1
|
Bernardes AF, Meng Z, Campos LC, Coppens MO. Bio-inspired anti-fouling strategies for membrane-based separations. Chem Commun (Camb) 2025; 61:5064-5071. [PMID: 40084840 DOI: 10.1039/d4cc05149a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Membrane-based filtration processes are attractive for industrial separation processes, because of energy-savings and cost-effectiveness. However, membrane fouling continues to be a major drawback. To overcome fouling and increase the efficacy of membrane separation processes, disruptive solutions can be found in nature. Nature-inspired chemical engineering (NICE) seeks to understand the fundamental mechanisms behind desired properties in natural systems and then applies these in practical applications where similar challenges need to be overcome, whilst considering all length scales. In this review, examples are provided where the systematic design methodology used in NICE is applied to decrease fouling and its effects on membrane-based filtration. Expanding the application of this framework will facilitate the identification and utilisation of common traits among highly efficient natural systems to propose innovative engineering solutions for water treatment. Beyond membrane separations, the NICE approach has already seen success in other areas, including electrocatalysts for H2 fuel cells, CO2 reduction, medical applications, and fluidized beds. We recommend increased modelling efforts to complement experimental work and to deepen the understanding of the mechanisms behind biological, non-fouling membranes, as well as other biological mechanisms relevant to water management, anti-fouling, and antimicrobial strategies. Additionally, we encourage making a clear distinction between biomimicry, bio-inspiration, and bio-integration, with guidelines and standardized nomenclature.
Collapse
Affiliation(s)
- Adriana Filipe Bernardes
- Centre for Nature Inspired Engineering & Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
| | - Luiza Cintra Campos
- Centre for Urban Sustainability and Resilience & Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK
| | - Marc-Olivier Coppens
- Centre for Nature Inspired Engineering & Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
2
|
Liu PJ, Sayeeda K, Zhuang C, Krendel M. Roles of myosin 1e and the actin cytoskeleton in kidney functions and familial kidney disease. Cytoskeleton (Hoboken) 2024; 81:737-752. [PMID: 38708443 PMCID: PMC11538376 DOI: 10.1002/cm.21861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Mammalian kidneys are responsible for removing metabolic waste and maintaining fluid and electrolyte homeostasis via selective filtration. One of the proteins closely linked to selective renal filtration is myosin 1e (Myo1e), an actin-dependent molecular motor found in the specialized kidney epithelial cells involved in the assembly and maintenance of the renal filter. Point mutations in the gene encoding Myo1e, MYO1E, have been linked to familial kidney disease, and Myo1e knockout in mice leads to the disruption of selective filtration. In this review, we discuss the role of the actin cytoskeleton in renal filtration, the known and hypothesized functions of Myo1e, and the possible explanations for the impact of MYO1E mutations on renal function.
Collapse
Affiliation(s)
- Pei-Ju Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kazi Sayeeda
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Cindy Zhuang
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
3
|
Giardini E, Moore D, Sadlier D, Godson C, Brennan E. The dual role of lipids in chronic kidney disease: Pathogenic culprits and therapeutic allies. Atherosclerosis 2024; 398:118615. [PMID: 39370307 DOI: 10.1016/j.atherosclerosis.2024.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Chronic kidney disease (CKD) is a significant health burden, with rising incidence and prevalence, attributed in part to increasing obesity and diabetes rates. Lipid accumulation in the kidney parenchyma and chronic, low-grade inflammation are believed to significantly contribute to the development and progression of CKD. The effect of dysregulated kidney lipid metabolism in CKD progression, including altered cholesterol and fatty acid metabolism contribute to glomerular and tubular cell injury through the activation of oxidative stress and inflammatory signalling cascades. In contrast, classes of endogenous specialized pro-resolving lipid mediators (SPMs) have been described that act to limit the inflammatory response and promote the resolution of inflammation. This review highlights our current understanding of how lipids can cause damage within the kidney, and classes of protective lipid metabolites that offer therapeutic benefits.
Collapse
Affiliation(s)
- Elena Giardini
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Dean Moore
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Denise Sadlier
- Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Iba T, Helms J, Maier CL, Levi M, Scarlatescu E, Levy JH. The role of thromboinflammation in acute kidney injury among patients with septic coagulopathy. J Thromb Haemost 2024; 22:1530-1540. [PMID: 38382739 DOI: 10.1016/j.jtha.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Inflammation and coagulation are critical self-defense mechanisms for mitigating infection that can nonetheless induce tissue injury and organ dysfunction. In severe cases, like sepsis, a dysregulated thromboinflammatory response may result in multiorgan dysfunction. Sepsis-associated acute kidney injury (AKI) is a significant contributor to patient morbidity and mortality. The connection between AKI and thromboinflammation is largely due to unique aspects of the renal vasculature. Specifically, the interaction between blood cells with the endothelial, glomerular, and peritubular capillary systems during thromboinflammation reduces oxygen supply to tubular epithelial cells. Previous studies have focused on tubular epithelial cell damage due to hypoxia, oxidative stress, and nephrotoxins. Although these factors are pivotal in acute tubular injury or necrosis, recent studies have demonstrated that AKI in sepsis encompasses a mixture of tubular and glomerular damage subtypes. In cases of sepsis-induced coagulopathy, thromboinflammation within the glomerulus and peritubular capillaries is an important pathogenic mechanism for AKI. Unfortunately, and despite the use of renal replacement therapy, the development of AKI in sepsis continues to be associated with high morbidity, mortality, and clinical challenges requiring alternative approaches. This review introduces the important role of thromboinflammation in AKI pathogenesis and details innovative vascular-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Julie Helms
- French National Institute of Health and Medical Research, United Medical Resources 1260, Regenerative Nanomedicine, Federation de Medicine Translationnelle de Strasbourg, Strasbourg University Hospital, Medical Intensive Care Unit - NHC, Strasbourg University, Strasbourg, France
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands; Department of Medicine, University College London Hospitals National Health Service Foundation Trust, Cardio-metabolic Programme-National Institute for Health and Care Research University College London Hospitals/University College London Biomedical Research Centre, London, United Kingdom
| | - Ecaterina Scarlatescu
- University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania; Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Smith MM, Melrose J. Lumican, a Multifunctional Cell Instructive Biomarker Proteoglycan Has Novel Roles as a Marker of the Hypercoagulative State of Long Covid Disease. Int J Mol Sci 2024; 25:2825. [PMID: 38474072 DOI: 10.3390/ijms25052825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
This study has reviewed the many roles of lumican as a biomarker of tissue pathology in health and disease. Lumican is a structure regulatory proteoglycan of collagen-rich tissues, with cell instructive properties through interactions with a number of cell surface receptors in tissue repair, thereby regulating cell proliferation, differentiation, inflammation and the innate and humoral immune systems to combat infection. The exponential increase in publications in the last decade dealing with lumican testify to its role as a pleiotropic biomarker regulatory protein. Recent findings show lumican has novel roles as a biomarker of the hypercoagulative state that occurs in SARS CoV-2 infections; thus, it may also prove useful in the delineation of the complex tissue changes that characterize COVID-19 disease. Lumican may be useful as a prognostic and diagnostic biomarker of long COVID disease and its sequelae.
Collapse
Affiliation(s)
- Margaret M Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Arthropharm Pty Ltd., Bondi Junction, NSW 2022, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Balbotkina EV, Karavashkina TA, Seliverstova EV, Kutina AV. Microalbuminuria in Rats Treated with D-Nitroarginine Methyl Ether. Bull Exp Biol Med 2024; 176:437-441. [PMID: 38491255 DOI: 10.1007/s10517-024-06042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 03/18/2024]
Abstract
Microalbuminuria is an early symptom and prognostic marker of the progression of renal pathology. The analysis of the role of anionic components of the renal glomeruli in the albumin retention and the development of a model of minimal changes in the glomerular filter leading to the appearance of microalbuminuria are relevant. The effect of organic cations D-arginine methyl esters (D-AME) and D-nitroarginine (D-NAME) on the excretion of albumin by the kidneys in rats was studied. D-AME had no effect on urinary albumin excretion in rats. D-NAME caused microalbuminuria, which persisted for more than a day and sharply increased after injection of vasopressin. The number of anionic sites labeled with polyethyleneimine decreased in the structures of the glomerular filter. D-NAME-induced microalbuminuria can later serve as a model for studying nephroprotective or damaging factors.
Collapse
Affiliation(s)
- E V Balbotkina
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - T A Karavashkina
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - E V Seliverstova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A V Kutina
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
7
|
Shu Y, Xiong Y, Song Y, Jin S, Bai X. Positive association between circulating Caveolin-1 and microalbuminuria in overt diabetes mellitus in pregnancy. J Endocrinol Invest 2024; 47:201-212. [PMID: 37358699 DOI: 10.1007/s40618-023-02137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
AIMS Mounting evidence has shown that caveolin-1 plays a pathological role in the progression of albuminuria. Our study aimed to provide clinical evidence showing whether circulating caveolin-1 levels were associated with microalbuminuria (MAU) in women with overt diabetes mellitus in pregnancy (ODMIP). METHODS A total of 150 pregnant women were enrolled in different groups, including 40 women with ODMIP and MAU (ODMIP + MAU), 40 women with ODMIP, and 70 women without ODMIP (Non-ODMIP). Plasma caveolin-1 levels were determined by ELISA. The presence of caveolin-1 in the human umbilical vein vascular wall was evaluated by immunohistochemical and western blot analysis, respectively. Albumin transcytosis across endothelial cells was measured using an established nonradioactive in vitro approach. RESULTS Significantly increased levels of plasma caveolin-1 were detected in ODMIP + MAU women. The Pearson's correlation analysis revealed a positive correlation between plasma caveolin-1 levels and Hemoglobin A1c (HbA1c %) as well as with MAU in the ODMIP + MAU group. Simultaneously, experimental knockdown or overexpression of caveolin-1 significantly decreased or increased the level of albumin transcytosis across both human and mouse glomerular endothelial cells (GECs), respectively. CONCLUSIONS Our data showed a positive association between plasma caveolin-1 levels and microalbuminuria in ODMIP + MAU.
