one of the most troublesome comorbidities among hemodialysis patients (HD). Myostatin (MSTN) belongs to the transforming growth factor-β superfamily. In HD patients, MSTN effects are not limited to skeletal muscle growth. The present study aimed to assess MSTN levels in HD patients and its relation to various clinical and biochemical parameters. PATIENTS AND METHODS The present case control study included 60 patients on HD for at least three years. In addition, there were age and sex-matched healthy subjects who constitutes the control group. Nutritional status was evaluated using the malnutrition inflammation score (MIS). Muscle wasting in the present study was evaluated using the lean tissue index (LTI) as assessed by the body composition monitor (BCM). Rectus Femoris Muscle (RFM) thickness was also measured as indicator for nutritional status of patient. RESULTS The present study included 60 HD patients, and ageand sex-matched healthy controls. Patients expressed significantly higher myostatin levels when compared to controls [median (IQR): 221.3 (153.5-688.2) versus 144.8 (97.0-281.7), p < 0.001]. According to MIS, patients were classified into those with no/mild malnutrition (n = 22) and others with moderate/severe malnutrition (n = 38). Comparison between the two subgroups revealed that the former group had significantly lower myostatin levels [167.7 (150.3-236.3) versus 341.7 (160.9-955.9), p = 0.004]. According to LTI, patients were classified into those with muscle wasting (n = 23) and others without muscle wasting (n = 37). Comparative analysis showed that patients in the former group had significantly higher myostatin levels [775.1 (325.1-2133.7) versus 161.8 (142.6-302.3), p < 0.001]. CONCLUSIONS Myostatin seems to be a promising marker for identification of malnutrition and muscle wasting in HD patients.
Collapse
Affiliation(s)
- Amal H Ibrahim
- Department of Internal Medicine, Nephrology Unit, Al-Azhar University, Cairo.
| | - Sammar A Kasim
- Department of Internal Medicine, Nephrology Unit, Al-Azhar University, Cairo.
| | - Alshimaa A Ezzat
- Department of Radiology, Faculty of Medicine, Al-Azhar University, Cairo.
| | - Noha E Ibrahim
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre (NRC), Giza.
| | - Donia A Hassan
- Department of Clinical Pathology, Al-Azhar University, Cairo.
| | - Amira Sh Ibrahim
- Department of Rheumatology and Rehabilitation, Faculty of Medicine for girls, Al-Azhar University, Cairo.
| | | | - Ehab M Abdo
- Department of Vascular Surgery, Faculty of Medicine, Al-Azhar University, Cairo.
| | - Naglaa M Aboelsoud
- Department of Radiology, Faculty of Medicine, Al-Azhar University, Cairo.
| | | | | | - Ahmed A Aboomar
- Department of internal medicine, Nephrology Unit, Faculty Medicine, Tanta University, Tanta.
| |
Collapse
|
5
|
Lee DY, Shin S. Association between Chronic Kidney Disease and Dynapenia in Elderly Koreans. Healthcare (Basel) 2023; 11:2976. [PMID: 37998468 PMCID: PMC10671638 DOI: 10.3390/healthcare11222976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Chronic kidney disease (CKD) is caused by various factors such as chronic inflammation, oxidative stress, and obesity. Loss of muscle strength and mass is a negative prognostic factor for CKD. Therefore, in this study, we aimed to investigate the association between CKD and dynapenia in the Korean elderly. To this end, we analyzed 7029 participants from the 2014-2019 Korean National Health and Nutrition Examination Survey (KNHANES) aged ≥65 years. After adjusting for all of the covariates that could affect the results, such as physical examinations, lifestyle factors, and exercise, the association between CKD and dynapenia was found to be significant, at 1.207 (95% CI: 1.056-1.379) in CKD stage 2 and 1.790 (95% CI: 1.427-2.246) in CKD stage 3a-5. However, when sexes were analyzed separately, women were significant in both CKD stage 2 and stage 3-5 compared to normal, but only in stage 3-5 for men. Additionally, the prevalence of dynapenia increased significantly as the stage of CKD increased (normal, stage 2, and stage 3-5: 18.5%, 20.8%, and 32.3% in men and 27.5%, 34.4%, and 46.1% in women, respectively). Thus, CKD is significantly related to dynapenia, especially in women, when stratified by sex.
Collapse
Affiliation(s)
- Do-Youn Lee
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea;
| | - Sunghoon Shin
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Neuromuscular Control Laboratory, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Abstract
Muscle wasting (ie, atrophy) is a serious consequence of chronic kidney disease (CKD) that reduces muscle strength and function. It reduces the quality of life for CKD patients and increases the risks of comorbidities and mortality. Current treatment strategies to prevent or reverse skeletal muscle loss are limited owing to the broad and systemic nature of the initiating signals and the multifaceted catabolic mechanisms that accelerate muscle protein degradation and impair protein synthesis and repair pathways. Recent evidence has shown how organs such as muscle, adipose, and kidney communicate with each other through interorgan exchange of proteins and RNAs during CKD. This crosstalk changes cell functions in the recipient organs and represents an added dimension in the complex processes that are responsible for muscle atrophy in CKD. This complexity creates challenges for the development of effective therapies to ameliorate muscle wasting and weakness in patients with CKD.
Collapse
Affiliation(s)
- Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA
| | - S Russ Price
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC; Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC.
| |
Collapse
|
7
|
Hou YC, Liu YM, Liao MT, Zheng CM, Lu CL, Liu WC, Hung KC, Lin SM, Lu KC. Indoxyl sulfate mediates low handgrip strength and is predictive of high hospitalization rates in patients with end-stage renal disease. Front Med (Lausanne) 2023; 10:1023383. [PMID: 36817773 PMCID: PMC9932816 DOI: 10.3389/fmed.2023.1023383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aims Sarcopenia has a higher occurrence rate in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) than in the general population. Low handgrip strength-and not sarcopenia per se-is associated with clinical outcomes in patients with CKD, including cardiovascular mortality and hospitalization. The factors contributing to low handgrip strength are still unknown. Accordingly, this study aimed to determine whether uremic toxins influence low handgrip strength in patients with CKD. Materials and methods This cohort study lasted from August 2018 to January 2020. The participants were divided into three groups: the control group [estimated glomerular filtration rate (eGFR) ≥ 60 ml/min], an advanced CKD group (eGFR = 15-60 ml/min), and an ESRD group (under maintenance renal replacement therapy). All participants underwent handgrip strength measurement, dual-energy X-ray absorptiometry, and blood sampling for myokines (irisin, myostatin, and interleukin 6) and indoxyl sulfate. Sarcopenia was defined according to the Asian Working Group for Sarcopenia consensus as low appendicular skeletal muscle index (appendicular skeletal muscle/height2 of < 7.0 kg/m2 in men and < 5.4 kg/m2 in women) and low handgrip strength (< 28 kg in men and < 18 kg in women). Results Among the study participants (control: n = 16; CKD: n = 17; and ESRD: n = 42), the ESRD group had the highest prevalence of low handgrip strength (41.6 vs. 25% and 5.85% in the control and CKD groups, respectively; p < 0.05). The sarcopenia rate was similar among the groups (12.5, 17.6, and 19.5% for the control, CKD, and ESRD groups, respectively; p = 0.864). Low handgrip strength was associated with high hospitalization rates within the total study population during the 600-day follow-up period (p = 0.02). The predictions for cardiovascular mortality and hospitalization were similar among patients with and without sarcopenia (p = 0.190 and p = 0.094). The serum concentrations of indoxyl sulfate were higher in the ESRD group (227.29 ± 92.65 μM vs. 41.97 ± 43.96 μM and 6.54 ± 3.45 μM for the CKD and control groups, respectively; p < 0.05). Myokine concentrations were similar among groups. Indoxyl sulfate was associated with low handgrip strength in univariate and multivariate logistic regression models [univariate odds ratio (OR): 3.485, 95% confidence interval (CI): 1.372-8.852, p = 0.001; multivariate OR: 8.525, 95% CI: 1.807-40.207, p = 0.007]. Conclusion Handgrip strength was lower in the patients with ESRD, and low handgrip strength was predictive of hospitalization in the total study population. Indoxyl sulfate contributed to low handgrip strength and counteracted the benefits of myokines in patients with CKD.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Division of Nephrology, Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yueh-Min Liu
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan
| | - Min-Ter Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Hsinchu, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chien-Lin Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wen-Chih Liu
- Division of Nephrology, Department of Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei City, Taiwan
| | - Kuo-Chin Hung
- Division of Nephrology, Department of Medicine, Min-Sheng General Hospital, Taoyuan City, Taiwan
| | - Shyh-Min Lin
- Division of Radiology, Department of Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
8
|
Lee SM, Jeong EG, Jeong YI, Rha SH, Kim SE, An WS. Omega-3 fatty acid and menaquinone-7 combination are helpful for aortic calcification prevention, reducing osteoclast area of bone and Fox0 expression of muscle in uremic rats. Ren Fail 2022; 44:1873-1885. [PMID: 36632744 PMCID: PMC9848285 DOI: 10.1080/0886022x.2022.2142140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Osteopenia, sarcopenia, and vascular calcification (VC) are prevalent in patients with chronic kidney disease and often coexist. In the absence of proven therapies, it is necessary to develop therapeutic or preventive nutrients supplementation for osteopenia, sarcopenia, and VC. The present study investigated the effect of omega-3 fatty acid (FA) and menaquinone-7 (MK-7) on osteopenia, sarcopenia, and VC in adenine and low-protein diet-induced uremic rats. METHODS Thirty-two male Sprague-Dawley rats were fed diets containing 0.75% adenine and 2.5% protein for three weeks. Rats were randomly divided into four groups that were fed diets containing 2.5% protein for four weeks: adenine control (0.9% saline), omega-3 FA (300 mg/kg/day), MK-7 (50 µg/kg/day), and omega-3 FA/MK-7. Von Kossa staining for aortic calcification assessment was performed. Osteoclast surface/bone surface ratio (OcS/BS) of bone and muscle fiber were analyzed using hematoxylin and eosin staining. Osteoprotegerin (OPG) immunohistochemical staining was done in the aorta and bone. Molecules related with sarcopenia were analyzed using western blotting. RESULTS Compared to the normal control, OcS/BS and aortic calcification, and OPG staining in the aorta and bone were significantly increased in the adenine controls. OPG staining and aortic calcification progressed the least in the group supplemented with both omega-3 FA/MK-7. In the adenine controls, the regular arrangement of muscle fiber was severely disrupted, and inflammatory cell infiltration was more prominent. These findings were reduced after combined supplementation with omega-3 FA/MK-7. Furthermore, decreased mammalian target of rapamycin and increased Forkhead box protein 1 expression was significantly restored by combined supplementation. CONCLUSIONS Combined nutrients supplementation with omega-3 FA and MK-7 may be helpful for aortic VC prevention, reducing osteoclast activation and improving sarcopenia-related molecules in adenine and low-protein diet induced uremic rats.
Collapse
Affiliation(s)
- Su Mi Lee
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Eu Gene Jeong
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Yu In Jeong
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Seo Hee Rha
- Department of Pathology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Seong Eun Kim
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Won Suk An
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea,CONTACT Won Suk An Department of Internal Medicine, Dong-A University, 3Ga-1, Dongdaesin-Dong, Seo-Gu, Busan, 602-715, Republic of Korea
| |
Collapse
|
9
|
Muscle Wasting in Chronic Kidney Disease: Mechanism and Clinical Implications—A Narrative Review. Int J Mol Sci 2022; 23:ijms23116047. [PMID: 35682722 PMCID: PMC9181340 DOI: 10.3390/ijms23116047] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Muscle wasting, known to develop in patients with chronic kidney disease (CKD), is a deleterious consequence of numerous complications associated with deteriorated renal function. Muscle wasting in CKD mainly involves dysregulated muscle protein metabolism and impaired muscle cell regeneration. In this narrative review, we discuss the cardinal role of the insulin-like growth factor 1 and myostatin signaling pathways, which have been extensively investigated using animal and human studies, as well as the emerging concepts in microRNA- and gut microbiota-mediated regulation of muscle mass and myogenesis. To ameliorate muscle loss, therapeutic strategies, including nutritional support, exercise programs, pharmacological interventions, and physical modalities, are being increasingly developed based on advances in understanding its underlying pathophysiology.
