1
|
Yeter HH, Levent M, Sahiner L, Yildirim T, Yilmaz R. Association of vascular endothelial growth factor-C, plasma angiotensinogen and left ventricular hypertrophy in patients with hemodialysis. Ther Apher Dial 2024; 28:904-911. [PMID: 38894556 DOI: 10.1111/1744-9987.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION This study aims to examine the relationship between fluid overload, Vascular Endothelial Growth Factor C (VEGF-C), plasma Angiotensinogen (pAGT), and echocardiography findings in hemodialysis patients. METHODS This was a single-center, cross-sectional study. Patients were divided into two groups according to mid-week inter-dialytic weight gain (mIDWG): (1) mIDWG ≤3% and (2) mIDW >3%. RESULTS A total of 55 patients were enrolled in this study. While the mean pAGT and left ventricular mass index were significantly higher in patients with mIDWG >3% compared to patients with mIDWG ≤3%, VEGF-C was similar between groups. pAGT ≥76.8 mcg/L, VEGF-C ≤175.5 pg/ML, and pAGT /VEGF-C ≥0.45 were significant cut-offs for the prediction of left ventricular hypertrophy(LVH). Univariate logistic regression analysis revealed that these cut-off values were significantly associated with LVH. CONCLUSION Renin-angiotensin-aldosterone system activation may persist in hemodialysis patients with excessive IDWG. Additionally, pAGT and VEGF-C could be risk factors for the development of LVH.
Collapse
Affiliation(s)
- Haci Hasan Yeter
- Department of Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mustafa Levent
- Department of Geriatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Levent Sahiner
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tolga Yildirim
- Department of Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rahmi Yilmaz
- Department of Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Zhou W, Xu C, Niu J, Xiong Y, He Z, Xu H, Zhang M, Wang H, Xu Q, Wang X, Wang Z. Inhibitory effects of Eplerenone on angiogenesis via modulating SGK1/TGF-β pathway in contralateral kidney of CKD pregnancy rats. Cell Signal 2024; 122:111346. [PMID: 39147296 DOI: 10.1016/j.cellsig.2024.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Eplerenone is a selective aldosterone receptor blocker that is effective in preventing the progression of chroinic kidney disease (CKD). However, its mechanism and role in CKD pregnancy still remain uncertain. The aim of this study was to evaluate whether eplerenone could attenuated the fibrosis of unilateral ureteral obstruction (UUO) pregnant rats' contralateral kidney, improved pregnancy outcome and explore its therapeutic mechanisms. METHODS A pregnancy rat model of UUO established, female Wistar rats were randomly assigned into sham-operated group (Sham group),sham-operated combined pregnancy group (SP group), unilateral ureteral obstruction combined pregnancy group (UUO + Pregnancy group), unilateral ureteral obstruction combined pregnancy, administered eplerenone (UUO + Pregnancy+Eplerenone group). On the 18th day of pregnancy, the rats were placed in a metabolic cage, 24 h urine was collected and stored at -80 °C. Next day, all animals were euthanized, and serum was collected by centrifugation and stored at -20 °C. Then the right kidney was extracted, a part of the kidney was placed in 4% paraformaldehyde for morphology, immunohistochemical staining, and immunofluorescence staining, and the other part was placed in a - 80 °C refrigerator for RNA and protein extraction. In vitro, HUVECs was treated with aldosterone, progesterone and estradiol, VEGFA and its receptor blocker bevacizumab. The ability of proliferation, migration and tubularization of HUVECs was detected by CCK-8, scratch wound assay and endothelial tube formation assay. And the co-expression of CD34 and α-SMA of HUVECs was detected by Flow cytometry. RESULTS Immunofluorescence results showed that the co-expression of CD34 and α-SMA increased in the UUO + Pregnancy group was significantly increased. The expression of SGK-1, TGFβ-1, Smad2, Smad3, VEGF-A, VEGFR2, CD34, α-SMA and Collagen I was significantly higher in the kidneys of the UUO + Pregnancy group compared to the Sham group and SP group. Eplerenone inhibited the expression of those results. In vitro, the ability of proliferation, migration and tubularization was increased after treated with aldosterone, aldosterone with progesterone and estradiol or VEGFA. Similarly, the expression of α-SMA on the surface of HUVECs treated with aldosterone, aldosterone with progesterone and estradiol were increased, while eplerenone supressed its expression. CONCLUSION Eplerenone inhibits renal angiogenesis by blocking the SGK-1/TGFβ signal transduction pathway, thereby inhibiting the phenotypic transformation of endothelial cells, slowing down renal fibrosis, and reducing kidney damage caused by pregnancy.
Collapse
Affiliation(s)
- Wenping Zhou
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chang Xu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jieqi Niu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunzhao Xiong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhen He
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hepeng Xu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Mengjuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hongshuang Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qingyou Xu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China; Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
3
|
Shabani P, Ohanyan V, Alghadeer A, Gavazzi D, Dong F, Yin L, Kolz C, Shockling L, Enrick M, Zhang P, Shi X, Chilian W. Bone marrow cells contribute to seven different endothelial cell populations in the heart. Basic Res Cardiol 2024; 119:699-715. [PMID: 38963562 PMCID: PMC11319501 DOI: 10.1007/s00395-024-01065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP+ BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.