Collapse
Affiliation(s)
- Y Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Y Xiong
- Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Y Song
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - S Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China.
| | - X Bai
- Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China.
| |
Collapse
|
8
|
Buijsers B, Maciej-Hulme M, Jacobs M, Bebber MBV, de Graaf M, Salmenov R, Parr N, Rabelink TJ, Nijenhuis T, van der Vlag J. Glycosaminoglycans and fucoidan have a protective effect on experimental glomerulonephritis. Front Mol Biosci 2023; 10:1223972. [PMID: 37475889 PMCID: PMC10354240 DOI: 10.3389/fmolb.2023.1223972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Background: The glomerular endothelial glycocalyx is degraded during inflammation. The glycocalyx plays a pivotal role in endothelial function and is involved in many processes including binding of chemokines and cytokines, leukocyte trafficking, and preventing proteinuria. HS-based therapeutics are a promising novel class of anti-inflammatory drugs to restore a compromised endothelial glycocalyx under inflammatory conditions. Recently, we demonstrated that treatment with HS extracted from unstimulated glomerular endothelial glycocalyx (unstimulated HSglx) reduced albuminuria during anti-GBM induced glomerulonephritis. Since endothelial HS domains are distinct in unstimulated versus inflammatory conditions, we hypothesized that 1) unstimulated HSglx, 2) LPS-stimulated HSglx, 3) the HS-mimetic fucoidan and 4) the glycosaminoglycan preparation sulodexide, which is a mixture of low molecular weight heparin and dermatan sulfate, might have different beneficial effects in experimental glomerulonephritis. Methods: The effect of unstimulated HSglx, LPS HSglx, Laminaria japonica fucoidan, or sulodexide on experimental glomerulonephritis was tested in LPS-induced glomerulonephritis in mice. Analyses included urinary albumin creatinine measurement, cytokine expression in plasma and renal cortex, and renal influx of immune cells determined by flow cytometry and immunofluorescence staining. Furthermore, the observed in vivo effects were evaluated in cultured glomerular endothelial cells and peripheral blood mononuclear cells by measuring cytokine and ICAM-1 expression levels. The ability of the compounds to inhibit heparanase activity was assessed in a heparanase activity assay. Results: Treatment of mice with LPS HSglx or sulodexide near-significantly attenuated LPS-induced proteinuria. All treatments reduced plasma MCP-1 levels, whereas only fucoidan reduced IL-6 and IL-10 plasma levels. Moreover, all treatments reversed cortical ICAM-1 mRNA expression and both fucoidan and sulodexide reversed cortical IL-6 and nephrin mRNA expression. Sulodexide decreased renal influx of CD45+ immune cells whereas renal influx of macrophages and granulocytes remained unaltered for all treatments. Although all compounds inhibited HPSE activity, fucoidan and sulodexide were the most potent inhibitors. Notably, fucoidan and sulodexide decreased LPS-induced mRNA expression of ICAM-1 and IL-6 by cultured glomerular endothelial cells. Conclusion: Our data show a potentially protective effect of glycosaminoglycans and fucoidan in experimental glomerulonephritis. Future research should be aimed at the further identification of defined HS structures that have therapeutic potential in the treatment of glomerular diseases.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marissa Maciej-Hulme
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maaike Jacobs
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marinka Bakker-van Bebber
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark de Graaf
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rustem Salmenov
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Naomi Parr
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ton J. Rabelink
- Division of Nephrology, Department of Internal Medicine, The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
9
|
Alamilla-Sanchez ME, Alcala-Salgado MA, Cerezo Samperio B, Prado Lozano P, Diaz Garcia JD, Gonzalez Fuentes C, Yama Estrella MB, Morales Lopez EF. Advances in the Physiology of Transvascular Exchange and A New Look At Rational Fluid Prescription. Int J Gen Med 2023; 16:2753-2770. [PMID: 37408844 PMCID: PMC10319290 DOI: 10.2147/ijgm.s405926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/28/2023] [Indexed: 07/07/2023] Open
Abstract
The Starling principle is a model that explains the transvascular distribution of fluids essentially governed by hydrostatic and oncotic forces, which dynamically allow vascular refilling according to the characteristics of the blood vessel. However, careful analysis of fluid physiology has shown that the principle, while correct, is not complete. The revised Starling principle (Michel-Weinbaum model) provides relevant information on fluid kinetics. Special emphasis has been placed on the endothelial glycocalyx, whose subendothelial area allows a restricted oncotic pressure that limits the reabsorption of fluid from the interstitial space, so that transvascular refilling occurs mainly from the lymphatic vessels. The close correlation between pathological states of the endothelium (eg: sepsis, acute inflammation, or chronic kidney disease) and the prescription of fluids forces the physician to understand the dynamics of fluids in the organism; this will allow rational fluid prescriptions. A theory that integrates the physiology of exchange and transvascular refilling is the "microconstant model", whose variables include dynamic mechanisms that can explain edematous states, management of acute resuscitation, and type of fluids for common clinical conditions. The clinical-physiological integration of the concepts will be the hinges that allow a rational and dynamic prescription of fluids.
Collapse
Affiliation(s)
| | | | | | - Pamela Prado Lozano
- Department of Nephrology, Centro Medico Nacional “20 de Noviembre”, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
10
|
Buijsers B, Garsen M, de Graaf M, Bakker-van Bebber M, Guo C, Li X, van der Vlag J. Heparanase-2 protein and peptides have a protective effect on experimental glomerulonephritis and diabetic nephropathy. Front Pharmacol 2023; 14:1098184. [PMID: 37180718 PMCID: PMC10172501 DOI: 10.3389/fphar.2023.1098184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction: The endothelial glycocalyx degrading enzyme heparanase-1 (HPSE1) is a major contributor to kidney diseases, such as glomerulonephritis and diabetic nephropathy. Therefore, inhibition of HPSE1 could be an interesting therapeutic strategy to treat glomerular diseases. A possible HPSE1 inhibitor is heparanase-2 (HPSE2) because HPSE2 is a structural homolog of HPSE1 without enzymatic activity. The importance of HPSE2 has been recently demonstrated in HPSE2-deficient mice, since these mice developed albuminuria and died within a few months after birth. We postulate that inhibition of HPSE1 activity by HPSE2 is a promising therapeutic strategy to target albuminuria and resulting renal failure. Methods: First, we evaluated the regulation of HPSE2 expression in anti-GBM and LPS-induced glomerulonephritis, streptozotocin-induced diabetic nephropathy, and adriamycin nephropathy by qPCR and ELISA. Second, we measured the HPSE1 inhibiting capacity of HPSE2 protein and 30 different HPSE2 peptides and assessed their therapeutic potential in both experimental glomerulonephritis and diabetic nephropathy using kidney function and cortical mRNA expression of HPSE1 and cytokines as outcome parameters. Results: HPSE2 expression was downregulated under inflammatory and diabetic conditions, whereas this effect on HPSE2 expression was absent with HPSE1 inhibition and in HPSE1-deficient mice. Both HPSE2 protein and a mixture of the three most potent HPSE1 inhibitory HPSE2 peptides could prevent LPS and streptozotocin induced kidney injury. Discussion: Taken together, our data suggest a protective effect of HPSE2 in (experimental) glomerular diseases and support the therapeutic potential of HPSE2 as HPSE1 inhibitor in glomerular diseases.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marjolein Garsen
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark de Graaf
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marinka Bakker-van Bebber
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Chunming Guo
- Departments of Urology and Pathology, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Xue Li
- Departments of Urology and Pathology, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
11
|
Guo F, Song Y, Wu L, Zhao Y, Ma X, Wang J, Shao M, Ji H, Huang F, Fan X, Wang S, Qin G, Yang B. SUMO specific peptidase 6 regulates the crosstalk between podocytes and glomerular endothelial cells in diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166685. [PMID: 36889557 DOI: 10.1016/j.bbadis.2023.166685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
There is increasing evidence that the crosstalk between podocytes and glomerular endothelial cells (GECs) exacerbates the progression of diabetic kidney disease (DKD). Here, we investigated the underlying role of SUMO specific peptidase 6 (SENP6) in this crosstalk. In the diabetic mice, SENP6 was decreased in glomerular tissues and its knockdown further exacerbated glomerular filtration barrier injury. In the mouse podocyte cell line MPC5 cells, SENP6 overexpression reversed HG-induced podocyte loss by suppressing the activation of Notch1 signaling. Notch1 intracellular domain (N1ICD) is the active form of Notch1. SENP6 upregulated the ubiquitination of N1ICD by deSUMOylating Notch1, thereby reducing N1ICD and suppressing Notch1 signaling activation in MPC5 cells. Endothelin-1 (EDN1) is a protein produced by podocytes and has been reported to promote GEC dysfunction. The supernatant from HG-treated MPC5 cells induced mitochondrial dysfunction and surface layer injury in GECs, and the supernatant from SENP6-deficient podocytes further exacerbated the above GEC dysfunction, while this trend was reversed by an EDN1 antagonist. The following mechanism study showed that SENP6 deSUMOylated KDM6A (a histone lysine demethylase) and then decreased the binding potency of KDM6A to EDN1. The latter led to the upregulation of H3K27me2 or H3K27me3 of EDN1 and suppressed its expression in podocytes. Taken together, SENP6 suppressed the HG-induced podocyte loss and ameliorated GEC dysfunction caused by crosstalk between podocytes and GECs, and the protective effect of SENP6 on DKD is attributed to its deSUMOylation activity.
Collapse
Affiliation(s)
- Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Song
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lina Wu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiao Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mingwei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongfei Ji
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fengjuan Huang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xunjie Fan
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shasha Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Baofeng Yang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
12
|
Ye Q, Wang D, Zhou C, Meng H, Liu H, Mao J. A spectrum of novel anti-vascular endothelial cells autoantibodies in idiopathic nephrotic syndrome patients. Clin Immunol 2023; 249:109273. [PMID: 36863601 DOI: 10.1016/j.clim.2023.109273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
Idiopathic nephrotic syndrome (INS) is a common renal disease characterized by disruption of the glomerular filtration barrier. In a previous study, we screened and identified podocyte autoantibodies in nephrotic syndrome patients and proposed the concept of autoimmune podocytopathy. However, circulating podocyte autoantibodies cannot reach podocytes unless glomerular endothelial cells have been damaged. Therefore, we speculate that INS patients may also have autoantibodies against vascular endothelial cells. Sera from INS patients were used as primary antibodies to screen and identify endothelial autoantibodies by hybridization with vascular endothelial cell proteins separated by two-dimensional electrophoresis. The clinical application value and pathogenicity of these autoantibodies were further verified by clinical study and in vivo and in vitro experiments. Nine kinds of autoantibodies against vascular endothelial cells were screened in patients with INS, which can cause endothelial cell damage. In addition, 89% of these patients were positive for at least one autoantibody.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Dongjie Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Chao Zhou
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Hanyan Meng
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Huihui Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China.
| |
Collapse
|
13
|
Zhang J, Wu Y, Zhang J, Zhang R, Wang Y, Liu F. ABCA1 deficiency-mediated glomerular cholesterol accumulation exacerbates glomerular endothelial injury and dysfunction in diabetic kidney disease. Metabolism 2023; 139:155377. [PMID: 36521550 DOI: 10.1016/j.metabol.2022.155377] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hyperglycemia and dyslipidemia are two major characteristics of diabetes. In this study, the effects of glomerular cholesterol accumulation primarily due to ABCA1 deficiency on glomerular endothelial injury in diabetic kidney disease (DKD) and the possible mechanisms were investigated. METHODS The effects of ABCA1 deficiency on glomerular lipid deposition and kidney injury were examined in a type 2 diabetic mouse model with ABCA1 deficiency in glomerular endothelial cells (DM-ABCA1-/- mice) and human renal glomerular endothelial cells (HRGECs) cultured in high glucose and high cholesterol conditions, which simulated type 2 diabetes in vitro. RESULTS ABCA1 deficiency in glomerular endothelial cells exacerbated renal lipid deposition and kidney injuries in type 2 diabetic mice and manifested as increased creatinine levels, more severe proteinuria, mesangial matrix expansion and fusion of foot processes, and more pronounced renal inflammatory injury and cell death. In HRGECs cultured under high glucose and high cholesterol conditions, ABCA1 deficiency increased the deposition of cellular cholesterol, contributed to inflammation and apoptosis, damaged the endothelial glycocalyx barrier, and induced endoplasmic reticulum stress (ERS). Conversely, ABCA1 overexpression enhancing cholesterol efflux or inhibition of ERS in vitro, significantly protected against glomerular endothelial injury stimulated by high glucose and high cholesterol. CONCLUSIONS These findings establish a pathogenic role of ABCA1 deficiency in glomerular endothelium injury and dysfunction and imply that ABCA1 may represent a potential effective therapeutic target for early diabetic kidney disease.