Collapse
|
10
|
Cailleaux PE, Cohen-Solal M. Managing Musculoskeletal and Kidney Aging: A Call for Holistic Insights. Clin Interv Aging 2022; 17:717-732. [PMID: 35548383 PMCID: PMC9081621 DOI: 10.2147/cia.s357501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Martine Cohen-Solal
- Inserm UMR-S 1132 Bioscar, Université Paris Cité - Hôpital Lariboisiere, Paris, F-75010, France
| |
Collapse
|
11
|
Baker LA, O'Sullivan TF, Robinson KA, Graham-Brown MPM, Major RW, Ashford RU, Smith AC, Philp A, Watson EL. Primary skeletal muscle cells from chronic kidney disease patients retain hallmarks of cachexia in vitro. J Cachexia Sarcopenia Muscle 2022; 13:1238-1249. [PMID: 35029054 PMCID: PMC8978027 DOI: 10.1002/jcsm.12802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Skeletal muscle wasting and dysfunction are common characteristics noted in people who suffer from chronic kidney disease (CKD). The mechanisms by which this occurs are complex, and although progress has been made, the key underpinning mechanisms are not yet fully elucidated. With work to date primarily conducted in nephrectomy-based animal models, translational capacity to our patient population has been challenging. This could be overcome if rationale developing work could be conducted in human based models with greater translational capacity. This could be achieved using cells derived from patient biopsies, if they retain phenotypic traits noted in vivo. METHODS Here, we performed a systematic characterization of CKD derived muscle cells (CKD; n = 10; age: 54.40 ± 15.53 years; eGFR: 22.25 ± 13.22 ml/min/1.73 m2 ) in comparison with matched controls (CON; n = 10; age: 58.66 ± 14.74 years; eGFR: 85.81 ± 8.09 ml/min/1.73 m2 ). Harvested human derived muscle cells (HDMCs) were taken through proliferative and differentiation phases and investigated in the context of myogenic progression, inflammation, protein synthesis, and protein breakdown. Follow up investigations exposed HDMC myotubes from each donor type to 0, 0.4, and 100 nM of IGF-1 in order to investigate any differences in anabolic resistance. RESULTS Harvested human derived muscle cells isolated from CKD patients displayed higher rates of protein degradation (P = 0.044) alongside elevated expression of both TRIM63 (2.28-fold higher, P = 0.054) and fbox32 (6.4-fold higher, P < 0.001) in comparison with CONs. No differences were noted in rates of protein synthesis under basal conditions (P > 0.05); however, CKD derived cells displayed a significant degree of anabolic resistance in response to IGF-1 stimulation (both doses) in comparison with matched CONs (0.4 nm: P < 0.001; 100 nM: P < 0.001). CONCLUSIONS In summary, we report for the first time that HDMCs isolated from people suffering from CKD display key hallmarks of the well documented in vivo phenotype. Not only do these findings provide further mechanistic insight into CKD specific cachexia, but they also demonstrate this is a reliable and suitable model in which to perform targeted experiments to begin to develop novel therapeutic strategies targeting the CKD associated decline in skeletal muscle mass and function.
Collapse
Affiliation(s)
- Luke A Baker
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | | | - Matthew P M Graham-Brown
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.,Department of Cardiovascular Science, NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, UK
| | - Rupert W Major
- Department of Health Sciences, University of Leicester, Leicester, UK.,John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Robert U Ashford
- Leicester Orthopaedics, University Hospitals of Leicester, Leicester, UK.,Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Alice C Smith
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Emma L Watson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
12
|
Bataille S, Dou L, Bartoli M, Sallée M, Aniort J, Ferkak B, Chermiti R, McKay N, Da Silva N, Burtey S, Poitevin S. Mechanisms of myostatin and activin A accumulation in chronic kidney disease. Nephrol Dial Transplant 2022; 37:1249-1260. [PMID: 35333341 DOI: 10.1093/ndt/gfac136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Myostatin and activin A induce muscle wasting by activating the ubiquitin proteasome system and inhibiting the Akt/mTOR pathway. In chronic kidney disease (CKD), myostatin and activin A plasma concentrations are increased, but it is not clear if there is an increased production or a decreased renal clearance. METHODS We measured myostatin and activin A concentrations in 232 CKD patients and studied their correlation with estimated glomerular filtration rate (eGFR). We analyzed the myostatin gene (MSTN) expression in muscle biopsies of hemodialysis (HD) patients. We then measured circulating myostatin and activin A in plasma and the Mstn and Inhba expression in muscles, kidney, liver and heart of two CKD mice models (adenine and 5/6th nephrectomy models). Finally, we analyzed whether the uremic toxin indoxyl sulfate (IS) increased Mstn expression in mice and cultured muscle cells. RESULTS In patients, myostatin and activin A were inversely correlated with eGFR. MSTN expression was lower in HD patients' muscles (vastus lateralis) than in controls. In mice with CKD, myostatin and activin A blood concentrations were increased. Mstn was not up-regulated in CKD mice tissues. Inha was up-regulated in kidney and heart. Exposure to IS did not induce Mstn up-regulation in mice muscles and in cultured myoblasts and myocytes. CONCLUSION During CKD, myostatin and activin A blood concentrations are increased. Myostatin is not overproduced, suggesting only an impaired renal clearance, but activin A is over produced in kidney and heart. We propose to add myostatin and activin A to the list of uremic toxins.
Collapse
Affiliation(s)
- Stanislas Bataille
- Phocean Nephrology Institute, Clinique Bouchard, ELSAN, Marseille, France.,Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Laetitia Dou
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, MMG, INSERM, Marseille, France
| | - Marion Sallée
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | - Julien Aniort
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Bohrane Ferkak
- Service d'Evaluation Médicale, AP-HM, Marseille, France.,Aix Marseille Univ, EA 3279 Self-perceived Health Assessment Research Unit, Marseille, France
| | - Rania Chermiti
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Nathalie McKay
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | | | - Stéphane Burtey
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | | |
Collapse
|
13
|
Wang XH, Mitch WE, Price SR. Pathophysiological mechanisms leading to muscle loss in chronic kidney disease. Nat Rev Nephrol 2022; 18:138-152. [PMID: 34750550 DOI: 10.1038/s41581-021-00498-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Loss of muscle proteins is a deleterious consequence of chronic kidney disease (CKD) that causes a decrease in muscle strength and function, and can lead to a reduction in quality of life and increased risk of morbidity and mortality. The effectiveness of current treatment strategies in preventing or reversing muscle protein losses is limited. The limitations largely stem from the systemic nature of diseases such as CKD, which stimulate skeletal muscle protein degradation pathways while simultaneously activating mechanisms that impair muscle protein synthesis and repair. Stimuli that initiate muscle protein loss include metabolic acidosis, insulin and IGF1 resistance, changes in hormones, cytokines, inflammatory processes and decreased appetite. A growing body of evidence suggests that signalling molecules secreted from muscle can enter the circulation and subsequently interact with recipient organs, including the kidneys, while conversely, pathological events in the kidney can adversely influence protein metabolism in skeletal muscle, demonstrating the existence of crosstalk between kidney and muscle. Together, these signals, whether direct or indirect, induce changes in the levels of regulatory and effector proteins via alterations in mRNAs, microRNAs and chromatin epigenetic responses. Advances in our understanding of the signals and processes that mediate muscle loss in CKD and other muscle wasting conditions will support the future development of therapeutic strategies to reduce muscle loss.
Collapse
Affiliation(s)
- Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA, USA
| | - William E Mitch
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - S Russ Price
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA. .,Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
14
|
Yasar E, Tek NA, Tekbudak MY, Yurtdaş G, Gülbahar Ö, Uyar GÖ, Ural Z, Çelik ÖM, Erten Y. THE RELATIONSHIP BETWEEN MYOSTATIN, INFLAMMATORY MARKERS AND SARCOPENIA IN PATIENTS WITH CHRONIC KIDNEY DISEASE. J Ren Nutr 2022; 32:677-684. [PMID: 35122995 DOI: 10.1053/j.jrn.2022.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/20/2021] [Accepted: 01/01/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE To determine the prevalence of sarcopenia in patients with chronic kidney disease (CKD), investigate the relationship of the serum myostatin level with sarcopenia and inflammatory markers. METHODS The study was conducted with four patient groups: renal transplantation (TX), stage 3-5 non-dialysis-dependent CKD (NDD-CKD), hemodialysis (HD), and peritoneal dialysis (PD). Laboratory parameters, serum myostatin, C-reactive protein, and interleukin-6 (IL-6) levels were studied. Body composition was estimated using a multifrequency bioimpedance analysis. Handgrip strength (HGS) was evaluated with a handgrip dynamometer. The HGS and appendicular skeletal muscle index (ASMI) measurements were used to determine sarcopenia presence. RESULTS The study included 130 patients [72(55%) males]. The patient distribution in groups was as follows: 37 in HD, 28 in PD, 37 in renal TX, and 28 in NDD-CKD. The highest level of myostatin was measured in the HD group and the lowest in the TX group (p<0.001). The HGS measurement was significantly lower only in the PD group compared to the TX group (p=0.025). The myostatin was negatively correlated with HGS, albumin, estimated glomerular filtration rate, and Kt/Vurea. However, myostatin had no correlation with inflammatory markers or ASMI. Sarcopenia was present in 37 (29%) of all patients: 15 (40%) in the HD group, nine (32%) in NDD-CKD, seven (25%) in PD, and six (16%) in TX. When the patients with and without sarcopenia were compared, only myostatin was higher in the former (p=0.045). As a result of multivariate analysis, myostatin was the only independent factor which predict sarcopenia (OR: 1.002, 95% CI:1.001-1.005, p=0.048). CONCLUSION To prevent devastating events associated with sarcopenia in patients with CKD, renal transplantation seems to be the best treatment solution. For the early recognition of sarcopenia, the measurement of the serum myostatin level may be a promising diagnostic approach.
Collapse
Affiliation(s)
- Emre Yasar
- Gazi University, Faculty of Medicine, Department of Nephrology, Ankara, Turkey.
| | - Nilüfer Acar Tek
- Gazi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | | | - Gamze Yurtdaş
- Gazi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey; Izmir Katip Celebi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Izmir, Turkey
| | - Özlem Gülbahar
- Gazi University Faculty of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| | - Gizem Özata Uyar
- Gazi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Zeynep Ural
- Gazi University, Faculty of Medicine, Department of Nephrology, Ankara, Turkey
| | - Özge Mengi Çelik
- Gazi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Yasemin Erten
- Gazi University, Faculty of Medicine, Department of Nephrology, Ankara, Turkey
| |
Collapse
|
15
|
Karava V, Dotis J, Christoforidis A, Kondou A, Printza N. Muscle-bone axis in children with chronic kidney disease: current knowledge and future perspectives. Pediatr Nephrol 2021; 36:3813-3827. [PMID: 33534001 DOI: 10.1007/s00467-021-04936-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/06/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Bone and muscle tissue are developed hand-in-hand during childhood and adolescence and interact through mechanical loads and biochemical pathways forming the musculoskeletal system. Chronic kidney disease (CKD) is widely considered as both a bone and muscle-weakening disease, eventually leading to frailty phenotype, with detrimental effects on overall morbidity. CKD also interferes in the biomechanical communication between two tissues. Pathogenetic mechanisms including systemic inflammation, anorexia, physical inactivity, vitamin D deficiency and secondary hyperparathyroidism, metabolic acidosis, impaired growth hormone/insulin growth factor 1 axis, insulin resistance, and activation of renin-angiotensin system are incriminated for longitudinal uncoordinated loss of bone mineral content, bone strength, muscle mass, and muscle strength, leading to mechanical impairment of the functional muscle-bone unit. At the same time, CKD may also interfere in the biochemical crosstalk between the two organs, through inhibiting or stimulating the expression of certain osteokines and myokines. This review focuses on presenting current knowledge, according to in vitro, in vivo, and clinical studies, concerning the pathogenetic pathways involved in the muscle-bone axis, and suggests approaches aimed at preventing bone loss and muscle wasting in the pediatric population. Novel therapeutic targets for preserving musculoskeletal health in the context of CKD are also discussed.