Collapse
Affiliation(s)
- Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yucheng Wu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Bouhrira N, DeOre BJ, Tran KA, Galie PA. Transcriptomic analysis of a 3D blood-brain barrier model exposed to disturbed fluid flow. Fluids Barriers CNS 2022; 19:94. [PMID: 36434717 PMCID: PMC9700938 DOI: 10.1186/s12987-022-00389-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2022] Open
Abstract
Cerebral aneurysms are more likely to form at bifurcations in the vasculature, where disturbed fluid is prevalent due to flow separation at sufficiently high Reynolds numbers. While previous studies have demonstrated that altered shear stress exerted by disturbed flow disrupts endothelial tight junctions, less is known about how these flow regimes alter gene expression in endothelial cells lining the blood-brain barrier. Specifically, the effect of disturbed flow on expression of genes associated with cell-cell and cell-matrix interaction, which likely mediate aneurysm formation, remains unclear. RNA sequencing of immortalized cerebral endothelial cells isolated from the lumen of a 3D blood-brain barrier model reveals distinct transcriptional changes in vessels exposed to fully developed and disturbed flow profiles applied by both steady and physiological waveforms. Differential gene expression, validated by qRT-PCR and western blotting, reveals that lumican, a small leucine-rich proteoglycan, is the most significantly downregulated gene in endothelial cells exposed to steady, disturbed flow. Knocking down lumican expression reduces barrier function in the presence of steady, fully developed flow. Moreover, adding purified lumican into the hydrogel of the 3D blood-brain barrier model recovers barrier function in the region exposed to fully developed flow. Overall, these findings emphasize the importance of flow regimes exhibiting spatial and temporal heterogeneous shear stress profiles on cell-matrix interaction in endothelial cells lining the blood-brain barrier, while also identifying lumican as a contributor to the formation and maintenance of an intact barrier.
Collapse
Affiliation(s)
- Nesrine Bouhrira
- grid.262671.60000 0000 8828 4546Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ USA
| | - Brandon J. DeOre
- grid.262671.60000 0000 8828 4546Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ USA
| | - Kiet A. Tran
- grid.262671.60000 0000 8828 4546Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ USA
| | - Peter A. Galie
- grid.262671.60000 0000 8828 4546Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ USA
| |
Collapse
|
15
|
Makita Y, Suzuki H, Nakano D, Yanagawa H, Kano T, Novak J, Nishiyama A, Suzuki Y. Glomerular deposition of galactose-deficient IgA1-containing immune complexes via glomerular endothelial cell injuries. Nephrol Dial Transplant 2022; 37:1629-1636. [PMID: 35746884 PMCID: PMC9395370 DOI: 10.1093/ndt/gfac204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Galactose-deficient IgA1 (Gd-IgA1) plays a crucial role in the development of IgA nephropathy (IgAN). However, the pathological role of Gd-IgA1-containing immune complexes (ICs) and the mechanism of deposition in the mesangial region remain unclear. METHODS To examine deposition of Gd-IgA1-containing ICs in the mesangial region through glomerular endothelial cell injury, we evaluated the alteration of renal microvascular endothelial glycocalyx in nude mice injected with Gd-IgA1-IgG ICs. Human renal glomerular endothelial cells (HRGECs) were used to assess the potential capacity of Gd-IgA1-IgG ICs to activate endothelial cells. RESULTS Nude mice injected with Gd-IgA1-containing ICs showed podocyte and endothelial cell injuries with IgA, IgG, and C3 depositions in glomerular capillaries and the mesangium. Moreover, albuminuria and hematuria were induced. Real-time glycocalyx imaging showed that renal microvascular glycocalyx was decreased immediately after injection of Gd-IgA1-containing ICs and then mesangial IgA deposition was increased. After coculture of Gd-IgA1-containing ICs with HRGECs, mRNA expression levels of endothelial adhesion molecules and proinflammatory mediators were upregulated significantly. CONCLUSION Gd-IgA1-IgG ICs had a high affinity for glomerular endothelial cells, which resulted in glomerular filtration barrier dysfunction mediated by glycocalyx loss. Furthermore, Gd-IgA1-IgG ICs accelerated production of adhesion factors and proinflammatory cytokines in glomerular endothelial cells. The glomerular endothelial cell injury induced by Gd-IgA1-containing ICs may enhance the permeability of immunoglobulins in the mesangial region and subsequent inflammatory responses in the pathogenesis of IgAN.
Collapse
Affiliation(s)
- Yuko Makita
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Nephrology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Hiroyuki Yanagawa
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshiki Kano
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jan Novak
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Yang J, Liu Z. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front Endocrinol (Lausanne) 2022; 13:816400. [PMID: 35692405 PMCID: PMC9174994 DOI: 10.3389/fendo.2022.816400] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are microvascular complications of diabetes. Microvascular endothelial cells are thought to be the major targets of hyperglycemic injury. In diabetic microvasculature, the intracellular hyperglycemia causes damages to the vascular endothelium, via multiple pathophysiological process consist of inflammation, endothelial cell crosstalk with podocytes/pericytes and exosomes. In addition, DN and DR diseases development are involved in several critical regulators including the cell adhesion molecules (CAMs), the vascular endothelial growth factor (VEGF) family and the Notch signal. The present review attempts to gain a deeper understanding of the pathogenesis complexities underlying the endothelial dysfunction in diabetes diabetic and retinopathy, contributing to the development of new mechanistic therapeutic strategies against diabetes-induced microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Molema G, Zijlstra JG, van Meurs M, Kamps JAAM. Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury. Nat Rev Nephrol 2022; 18:95-112. [PMID: 34667283 DOI: 10.1038/s41581-021-00489-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/29/2022]
Abstract
Microvascular endothelial cells in the kidney have been a neglected cell type in sepsis-induced acute kidney injury (sepsis-AKI) research; yet, they offer tremendous potential as pharmacological targets. As endothelial cells in distinct cortical microvascular segments are highly heterogeneous, this Review focuses on endothelial cells in their anatomical niche. In animal models of sepsis-AKI, reduced glomerular blood flow has been attributed to inhibition of endothelial nitric oxide synthase activation in arterioles and glomeruli, whereas decreased cortex peritubular capillary perfusion is associated with epithelial redox stress. Elevated systemic levels of vascular endothelial growth factor, reduced levels of circulating sphingosine 1-phosphate and loss of components of the glycocalyx from glomerular endothelial cells lead to increased microvascular permeability. Although coagulation disbalance occurs in all microvascular segments, the molecules involved differ between segments. Induction of the expression of adhesion molecules and leukocyte recruitment also occurs in a heterogeneous manner. Evidence of similar endothelial cell responses has been found in kidney and blood samples from patients with sepsis. Comprehensive studies are needed to investigate the relationships between segment-specific changes in the microvasculature and kidney function loss in sepsis-AKI. The application of omics technologies to kidney tissues from animals and patients will be key in identifying these relationships and in developing novel therapeutics for sepsis.
Collapse
Affiliation(s)
- Grietje Molema
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Jan G Zijlstra
- Dept. Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matijs van Meurs
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Dept. Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan A A M Kamps
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
He K, Chen Z, Zhao J, He Y, Deng R, Fan X, Wang J, Zhou X. The role of microRNA-155 in glomerular endothelial cell injury induced by high glucose. Mol Biol Rep 2022; 49:2915-2924. [PMID: 35064409 PMCID: PMC8924107 DOI: 10.1007/s11033-021-07106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Objective To investigate the role of microRNA-155-5p on apoptosis and inflammatory response in human renal glomerular endothelial cells (HRGEC) cultured with high glucose. Methods The primary HRGEC were mainly studied, light microscopy was used to detect changes in cell morphology. Quantitative Real Time-Polymerase Chain Reaction, Western Blot, immunofluorescence were aimed to observe the mRNA and protein expression levels of target gene ETS-1, downstream factors VCAM-1, MCP-1 and cleaved caspase-3 in each group after high glucose treatment as well as transfection with miR-155 mimics or inhibitor. Results The expression of inflammatory factors and apoptosis of HRGEC cells increased under high glucose treatment. Compared with normal-glucose treatment, the expression of microRNA-155 markedly increased in HRGECs treated with high-glucose, as well as the mRNA and protein levels of ETS-1, VCAM-1, MCP-1 and cleaved caspase-3. Overexpression of microRNA-155 remarkably downregulated mRNA and protein levels of ETS-1, VCAM-1, MCP-1 and cleaved caspase-3, whereas miRNA-155 knockdown upregulated their levels. In addition, HRGEC cells were transfected with miR-155 mimics and ETS-1 siRNA with high glucose stimulation. The expression of ETS-1 was positively correlated with the expression of downstream factors VCAM-1 and MCP-1. These results suggest that ETS-1 can mediate endothelial cell inflammation by regulating VCAM-1 and MCP-1. Conclusion MiR-155 can negatively regulate the expression of target gene ETS-1 and its downstream factors VCAM-1, MCP-1 and cleaved caspase-3, thus mediating the inflammatory response and apoptosis of HRGEC. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-021-07106-1.
Collapse
Affiliation(s)
- Kaiying He
- Lanzhou University, Lanzhou, Gansu, China
| | - Zhan Chen
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Zhao
- Lanzhou University, Lanzhou, Gansu, China
| | - Yang He
- Lanzhou University, Lanzhou, Gansu, China
| | - Rongrong Deng
- Department of Nephrology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Xin Fan
- Lanzhou University, Lanzhou, Gansu, China
| | - Jianqin Wang
- Department of Nephrology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Xiaochun Zhou
- Department of Nephrology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
19
|
Jiang L, Zhou J, Zhang L, Du Y, Jiang M, Xie L, Ma Z, Chen F. The association between serum interleukin-1 beta and heparin sulphate in diabetic nephropathy patients. Glycoconj J 2022; 38:697-707. [PMID: 34997893 PMCID: PMC8821487 DOI: 10.1007/s10719-021-10035-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
Inflammation is considered an important mechanism in the development of diabetes mellitus (DM) and persists for a long time before the occurrence of diabetic nephropathy (DN). Many studies have demonstrated that a decrease in the endothelial glycocalyx (EG) is negatively correlated with proteinuria. To elucidate whether EG damage induced by inflammasomes in DM patients leads to the occurrence of microalbuminuria (MA) and accelerates the progression of DN, this study screened 300 diagnosed DM patients. Finally, 70 type 2 diabetes patients were invited to participate in this study and were divided into two groups: the T2DM group (patients with normal MA and without diabetic retinopathy, n = 35) and the T2DN group (patients with increased MA and diabetic retinopathy, n = 35). Circulating heparin sulphate (HS, EG biomarkers) and interleukin-1 beta (IL-1β, inflammasome biomarkers) of the patients were measured by ELISA. Laboratory data were measured using routine laboratory methods. Patients in the T2DN group had increased serum HS, increased IL-1β, increased CRP, decreased haemoglobin, and increased neutrophils compared to patients in the T2DM group (all P < 0.05). Increased HS and decreased haemoglobin were independently associated with T2DN patients. ROC curves showed that the AUC of HS for the prediction of T2DN was 0.67 (P < 0.05). The combination of HS and haemoglobin yielded a significant increasement in the AUC (0.75, P < 0.001) with optimal sensitivity (71.2%) and specificity (79%). Furthermore, serum IL-1β was positively correlated with HS and was an independent associated factor of HS in the T2DN group. The relationship between HS and IL-1β was not significant in the T2DM group. Our findings surgessed the inflammasome may be associated with and promote damage to the EG during the disease course of DN that manifests as increased MA.