Collapse
Affiliation(s)
- Vasiliki Karava
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece.
| | - John Dotis
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| | - Athanasios Christoforidis
- Pediatric Endocrinology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonia Kondou
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| | - Nikoleta Printza
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| |
Collapse
|
16
|
Watson EL, Baker LA, Wilkinson TJ, Gould DW, Xenophontos S, Graham-Brown M, Major RW, Ashford RU, Viana JL, Smith AC. Inflammation and physical dysfunction: responses to moderate intensity exercise in chronic kidney disease. Nephrol Dial Transplant 2021; 37:860-868. [PMID: 35090033 DOI: 10.1093/ndt/gfab333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND People with chronic kidney disease (CKD) experience skeletal muscle wasting, reduced levels of physical function and performance, and chronic systemic inflammation. While it is known that a relationship exists between inflammation and muscle wasting, the association between inflammation and physical function or performance in CKD has not been well studied. Exercise has anti-inflammatory effects, but little is known regarding the effect of moderate intensity exercise. This study aimed to (i) compare systemic and intramuscular inflammation between CKD stage G3b-5 and non-CKD controls; (ii) establish whether a relationship exists between physical performance, exercise capacity and inflammation in CKD; (iii) determine changes in systemic and intramuscular inflammation following 12 weeks of exercise; and (iv) investigate whether improving inflammatory status via training contributes to improvements in physical performance and muscle mass. METHODS This is a secondary analysis of previously collected data. CKD patients stages G3b-5 (n = 84, n = 43 males) and non-CKD controls (n = 26, n = 17 males) underwent tests of physical performance, exercise capacity, muscle strength and muscle size. In addition, a subgroup of CKD participants underwent 12 weeks of exercise training, randomized to aerobic (AE, n = 21) or combined (CE, n = 20) training. Plasma and intramuscular inflammation and myostatin were measured at rest and following exercise. RESULTS Tumour necrosis factor-α was negatively associated with lower $^{^{^{.}}}{\rm V}$O2Peak (P = 0.01), Rectus femoris-cross sectional area (P = 0.002) and incremental shuttle walk test performance (P < 0.001). Interleukin-6 was negatively associated with sit-to-stand 60 performances (P = 0.006) and hand grip strength (P = 0.001). Unaccustomed exercise created an intramuscular inflammatory response that was attenuated following 12 weeks of training. Exercise training did not reduce systemic inflammation, but AE training did significantly reduce mature myostatin levels (P = 0.02). Changes in inflammation were not associated with changes in physical performance. CONCLUSIONS Systemic inflammation may contribute to reduced physical function in CKD. Twelve weeks of exercise training was unable to reduce the level of chronic systemic inflammation in these patients, but did reduce plasma myostatin concentrations. Further research is required to further investigate this.
Collapse
Affiliation(s)
- Emma L Watson
- Leicester Kidney Lifestyle Team, University of Leicester, Leicester, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Luke A Baker
- Leicester Kidney Lifestyle Team, University of Leicester, Leicester, UK.,Department of Health Sciences, University of Leicester, Leicester, UK
| | - Tom J Wilkinson
- Leicester Kidney Lifestyle Team, University of Leicester, Leicester, UK.,Department of Health Sciences, University of Leicester, Leicester, UK.,Leicester Biomedical Research Centre, Leicester, UK
| | - Doug W Gould
- Leicester Kidney Lifestyle Team, University of Leicester, Leicester, UK
| | - Soteris Xenophontos
- Leicester Kidney Lifestyle Team, University of Leicester, Leicester, UK.,Department of Health Sciences, University of Leicester, Leicester, UK
| | - Matthew Graham-Brown
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,John Walls Renal Unit, Leicester General Hospital, Leicester, UK
| | - Rupert W Major
- Department of Health Sciences, University of Leicester, Leicester, UK.,John Walls Renal Unit, Leicester General Hospital, Leicester, UK
| | - Robert U Ashford
- Leicester Orthopaedics, University Hospitals of Leicester, Leicester, UK.,Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Joao L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAI, Portugal
| | - Alice C Smith
- Leicester Kidney Lifestyle Team, University of Leicester, Leicester, UK.,Department of Health Sciences, University of Leicester, Leicester, UK.,Leicester Biomedical Research Centre, Leicester, UK
| |
Collapse
|
17
|
Koito Y, Yanishi M, Kimura Y, Tsukaguchi H, Kinoshita H, Matsuda T. Serum Brain-Derived Neurotrophic Factor and Myostatin Levels Are Associated With Skeletal Muscle Mass in Kidney Transplant Recipients. Transplant Proc 2021; 53:1939-1944. [PMID: 34253381 DOI: 10.1016/j.transproceed.2021.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sarcopenia, or reduced muscle mass, can be an important complication in kidney transplant recipients. The skeletal muscles were recently reported to secrete various myokines, such as brain-derived neurotrophic factor (BDNF) and myostatin, to regulate their mass, function, or both. The aim of the present study was to analyze the interrelationship between myokines (BDNF and myostatin) and skeletal muscle mass in kidney transplant recipients. METHODS The study population comprised 40 patients who underwent kidney transplantation at Kansai Medical University Hospital. Twenty patients had low skeletal muscle mass index (SMI) values, as measured on dual-energy x-ray absorptiometry, and were categorized into 2 groups (low SMI and normal). RESULTS Mean serum BDNF levels were 15.7 ng/mL in the low SMI group and 17.8 ng/mL in the normal group (P = .013). Mean serum myostatin levels were 362 pg/mL in the low SMI and 267 pg/mL in the normal group (P = .024). There was a significant positive correlation among metabolic equivalents and serum BDNF levels (r = 0.817; P < .001) and a significant negative correlation among metabolic equivalents and serum myostatin levels (r = -0.541; P < .001). Receiver operating characteristic analysis showed that serum BDNF and level of area under curve was 0.712, and serum myostatin level of area under the curve was 0.690. Serum BDNF and myostatin levels showed no significant difference. CONCLUSION These results suggest that BDNF and myostatin are potential biomarkers of reduced muscle mass in kidney transplant recipients.
Collapse
Affiliation(s)
- Yuya Koito
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Masaaki Yanishi
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan.
| | - Yutaka Kimura
- Health Science Center, Kansai Medical University, Osaka, Japan
| | - Hiroyasu Tsukaguchi
- Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Osaka, Japan
| | - Hidefumi Kinoshita
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Tadashi Matsuda
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
18
|
Choi SJ, Lee MS, Kang DH, Ko GJ, Lim HS, Yu BC, Park MY, Kim JK, Kim CH, Hwang SD, Kim JC, Won CW, An WS. Myostatin/Appendicular Skeletal Muscle Mass (ASM) Ratio, Not Myostatin, Is Associated with Low Handgrip Strength in Community-Dwelling Older Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147344. [PMID: 34299795 PMCID: PMC8307565 DOI: 10.3390/ijerph18147344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023]
Abstract
Background/Aims: Elevated levels of serum myostatin have been proposed as a biomarker for sarcopenia. Recent studies have shown that elevated level of serum myostatin was associated with physical fitness and performance. This study aimed to examine the significance of myostatin in the association between muscle mass and physical performance in the elderly. Methods: This cross-sectional study is based on the Korean Frailty and Aging Cohort study involving 1053 people aged 70 years or over. Anthropometric, physical performance, and laboratory data were collected. Results: The mean age of the participants was 75.8 years, and 50.7% of them were female. Serum myostatin levels in men (3.7 ± 1.2 vs. 3.2 ± 1.1 ng/mL, p < 0.001) were higher compared with that in women. Serum myostatin level was associated with appendicular skeletal muscle mass (ASM) index and eGFR by cystatin C. Serum myostatin/ASM ratio was associated with handgrip strength in women. Conclusion: Higher serum myostatin levels were related with higher muscle mass and better physical performances in the elderly. Serum myostatin/ASM ratio may be a predictor for physical performance rather than myostatin.
Collapse
Affiliation(s)
- Soo Jeong Choi
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Min Sung Lee
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea; (M.S.L.); (D.-H.K.)
| | - Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea; (M.S.L.); (D.-H.K.)
| | - Gang Jee Ko
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Korea;
| | - Hee-Sook Lim
- Department of Food Sciences and Nutrition, Yeonsung University, Anyang 14011, Korea;
| | - Byung Chul Yu
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Moo Yong Park
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Jin Kuk Kim
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Chul-Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14854, Korea;
| | - Seung Duk Hwang
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Jun Chul Kim
- Division of Nephrology, Department of Internal Medicine, CHA University School of Medicine, Gumi 39295, Korea;
| | - Chang Won Won
- Department of Family Medicine, Kyung Hee University School of Medicine, Seoul 02447, Korea
- Correspondence: (C.W.W.); (W.S.A.)
| | - Won Suk An
- Division of Nephrology, Department of Internal Medicine, Dong-A University College of Medicine, Busan 49201, Korea
- Correspondence: (C.W.W.); (W.S.A.)
| |
Collapse
|
19
|
Watson EL, Wilkinson TJ, O'Sullivan TF, Baker LA, Gould DW, Xenophontos S, Graham-Brown M, Major R, Jenkinson C, Hewison M, Philp A, Smith AC. Association between vitamin D deficiency and exercise capacity in patients with CKD, a cross-sectional analysis. J Steroid Biochem Mol Biol 2021; 210:105861. [PMID: 33675951 DOI: 10.1016/j.jsbmb.2021.105861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Evidence is growing for a role of vitamin D in regulating skeletal muscle mass, strength and functional capacity. Given the role the kidneys play in activating total vitamin D, and the high prevalence of vitamin D deficiency in Chronic Kidney Disease (CKD), it is possible that deficiency contributes to the low levels of physical function and muscle mass in these patients. METHODS This is a secondary cross-sectional analysis of previously published interventional study, with in vitro follow up work. 34 CKD patients at stages G3b-5 (eGFR 25.5 ± 8.3 mL/min/1.73m2; age 61 ± 12 years) were recruited, with a sub-group (n = 20) also donating a muscle biopsy. Vitamin D and associated metabolites were analysed in plasma by liquid chromatography tandem-mass spectroscopy and correlated to a range of physiological tests of muscle size, function, exercise capacity and body composition. The effects of 1α,25(OH)2D3 supplementation on myogenesis and myotube size was investigated in primary skeletal muscle cells from vitamin D deficient donors. RESULTS In vivo, there was no association between total or active vitamin D and muscle size or strength, but a significant correlation with V̇O2Peak was seen with total vitamin D (25OHD). in vitro, 1α,25(OH)2D3 supplementation reduced IL-6 mRNA expression, but had no effect upon proliferation, differentiation or myotube diameter. CONCLUSIONS Vitamin D deficiency is not a prominent factor driving the loss of muscle mass in CKD, but may play a role in reduced exercise capacity.
Collapse
Affiliation(s)
- Emma L Watson
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom.
| | | | - Tom F O'Sullivan
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Luke A Baker
- Department of Health Sciences, University of Leicester, United Kingdom
| | - Douglas W Gould
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom
| | | | - Matt Graham-Brown
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom
| | - Rupert Major
- Department of Health Sciences, University of Leicester, United Kingdom
| | - Carl Jenkinson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Martin Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Andrew Philp
- Garvan Institute of Medical Research, New South Wales, Australia; UNSW Medicine, UNSW Sydney, New South Wales, Australia
| | - Alice C Smith
- Department of Health Sciences, University of Leicester, United Kingdom
| |
Collapse
|
20
|
Leal DV, Ferreira A, Watson EL, Wilund KR, Viana JL. Muscle-Bone Crosstalk in Chronic Kidney Disease: The Potential Modulatory Effects of Exercise. Calcif Tissue Int 2021; 108:461-475. [PMID: 33388899 DOI: 10.1007/s00223-020-00782-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is a prevalent worldwide public burden that increasingly compromises overall health as the disease progresses. Two of the most negatively affected tissues are bone and skeletal muscle, with CKD negatively impacting their structure, function and activity, impairing the quality of life of these patients and contributing to morbidity and mortality. Whereas skeletal health in this population has conventionally been associated with bone and mineral disorders, sarcopenia has been observed to impact skeletal muscle health in CKD. Indeed, bone and muscle tissues are linked anatomically and physiologically, and together regulate functional and metabolic mechanisms. With the initial crosstalk between the skeleton and muscle proposed to explain bone formation through muscle contraction, it is now understood that this communication occurs through the interaction of myokines and osteokines, with the skeletal muscle secretome playing a pivotal role in the regulation of bone activity. Regular exercise has been reported to be beneficial to overall health. Also, the positive regulatory effect that exercise has been proposed to have on bone and muscle anatomical, functional, and metabolic activity has led to the proposal of regular physical exercise as a therapeutic strategy for muscle and bone-related disorders. The detection of bone- and muscle-derived cytokine secretion following physical exercise has strengthened the idea of a cross communication between these organs. Hence, this review presents an overview of the impact of CKD in bone and skeletal muscle, and narrates how these tissues intrinsically communicate with each other, with focus on the potential effect of exercise in the modulation of this intercommunication.
Collapse
Affiliation(s)
- Diogo V Leal
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAI, Maia, Portugal
| | - Aníbal Ferreira
- Department of Nephrology, Curry Cabral Hospital, Hospital Centre of Central Lisbon, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Emma L Watson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Kenneth R Wilund
- Department of Kinesiology and Community Health, University of Illinois At Urbana-Champaign, Champaign, IL, USA
| | - João L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAI, Maia, Portugal.
| |
Collapse
|
21
|
Liu L, Hu R, You H, Li J, Liu Y, Li Q, Wu X, Huang J, Cai X, Wang M, Wei L. Formononetin ameliorates muscle atrophy by regulating myostatin-mediated PI3K/Akt/FoxO3a pathway and satellite cell function in chronic kidney disease. J Cell Mol Med 2021; 25:1493-1506. [PMID: 33405354 PMCID: PMC7875933 DOI: 10.1111/jcmm.16238] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle atrophy is a common complication in chronic kidney disease (CKD). Inflammation and myostatin play important roles in CKD muscle atrophy. Formononetin (FMN), which is a major bioactive isoflavone compound in Astragalus membranaceus, exerts anti‐inflammatory effects and the promotion of myogenic differentiation. Our study is based on myostatin to explore the effects and mechanisms of FMN in relation to CKD muscle atrophy. In this study, CKD rats and tumour necrosis factor α (TNF‐α)‐induced C2C12 myotubes were used for in vivo and in vitro models of muscle atrophy. The results showed that FMN significantly improved the renal function, nutritional status and inflammatory markers in CKD rats. Values for bodyweight, weight of tibialis anterior and gastrocnemius muscles, and cross‐sectional area (CSA) of skeletal muscles were significantly larger in the FMN treatment rats. Furthermore, FMN significantly suppressed the expressions of MuRF‐1, MAFbx and myostatin in the muscles of CKD rats and the TNF‐α‐induced C2C12 myotubes. Importantly, FMN significantly increased the phosphorylation of PI3K, Akt, and FoxO3a and the expressions of the myogenic proliferation and differentiation markers, myogenic differentiation factor D (MyoD) and myogenin in muscles of CKD rats and the C2C12 myotubes. Similar results were observed in TNF‐α‐induced C2C12 myotubes transfected with myostatin‐small interfering RNA (si‐myostatin). Notably, myostatin overexpression plasmid (myostatin OE) abolished the effect of FMN on the phosphorylation of the PI3K/Akt/FoxO3a pathway and the expressions of MyoD and myogenin. Our findings suggest that FMN ameliorates muscle atrophy related to myostatin‐mediated PI3K/Akt/FoxO3a pathway and satellite cell function.
Collapse
Affiliation(s)
- Lingyu Liu
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rong Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan You
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingjing Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, China
| | - Yangyang Liu
- Huangpu People's Hospital of Zhongshan, Zhongshan, China
| | - Qiang Li
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohui Wu
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiawen Huang
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiangsheng Cai
- Center for Medical Experiments, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lianbo Wei
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
22
|
Zhou Y, Hellberg M, Hellmark T, Höglund P, Clyne N. Muscle mass and plasma myostatin after exercise training: a substudy of Renal Exercise (RENEXC)-a randomized controlled trial. Nephrol Dial Transplant 2021; 36:95-103. [PMID: 31848626 PMCID: PMC7771980 DOI: 10.1093/ndt/gfz210] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sarcopenia increases as renal function declines and is associated with higher morbidity and mortality. Myostatin is a negative regulator of muscle growth. Its expression in response to exercise is unclear. In this prespecified substudy of the Renal Exercise (RENEXC) trial, we investigated the effects of 12 months of exercise training on sarcopenia, muscle mass and plasma myostatin and the relationships between physical performance, muscle mass and plasma myostatin. METHODS A total of 151 non-dialysis-dependent patients (average measured glomerular filtration rate 23 ± 8 mL/min/1.73 m2), irrespective of age or comorbidity, were randomly assigned to either strength or balance in combination with endurance training. Body composition was measured with dual-energy X-ray absorptiometry. Plasma myostatin was analysed using enzyme-linked immunosorbent assay kits. RESULTS After 12 months, the prevalence of sarcopenia was unchanged, leg and whole-body lean mass increased significantly in the balance group and was unchanged in the strength group. Whole fat mass decreased significantly in both groups. There were no significant between-group differences in sarcopenia or body composition. Plasma myostatin levels increased significantly in both groups, with a significant difference in favour of the strength group. Plasma myostatin was significantly positively related to muscle mass and physical performance at baseline, but these relationships were attenuated after 12 months. CONCLUSIONS Exercise training seems to be effective in preventing sarcopenia and maintaining muscle mass in non-dialysis-dependent patients with chronic kidney disease (CKD). However, the role of plasma myostatin on muscle mass and physical performance in patients with CKD warrants further study.
Collapse
Affiliation(s)
- Yunan Zhou
- Department of Clinical Sciences Lund, Nephrology, Faculty of Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Matthias Hellberg
- Department of Clinical Sciences Lund, Nephrology, Faculty of Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Thomas Hellmark
- Department of Clinical Sciences Lund, Nephrology, Faculty of Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Peter Höglund
- Department of Laboratory Medicine, Division of Clinical Chemistry & Pharmacology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Naomi Clyne
- Department of Clinical Sciences Lund, Nephrology, Faculty of Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Morioka T. Myostatin: The Missing Link between Sarcopenia and Cardiovascular Disease in Chronic Kidney Disease? J Atheroscler Thromb 2020; 27:1036-1038. [PMID: 32435012 PMCID: PMC7585907 DOI: 10.5551/jat.ed129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tomoaki Morioka
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine
| |
Collapse
|
24
|
Esposito P, Verzola D, La Porta E, Milanesi S, Grignano MA, Avella A, Gregorini M, Abelli M, Ticozzelli E, Rampino T, Garibotto G. Myostatin in the Arterial Wall of Patients with End-Stage Renal Disease. J Atheroscler Thromb 2020; 27:1039-1052. [PMID: 32173683 PMCID: PMC7585912 DOI: 10.5551/jat.51144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM Myostatin (Mstn) has been described as a trigger for the progression of atherosclerosis. In this study, we evaluated the role of Mstn in arterial remodeling in patients with end-stage renal disease (ESRD). METHODS Vascular specimens were collected from 16 ESRD patients (56.4±7.9 years) undergoing renal transplant (recipients) and 15 deceased kidney non-uremic donors (55.4±12.1 years). We studied gene and protein expression of Mstn, ubiquitin ligases, Atrogin-1, and muscle ring finger protein-1 (MuRF-1), inflammatory marker CCL2, cytoskeleton components, and Klotho by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Moreover, we assessed vascular calcification and collagen deposition. Finally, we studied the effects of recombinant Mstn on rat vascular smooth muscle cells (VSMCs, A7r5) and evaluated the effects of uremic serum (US) on primary human VSMCs. RESULTS Myostatin mRNA was upregulated in the arterial vascular wall of recipients compared with donors (~15- folds, p<0.05). This response was accompanied by the upregulation of gene expression of Atrogin-1 and MuRF-1 (+2.5- and +10-fold) and CCL2 (+3-fold). Conversely, we found downregulation of protein expression of Smoothelin, α-smooth muscle actin (α-SMA), vimentin, and Klotho (-85%, -50%, -70%, and -80%, respectively; p<0.05) and gene expression of vimentin and Klotho. Exposition of A7r5 to Mstn induced a time-dependent SMAD 2/SMAD 3 phosphorylation and expression of collagen-1 and transforming growth factor β (TGFβ) mRNA, while US induced overexpression of Mstn and Atrogin-1 and downregulation of Smoothelin and Klotho. CONCLUSIONS Our data suggest that uremia might induce vascular Mstn gene expression together with a complex pathway of molecular and structural changes in the vascular wall. Myostatin, in turn, can translate the metabolic alterations of uremia into profibrotic and stiffness inducing signals.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Address for correspondence: Pasquale Esposito, Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, Piazzale Golgi 2, 27100 Pavia, Italy E-mail:
| | - Daniela Verzola
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Edoardo La Porta
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Samantha Milanesi
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Antonietta Grignano
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Alessandro Avella
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Marilena Gregorini
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Massimo Abelli
- Service of Surgery, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Ticozzelli
- Service of Surgery, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Teresa Rampino
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Giacomo Garibotto
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
25
|
Bataille S, Chauveau P, Fouque D, Aparicio M, Koppe L. Myostatin and muscle atrophy during chronic kidney disease. Nephrol Dial Transplant 2020; 36:1986-1993. [PMID: 32974666 DOI: 10.1093/ndt/gfaa129] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) patients often exhibit a low muscle mass and strength, leading to physical impairment and an increased mortality. Two major signalling pathways control protein synthesis, the insulin-like growth factor-1/Akt (IGF-1/Akt) pathway, acting as a positive regulator, and the myostatin (Mstn) pathway, acting as a negative regulator. Mstn, also known as the growth development factor-8 (GDF-8), is a member of the transforming growth factor-β superfamily, which is secreted by mature muscle cells. Mstn inhibits satellite muscle cell proliferation and differentiation and induces a proteolytic phenotype of muscle cells by activating the ubiquitin-proteasome system. Recent advances have been made in the comprehension of the Mstn pathway disturbance and its role in muscle wasting during CKD. Most studies report higher Mstn concentrations in CKD and dialysis patients than in healthy subjects. Several factors increase Mstn production in uraemic conditions: low physical activity, chronic or acute inflammation and oxidative stress, uraemic toxins, angiotensin II, metabolic acidosis and glucocorticoids. Mstn seems to be only scarcely removed during haemodialysis or peritoneal dialysis, maybe because of its large molecule size in plasma where it is linked to its prodomain. In dialysis patients, Mstn has been proposed as a biomarker of muscle mass, muscle strength or physical performances, but more studies are needed in this field. This review outlines the interconnection between Mstn activation, muscle dysfunction and CKD. We discuss mechanisms of action and efficacy of pharmacological Mstn pathway inhibition that represents a promising treatment approach of striated muscle dysfunction. Many approaches and molecules are in development but until now, no study has proved a benefit in CKD.
Collapse
Affiliation(s)
- Stanislas Bataille
- Phocean Nephrology Institute, Clinique Bouchard, ELSAN, Marseille, France.,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
| | | | - Denis Fouque
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, Lyon, France.,Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, Lyon, France.,Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
26
|
Wirtz TH, Loosen SH, Buendgens L, Kurt B, Abu Jhaisha S, Hohlstein P, Brozat JF, Weiskirchen R, Luedde T, Tacke F, Trautwein C, Roderburg C, Koch A. Low Myostatin Serum Levels Are Associated with Poor Outcome in Critically Ill Patients. Diagnostics (Basel) 2020; 10:diagnostics10080574. [PMID: 32784522 PMCID: PMC7459686 DOI: 10.3390/diagnostics10080574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Growth differentiation factor 8, GDF-8 (Myostatin), is a protein released by myocytes inhibiting muscle growth and differentiation. Serum concentrations of Myostatin can predict poor survival in different chronic diseases, but its role in critical illness and sepsis is obscure. Our aim was to investigate Myostatin levels as a potential prognostic biomarker in critically ill patients with sepsis. Methods: We therefore measured Myostatin serum concentrations in 165 critically ill patients (106 with sepsis, 59 without sepsis) upon admission to the medical intensive care unit (ICU), in comparison to 14 healthy controls. Results: Myostatin levels were significantly decreased in ICU patients compared to controls but did not differ in patients with or without sepsis. However, Myostatin concentrations were significantly lower in patients requiring mechanical ventilation and indicated a trend towards dependency of intravenous vasopressors. Interestingly, we observed a negative correlation between Myostatin levels and markers of systemic inflammation. Strikingly, overall survival (OS) was significantly impaired in patients with low Myostatin levels in all critically ill patients. Low Myostatin levels at baseline turned out as an independent prognostic marker for OS in multivariate Cox-regression analysis (HR: 0.433, 95% CI: 0.211-0.889, p = 0.023). Conclusions: In summary, serum Myostatin concentrations are significantly decreased in critically ill patients and associated with disease severity. Low Myostatin levels also identify a subgroup of ICU patients that are more likely to face an unfavorable clinical outcome in terms of OS.
Collapse
Affiliation(s)
- Theresa H. Wirtz
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Sven H. Loosen
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany;
| | - Lukas Buendgens
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Berkan Kurt
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Samira Abu Jhaisha
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Philipp Hohlstein
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Jonathan F. Brozat
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany;
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (F.T.); (C.R.)