Collapse
Affiliation(s)
- Liqiong Jiang
- Department of Nephrology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Jianying Zhou
- Department of Endocrinology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Li Zhang
- Clinical Lab, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yufeng Du
- Department of Nephrology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mingming Jiang
- Department of Nephrology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Liqian Xie
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenni Ma
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fengling Chen
- Department of Hemodialysis Center, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
20
|
Ballermann BJ, Nyström J, Haraldsson B. The Glomerular Endothelium Restricts Albumin Filtration. Front Med (Lausanne) 2021; 8:766689. [PMID: 34912827 PMCID: PMC8667033 DOI: 10.3389/fmed.2021.766689] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Inflammatory activation and/or dysfunction of the glomerular endothelium triggers proteinuria in many systemic and localized vascular disorders. Among them are the thrombotic microangiopathies, many forms of glomerulonephritis, and acute inflammatory episodes like sepsis and COVID-19 illness. Another example is the chronic endothelial dysfunction that develops in cardiovascular disease and in metabolic disorders like diabetes. While the glomerular endothelium is a porous sieve that filters prodigious amounts of water and small solutes, it also bars the bulk of albumin and large plasma proteins from passing into the glomerular filtrate. This endothelial barrier function is ascribed predominantly to the endothelial glycocalyx with its endothelial surface layer, that together form a relatively thick, mucinous coat composed of glycosaminoglycans, proteoglycans, glycolipids, sialomucins and other glycoproteins, as well as secreted and circulating proteins. The glycocalyx/endothelial surface layer not only covers the glomerular endothelium; it extends into the endothelial fenestrae. Some glycocalyx components span or are attached to the apical endothelial cell plasma membrane and form the formal glycocalyx. Other components, including small proteoglycans and circulating proteins like albumin and orosomucoid, form the endothelial surface layer and are bound to the glycocalyx due to weak intermolecular interactions. Indeed, bound plasma albumin is a major constituent of the endothelial surface layer and contributes to its barrier function. A role for glomerular endothelial cells in the barrier of the glomerular capillary wall to protein filtration has been demonstrated by many elegant studies. However, it can only be fully understood in the context of other components, including the glomerular basement membrane, the podocytes and reabsorption of proteins by tubule epithelial cells. Discovery of the precise mechanisms that lead to glycocalyx/endothelial surface layer disruption within glomerular capillaries will hopefully lead to pharmacological interventions that specifically target this important structure.
Collapse
Affiliation(s)
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Börje Haraldsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Astapenko D, Ticha A, Hyspler R, Tomasova A, Navratil P, Maly O, Parizkova RC, Cizkova D, Huey SC, Lehmann C, Malbrain MLNG, Cerny V. A porcine model of endothelial glycocalyx damage by enzymatic digestion: A pilot study. Clin Hemorheol Microcirc 2021; 78:325-338. [PMID: 33843666 DOI: 10.3233/ch-211133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The endothelial glycocalyx (EG) plays a vital role in the physiology and pathophysiology of human microcirculation. Having relevant EG damage model would be important tool for testing new interventions aiming at EG protection and recovery. We describe the first in vivo EG damage model in pig. OBJECTIVE To investigate the course of animal EG damage induced by specific enzymes. MATERIAL AND METHODS Four anesthetized piglets received enzymes: 1g hyaluronidase and 25 IU heparanase I intravenously. Blood and urine samples were collected at baseline and 20/40/60/80/100/120 min for detecting markers of endothelial and EG function. Sublingual microcirculation and EG thickness were assessed by Side-stream Dark Field (SDF) imaging and Perfused Boundary Region (PBR) respectively. EG of the mesentery artery was visualized in fluorescent microscopy. RESULTS Biochemical marker of EG damage syndecan-1 showed temporary increase with return to baseline and was reflected by PBR values. Albumin levels suggested brief period of capillary leakage (decrease in the serum, increase in the urine) with a trend to normalization. Urine glycosaminoglycans peaked at 120 minutes. Microcirculatory perfusion parameter showed significant alteration. Diffusion parameters were altered with no statistical significance. CONCLUSION EG damage induced by specific enzymes was reflected by temporary changes of biochemical makers together with alteration of microcirculation and changes in fluorescent microscopy of EG layer. Our results support to further validate presented model of EG damage on a larger number of animals.
Collapse
Affiliation(s)
- David Astapenko
- Department of Anesthesiology, Resuscitation and Intensive Care Medicine, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
| | - Alena Ticha
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Radomir Hyspler
- Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Adela Tomasova
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pavel Navratil
- Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic.,Department of Urology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Maly
- Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic.,Department of Surgery, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Faculty of Military Health Sciences, University of Defense Brno, Brno, Czech Republic
| | - Renata Cerna Parizkova
- Department of Anesthesiology, Resuscitation and Intensive Care Medicine, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
| | - Dana Cizkova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
| | - Shin Chua Huey
- Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Manu L N G Malbrain
- Faculty of Engineering, Dept. of Electronics and Informatics, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,International Fluid Academy, Lovenjoel, Belgium
| | - Vladimir Cerny
- Department of Anesthesiology, Resuscitation and Intensive Care Medicine, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic.,Department of Anesthesiology, Perioperative Medicine and Intensive Care, J.E. Purkinje University, Masaryk Hospital, Usti nad Labem, Czech Republic.,Centrum for Research and Development, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
22
|
Zou Z, Li L, Schäfer N, Huang Q, Maegele M, Gu Z. Endothelial glycocalyx in traumatic brain injury associated coagulopathy: potential mechanisms and impact. J Neuroinflammation 2021; 18:134. [PMID: 34126995 PMCID: PMC8204552 DOI: 10.1186/s12974-021-02192-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability worldwide; more than 10 million people are hospitalized for TBI every year around the globe. While the primary injury remains unavoidable and not accessible to treatment, the secondary injury which includes oxidative stress, inflammation, excitotoxicity, but also complicating coagulation abnormalities, is potentially avoidable and profoundly affects the therapeutic process and prognosis of TBI patients. The endothelial glycocalyx, the first line of defense against endothelial injury, plays a vital role in maintaining the delicate balance between blood coagulation and anticoagulation. However, this component is highly vulnerable to damage and also difficult to examine. Recent advances in analytical techniques have enabled biochemical, visual, and computational investigation of this vascular component. In this review, we summarize the current knowledge on (i) structure and function of the endothelial glycocalyx, (ii) its potential role in the development of TBI associated coagulopathy, and (iii) the options available at present for detecting and protecting the endothelial glycocalyx.
Collapse
Affiliation(s)
- Zhimin Zou
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China
| | - Nadine Schäfer
- Institute for Research in Operative Medicine (IFOM), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany
| | - Qiaobing Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Marc Maegele
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Institute for Research in Operative Medicine (IFOM), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany. .,Department for Trauma and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany.
| | - Zhengtao Gu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.
| |
Collapse
|
23
|
Koeppert S, Ghallab A, Peglow S, Winkler CF, Graeber S, Büscher A, Hengstler JG, Jahnen-Dechent W. Live Imaging of Calciprotein Particle Clearance and Receptor Mediated Uptake: Role of Calciprotein Monomers. Front Cell Dev Biol 2021; 9:633925. [PMID: 33996793 PMCID: PMC8116800 DOI: 10.3389/fcell.2021.633925] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Background The liver-derived plasma protein fetuin A is a systemic inhibitor of ectopic calcification. Fetuin-A stabilizes calcium phosphate mineral initially as ion clusters to form calciprotein monomers (CPM), and then as larger multimeric consolidations containing amorphous calcium phosphate (primary CPP, CPP 1) or more crystalline phases (secondary CPP, CPP 2). CPM and CPP mediate excess mineral stabilization, transport and clearance from circulation. Methods We injected i.v. synthetic fluorescent CPM and studied their clearance by live two-photon microscopy. We analyzed organ sections by fluorescence microscopy to assess CPM distribution. We studied cellular clearance and cytotoxicity by flow cytometry and live/dead staining, respectively, in cultured macrophages, liver sinusoidal endothelial cells (LSEC), and human proximal tubule epithelial HK-2 cells. Inflammasome activation was scored in macrophages. Fetuin A monomer and CPM charge were analyzed by ion exchange chromatography. Results Live mice cleared CPP in the liver as published previously. In contrast, CPM were filtered by kidney glomeruli into the Bowman space and the proximal tubules, suggesting tubular excretion of CPM-bound calcium phosphate and reabsorption of fetuin A. Fetuin-A monomer clearance was negligible in liver and low in kidney. Anion exchange chromatography revealed that fetuin A monomer was negatively charged, whereas CPM appeared neutral, suggesting electrochemical selectivity of CPM versus fetuin A. CPM were non-toxic in any of the investigated cell types, whereas CPP 1 were cytotoxic. Unlike CPP, CPM also did not activate the inflammasome. Conclusions Fetuin-A prevents calcium phosphate precipitation by forming CPM, which transform into CPP. Unlike CPP, CPM do not trigger inflammation. CPM are readily cleared in the kidneys, suggesting CPM as a physiological transporter of excess calcium and phosphate. Upon prolonged circulation, e.g., in chronic kidney disease, CPM will coalesce and form CPP, which cannot be cleared by the kidney, but will be endocytosed by liver sinusoidal endothelial cells and macrophages. Large amounts of CPP trigger inflammation. Chronic CPM and CPP clearance deficiency thus cause calcification by CPP deposition in blood vessels and soft tissues, as well as inflammation.
Collapse
Affiliation(s)
- Sina Koeppert
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Sarah Peglow
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Steffen Graeber
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Andrea Büscher
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jan Georg Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
24
|
Proteoglycans contribute to the functional integrity of the glomerular endothelial cell surface layer and are regulated in diabetic kidney disease. Sci Rep 2021; 11:8487. [PMID: 33875683 PMCID: PMC8055884 DOI: 10.1038/s41598-021-87753-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/01/2021] [Indexed: 01/15/2023] Open
Abstract
All capillary endothelia, including those of the glomeruli, have a luminal cell surface layer (ESL) consisting of glycoproteins, glycolipids, proteoglycans (PGs) and glycosaminoglycans. Previous results have demonstrated that an intact ESL is necessary for a normal filtration barrier and damage to the ESL coupled to proteinuria is seen for example in diabetic kidney disease (DKD). We used the principles of ion exchange chromatography in vivo to elute the highly negatively charged components of the ESL with a 1 M NaCl solution in rats. Ultrastructural morphology and renal function were analyzed and 17 PGs and hyaluronan were identified in the ESL. The high salt solution reduced the glomerular ESL thickness, led to albuminuria and reduced GFR. To assess the relevance of ESL in renal disease the expression of PGs in glomeruli from DKD patients in a next generation sequencing cohort was investigated. We found that seven of the homologues of the PGs identified in the ESL from rats were differently regulated in patients with DKD compared to healthy subjects. The results show that proteoglycans and glycosaminoglycans are essential components of the ESL, maintaining the permselective properties of the glomerular barrier and thus preventing proteinuria.