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (F.T.); (C.R.)
| | - Alexander Koch
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
- Correspondence: ; Tel.: +49-241-80-80860; Fax: +49-241-80-82455
| |
Collapse
|
27
|
Garibotto G, Picciotto D, Saio M, Esposito P, Verzola D. Muscle protein turnover and low-protein diets in patients with chronic kidney disease. Nephrol Dial Transplant 2020; 35:741-751. [PMID: 32378720 DOI: 10.1093/ndt/gfaa072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Adaptation to a low-protein diet (LPD) involves a reduction in the rate of amino acid (AA) flux and oxidation, leading to more efficient use of dietary AA and reduced ureagenesis. Of note, the concept of 'adaptation' to low-protein intakes has been separated from the concept of 'accommodation', the latter term implying a decrease in protein synthesis, with development of wasting, when dietary protein intake becomes inadequate, i.e. beyond the limits of the adaptive mechanisms. Acidosis, insulin resistance and inflammation are recognized mechanisms that can increase protein degradation and can impair the ability to activate an adaptive response when an LPD is prescribed in a chronic kidney disease (CKD) patient. Current evidence shows that, in the short term, clinically stable patients with CKD Stages 3-5 can efficiently adapt their muscle protein turnover to an LPD containing 0.55-0.6 g protein/kg or a supplemented very-low-protein diet (VLPD) by decreasing muscle protein degradation and increasing the efficiency of muscle protein turnover. Recent long-term randomized clinical trials on supplemented VLPDs in patients with CKD have shown a very good safety profile, suggesting that observations shown by short-term studies on muscle protein turnover can be extrapolated to the long-term period.
Collapse
Affiliation(s)
- Giacomo Garibotto
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Daniela Picciotto
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Michela Saio
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Pasquale Esposito
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Daniela Verzola
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| |
Collapse
|
28
|
Watanabe H, Enoki Y, Maruyama T. Sarcopenia in Chronic Kidney Disease: Factors, Mechanisms, and Therapeutic Interventions. Biol Pharm Bull 2020; 42:1437-1445. [PMID: 31474705 DOI: 10.1248/bpb.b19-00513] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic kidney disease (CKD), a chronic catabolic condition, is characterized by muscle wasting and decreased muscle endurance. Many insights into the molecular mechanisms of muscle wasting in CKD have been obtained. A persistent imbalance between protein degradation and synthesis in muscle causes muscle wasting. During muscle wasting, high levels of reactive oxygen species (ROS) and inflammatory cytokines are detected in muscle. These increased ROS and inflammatory cytokine levels induce the expression of myostatin. The myostatin binding to its receptor activin A receptor type IIB stimulates the expression of atrogenes such as atrogin-1 and muscle ring factor 1, members of the muscle-specific ubiquitin ligase family. Impaired mitochondrial function also contributes to reducing muscle endurance. The increased protein-bound uremic toxin, parathyroid hormone, glucocorticoid, and angiotensin II levels that are observed in CKD all have a negative effect on muscle mass and endurance. Among the protein-bound uremic toxins, indoxyl sulfate, an indole-containing compound has the potential to induce muscle atrophy by stimulating ROS-mediated myostatin and atrogenes expression. Indoxyl sulfate also impairs mitochondrial function. Some potential therapeutic approaches based on the muscle wasting mechanisms in CKD are currently in the testing stages.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Yuki Enoki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
29
|
Lee SM, Kim SE, Lee JY, Jeong HJ, Son YK, An WS. Serum myostatin levels are associated with abdominal aortic calcification in dialysis patients. Kidney Res Clin Pract 2019; 38:481-489. [PMID: 31537054 PMCID: PMC6913587 DOI: 10.23876/j.krcp.19.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Background Serum myostatin levels are increased according to renal function decline and myostatin may be a main mediator of chronic kidney disease–related sarcopenia. A previous study reported that serum myostatin level was negatively associated with abdominal aortic calcification (AAC) in older males. The aim of this study was to assess the association between serum myostatin level and AAC among dialysis patients of both sexes. In addition, we analyzed the relationship between serum myostatin level, muscle mass, and bone mineral density (BMD). Methods In this cross-sectional study, we evaluated AAC in the lateral lumbar spine using plain radiography and BMD in 71 patients undergoing dialysis. We classified patients into two groups according to the median value of myostatin as follows: those with high myostatin levels (≥ 5.0 ng/mL) and those with low myostatin levels (< 5.0 ng/mL). Results The proportion of patients with an AAC score of five points or more was higher among those with low myostatin levels. Myostatin level was negatively associated with AAC scores on plain radiography and had a positive association with skeletal muscle mass and T-scores for BMD measured at the total hip and femur neck. Lower myostatin levels were independently associated with higher AAC scores following adjustment for age, sex, diabetes mellitus, dialysis vintage, dialysis modality, and osteoprotegerin level. Conclusion Lower serum myostatin levels were associated with higher AAC scores, lower muscle mass, and lower BMD in dialysis patients. Further, prospective studies and those with larger cohorts are necessary to validate these findings.
Collapse
Affiliation(s)
- Su Mi Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Seong Eun Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Ji Young Lee
- Department of Internal Medicine, Busan Veterans Hospital, Busan, Republic of Korea
| | - Hyo Jin Jeong
- Department of Internal Medicine, Dong-Eui Medical Center, Busan, Republic of Korea
| | - Young Ki Son
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Won Suk An
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
30
|
Esposito P, Battaglia Y, La Porta E, Grignano MA, Caramella E, Avella A, Peressini S, Sessa N, Albertini R, Di Natali G, Lisi C, Gregorini M, Rampino T. Significance of serum Myostatin in hemodialysis patients. BMC Nephrol 2019; 20:462. [PMID: 31829144 PMCID: PMC6907124 DOI: 10.1186/s12882-019-1647-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Malnutrition and muscle wasting are common in haemodialysis (HD) patients. Their pathogenesis is complex and involves many molecules including Myostatin (Mstn), which acts as a negative regulator of skeletal muscle. The characterisation of Mstn as a biomarker of malnutrition could be useful in the prevention and management of this condition. Previous studies have reported no conclusive results on the actual relationship between serum Mstn and wasting and malnutrition. So, in this study, we evaluated Mstn profile in a cohort of regular HD patients. METHODS We performed a cross-sectional study, enrolling 37 patients undergoing bicarbonate-HD (BHD) or haemodiafiltration (HDF) at least for six months. 20 sex-matched healthy subjects comprised the control group. Mstn serum levels were evaluated by ELISA before and after HD. We collected clinical and biochemical data, evaluated insulin resistance, body composition, malnutrition [by Malnutrition Inflammation Score (MIS)] and tested muscle function (by hand-grip strength, six-minute walking test and a questionnaire on fatigue). RESULTS Mstn levels were not significantly different between HD patients and controls (4.7 ± 2.8 vs 4.5 ± 1.3 ng/ml). In addition, while a decrease in Mstn was observed after HD treatment, there were no differences between BHD and HDF. In whole group of HD patients Mstn was positively correlated with muscle mass (r = 0.82, p < 0.001) and inversely correlated with age (r = - 0.63, p < 0.01) and MIS (r = - 0.39, p = 0.01). No correlations were found between Mstn and insulin resistance, such as between Mstn levels and parameters of muscle strength and fatigue. In multivariate analysis, Mstn resulted inversely correlated with fat body content (β = - 1.055, p = 0.002). CONCLUSIONS Circulating Mstn is related to muscle mass and nutritional status in HD patients, suggesting that it may have a role in the regulation of skeletal muscle and metabolic processes. However, also considering the lack of difference of serum Mstn between healthy controls and HD patients and the absence of correlations with muscle function tests, our findings do not support the use of circulating Mstn as a biomarker of muscle wasting and malnutrition in HD.
Collapse
Affiliation(s)
- Pasquale Esposito
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
- Department of Internal Medicine, Division of Nephrology, Dialysis and Transplantation, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Yuri Battaglia
- Department of Specialized Medicine, Division of Nephrology and Dialysis, Hospital-University St. Anna, Ferrara, Italy.
| | - Edoardo La Porta
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Maria Antonietta Grignano
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Elena Caramella
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Alessando Avella
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Sabrina Peressini
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Nicodemo Sessa
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Riccardo Albertini
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Di Natali
- Physical Medicine and Rehabilitation Unit, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Claudio Lisi
- Physical Medicine and Rehabilitation Unit, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Marilena Gregorini
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Teresa Rampino
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| |
Collapse
|
31
|
Robinson KA, Baker LA, Graham-Brown MPM, Watson EL. Skeletal muscle wasting in chronic kidney disease: the emerging role of microRNAs. Nephrol Dial Transplant 2019; 35:1469-1478. [DOI: 10.1093/ndt/gfz193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract
Skeletal muscle wasting is a common complication of chronic kidney disease (CKD), characterized by the loss of muscle mass, strength and function, which significantly increases the risk of morbidity and mortality in this population. Numerous complications associated with declining renal function and lifestyle activate catabolic pathways and impair muscle regeneration, resulting in substantial protein wasting. Evidence suggests that increasing skeletal muscle mass improves outcomes in CKD, making this a clinically important research focus. Despite extensive research, the pathogenesis of skeletal muscle wasting is not completely understood. It is widely recognized that microRNAs (miRNAs), a family of short non-coding RNAs, are pivotal in the regulation of skeletal muscle homoeostasis, with significant roles in regulating muscle growth, regeneration and metabolism. The abnormal expression of miRNAs in skeletal muscle during disease has been well described in cellular and animal models of muscle atrophy, and in recent years, the involvement of miRNAs in the regulation of muscle atrophy in CKD has been demonstrated. As this exciting field evolves, there is emerging evidence for the involvement of miRNAs in a beneficial crosstalk system between skeletal muscle and other organs that may potentially limit the progression of CKD. In this article, we describe the pathophysiological mechanisms of muscle wasting and explore the contribution of miRNAs to the development of muscle wasting in CKD. We also discuss advances in our understanding of miRNAs in muscle–organ crosstalk and summarize miRNA-based therapeutics currently in clinical trials.
Collapse
Affiliation(s)
- Kate A Robinson
- Department of Infection Immunity and Inflammation, College of Life Sciences, University of Leicester, Leicester, UK
| | - Luke A Baker
- Department of Health Sciences, College of Life Sciences, George Davies Centre, University of Leicester, Leicester, UK
| | - Matthew P M Graham-Brown
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital Leicester, Leicester, UK
| | - Emma L Watson
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital Leicester, Leicester, UK
| |
Collapse
|
32
|
Zhang YY, Gu LJ, Huang J, Cai MC, Yu HL, Zhang W, Bao JF, Yuan WJ. CKD autophagy activation and skeletal muscle atrophy-a preliminary study of mitophagy and inflammation. Eur J Clin Nutr 2019; 73:950-960. [PMID: 30607007 DOI: 10.1038/s41430-018-0381-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/16/2018] [Accepted: 10/31/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND/OBJECTIVES Long-lived proteins and organelles, such as mitochondria and the sarcoplasmic reticulum, are degraded by autophagy. However, the specific role of autophagy in chronic kidney disease (CKD) muscle atrophy is still undefined. SUBJECTS/METHODS This was a cross-sectional study with 20 subjects and 11 controls. Autophagy induction was studied in human skeletal muscle biopsies from CKD patients and controls by comparing the cross-sectional areas of muscle fibers, protein, and mRNA expression of autophagy-related genes and the appearance of autophagosomes. RESULTS The cross-sectional area of muscle fibers was decreased in CKD patients as compared with the control group. CKD was associated with activated autophagy and mitophagy, as measured by the elevated mRNA and protein expression of BNIP3, (microtubule-associated proteins 1 A/1B light chain 3, also MAP1LC3) LC3, p62, PINK1, and PARKIN in the skeletal muscle and isolated mitochondria of the CKD group. Electron microscopy and immunohistofluorescence analysis showed mitochondrial engulfment by autophagosomes. Mitophagy was further demonstrated by the colocalization of LC3 and p62 puncta with the mitochondrial outer membrane protein TOM20. In addition, degradative FOXO3 (Forkhead box O3) was activated and synthetic mTOR (mammalian target of rapamycin) was inhibited, whereas the upstream mediators VPS34 (class III PI3-kinase) and AKT (protein kinase B, PKB) were activated in CKD patients. CONCLUSIONS Hyperactive autophagy and mitophagy may play important roles in CKD muscle atrophy. Autophagy was activated by FOXO3 translational factors in the skeletal muscle tissues of CKD patients, which maybe a new way of intervention for CKD muscle atrophy.
Collapse
Affiliation(s)
- Yue Yue Zhang
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Li Jie Gu
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Juan Huang
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Min Chao Cai
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Hong Lei Yu
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Wei Zhang
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Jin Fang Bao
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| | - Wei Jie Yuan
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
33
|
Shenoy PS, Sen U, Kapoor S, Ranade AV, Chowdhury CR, Bose B. Sodium fluoride induced skeletal muscle changes: Degradation of proteins and signaling mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:534-548. [PMID: 30384060 DOI: 10.1016/j.envpol.2018.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Fluoride is a well-known compound for its usefulness in healing dental caries. Similarly, fluoride is also known for its toxicity to various tissues in animals and humans. It causes skeletal fluorosis leading to osteoporosis of the bones. We hypothesized that when bones are affected by fluoride, the skeletal muscles are also likely to be affected by underlying molecular events involving myogenic differentiation. Murine myoblasts C2C12 were cultured in differentiation media with or without NaF (1 ppm-5 ppm) for four days. The effects of NaF on myoblasts and myotubes when exposed to low (1.5 ppm) and high concentration (5 ppm) were assessed based on the proliferation, alteration in gene expression, ROS production, and production of inflammatory cytokines. Changes based on morphology, multinucleated myotube formation, expression of MyHC1 and signaling pathways were also investigated. Concentrations of NaF tested had no effects on cell viability. NaF at low concentration (1.5 ppm) caused myoblast proliferation and when subjected to myogenic differentiation it induced hypertrophy of the myotubes by activating the IGF-1/AKT pathway. NaF at higher concentration (5 ppm), significantly inhibited myotube formation, increased skeletal muscle catabolism, generated reactive oxygen species (ROS) and inflammatory cytokines (TNF-α and IL-6) in C2C12 cells. NaF also enhanced the production of muscle atrophy-related genes, myostatin, and atrogin-1. The data suggest that NaF at low concentration can be used as muscle enhancing factor (hypertrophy), and at higher concentration, it accelerates skeletal muscle atrophy by activating the ubiquitin-proteosome pathway.
Collapse
Affiliation(s)
- P Sudheer Shenoy
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India.
| | - Utsav Sen
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India
| | - Saketh Kapoor
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India
| | - Anu V Ranade
- College of Medicine, University of Sharjah, United Arab Emirates
| | - Chitta R Chowdhury
- Department of Oral Biology & Genomic Studies, A.B.Shetty Memorial Institute of Dental Sciences, Nitte University, Mangalore, 575018, Karnataka, India; School of Health and Life Sciences, Biomedical and Environmental Health Group, De Montfort University, Leicester, United Kingdom
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
34
|
Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney Int 2018; 95:506-517. [PMID: 30598193 DOI: 10.1016/j.kint.2018.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/13/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022]
Abstract
The past two decades have witnessed tremendous progress in our understanding of the mechanisms underlying wasting and cachexia in chronic kidney disease (CKD) and in other chronic illnesses, such as cancer and heart failure. In all these conditions wasting is an effect of the activation of protein degradation in muscle, a response that increases the risk of morbidity and mortality. Major recent advances in our knowledge on how CKD and inflammation affect cellular signaling include the identification of the myostatin (MSTN)/activin system, and its related transcriptional program that promotes protein degradation. In addition, the identification of the role of MSTN/activin in the vascular wall shows premise that its inhibition can better control or prevent some effects of CKD on vessels, such as accelerated atherosclerosis and vascular calcifications. In this review, we summarize the expanding role of MSTN activation in promoting muscle atrophy and the recent clinical studies that investigated the efficacy of MSTN/activin pathway antagonism in sarcopenic patients. Moreover, we also review the utility of MSTN inhibition in the experimental models of CKD and its potential advantages in CKD patients. Lessons learned from clinical studies on MSTN antagonism in sarcopenic patients tell us that the anabolic intervention is likely better if we use a block of the two ActRII receptors. At the same time, however, it is becoming clear that MSTN-targeted therapies should not be seen as a substitute for physical activity and nutritional supplementation which are mandatory to successfully manage patients with wasting.
Collapse
|
35
|
O’Sullivan TF, Smith AC, Watson EL. Satellite cell function, intramuscular inflammation and exercise in chronic kidney disease. Clin Kidney J 2018; 11:810-821. [PMID: 30524716 PMCID: PMC6275451 DOI: 10.1093/ckj/sfy052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle wasting is a common feature of chronic kidney disease (CKD) and is clinically relevant due to associations with quality of life, physical functioning, mortality and a number of comorbidities. Satellite cells (SCs) are a population of skeletal muscle progenitor cells responsible for accrual and maintenance of muscle mass by providing new nuclei to myofibres. Recent evidence from animal models and human studies indicates CKD may negatively affect SC abundance and function in response to stimuli such as exercise and damage. The aim of this review is to collate recent literature on the effect of CKD on SCs, with a particular focus on the myogenic response to exercise in this population. Exercise is widely recognized as important for the maintenance of healthy skeletal muscle mass and is increasingly advocated in the care of a number of chronic conditions. Therefore a greater understanding of the impact of uraemia upon SCs and the possible altered myogenic response in CKD is required to inform strategies to prevent uraemic cachexia.
Collapse
Affiliation(s)
- Tom F O’Sullivan
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Alice C Smith
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester Trust, Leicester, UK
| | - Emma L Watson
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
36
|
Abramowitz MK, Paredes W, Zhang K, Brightwell CR, Newsom JN, Kwon HJ, Custodio M, Buttar RS, Farooq H, Zaidi B, Pai R, Pessin JE, Hawkins M, Fry CS. Skeletal muscle fibrosis is associated with decreased muscle inflammation and weakness in patients with chronic kidney disease. Am J Physiol Renal Physiol 2018; 315:F1658-F1669. [PMID: 30280599 DOI: 10.1152/ajprenal.00314.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle dysfunction is an important cause of morbidity among patients with chronic kidney disease (CKD). Although muscle fibrosis is present in a CKD rodent model, its existence in humans and its impact on physical function are currently unknown. We examined isometric leg extension strength and measures of skeletal muscle fibrosis and inflammation in vastus lateralis muscle from CKD patients ( n = 10) and healthy, sedentary controls ( n = 10). Histochemistry and immunohistochemistry were used to assess muscle collagen and macrophage and fibro/adipogenic progenitor (FAP) cell populations, and RT-qPCR was used to assess muscle-specific inflammatory marker expression. Muscle collagen content was significantly greater in CKD compared with control (18.8 ± 2.1 vs. 11.7 ± 0.7% collagen area, P = 0.008), as was staining for collagen I, pro-collagen I, and a novel collagen-hybridizing peptide that binds remodeling collagen. Muscle collagen was inversely associated with leg extension strength in CKD ( r = -0.74, P = 0.01). FAP abundance was increased in CKD, was highly correlated with muscle collagen ( r = 0.84, P < 0.001), and was inversely associated with TNF-α expression ( r = -0.65, P = 0.003). TNF-α, CD68, CCL2, and CCL5 mRNA were significantly lower in CKD than control, despite higher serum TNF-α and IL-6. Immunohistochemistry confirmed fewer CD68+ and CD11b+ macrophages in CKD muscle. In conclusion, skeletal muscle collagen content is increased in humans with CKD and is associated with functional parameters. Muscle fibrosis correlated with increased FAP abundance, which may be due to insufficient macrophage-mediated TNF-α secretion. These data provide a foundation for future research elucidating the mechanisms responsible for this newly identified human muscle pathology.
Collapse
Affiliation(s)
| | - William Paredes
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Kehao Zhang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Camille R Brightwell
- Department of Nutrition and Metabolism, University of Texas Medical Branch , Galveston, Texas
| | - Julia N Newsom
- Department of Nutrition and Metabolism, University of Texas Medical Branch , Galveston, Texas
| | - Hyok-Joon Kwon
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers-The State University of New Jersey , New Brunswick, New Jersey
| | - Matthew Custodio
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Rupinder S Buttar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Hina Farooq
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Bushra Zaidi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Rima Pai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Meredith Hawkins
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
37
|
|
38
|
Kato T, Hagiyama M, Takashima Y, Yoneshige A, Ito A. Cell adhesion molecule-1 shedding induces apoptosis of renal epithelial cells and exacerbates human nephropathies. Am J Physiol Renal Physiol 2018; 314:F388-F398. [PMID: 29070574 PMCID: PMC6048447 DOI: 10.1152/ajprenal.00385.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is an important problem throughout the world, associated with the increase of blood urea nitrogen (BUN) and serum creatinine (sCre) and with renal tubular injuries. It is crucial to elucidate the molecular mechanisms of renal injuries to identify the new therapeutics and early diagnostic methods. We focused on cell adhesion molecule-1 (CADM1) protein. CADM1, its isoform SP4, is expressed in the epithelial cells of various tissues, including renal distal tubules, localized on the lateral cell membrane, mediates cell-cell adhesion via trans-homophilic binding, and interacts with various proteins. We previously reported that its expression was downregulated by post-proteolytic cleavage (α- and β-shedding) in pulmonary diseases. To investigate whether CADM1 α-shedding occurs in human nephropathies, we performed Western blotting and immunohistochemical analysis of specimens with arterionephrosclerosis (AS) and diabetic nephropathy (DN) from autopsied kidneys. CADM1 α-shedding was induced in AS and DN kidneys and derived from the decrease in full-length CADM1 (FL-CADM1) and increase of the COOH-terminal fragment (α-CTF). In particular, the reduced FL-CADM1 level was correlated with tubular and tubulointerstitial injuries and the increases in BUN and sCre levels. Apoptosis of renal tubular epithelial cells (TECs) was promoted in both nephropathies, and it was significantly correlated with the decrease in the FL-CADM1. Furthermore, FL-CADM1 knockdown by small interfering RNA downregulated anti-apoptotic Bcl-2 protein and promoted apoptosis of cultured renal TECs. The present study suggests that the reduction of FL-CADM1 leads to renal TEC apoptosis and could exacerbate renal tubular and tubulointerstitial injuries, which contribute to the development of CKD.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Pathology, Faculty of Medicine, Kindai University , Osaka , Japan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University , Osaka , Japan
| | - Yasutoshi Takashima
- Department of Pathology, Faculty of Medicine, Kindai University , Osaka , Japan
| | - Azusa Yoneshige
- Department of Pathology, Faculty of Medicine, Kindai University , Osaka , Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University , Osaka , Japan
| |
Collapse
|
39
|
Ábrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D, Estrada L, Cabello-Verrugio C. Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2063179. [PMID: 29785242 PMCID: PMC5896211 DOI: 10.1155/2018/2063179] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Skeletal muscle atrophy is a pathological condition mainly characterized by a loss of muscular mass and the contractile capacity of the skeletal muscle as a consequence of muscular weakness and decreased force generation. Cachexia is defined as a pathological condition secondary to illness characterized by the progressive loss of muscle mass with or without loss of fat mass and with concomitant diminution of muscle strength. The molecular mechanisms involved in cachexia include oxidative stress, protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction. Oxidative stress is one of the most common mechanisms of cachexia caused by different factors. It results in increased ROS levels, increased oxidation-dependent protein modification, and decreased antioxidant system functions. In this review, we will describe the importance of oxidative stress in skeletal muscles, its sources, and how it can regulate protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction involved in cachexia.