Collapse
|
25
|
Zhang D, Qi B, Li D, Feng J, Huang X, Ma X, Huang L, Wang X, Liu X. Phillyrin Relieves Lipopolysaccharide-Induced AKI by Protecting Against Glycocalyx Damage and Inhibiting Inflammatory Responses. Inflammation 2021; 43:540-551. [PMID: 31832909 PMCID: PMC7095384 DOI: 10.1007/s10753-019-01136-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Damage to the integrity of heparin sulfate (HS) in the endothelial glycocalyx is an important factor of glomerular filtration barrier dysfunction, which is the basic pathological feature of acute kidney injury (AKI). AKI is a common clinical critical illness with few drugs options offering effective treatment. Phillyrin (Phil), the main pharmacological component of Forsythia suspensa, possesses a wide range of pharmacological activities. However, the effects of Phil on lipopolysaccharide (LPS)-induced AKI have yet to be reported. The aim of the present study is to analyze the effects of Phil on HS damage and inflammatory signaling pathways in LPS-induced AKI. Results revealed that Phil reduces pathological changes and improves renal function in LPS-induced AKI. Further analysis indicated that Phil effectively protects against glycocalyx HS degradation in LPS-stimulated EA.hy926 cells in vitro and LPS-induced AKI mice in vivo. The protective effect of Phil on HS damage may be associated with the isolate's ability to suppress the production of reactive oxygen species, and decrease expression levels of cathepsin L and heparanase in vitro and in vivo. In addition, ELISA and Western blot results revealed that Phil inhibits the activation of the NF-κB and MAPK signaling pathways and decreases the levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) in LPS-induced ARDS mice. In general, protection against endothelial glycocalyx HS damage and inhibition of inflammatory responses by Phil may be used as treatment targets for LPS-induced AKI.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Boyang Qi
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Dongxiao Li
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Jiali Feng
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xiao Huang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xiaohong Ma
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Lina Huang
- Department of Cell Biology, Binzhou Medical University, Yantai, China
| | - Xiaozhi Wang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China.
| | - Xiangyong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
26
|
Abstract
Complex multicellular life in mammals relies on functional cooperation of different organs for the survival of the whole organism. The kidneys play a critical part in this process through the maintenance of fluid volume and composition homeostasis, which enables other organs to fulfil their tasks. The renal endothelium exhibits phenotypic and molecular traits that distinguish it from endothelia of other organs. Moreover, the adult kidney vasculature comprises diverse populations of mostly quiescent, but not metabolically inactive, endothelial cells (ECs) that reside within the kidney glomeruli, cortex and medulla. Each of these populations supports specific functions, for example, in the filtration of blood plasma, the reabsorption and secretion of water and solutes, and the concentration of urine. Transcriptional profiling of these diverse EC populations suggests they have adapted to local microenvironmental conditions (hypoxia, shear stress, hyperosmolarity), enabling them to support kidney functions. Exposure of ECs to microenvironment-derived angiogenic factors affects their metabolism, and sustains kidney development and homeostasis, whereas EC-derived angiocrine factors preserve distinct microenvironment niches. In the context of kidney disease, renal ECs show alteration in their metabolism and phenotype in response to pathological changes in the local microenvironment, further promoting kidney dysfunction. Understanding the diversity and specialization of kidney ECs could provide new avenues for the treatment of kidney diseases and kidney regeneration.
Collapse
|
27
|
Korakas E, Ikonomidis I, Markakis K, Raptis A, Dimitriadis G, Lambadiari V. The Endothelial Glycocalyx as a Key Mediator of Albumin Handling and the Development of Diabetic Nephropathy. Curr Vasc Pharmacol 2020; 18:619-631. [PMID: 31889495 DOI: 10.2174/1570161118666191224120242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
The endothelial glycocalyx is a complex mesh of proteoglycans, glycoproteins and other soluble components, which cover the vascular endothelium. It plays an important role in many physiological processes including vascular permeability, transduction of shear stress and interaction of blood cells and other molecules with the vascular wall. Its complex structure makes its precise assessment challenging, and many different visualization techniques have been used with varying results. Diabetes, one of the main disease models where disorders of the glycocalyx are present, causes degradation of the glycocalyx through a variety of molecular pathways and especially through oxidative stress due to the action of reactive oxygen species. As the glycocalyx has been primarily studied in the glomerular endothelium, more evidence points towards a vital role in albumin handling and, consequently, in diabetic nephropathy. Therefore, the maintenance or restoration of the integrity of the glycocalyx seems a promising therapeutic target. In this review, we consider the structural and functional capacities of the endothelial glycocalyx, the available methods for its evaluation, the mechanisms through which diabetes leads to glycocalyx degradation and albuminuria, and possible treatment options targeting the glycocalyx.
Collapse
Affiliation(s)
- Emmanouil Korakas
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Markakis
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Raptis
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Dimitriadis
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Sol M, Kamps JAAM, van den Born J, van den Heuvel MC, van der Vlag J, Krenning G, Hillebrands JL. Glomerular Endothelial Cells as Instigators of Glomerular Sclerotic Diseases. Front Pharmacol 2020; 11:573557. [PMID: 33123011 PMCID: PMC7573930 DOI: 10.3389/fphar.2020.573557] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Glomerular endothelial cell (GEnC) dysfunction is important in the pathogenesis of glomerular sclerotic diseases, including Focal Segmental Glomerulosclerosis (FSGS) and overt diabetic nephropathy (DN). GEnCs form the first cellular barrier in direct contact with cells and factors circulating in the blood. Disturbances in these circulating factors can induce GEnC dysfunction. GEnC dysfunction occurs in early stages of FSGS and DN, and is characterized by a compromised endothelial glycocalyx, an inflammatory phenotype, mitochondrial damage and oxidative stress, aberrant cell signaling, and endothelial-to-mesenchymal transition (EndMT). GEnCs are in an interdependent relationship with podocytes and mesangial cells, which involves bidirectional cross-talk via intercellular signaling. Given that GEnC behavior directly influences podocyte function, it is conceivable that GEnC dysfunction may culminate in podocyte damage, proteinuria, subsequent mesangial activation, and ultimately glomerulosclerosis. Indeed, GEnC dysfunction is sufficient to cause podocyte injury, proteinuria and activation of mesangial cells. Aberrant gene expression patterns largely contribute to GEnC dysfunction and epigenetic changes seem to be involved in causing aberrant transcription. This review summarizes literature that uncovers the importance of cross-talk between GEnCs and podocytes, and GEnCs and mesangial cells in the context of the development of FSGS and DN, and the potential use of GEnCs as efficacious cellular target to pharmacologically halt development and progression of DN and FSGS.
Collapse
Affiliation(s)
- Marloes Sol
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Guido Krenning
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
29
|
Abstract
The glomerular basement membrane (GBM) is a key component of the glomerular capillary wall and is essential for kidney filtration. The major components of the GBM include laminins, type IV collagen, nidogens and heparan sulfate proteoglycans. In addition, the GBM harbours a number of other structural and regulatory components and provides a reservoir for growth factors. New technologies have improved our ability to study the composition and assembly of basement membranes. We now know that the GBM is a complex macromolecular structure that undergoes key transitions during glomerular development. Defects in GBM components are associated with a range of hereditary human diseases such as Alport syndrome, which is caused by defects in the genes COL4A3, COL4A4 and COL4A5, and Pierson syndrome, which is caused by variants in LAMB2. In addition, the GBM is affected by acquired autoimmune disorders and metabolic diseases such as diabetes mellitus. Current treatments for diseases associated with GBM involvement aim to reduce intraglomerular pressure and to treat the underlying cause where possible. As our understanding about the maintenance and turnover of the GBM improves, therapies to replace GBM components or to stimulate GBM repair could translate into new therapies for patients with GBM-associated disease.
Collapse
|
30
|
Phenotypic and functional characterization of corneal endothelial cells during in vitro expansion. Sci Rep 2020; 10:7402. [PMID: 32366916 PMCID: PMC7198491 DOI: 10.1038/s41598-020-64311-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
The advent of cell culture-based methods for the establishment and expansion of human corneal endothelial cells (CEnC) has provided a source of transplantable corneal endothelium, with a significant potential to challenge the one donor-one recipient paradigm. However, concerns over cell identity remain, and a comprehensive characterization of the cultured CEnC across serial passages has not been performed. To this end, we compared two established CEnC culture methods by assessing the transcriptomic changes that occur during in vitro expansion. In confluent monolayers, low mitogenic culture conditions preserved corneal endothelial cell state identity better than culture in high mitogenic conditions. Expansion by continuous passaging induced replicative cell senescence. Transcriptomic analysis of the senescent phenotype identified a cell senescence signature distinct for CEnC. We identified activation of both classic and new cell signaling pathways that may be targeted to prevent senescence, a significant barrier to realizing the potential clinical utility of in vitro expansion.
Collapse
|
31
|
Desideri S, Onions KL, Baker SL, Gamez M, El Hegni E Hussien H, Russell A, Satchell SC, Foster RR. Endothelial glycocalyx restoration by growth factors in diabetic nephropathy. Biorheology 2020; 56:163-179. [PMID: 31156139 DOI: 10.3233/bir-180199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The endothelial glycocalyx (eGlx) constitutes the first barrier to protein in all blood vessels. This is particularly noteworthy in the renal glomerulus, an ultrafiltration barrier. Leakage of protein, such as albumin, across glomerular capillaries results in albumin in the urine (albuminuria). This is a hall mark of kidney disease and can reflect loss of blood vessel integrity in microvascular beds elsewhere. We discuss evidence demonstrating that targeted damage to the glomerular eGlx results in increased glomerular albumin permeability. EGlx is lost in diabetes and experimental models demonstrate loss from glomerular endothelial cells. Vascular endothelial growth factor (VEGF)A is upregulated in early diabetes, which is associated with albuminuria. Treatment with paracrine growth factors such as VEGFC, VEGF165b and angiopoietin-1 can modify VEGFA signalling, rescue albumin permeability and restore glomerular eGlx in models of diabetes. Manipulation of VEGF receptor 2 signalling, or a common eGlx biosynthesis pathway by these growth factors, may protect and restore the eGlx layer. This would help to direct future therapeutics in diabetic nephropathy.
Collapse
Key Words
- Endothelial glycocalyx, diabetes, diabetic nephropathy, VEGF, VEGFC, VEGFA, VEGF165b, angiopoietin-1, vascular permeability, glomerulus, glomerular permeability
Collapse
Affiliation(s)
- Sara Desideri
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Karen L Onions
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Siân L Baker
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Monica Gamez
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Hesham El Hegni E Hussien
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Amy Russell
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Simon C Satchell
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Rebecca R Foster
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| |
Collapse
|
32
|
Abassi Z, Armaly Z, Heyman SN. Glycocalyx Degradation in Ischemia-Reperfusion Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:752-767. [PMID: 32035883 DOI: 10.1016/j.ajpath.2019.08.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/13/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
The glycocalyx is a layer coating the luminal surface of vascular endothelial cells. It is vital for endothelial function as it participates in microvascular reactivity, endothelium interaction with blood constituents, and vascular permeability. Structural and functional damage to glycocalyx occurs in various disease states. A prominent clinical situation characterized by glycocalyx derangement is ischemia-reperfusion (I/R) of the whole body as well as during selective I/R to organs such as the kidney, heart, lung, or liver. Degradation of the glycocalyx is now considered a cornerstone in I/R-related endothelial dysfunction, which further impairs local microcirculation with a feed-forward loop of organ damage, due to vasoconstriction, leukocyte adherence, and activation of the immune response. Glycocalyx damage during I/R is evidenced by rising plasma levels of its principal constituents, heparan sulfate and syndecan-1. By contrast, the concentrations of these compounds in the circulation decrease after successful protective interventions in I/R, suggesting their use as surrogate biomarkers of endothelial integrity. In light of the importance of the glycocalyx in preserving endothelial cell integrity and its involvement in pathologic conditions, several promising therapeutic strategies to restore the damaged glycocalyx and to attenuate its deleterious consequences have been suggested. This review focuses on alterations of glycocalyx during I/R injury in general (to vital organs in particular), and on maneuvers aimed at glycocalyx recovery during I/R injury.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology, The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa, Israel; Laboratory Medicine, Rambam Health Campus, Haifa, Israel.
| | - Zaher Armaly
- Department of Nephrology, Nazareth Hospital, Nazareth, Azrieli Faculty of Medicine-Bar Ilan University, Jerusalem, Israel
| | - Samuel N Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem, Israel
| |
Collapse
|
33
|
van der Vlag J, Buijsers B. Heparanase in Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:647-667. [PMID: 32274730 DOI: 10.1007/978-3-030-34521-1_26] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary filtration of blood occurs in the glomerulus in the kidney. Destruction of any of the layers of the glomerular filtration barrier might result in proteinuric disease. The glomerular endothelial cells and especially its covering layer, the glycocalyx, play a pivotal role in development of albuminuria. One of the main sulfated glycosaminoglycans in the glomerular endothelial glycocalyx is heparan sulfate. The endoglycosidase heparanase degrades heparan sulfate, thereby affecting glomerular barrier function, immune reactivity and inflammation. Increased expression of glomerular heparanase correlates with loss of glomerular heparan sulfate in many glomerular diseases. Most importantly, heparanase knockout in mice prevented the development of albuminuria after induction of experimental diabetic nephropathy and experimental glomerulonephritis. Therefore, heparanase could serve as a pharmacological target for glomerular diseases. Several factors that regulate heparanase expression and activity have been identified and compounds aiming to inhibit heparanase activity are currently explored.