Collapse
Affiliation(s)
- Johanna Ábrigo
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A. Elorza
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
- 3Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Claudia A. Riedel
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Cristian Vilos
- 4Laboratory of Nanomedicine and Targeted Delivery, Center for Integrative Medicine and Innovative Science, Faculty of Medicine, and Center for Bioinformatics and Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
- 5Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Daniel Cabrera
- 6Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- 7Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Lisbell Estrada
- 8Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Claudio Cabello-Verrugio
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
40
|
Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:153-206. [DOI: 10.1007/978-981-13-1435-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Watson EL, Viana JL, Wimbury D, Martin N, Greening NJ, Barratt J, Smith AC. The Effect of Resistance Exercise on Inflammatory and Myogenic Markers in Patients with Chronic Kidney Disease. Front Physiol 2017; 8:541. [PMID: 28804461 PMCID: PMC5532513 DOI: 10.3389/fphys.2017.00541] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Muscle wasting is a common complication of Chronic Kidney Disease (CKD) and is clinically important given its strong association with morbidity and mortality in many other chronic conditions. Exercise provides physiological benefits for CKD patients, however the molecular response to exercise remains to be fully determined. We investigated the inflammatory and molecular response to resistance exercise before and after training in these patients. Methods: This is a secondary analysis of a randomized trial that investigated the effect of 8 week progressive resistance training on muscle mass and strength compared to non-exercising controls. A sub-set of the cohort consented to vastus lateralis skeletal muscle biopsies (n = 10 exercise, n = 7 control) in which the inflammatory response (IL-6, IL-15, MCP-1 TNF-α), myogenic (MyoD, myogenin, myostatin), anabolic (P-Akt, P-eEf2) and catabolic events (MuRF-1, MAFbx, 14 kDa, ubiquitin conjugates) and overall levels of oxidative stress have been studied. Results: A large inflammatory response to unaccustomed exercise was seen with IL-6, MCP-1, and TNF-α all significantly elevated from baseline by 53-fold (P < 0.001), 25-fold (P < 0.001), and 4-fold (P < 0.001), respectively. This response was reduced following training with IL-6, MCP-1, and TNF-α elevated non-significantly by 2-fold (P = 0.46), 2.4-fold (P = 0.19), and 2.5-fold (P = 0.06), respectively. In the untrained condition, an acute bout of resistance exercise did not result in increased phosphorylation of Akt (P = 0.84), but this was restored following training (P = 0.01). Neither unaccustomed nor accustomed exercise resulted in a change in myogenin or MyoD mRNA expression (P = 0.88, P = 0.90, respectively). There was no evidence that resistance exercise training created a prolonged oxidative stress response within the muscle, or increased catabolism. Conclusions: Unaccustomed exercise creates a large inflammatory response within the muscle, which is no longer present following a period of training. This indicates that resistance exercise does not provoke a detrimental on-going inflammatory response within the muscle.
Collapse
Affiliation(s)
- Emma L Watson
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom
| | - Joao L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAIPorto, Portugal.,School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom
| | - David Wimbury
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom
| | - Naomi Martin
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom
| | - Neil J Greening
- Department of Respiratory Medicine, Institute for Lung Health, University Hospitals of Leicester NHS TrustLeicester, United Kingdom
| | - Jonathan Barratt
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom
| | - Alice C Smith
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom.,John Walls Renal Unit, University Hospitals of Leicester NHS TrustLeicester, United Kingdom
| |
Collapse
|
42
|
The nuclear phosphatase SCP4 regulates FoxO transcription factors during muscle wasting in chronic kidney disease. Kidney Int 2017; 92:336-348. [PMID: 28506762 DOI: 10.1016/j.kint.2017.02.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/16/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
Chronic kidney disease (CKD) and related inflammatory responses stimulate protein-energy wasting, a complication causing loss of muscle mass. Primarily, muscle wasting results from accelerated protein degradation via autophagic/lysosomal and proteasomal pathways, but mechanisms regulating these proteolysis pathways remain unclear. Since dephosphorylation of FoxOs regulates ubiquitin/proteasome protein metabolism, we tested whether a novel nuclear phosphatase, the small C-terminal domain phosphatase (SCP) 4, regulates FoxOs signaling and, in turn, muscle wasting. In cultured mouse myoblast cells, SCP4 overexpression stimulated proteolysis, while knockdown of SCP4 prevented the proteolysis stimulated by inflammatory cytokines. SCP4 overexpression led to nuclear accumulation of FoxO1/3a followed by increased expression of catabolic factors including myostatin, Atrogin-1, and MuRF-1, and induction of lysosomal-mediated proteolysis. Treatment of C2C12 myotubes with proinflammatory cytokines stimulated SCP4 expression in an NF-κB-dependent manner. In skeletal muscle of mice with CKD, SCP4 expression was up-regulated. Similarly, in skeletal muscle of patients with CKD, SCP4 expression was significantly increased. Knockdown of SCP4 significantly suppressed FoxO1/3a-mediated expression of Atrogin-1 and MuRF-1 and prevented muscle wasting in mice with CKD. Thus, SCP4 is a novel regulator of FoxO transcription factors and promotes cellular proteolysis. Hence, targeting SCP4 may prevent muscle wasting in CKD and possibly other catabolic conditions.
Collapse
|
43
|
Yu R, Chen J, Xu J, Cao J, Wang Y, Thomas SS, Hu Z. Suppression of muscle wasting by the plant-derived compound ursolic acid in a model of chronic kidney disease. J Cachexia Sarcopenia Muscle 2017; 8:327-341. [PMID: 27897418 PMCID: PMC5377392 DOI: 10.1002/jcsm.12162] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/16/2016] [Accepted: 09/27/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Muscle wasting in chronic kidney disease (CKD) and other catabolic disorders contributes to morbidity and mortality, and there are no therapeutic interventions that regularly and safely block losses of muscle mass. We have obtained evidence that impaired IGF-1/insulin signalling and increases in glucocorticoids, myostatin and/or inflammatory cytokines that contribute to the development of muscle wasting in catabolic disorders by activating protein degradation. METHODS Using in vitro and in vivo models of muscle wasting associated with CKD or dexamethasone administration, we measured protein synthesis and degradation and examined mechanisms by which ursolic acid, derived from plants, could block the loss of muscle mass stimulated by CKD or excessive levels of dexamethasone. RESULTS Using cultured C2C12 myotubes to study muscle wasting, we found that exposure to glucocorticoids cause loss of cell proteins plus an increase in myostatin; both responses are significantly suppressed by ursolic acid. Results from promoter and ChIP assays demonstrated a mechanism involving ursolic acid blockade of myostatin promoter activity that is related to CEBP/δ expression. In mouse models of CKD-induced or dexamethasone-induced muscle wasting, we found that ursolic acid blocked the loss of muscle mass by stimulating protein synthesis and decreasing protein degradation. These beneficial responses included decreased expression of myostatin and inflammatory cytokines (e.g. TGF-β, IL-6 and TNFα), which are initiators of muscle-specific ubiquitin-E3 ligases (e.g. Atrogin-1, MuRF-1 and MUSA1). CONCLUSIONS Ursolic acid improves CKD-induced muscle mass by suppressing the expression of myostatin and inflammatory cytokines via increasing protein synthesis and reducing proteolysis.
Collapse
Affiliation(s)
- Rizhen Yu
- Nephrology DivisionChanghai HospitalShanghaiChina
- Nephrology DivisionZhejiang Provincial People's HospitalHongzhouChina
- Nephrology DivisionDepartment of Medicine, Baylor College of MedicineHoustonTXUSA
| | - Ji‐an Chen
- Department of Health Education, College of Preventive MedicineThird Military Medical UniversityChongqingChina
| | - Jing Xu
- Nephrology DivisionChanghai HospitalShanghaiChina
| | - Jin Cao
- Nephrology DivisionDepartment of Medicine, Baylor College of MedicineHoustonTXUSA
| | - Yanlin Wang
- Nephrology DivisionDepartment of Medicine, Baylor College of MedicineHoustonTXUSA
| | - Sandhya S. Thomas
- Michael E. Debakey VA Medical CenterHoustonTXUSA
- Nephrology DivisionDepartment of Medicine, Baylor College of MedicineHoustonTXUSA
| | - Zhaoyong Hu
- Nephrology DivisionDepartment of Medicine, Baylor College of MedicineHoustonTXUSA
| |
Collapse
|
44
|
Liu CK, Milton J, Hsu FC, Beavers KM, Yank V, Church T, Shegog JD, Kashaf S, Nayfield S, Newman A, Stafford RS, Nicklas B, Weiner DE, Fielding RA. The Effect of Chronic Kidney Disease on a Physical Activity Intervention: Impact on Physical Function, Adherence, and Safety. ACTA ACUST UNITED AC 2017; 3. [PMID: 29745380 PMCID: PMC5937279 DOI: 10.23937/2572-3286.1510021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background Because chronic kidney disease (CKD) is associated with muscle wasting, older adults with CKD are likely to have physical function deficits. Physical activity can improve these deficits, but whether CKD attenuates the benefits is unknown. Our objective was to determine if CKD modified the effect of a physical activity intervention in older adults. Methods This is an exploratory analysis of the LIFE-P study, which compared a 12-month physical activity program (PA) to a successful aging education program (SA) in older adults. CKD was defined as a baseline eGFR < 60 mL/min/1.73 m2. We examined the Short Physical Performance Battery (SPPB) at baseline, 6 and 12 months. Secondary outcomes included serious adverse events (SAE) and adherence to intervention frequency. Linear mixed models were adjusted for age, sex, diabetes, hypertension, CKD, intervention, site, visit, baseline SPPB, and interactions of intervention and visit and of intervention, visit, and baseline CKD. Results The sample included 368 participants. CKD was present in 105 (28.5%) participants with a mean eGFR of 49.2 ± 8.1 mL/min/1.73 m2. Mean SPPB was 7.38 ± 1.41 in CKD participants; 7.59 ± 1.44 in those without CKD (p = 0.20). For CKD participants in PA, 12-month SPPBs increased to 8.90 (95% CI 8.32, 9.47), while PA participants without CKD increased to 8.40 (95% CI 8.01, 8.79, p = 0.43). For CKD participants in SA, 12-month SPPBs increased to 7.67 (95% CI 7.07, 8.27), while participants without CKD increased to 8.12 (95% CI 7.72, 8.52, p = 0.86). Interaction between CKD and intervention was non-significant (p = 0.88). Number and type of SAEs were not different between CKD and non-CKD participants (all p > 0.05). In PA, adherence for CKD participants was 65.5 ± 25.4%, while for those without CKD was 74.0 ± 22.2% (p = 0.12). Conclusion Despite lower adherence, older adults with CKD likely derive clinically meaningful benefits from physical activity with no apparent impact on safety, compared to those without CKD.
Collapse
Affiliation(s)
- C K Liu
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer Human Nutrition Research Center in Aging, Tufts University, Boston, MA, USA.,Boston University School of Medicine, Boston, MA, USA
| | - J Milton
- Boston University School of Public Health, Boston, MA, USA
| | - F-C Hsu
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - K M Beavers
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - V Yank
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - T Church
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - J D Shegog
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - S Kashaf
- Yale University School of Medicine, New Haven, CT, USA
| | - S Nayfield
- University of Florida College of Medicine, Gainesville, FL, USA
| | - A Newman
- University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - R S Stafford
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - B Nicklas
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - D E Weiner
- Tufts University School of Medicine, Boston, MA, USA
| | - R A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer Human Nutrition Research Center in Aging, Tufts University, Boston, MA, USA
| | | |
Collapse
|
45
|
Verzola D, Bonanni A, Sofia A, Montecucco F, D'Amato E, Cademartori V, Parodi EL, Viazzi F, Venturelli C, Brunori G, Garibotto G. Toll-like receptor 4 signalling mediates inflammation in skeletal muscle of patients with chronic kidney disease. J Cachexia Sarcopenia Muscle 2017; 8:131-144. [PMID: 27897392 PMCID: PMC5326826 DOI: 10.1002/jcsm.12129] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Inflammation in skeletal muscle is implicated in the pathogenesis of insulin resistance and cachexia but why uremia up-regulates pro-inflammatory cytokines is unknown. Toll-like receptors (TLRs) regulate locally the innate immune responses, but it is unknown whether in chronic kidney disease (CKD) TLR4 muscle signalling is altered. The aim of the study is to investigate whether in CKD muscle, TLRs had abnormal function and may be involved in transcription of pro-inflammatory cytokine. METHODS TLR4, phospho-p65, phospho-ikBα, tumour necrosis factor (TNF)-α, phospho p38, Murf 1, and atrogin were studied in skeletal muscle from nondiabetic CKD stage 5 patients (n = 29) and controls (n = 14) by immunohistochemistry, western blot, and RT-PCR. Muscle cell cultures (C2C12) exposed to uremic serum were employed to study TLR4 expression (western blot and RT-PCR) and TLR-driven signalling. TLR4 signalling was abrogated by a small molecule chemical inhibitor or TLR4 siRNA. Phospho AKT and phospho p38 were evaluated by western blot. RESULTS CKD subjects had elevated TLR4 gene and protein expression. Also expression of NFkB, p38 MAPK and the NFkB-regulated gene TNF-α was increased. At multivariate analysis, TLR4 protein content was predicted by eGFR and Subjective Global Assessment, suggesting that the progressive decline in renal function and wasting mediate TLR4 activation. In C2C12, uremic serum increased TLR4 as well as TNF-α and down-regulated pAkt. These effects were prevented by blockade of TLR4. CONCLUSIONS CKD promotes muscle inflammation through an up-regulation of TLR4, which may activate downward inflammatory signals such as TNF-α and NFkB-regulated genes.
Collapse
Affiliation(s)
- Daniela Verzola
- Department of Internal Medicine, Nephrology Division and First Clinic of Internal Medicine, University of Genova and IRCCS AOU San Martino-IST, and Ospedale Santa ChiaraI, Trento, Italy
| | - Alice Bonanni
- Department of Internal Medicine, Nephrology Division and First Clinic of Internal Medicine, University of Genova and IRCCS AOU San Martino-IST, and Ospedale Santa ChiaraI, Trento, Italy
| | - Antonella Sofia
- Department of Internal Medicine, Nephrology Division and First Clinic of Internal Medicine, University of Genova and IRCCS AOU San Martino-IST, and Ospedale Santa ChiaraI, Trento, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, Nephrology Division and First Clinic of Internal Medicine, University of Genova and IRCCS AOU San Martino-IST, and Ospedale Santa ChiaraI, Trento, Italy
| | - Elena D'Amato
- Department of Internal Medicine, Nephrology Division and First Clinic of Internal Medicine, University of Genova and IRCCS AOU San Martino-IST, and Ospedale Santa ChiaraI, Trento, Italy
| | - Valeria Cademartori
- Department of Internal Medicine, Nephrology Division and First Clinic of Internal Medicine, University of Genova and IRCCS AOU San Martino-IST, and Ospedale Santa ChiaraI, Trento, Italy
| | - Emanuele Luigi Parodi
- Department of Internal Medicine, Nephrology Division and First Clinic of Internal Medicine, University of Genova and IRCCS AOU San Martino-IST, and Ospedale Santa ChiaraI, Trento, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, Nephrology Division and First Clinic of Internal Medicine, University of Genova and IRCCS AOU San Martino-IST, and Ospedale Santa ChiaraI, Trento, Italy
| | - Chiara Venturelli
- Department of Internal Medicine, Nephrology Division and First Clinic of Internal Medicine, University of Genova and IRCCS AOU San Martino-IST, and Ospedale Santa ChiaraI, Trento, Italy
| | - Giuliano Brunori
- Department of Internal Medicine, Nephrology Division and First Clinic of Internal Medicine, University of Genova and IRCCS AOU San Martino-IST, and Ospedale Santa ChiaraI, Trento, Italy
| | - Giacomo Garibotto
- Department of Internal Medicine, Nephrology Division and First Clinic of Internal Medicine, University of Genova and IRCCS AOU San Martino-IST, and Ospedale Santa ChiaraI, Trento, Italy
| |
Collapse
|
46
|
The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease. Kidney Int 2016; 91:119-128. [PMID: 27653838 DOI: 10.1016/j.kint.2016.07.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/24/2022]
Abstract
Fibrosis in skeletal muscle develops after injury or in response to chronic kidney disease (CKD), but the origin of cells becoming fibrous tissue and the initiating and sustaining mechanisms causing muscle fibrosis are unclear. We identified muscle fibro/adipogenic progenitor cells (FAPs) that potentially differentiate into adipose tissues or fibrosis. We also demonstrated that CKD stimulates myostatin production in muscle. Therefore, we tested whether CKD induces myostatin, which stimulates fibrotic differentiation of FAPs leading to fibrosis in skeletal muscles. We isolated FAPs from mouse muscles and found that myostatin stimulates their proliferation and conversion into fibrocytes. In vivo, FAPs isolated from EGFP-transgenic mice (FAPs-EGFP) were transplanted into muscles of mice with CKD or into mouse muscles that were treated with myostatin. CKD or myostatin stimulated FAPs-EGFP proliferation in muscle and increased α-smooth muscle actin expression in FAP-EGFP cells. When myostatin was inhibited with a neutralizing peptibody (a chimeric peptide-Fc fusion protein), the FAP proliferation and muscle fibrosis induced by CKD were both suppressed. Knocking down Smad3 in cultured FAPs interrupted their conversion into fibrocytes, indicating that myostatin directly converts FAPs into fibrocytes. Thus, counteracting myostatin may be a strategy for preventing the development of fibrosis in skeletal muscles of patients with CKD.
Collapse
|
47
|
Enoki Y, Watanabe H, Arake R, Sugimoto R, Imafuku T, Tominaga Y, Ishima Y, Kotani S, Nakajima M, Tanaka M, Matsushita K, Fukagawa M, Otagiri M, Maruyama T. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci Rep 2016; 6:32084. [PMID: 27549031 PMCID: PMC4994088 DOI: 10.1038/srep32084] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle atrophy, referred to as sarcopenia, is often observed in chronic kidney disease (CKD) patients, especially in patients who are undergoing hemodialysis. The purpose of this study was to determine whether uremic toxins are involved in CKD-related skeletal muscle atrophy. Among six protein-bound uremic toxins, indole containing compounds, indoxyl sulfate (IS) significantly inhibited proliferation and myotube formation in C2C12 myoblast cells. IS increased the factors related to skeletal muscle breakdown, such as reactive oxygen species (ROS) and inflammatory cytokines (TNF-α, IL-6 and TGF-β1) in C2C12 cells. IS also enhanced the production of muscle atrophy-related genes, myostatin and atrogin-1. These effects induced by IS were suppressed in the presence of an antioxidant or inhibitors of the organic anion transporter and aryl hydrocarbon receptor. The administered IS was distributed to skeletal muscle and induced superoxide production in half-nephrectomized (1/2 Nx) mice. The chronic administration of IS significantly reduced the body weights accompanied by skeletal muscle weight loss. Similar to the in vitro data, IS induced the expression of myostatin and atrogin-1 in addition to increasing the production of inflammatory cytokines by enhancing oxidative stress in skeletal muscle. These data suggest that IS has the potential to accelerate skeletal muscle atrophy by inducing oxidative stress-mediated myostatin and atrogin-1 expression.
Collapse
Affiliation(s)
- Yuki Enoki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Riho Arake
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Ryusei Sugimoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Yuna Tominaga
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Yu Ishima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kotani
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Nakajima
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motoko Tanaka
- Department of Nephrology, Akebono Clinic, Kumamoto, Japan
| | | | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Kumamoto, Japan.,DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
48
|
Avin KG, Chen NX, Organ JM, Zarse C, O’Neill K, Conway RG, Konrad RJ, Bacallao RL, Allen MR, Moe SM. Skeletal Muscle Regeneration and Oxidative Stress Are Altered in Chronic Kidney Disease. PLoS One 2016; 11:e0159411. [PMID: 27486747 PMCID: PMC4972446 DOI: 10.1371/journal.pone.0159411] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 07/02/2016] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle atrophy and impaired muscle function are associated with lower health-related quality of life, and greater disability and mortality risk in those with chronic kidney disease (CKD). However, the pathogenesis of skeletal dysfunction in CKD is unknown. We used a slow progressing, naturally occurring, CKD rat model (Cy/+ rat) with hormonal abnormalities consistent with clinical presentations of CKD to study skeletal muscle signaling. The CKD rats demonstrated augmented skeletal muscle regeneration with higher activation and differentiation signals in muscle cells (i.e. lower Pax-7; higher MyoD and myogenin RNA expression). However, there was also higher expression of proteolytic markers (Atrogin-1 and MuRF-1) in CKD muscle relative to normal. CKD animals had higher indices of oxidative stress compared to normal, evident by elevated plasma levels of an oxidative stress marker, 8-hydroxy-2' -deoxyguanosine (8-OHdG), increased muscle expression of succinate dehydrogenase (SDH) and Nox4 and altered mitochondria morphology. Furthermore, we show significantly higher serum levels of myostatin and expression of myostatin in skeletal muscle of CKD animals compared to normal. Taken together, these data show aberrant regeneration and proteolytic signaling that is associated with oxidative stress and high levels of myostatin in the setting of CKD. These changes likely play a role in the compromised skeletal muscle function that exists in CKD.
Collapse
Affiliation(s)
- Keith G. Avin
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, Indianapolis, IN, United States of America
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
- * E-mail:
| | - Neal X. Chen
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Jason M. Organ
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Chad Zarse
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Kalisha O’Neill
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Richard G. Conway
- Lilly Research laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Robert J. Konrad
- Lilly Research laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Robert L. Bacallao
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Matthew R. Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Sharon M. Moe
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
49
|
Yamada S, Tsuruya K, Yoshida H, Tokumoto M, Ueki K, Ooboshi H, Kitazono T. Factors Associated with the Serum Myostatin Level in Patients Undergoing Peritoneal Dialysis: Potential Effects of Skeletal Muscle Mass and Vitamin D Receptor Activator Use. Calcif Tissue Int 2016; 99:13-22. [PMID: 26895008 DOI: 10.1007/s00223-016-0118-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/09/2016] [Indexed: 01/08/2023]
Abstract
Myostatin is a member of the transforming growth factor-β family, which regulates synthesis and degradation of skeletal muscle proteins and is associated with the development of sarcopenia. It is up-regulated in the skeletal muscle of chronic kidney disease patients and is considered to be involved in the development of uremic sarcopenia. However, serum myostatin levels have rarely been determined, and the relationship between serum myostatin levels with clinical and metabolic factors remains unknown. This cross-sectional study investigated the association between serum myostatin level and clinical factors in 69 outpatients undergoing peritoneal dialysis. Serum myostatin level was determined by commercially available enzyme-linked immunosorbent assay (ELISA). Univariable and multivariable analysis were conducted to determine factors associated with serum myostatin levels. The factors included age, sex, diabetes mellitus, dialysis history, body mass index, residual kidney function, peritoneal dialysate volume, serum biochemistries, and the use of vitamin D receptor activators (VDRAs). Mean serum myostatin level was 7.59 ± 3.37 ng/mL. There was no association between serum myostatin level and residual kidney function. Serum myostatin levels were significantly and positively associated with lean body mass measured by the creatinine kinetic method and negatively associated with the use of VDRAs after adjustment for potential confounding factors. Our study indicated that serum myostatin levels are associated with skeletal muscle mass and are lower in patients treated with VDRAs. Further studies are necessary to determine the significance of measuring serum myostatin level in patients undergoing peritoneal dialysis.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Kazuhiko Tsuruya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hisako Yoshida
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masanori Tokumoto
- Department of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Kenji Ueki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ooboshi
- Department of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
50
|
Relationship between Blood Myostatin Levels and Kidney Function:Shimane CoHRE Study. PLoS One 2015; 10:e0141035. [PMID: 26502079 PMCID: PMC4621051 DOI: 10.1371/journal.pone.0141035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/02/2015] [Indexed: 01/16/2023] Open
Abstract
Objectives Myostatin (MSTN), a member of TGF-β superfamily, is produced in the skeletal muscle to inhibit myocyte differentiation. MSTN expression is increased in the skeletal muscle in patients with chronic kidney disease (CKD), which may play a role in the pathogenesis of sarcopenia or in the protein energy wasting (PEW). This observation implies that the plasma MSTN level may be correlated with kidney function. Thus, we conducted a cross-sectional study to evaluate the association between the plasma MSTN concentration and the estimated glomerular filtration rate (eGFR). Subjects and Methods Subjects were 781 participants of a health examination performed in a rural area in Japan. Among them, 124 subjects were selected by stratified random sampling according to eGFR. Creatinine clearance (ClCr) by the Cockcroft-Gault equation was used as a measure of kidney function. Plasma concentration of MSTN was determined by ELISA. Results The plasma MSTN level was not different between men (3.42±1.61 ng/mL) and women (3.27±1.43 ng/mL). In a simple regression analysis, the MSTN level was significantly correlated with eGFR (r = -0.25, p<0.01) and ClCr (r = -0.20, p<0.05) but not with age and BMI. In a multiple linear regression analysis, the MSTN level showed a negative correlation with eGFR (standardized β = -0.31, p<0.01) and ClCr (standardized β = -0.35, p<0.01) under the adjustment with age, sex, BMI and LDL-C. Weak correlation was observed between the MSTN level and BMI / the serum LDL-C level. When the subjects were stratified into 4 groups according to eGFR, MSTN was significantly greater in the groups with the lowest and the 2nd lowest eGFR (3.55±1.79 and 3.76±1.75 ng/mL, respectively) than the level in the group with the highest eGFR (2.77±0.85 ng/mL). Conclusion Plasma MSTN level was elevated in an early stage of CKD, which could be involved in the progression of sarcopenia.
Collapse
|