Collapse
Affiliation(s)
- Johan van der Vlag
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| | - Baranca Buijsers
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Kong C, Elderman M, Cheng L, de Haan BJ, Nauta A, de Vos P. Modulation of Intestinal Epithelial Glycocalyx Development by Human Milk Oligosaccharides and Non-Digestible Carbohydrates. Mol Nutr Food Res 2019; 63:e1900303. [PMID: 31140746 PMCID: PMC6771538 DOI: 10.1002/mnfr.201900303] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 03/26/2019] [Indexed: 12/11/2022]
Abstract
SCOPE The epithelial glycocalyx development is of great importance for microbial colonization. Human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) may modulate glycocalyx development. METHODS AND RESULTS The effects of hMOs and NDCs on human gut epithelial cells (Caco2) are investigated by quantifying thickness and area coverage of adsorbed albumin, heparan sulfate (HS), and hyaluronic acid (HA) in the glycocalyx. Effects of hMOs (2'-FL and 3-FL) and NDCs [inulins with degrees of polymerization (DP) (DP3-DP10, DP10-DP60, DP30-DP60) and pectins with degrees of methylation (DM) (DM7, DM55, DM69)] are tested using immunofluorescence staining at 1 and 5 days stimulation. HMOs show a significant enhancing effect on glycocalyx development but effects are structure-dependent. 3-FL induces a stronger albumin adsorption and increases HS and HA stronger than 2'-FL. The DP3-DP10, DP30-60 inulins also increase glycocalyx development in a structure-dependent manner as DP3-DP10 selectively increases HS, while DP30-DP60 specifically increases HA. Pectins have less effects, and only increase albumin adsorption. CONCLUSION Here, it is shown that 2'-FL and 3-FL and inulins stimulate glycocalyx development in a structure-dependent fashion. This may contribute to formulation of effective hMO and NDC formulations in infant formulas to support microbial colonization and gut barrier function.
Collapse
Affiliation(s)
- Chunli Kong
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| | - Marlies Elderman
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| | - Lianghui Cheng
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| | - Bart J. de Haan
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| | - Arjen Nauta
- FrieslandCampinaStationsplein 43818 LEAmersfoortThe Netherlands
| | - Paul de Vos
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| |
Collapse
|
35
|
Serra A, Gallart-Palau X, Park JE, Lim GGY, Lim KL, Ho HH, Tam JP, Sze SK. Vascular Bed Molecular Profiling by Differential Systemic Decellularization In Vivo. Arterioscler Thromb Vasc Biol 2019; 38:2396-2409. [PMID: 30354219 DOI: 10.1161/atvbaha.118.311552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective- Vascular endothelial dysfunction is a key component of several major human diseases, but the molecular basis of this complex disorder has been difficult to determine in vivo. Previous attempts to identify key mediators of vascular endothelial dysfunction in experimental models have been limited by the lack of suitable methods for system-wide analyses of vascular bed biology. Here, we aimed to develop a novel method for investigating vascular endothelial dysfunction pathogenesis that enables system-wide analyses of molecular interactions between endothelial glycocalyx, endothelial cells, and smooth muscle cells in murine. Approach and Results- We developed a new technique using whole-body differential perfusion with increasing concentrations of detergent buffer to selectively solubilize distinct layers of vascular bed tissue in rodents. When combined with proteomics techniques, our novel approach of differential systemic decellularization in vivo enabled quantitative profiling of vascular beds throughout the body. Initial perfusion with phosphate buffer was used to obtain the endothelial glycocalyx, followed by subsequent extraction of endothelial cell components, and finally by smooth muscle cell constituents with increasing concentrations of detergent. Differential systemic decellularization in vivo has also been successfully applied to characterize molecular events in the vascular bed pathology of lipopolysaccharide-challenged mice. Conclusions- Together, these data indicate that differential systemic decellularization in vivo permits system-wide molecular characterization of vascular bed proteomes in rodent models and can be used to advance our current understanding of vascular endothelial dysfunction pathogenesis and progression in a wide range of disease settings.
Collapse
Affiliation(s)
- Aida Serra
- From the School of Biological Sciences, Nanyang Technological University, Singapore (A.S., X.G.-P., J.E.P., J.P.T., S.K.S.)
| | - Xavier Gallart-Palau
- From the School of Biological Sciences, Nanyang Technological University, Singapore (A.S., X.G.-P., J.E.P., J.P.T., S.K.S.)
| | - Jung Eun Park
- From the School of Biological Sciences, Nanyang Technological University, Singapore (A.S., X.G.-P., J.E.P., J.P.T., S.K.S.)
| | - Grace Gui Yin Lim
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore (G.G.Y.L., K.L.L.)
| | - Kah Leong Lim
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore (G.G.Y.L., K.L.L.)
- Department of Physiology, National University of Singapore (K.L.L.)
| | - Hee Hwa Ho
- Department of Cardiology, Tan Tock Seng Hospital, Singapore (H.H.H.)
| | - James P Tam
- From the School of Biological Sciences, Nanyang Technological University, Singapore (A.S., X.G.-P., J.E.P., J.P.T., S.K.S.)
| | - Siu Kwan Sze
- From the School of Biological Sciences, Nanyang Technological University, Singapore (A.S., X.G.-P., J.E.P., J.P.T., S.K.S.)
| |
Collapse
|
36
|
Bakoush O, Lubbad L, Öberg CM, Hammad FT. Effect of diabetes mellitus on the recovery of changes in renal functions and glomerular permeability following reversible 24-hour unilateral ureteral obstruction. J Diabetes 2019; 11:674-683. [PMID: 30592154 DOI: 10.1111/1753-0407.12893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/06/2018] [Accepted: 12/26/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Following reversal of short periods of ureteral obstruction (UO), glomerular and tubular renal dysfunction recovers with time. Diabetes mellitus (DM) affects glomerular function; thus, the ability of diabetic kidneys to recover from UO may be impaired. This study investigated the effects of long-term DM on the recovery of glomerular and tubular function, as well as permeability of the glomerular filtration barrier (GFB), after unilateral UO (UUO) reversal. METHODS Diabetes mellitus was induced in Wistar rats by intraperitoneal streptozotocin. All diabetic and age-matched control rats underwent reversible 24-hour left UUO. The renal function of both kidneys was measured using clearance techniques 3 hours and 7 and 30 days after UUO reversal. Glomerular permeability was assessed by measuring the glomerular sieving coefficients for fluorescein isothiocyanate-conjugated Ficoll (molecular radius: 20-90 Å). RESULTS Unilateral UO induced transient changes in the size selectivity of GFB small pores. However, the size selectivity function of large pores had not returned to baseline even 30 days after UUO reversal. Diabetes mellitus caused exaggerated early alterations in glomerular hemodynamic and tubular function, as well as size selectivity dysfunction of both small and large pores. At 30 days after UUO reversal, despite glomerular hemodynamic and tubular function and the size selectivity of small pores returning to normal in both diabetic and non-diabetic rats, the residual size selectivity dysfunction of large pores was more severe in diabetic rats. CONCLUSION Unilateral UO caused long-term dysfunction in the size selectivity of large pores of the GFB. In addition, DM significantly exaggerated this dysfunction, indicating a more ominous outcome in diabetic kidneys following UUO.
Collapse
Affiliation(s)
- Omran Bakoush
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Loay Lubbad
- Department of Surgery, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Carl M Öberg
- Department of Nephrology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Fayez T Hammad
- Department of Surgery, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
37
|
Kasztan M, Pollock DM. Impact of ET-1 and sex in glomerular hyperfiltration in humanized sickle cell mice. Clin Sci (Lond) 2019; 133:1475-1486. [PMID: 31273050 DOI: 10.1042/cs20190215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Hyperfiltration, highly prevalent early in sickle cell disease (SCD), is in part driven by an increase in ultrafiltration coefficient (Kf). The increase in Kf may be due to enlarged filtration surface area and/or increased glomerular permeability (Palb). Previous studies have demonstrated that endothelin-1 (ET-1) contributes to Palb changes in models of diabetes and SCD. Thus, we performed longitudinal studies of renal function to determine the relationship between ET-1 and glomerular size and Palb that may contribute to hyperfiltration in humanized sickle cell (HbSS) and control (HbAA) mice at 8-32 weeks of age. HbSS mice were characterized by significant increases in plasma and glomerular ET-1 expression in both sexes although this increase was significantly greater in males. HbSS glomeruli of both males and females presented with a progressive and significant increase in glomerular size, volume, and Kf During the onset of hyperfiltration, plasma and glomerular ET-1 expression were associated with a greater increase in glomerular size and Kf in HbSS mice, regardless of sex. The pattern of Palb augmentation during the hyperfiltration was also associated with an increase in glomerular ET-1 expression, in both male and female HbSS mice. However, the increase in Palb was significantly greater in males and delayed in time in females. Additionally, selective endothelin A receptor (ETA) antagonist prevented hyperfiltration in HbSS, regardless of sex. These results suggest that marked sex disparity in glomerular hyperfiltration may be driven, in part, by ET-1-dependent ultra-structural changes in filtration barrier components contributing to glomerular hyperfiltration in HbSS mice.
Collapse
Affiliation(s)
- Malgorzata Kasztan
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, U.S.A.
| |
Collapse
|
38
|
Endothelin receptor-A mediates degradation of the glomerular endothelial surface layer via pathologic crosstalk between activated podocytes and glomerular endothelial cells. Kidney Int 2019; 96:957-970. [PMID: 31402170 DOI: 10.1016/j.kint.2019.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence of crosstalk between glomerular cells in pathological settings provides opportunities for novel therapeutic discovery. Here we investigated underlying mechanisms of early events leading to filtration barrier defects of podocyte and glomerular endothelial cell crosstalk in the mouse models of primary podocytopathy (podocyte specific transforming growth factor-β receptor 1 signaling activation) or Adriamycin nephropathy. We found that glomerular endothelial surface layer degradation and albuminuria preceded podocyte foot process effacement. These abnormalities were prevented by endothelin receptor-A antagonism and mitochondrial reactive oxygen species scavenging. Additional studies confirmed increased heparanase and hyaluronoglucosaminidase gene expression in glomerular endothelial cells in response to podocyte-released factors and to endothelin-1. Atomic force microscopy measurements showed a significant reduction in the endothelial surface layer by endothelin-1 and podocyte-released factors, which could be prevented by endothelin receptor-A but not endothelin receptor-B antagonism. Thus, our studies provide evidence of early crosstalk between activated podocytes and glomerular endothelial cells resulting in loss of endothelial surface layer, glomerular endothelial cell injury and albuminuria. Hence, activation of endothelin-1-endothelin receptor-A and mitochondrial reactive oxygen species contribute to the pathogenesis of primary podocytopathies in experimental focal segmental glomerulosclerosis.
Collapse
|
39
|
Zhu T, Wang H, Wang L, Zhong X, Huang W, Deng X, Guo H, Xiong J, Xu Y, Fan J. Ginsenoside Rg1 attenuates high glucose-induced endothelial barrier dysfunction in human umbilical vein endothelial cells by protecting the endothelial glycocalyx. Exp Ther Med 2019; 17:3727-3733. [PMID: 30988758 DOI: 10.3892/etm.2019.7378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Disruption of the endothelial barrier is essential for vascular complications associated with diabetes mellitus, and damage to the endothelial glycocalyx has been demonstrated to participate in this process. Ginsenoside Rg1 (Rg1), the major active component isolated from Panax notoginseng, is widely applied for the protection against vascular injury. The present study aimed to analyze the effect of high glucose on endothelial barrier function and its association with endothelial glycocalyx in human umbilical vein endothelial cells (HUVECs), and explore the potential benefits of Rg1 in protecting endothelial barrier function from high glucose-induced injury. The results indicated that high glucose induced a disorder of the endothelial glycocalyx and increased heparanase mRNA expression in HUVECs, which was reversed by Rg1 treatment. In addition, Rg1 treatment reduced transendothelial electrical resistance and transendothelial albumin passage after high-glucose stimulation. The present study suggested that high glucose caused a disruption in the endothelial glycocalyx and increased heparanase expression, which finally resulted in endothelial barrier dysfunction in HUVECs. Of note, Rg1 has a protective effect on high glucose-induced endothelial barrier dysfunction by attenuating the associated increase in heparanase expression.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Traditional Chinese and Western Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China.,Department of Nephrology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Nephrology, The Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Honglian Wang
- Department of Nephrology, The Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Wang
- Department of Nephrology, The Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xia Zhong
- Department of Nephrology, The Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Huang
- Department of Traditional Chinese and Western Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China
| | - Xian Deng
- Department of Traditional Chinese and Western Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China
| | - Hengli Guo
- Department of Traditional Chinese and Western Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China
| | - Jianfeng Xiong
- Department of Traditional Chinese and Western Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China
| | - Youhua Xu
- Department of Traditional Chinese and Western Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China
| | - Junming Fan
- Department of Traditional Chinese and Western Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China.,Department of Nephrology, The Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Traditional Chinese and Western Medicine, Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
40
|
Matsuda J, Namba T, Takabatake Y, Kimura T, Takahashi A, Yamamoto T, Minami S, Sakai S, Fujimura R, Kaimori JY, Matsui I, Hamano T, Fukushima Y, Matsui K, Soga T, Isaka Y. Antioxidant role of autophagy in maintaining the integrity of glomerular capillaries. Autophagy 2019; 14:53-65. [PMID: 29130363 DOI: 10.1080/15548627.2017.1391428] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Autophagy is a lysosomal degradation system by which cytosolic materials and damaged organelles are broken down into basic components. To explore the physiological role of autophagy in glomerular endothelial cells (GEnCs), we compared the autophagic flux among cells in the kidney under starvation. Inhibition of autophagy by chloroquine administration significantly increased the number of autophagosomes or autolysosomes in GEnCs and proximal tubular cells, but not in podocytes, suggesting that the GEnCs exhibit substantial autophagic activity. Next, we analyzed endothelial and hematopoietic cell-specific atg5-deficient mice (atg5-conditional KO [cKO] mice). Glomeruli of 4-wk-old atg5-cKO mice exhibited slightly distended capillary loops accompanied by an accumulation of reactive oxygen species (ROS). Glomeruli of 8-wk-old atg5-cKO mice showed a lobular pattern with thickening of the capillary loops and mesangial matrix expansion; however, the vasculature of other organs was preserved. The atg5-cKO mice died by 12 wk of age, presumably due to pancytopenia resulting from the defect in their hematopoietic lineages. Therefore, we subjected 4-wk atg5-cKO mice to irradiation followed by bone marrow transplantation from normal littermates. Transplanted mice recapitulated the glomerular phenotypes of the atg5-cKO mice with no obvious histological changes in other organs. Twelve-mo-old transplanted mice developed mesangiolysis and glomerulosclerosis with significant deterioration of kidney function. Administration of N-acetyl-l-cysteine, a ROS scavenger, to atg5-cKO mice rescued the glomerular phenotypes. These data suggest that endothelial autophagy protects glomeruli from oxidative stress and maintains the integrity of glomerular capillaries. Enhancing endothelial autophagy may provide a novel therapeutic approach to minimizing glomerular diseases.
Collapse
Affiliation(s)
- Jun Matsuda
- a Department of Nephrology , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| | - Tomoko Namba
- a Department of Nephrology , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| | - Yoshitsugu Takabatake
- a Department of Nephrology , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| | - Tomonori Kimura
- a Department of Nephrology , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| | - Atsushi Takahashi
- a Department of Nephrology , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| | - Takeshi Yamamoto
- a Department of Nephrology , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| | - Satoshi Minami
- a Department of Nephrology , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| | - Shinsuke Sakai
- a Department of Nephrology , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| | - Ryuta Fujimura
- a Department of Nephrology , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| | - Jun-Ya Kaimori
- b Department of Advanced Technology for Transplantation , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| | - Isao Matsui
- a Department of Nephrology , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| | - Takayuki Hamano
- c Department of Comprehensive Kidney Disease Research (CKDR) , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| | - Yoko Fukushima
- d Department of Ophthalmology , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| | - Keiko Matsui
- e Department of Hematology and Oncology , Tokai University School of Medicine , 143 Shimokasuya, Isehara , Kanagaw , Japan
| | - Tomoyoshi Soga
- f Institute for Advanced Biosciences , Keio University , Tsuruoka , Yamagata , Japan
| | - Yoshitaka Isaka
- a Department of Nephrology , Osaka University Graduate School of Medicine , 2-2 Yamada-oka, Suita , Osaka , Japan
| |
Collapse
|
41
|
Zhang Y, Ma KL, Gong YX, Wang GH, Hu ZB, Liu L, Lu J, Chen PP, Lu CC, Ruan XZ, Liu BC. Platelet Microparticles Mediate Glomerular Endothelial Injury in Early Diabetic Nephropathy. J Am Soc Nephrol 2018; 29:2671-2695. [PMID: 30341150 DOI: 10.1681/asn.2018040368] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Glomerular endothelium dysfunction, which plays a crucial role in the pathogenesis of early diabetic nephropathy, might be caused by circulating metabolic abnormalities. Platelet microparticles, extracellular vesicles released from activated platelets, have recently emerged as a novel regulator of vascular dysfunction. METHODS We studied the effects of platelet microparticles on glomerular endothelial injury in early diabetic nephropathy in rats with streptozotocin-induced diabetes and primary rat glomerular endothelial cells. Isolated platelet microparticles were measured by flow cytometry. RESULTS Plasma platelet microparticles were significantly increased in diabetic rats, an effect inhibited in aspirin-treated animals. In cultured glomerular endothelial cells, platelet microparticles induced production of reactive oxygen species, decreased nitric oxide levels, inhibited activities of endothelial nitric oxide synthase and SOD, increased permeability of the glomerular endothelium barrier, and reduced thickness of the endothelial surface layer. Conversely, inhibition of platelet microparticles in vivo by aspirin improved glomerular endothelial injury. Further analysis showed that platelet microparticles activated the mammalian target of rapamycin complex 1 (mTORC1) pathway in glomerular endothelial cells; inhibition of the mTORC1 pathway by rapamycin or raptor siRNA significantly protected against microparticle-induced glomerular endothelial injury in vivo and in vitro. Moreover, platelet microparticle-derived chemokine ligand 7 (CXCL7) contributed to glomerular endothelial injury, and antagonizing CXCL7 using CXCL7-neutralizing antibody or blocking CXCL7 receptors with a competitive inhibitor of CXCR1 and CXCR2 dramatically attenuated such injury. CONCLUSIONS These findings demonstrate a pathogenic role of platelet microparticles in glomerular endothelium dysfunction, and suggest a potential therapeutic target, CXCL7, for treatment of early diabetic nephropathy.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; and
| | - Kun Ling Ma
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; and
| | - Yu Xiang Gong
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; and
| | - Gui Hua Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; and
| | - Ze Bo Hu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; and
| | - Liang Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; and
| | - Jian Lu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; and
| | - Pei Pei Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; and
| | - Chen Chen Lu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; and
| | - Xiong Zhong Ruan
- Centre for Nephrology, University College London Medical School, London, UK
| | - Bi Cheng Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; and
| |
Collapse
|
42
|
Curry FRE. The Molecular Structure of the Endothelial Glycocalyx Layer (EGL) and Surface Layers (ESL) Modulation of Transvascular Exchange. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:29-49. [DOI: 10.1007/978-3-319-96445-4_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Lipocalins Are Required for Apical Extracellular Matrix Organization and Remodeling in Caenorhabditis elegans. Genetics 2017; 207:625-642. [PMID: 28842397 DOI: 10.1534/genetics.117.300207] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
A lipid and glycoprotein-rich apical extracellular matrix (aECM) or glycocalyx lines exposed membranes in the body, and is particularly important to protect narrow tube integrity. Lipocalins ("fat cups") are small, secreted, cup-shaped proteins that bind and transport lipophilic cargo and are often found in luminal or aECM compartments such as mammalian plasma, urine, or tear film. Although some lipocalins can bind known aECM lipids and/or matrix metalloproteinases, it is not known if and how lipocalins affect aECM structure due to challenges in visualizing the aECM in most systems. Here we show that two Caenorhabditiselegans lipocalins, LPR-1 and LPR-3, have distinct functions in the precuticular glycocalyx of developing external epithelia. LPR-1 moves freely through luminal compartments, while LPR-3 stably localizes to a central layer of the membrane-anchored glycocalyx, adjacent to the transient zona pellucida domain protein LET-653 Like LET-653 and other C. elegans glycocalyx components, these lipocalins are required to maintain the patency of the narrow excretory duct tube, and also affect multiple aspects of later cuticle organization. lpr-1 mutants cannot maintain a continuous excretory duct apical domain and have misshapen cuticle ridges (alae) and abnormal patterns of cuticular surface lipid staining. lpr-3 mutants cannot maintain a passable excretory duct lumen, properly degrade the eggshell, or shed old cuticle during molting, and they lack cuticle barrier function. Based on these phenotypes, we infer that both LPR-1 and LPR-3 are required to build a properly organized aECM, while LPR-3 additionally is needed for aECM clearance and remodeling. The C. elegans glycocalyx provides a powerful system, amenable to both genetic analysis and live imaging, for investigating how lipocalins and lipids affect aECM structure.
Collapse
|
44
|
Yin Q, Xia Y, Wang G. Sinomenine alleviates high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the activation of RhoA/ROCK signaling pathway. Biochem Biophys Res Commun 2016; 477:881-886. [DOI: 10.1016/j.bbrc.2016.06.152] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/29/2016] [Indexed: 12/01/2022]
|
45
|
Garsen M, Lenoir O, Rops ALWMM, Dijkman HB, Willemsen B, van Kuppevelt TH, Rabelink TJ, Berden JHM, Tharaux PL, van der Vlag J. Endothelin-1 Induces Proteinuria by Heparanase-Mediated Disruption of the Glomerular Glycocalyx. J Am Soc Nephrol 2016; 27:3545-3551. [PMID: 27026367 DOI: 10.1681/asn.2015091070] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/22/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of CKD in the Western world. Endothelin receptor antagonists have emerged as a novel treatment for DN, but the mechanisms underlying the protective effect remain unknown. We previously showed that both heparanase and endothelin-1 are essential for the development of DN. Here, we further investigated the role of these proteins in DN, and demonstrated that endothelin-1 activates podocytes to release heparanase. Furthermore, conditioned podocyte culture medium increased glomerular transendothelial albumin passage in a heparanase-dependent manner. In mice, podocyte-specific knockout of the endothelin receptor prevented the diabetes-induced increase in glomerular heparanase expression, consequent reduction in heparan sulfate expression and endothelial glycocalyx thickness, and development of proteinuria observed in wild-type counterparts. Our data suggest that in diabetes, endothelin-1 signaling, as occurs in endothelial activation, induces heparanase expression in the podocyte, damage to the glycocalyx, proteinuria, and renal failure. Thus, prevention of these effects may constitute the mechanism of action of endothelin receptor blockers in DN.
Collapse
Affiliation(s)
| | - Olivia Lenoir
- Paris Cardiovascular Research Centre, Institut de la Santé et de la Recherche Médicale, Paris, France; and
| | | | | | | | | | - Ton J Rabelink
- Department of Nephrology, Einthoven Laboratory for Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Centre, Institut de la Santé et de la Recherche Médicale, Paris, France; and
| | | |
Collapse
|
46
|
Distinct protein signature of hypertension-induced damage in the renal proteome of the two-kidney, one-clip rat model. J Hypertens 2016; 33:126-35. [PMID: 25304470 DOI: 10.1097/hjh.0000000000000370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypertensive nephrosclerosis is one of the most frequent causes of chronic kidney failure. Proteome analysis potentially improves the pathophysiological understanding and diagnostic precision of this disorder. In the present exploratory study, we investigated experimental nephrosclerosis in the two-kidney, one-clip (2K1C) hypertensive rat model. METHODS The renal cortex proteome from juxtamedullary cortex and outer cortex of 2K1C male Wistar-Hannover rats (n = 4) was compared with the sham-operated controls (n = 6), using mass spectrometry-based quantitative proteomics. We combined a high abundant plasma protein depletion strategy with an extended liquid chromatographic gradient to improve peptide and protein identification. Immunohistology was used for independent confirmation of abundance. RESULTS We identified 1724 proteins, of which 1434 were quantified with at least two unique peptides. Comparative proteomics revealed 608 proteins, including the platelet-derived growth factor receptor-β signalling pathway, with different abundances between the non-clipped kidney of hypertensive 2K1C rats and the corresponding kidney of the normotensive controls (P < 0.05, absolute fold change ≥1.5). Among the most significantly altered proteins in the whole cortex were periostin, transgelin, and creatine kinase B-type. Relative abundance of periostin alone allowed clear classification of 2K1C and controls. Enrichment of periostin in 2K1C rats was verified by immunohistology, showing positivity especially around the fibrotic vessels. CONCLUSION The proteome is altered in hypertension-induced kidney damage. We propose periostin, especially in combination with transgelin and creatine kinase B-type, as possible proteomic classifier to distinguish hypertensive nephrosclerosis from the normal tissue. This classifier needs to be further validated with respect to early diagnosis of fibrosis, prognosis, and its potential as a novel molecular target for pharmacological interventions.
Collapse
|
47
|
Wu D, Yang X, Zheng T, Xing S, Wang J, Chi J, Bian F, Li W, Xu G, Bai X, Wu G, Jin S. A novel mechanism of action for salidroside to alleviate diabetic albuminuria: effects on albumin transcytosis across glomerular endothelial cells. Am J Physiol Endocrinol Metab 2016; 310:E225-37. [PMID: 26646098 DOI: 10.1152/ajpendo.00391.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/01/2015] [Indexed: 11/22/2022]
Abstract
Salidroside (SAL) is a phenylethanoid glycoside isolated from the medicinal plant Rhodiola rosea. R. rosea has been reported to have beneficial effects on diabetic nephropathy (DN) and high-glucose (HG)-induced mesangial cell proliferation. Given the importance of caveolin-1 (Cav-1) in transcytosis of albumin across the endothelial barrier, the present study was designed to elucidate whether SAL could inhibit Cav-1 phosphorylation and reduce the albumin transcytosis across glomerular endothelial cells (GECs) to alleviate diabetic albuminuria as well as to explore its upstream signaling pathway. To assess the therapeutic potential of SAL and the mechanisms involved in DN albuminuria, we orally administered SAL to db/db mice, and the effect of SAL on the albuminuria was measured. The albumin transcytosis across GECs was explored in a newly established in vitro cellular model. The ratio of albumin to creatinine was significantly reduced upon SAL treatment in db/db mice. SAL decreased the albumin transcytosis across GECs in both normoglycemic and hyperglycemic conditions. SAL reversed the HG-induced downregulation of AMP-activated protein kinase and upregulation of Src kinase and blocked the upregulation Cav-1 phosphorylation. Meanwhile, SAL decreased mitochondrial superoxide anion production and moderately depolarized mitochondrial membrane potential. We conclude that SAL exerts its proteinuria-alleviating effects by downregulation of Cav-1 phosphorylation and inhibition of albumin transcytosis across GECs. These studies provide the first evidence of interference with albumin transcytosis across GECs as a novel approach to the treatment of diabetic albuminuria.
Collapse
Affiliation(s)
- Dan Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Tao Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Shasha Xing
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Jianghong Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Jiangyang Chi
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Fang Bian
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Wenjing Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Gao Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Xiangli Bai
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Guangjie Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Si Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
48
|
Nagasu H, Satoh M, Kiyokage E, Kidokoro K, Toida K, Channon KM, Kanwar YS, Sasaki T, Kashihara N. Activation of endothelial NAD(P)H oxidase accelerates early glomerular injury in diabetic mice. J Transl Med 2016; 96:25-36. [PMID: 26552047 PMCID: PMC4874489 DOI: 10.1038/labinvest.2015.128] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/12/2015] [Accepted: 09/18/2015] [Indexed: 11/09/2022] Open
Abstract
Increased generation of reactive oxygen species (ROS) is a common denominative pathogenic mechanism underlying vascular and renal complications in diabetes mellitus. Endothelial NAD(P)H oxidase is a major source of vascular ROS, and it has an important role in endothelial dysfunction. We hypothesized that activation of endothelial NAD(P)H oxidase initiates and worsens the progression of diabetic nephropathy, particularly in the development of albuminuria. We used transgenic mice with endothelial-targeted overexpression of the catalytic subunit of NAD(P)H oxidase, Nox2 (NOX2TG). NOX2TG mice were crossed with Akita insulin-dependent diabetic (Akita) mice that develop progressive hyperglycemia. We compared the progression of diabetic nephropathy in Akita versus NOX2TG-Akita mice. NOX2TG-Akita mice and Akita mice developed significant albuminuria above the baseline at 6 and 10 weeks of age, respectively. Compared with Akita mice, NOX2TG-Akita mice exhibited higher levels of NAD(P)H oxidase activity in glomeruli, developed glomerular endothelial perturbations, and attenuated expression of glomerular glycocalyx. Moreover, in contrast to Akita mice, the NOX2TG-Akita mice had numerous endothelial microparticles (blebs), as detected by scanning electron microscopy, and increased glomerular permeability. Furthermore, NOX2TG-Akita mice exhibited distinct phenotypic changes in glomerular mesangial cells expressing α-smooth muscle actin, and in podocytes expressing increased levels of desmin, whereas the glomeruli generated increased levels of ROS. In conclusion, activation of endothelial NAD(P)H oxidase in the presence of hyperglycemia initiated and exacerbated diabetic nephropathy characterized by the development of albuminuria. Moreover, ROS generated in the endothelium compounded glomerular dysfunctions by altering the phenotypes of mesangial cells and compromising the integrity of the podocytes.
Collapse
Affiliation(s)
- Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Minoru Satoh
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Emi Kiyokage
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Keith M Channon
- Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Yashpal S Kanwar
- Department of Pathology and Medicine, Northwestern University, Chicago, IL, USA
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
49
|
Bivol LM, Iversen BM, Hultström M, Wallace PW, Reed RK, Wiig H, Tenstad O. Unilateral renal ischaemia in rats induces a rapid secretion of inflammatory markers to renal lymph and increased capillary permeability. J Physiol 2015; 594:1709-26. [PMID: 26584508 DOI: 10.1113/jp271578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022] Open
Abstract
A better understanding of the inflammatory process associated with renal ischaemia-reperfusion (IR) injury may be clinically important. In this study we examined the role of the kidney in production of inflammatory mediators by analysing renal lymph after 30 min unilateral occlusion of renal artery followed by 120 min reperfusion, as well as the effect of IR on size selectivity for proteins in both glomerular and peritubular capillaries. All measured mediators increased dramatically in renal hilar lymph, plasma and renal cortical tissue samples and returned to control levels after 120 min reperfusion. The responses were differentiated; interleukin-1β, monocyte chemoattractant protein-1 and leptin were markedly increased in plasma before reperfusion, reflecting an extrarenal response possibly induced by afferent renal nerve activity from the ischaemic kidney. Tumour necrosis factor-α was the only mediator showing elevated lymph-to-plasma ratio following 30 min reperfusion, indicating that most cytokines were released directly into the bloodstream. The IR-induced rise in cytokine levels was paralleled by a significant increase in high molecular weight plasma proteins in both lymph and urine. The latter was shown as a 14- to 166-fold increase in glomerular sieving coefficient of plasma proteins assessed by a novel proteomic approach, and indicated a temporarily reduced size selectivity of both glomerular and peritubular capillaries. Collectively, our data suggest that cytokines from the ischaemic kidney explain most of the rise in plasma concentration, and that the locally produced substances enter the systemic circulation through transport directly to plasma and not via the interstitium to lymph.
Collapse
Affiliation(s)
| | - Bjarne Magnus Iversen
- Department of Clinical Science, University of Bergen, Norway.,Haukeland University Hospital, Norway
| | - Michael Hultström
- Department of Clinical Science, University of Bergen, Norway.,Haukeland University Hospital, Norway
| | | | - Rolf Kåre Reed
- Department of Biomedicine, University of Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), University of Bergen, Norway
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
50
|
Reine TM, Vuong TT, Rutkovskiy A, Meen AJ, Vaage J, Jenssen TG, Kolset SO. Serglycin in Quiescent and Proliferating Primary Endothelial Cells. PLoS One 2015; 10:e0145584. [PMID: 26694746 PMCID: PMC4687888 DOI: 10.1371/journal.pone.0145584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023] Open
Abstract
Proteoglycans are fundamental components of the endothelial barrier, but the functions of the proteoglycan serglycin in endothelium are less described. Our aim was to describe the roles of serglycin in processes relevant for endothelial dysfunction. Primary human umbilical vein endothelial cells (HUVEC) were cultured in vitro and the expression of proteoglycans was investigated. Dense cell cultures representing the quiescent endothelium coating the vasculature was compared to sparse activated cell cultures, relevant for diabetes, cancer and cardiovascular disease. Secretion of 35S- proteoglycans increased in sparse cultures, and we showed that serglycin is a major component of the cell-density sensitive proteoglycan population. In contrast to the other proteoglycans, serglycin expression and secretion was higher in proliferating compared to quiescent HUVEC. RNAi silencing of serglycin inhibited proliferation and wound healing, and serglycin expression and secretion was augmented by hypoxia, mechanical strain and IL-1β induced inflammation. Notably, the secretion of the angiogenic chemokine CCL2 resulting from IL-1β activation, was increased in serglycin knockdown cells, while angiopoietin was not affected. Both serglycin and CCL2 were secreted predominantly to the apical side of polarized HUVEC, and serglycin and CCL2 co-localized both in perinuclear areas and in vesicles. These results suggest functions for serglycin in endothelial cells trough interactions with partner molecules, in biological processes with relevance for diabetic complications, cardiovascular disease and cancer development.
Collapse
Affiliation(s)
- Trine M Reine
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway.,Section of Renal Diseases, Department of Organ Transplantation, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Tram T Vuong
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway
| | - Arkady Rutkovskiy
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Emergency and Intensive Care, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Astri J Meen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway
| | - Jarle Vaage
- Department of Emergency and Intensive Care, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trond G Jenssen
- Section of Renal Diseases, Department of Organ Transplantation, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway
| |
Collapse
|