Collapse
Affiliation(s)
- Parisa Shabani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ammar Alghadeer
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Daniel Gavazzi
- Hiram College Physics and Computer Science Department, Hiram, OH, USA
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Christopher Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Lindsay Shockling
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Molly Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - William Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
4
|
Hao J, Qiang P, Fan L, Xiong Y, Chang Y, Yang F, Wang X, Shimosawa T, Mu S, Xu Q. Eplerenone reduces lymphangiogenesis in the contralateral kidneys of UUO rats. Sci Rep 2024; 14:9976. [PMID: 38693148 PMCID: PMC11063175 DOI: 10.1038/s41598-024-60636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Inflammation and fibrosis often occur in the kidney after acute injury, resulting in chronic kidney disease and consequent renal failure. Recent studies have indicated that lymphangiogenesis can drive renal inflammation and fibrosis in injured kidneys. However, whether and how this pathogenesis affects the contralateral kidney remain largely unknown. In our study, we uncovered a mechanism by which the contralateral kidney responded to injury. We found that the activation of mineralocorticoid receptors and the increase in vascular endothelial growth factor C in the contralateral kidney after unilateral ureteral obstruction could promote lymphangiogenesis. Furthermore, mineralocorticoid receptor activation in lymphatic endothelial cells resulted in the secretion of myofibroblast markers, thereby contributing to renal fibrosis. We observed that this process could be attenuated by administering the mineralocorticoid receptor blocker eplerenone, which, prevented the development of fibrotic injury in the contralateral kidneys of rats with unilateral ureteral obstruction. These findings offer valuable insights into the intricate mechanisms underlying kidney injury and may have implications for the development of therapeutic strategies to mitigate renal fibrosis in the context of kidney disease.
Collapse
Affiliation(s)
- Juan Hao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Panpan Qiang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lili Fan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunzhao Xiong
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yi Chang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Fan Yang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiangting Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita, Chiba, Japan
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China.
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China.
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
5
|
Gujju R, Dewanjee S, Singh K, Andugulapati SB, Tirunavalli SK, Jaina VK, Kandimalla R, Misra S, Puvvada N. Carbon Dots' Potential in Wound Healing: Inducing M2 Macrophage Polarization and Demonstrating Antibacterial Properties for Accelerated Recovery. ACS APPLIED BIO MATERIALS 2023; 6:4814-4827. [PMID: 37886889 DOI: 10.1021/acsabm.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Bacterial infections and persistent inflammation can impede the intrinsic healing process of wounds. To combat this issue, researchers have delved into the potential use of carbon dots (CDs) in the regulation of inflammation and counteract infections. These CDs were synthesized using a microwave-assisted hydrothermal process and have demonstrated outstanding antibacterial and antibiofilm properties against Gram-positive and Gram-negative bacteria. Additionally, CDs displayed biocompatibility at therapeutic concentrations and the ability to specifically target mitochondria. CD treatment effectively nullified lipopolysaccharide-triggered reactive oxygen species production by macrophages, while simultaneously promoting macrophage polarization toward an anti-inflammatory phenotype (M2), leading to a reduction in inflammation and an acceleration in wound healing. In vitro scratch assays also revealed that CDs facilitated the tissue-repairing process by stimulating epithelial cell migration during reepithelialization. In vivo studies using CDs topically applied to lipopolysaccharide (LPS)-stimulated wounds in C57/BL6 mice demonstrated significant improvements in wound healing due to enhanced fibroblast proliferation, angiogenesis, and collagen deposition. Crucially, histological investigations showed no indications of systemic toxicity in vital organs. Collectively, the application of CDs has shown immense potential in speeding up the wound-healing process by regulating inflammation, preventing bacterial infections, and promoting tissue repair. These results suggest that further clinical translation of CDs should be considered.
Collapse
Affiliation(s)
- Rajesh Gujju
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kamini Singh
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Sai Balaji Andugulapati
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satya Krishna Tirunavalli
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinod Kumar Jaina
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India
| | - Sunil Misra
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagaprasad Puvvada
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Chemistry, School of Advanced Science, VIT-AP University, Amaravati, Andhra Pradesh 522237, India
| |
Collapse
|
6
|
Wang D, Zhao Y, Zhou Y, Yang S, Xiao X, Feng L. Angiogenesis-An Emerging Role in Organ Fibrosis. Int J Mol Sci 2023; 24:14123. [PMID: 37762426 PMCID: PMC10532049 DOI: 10.3390/ijms241814123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the study of lymphangiogenesis and fibrotic diseases has made considerable achievements, and accumulating evidence indicates that lymphangiogenesis plays a key role in the process of fibrosis in various organs. Although the effects of lymphangiogenesis on fibrosis disease have not been conclusively determined due to different disease models and pathological stages of organ fibrosis, its importance in the development of fibrosis is unquestionable. Therefore, we expounded on the characteristics of lymphangiogenesis in fibrotic diseases from the effects of lymphangiogenesis on fibrosis, the source of lymphatic endothelial cells (LECs), the mechanism of fibrosis-related lymphangiogenesis, and the therapeutic effect of intervening lymphangiogenesis on fibrosis. We found that expansion of LECs or lymphatic networks occurs through original endothelial cell budding or macrophage differentiation into LECs, and the vascular endothelial growth factor C (VEGFC)/vascular endothelial growth factor receptor (VEGFR3) pathway is central in fibrosis-related lymphangiogenesis. Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), as a receptor of LECs, is also involved in the regulation of lymphangiogenesis. Intervention with lymphangiogenesis improves fibrosis to some extent. In the complex organ fibrosis microenvironment, a variety of functional cells, inflammatory factors and chemokines synergistically or antagonistically form the complex network involved in fibrosis-related lymphangiogenesis and regulate the progression of fibrosis disease. Further clarifying the formation of a new fibrosis-related lymphangiogenesis network may potentially provide new strategies for the treatment of fibrosis disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Feng
- Division of Liver Surgery, Department of General Surgery and Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; (D.W.); (Y.Z.); (Y.Z.); (S.Y.); (X.X.)
| |
Collapse
|
7
|
Koncz G, Jenei V, Tóth M, Váradi E, Kardos B, Bácsi A, Mázló A. Damage-mediated macrophage polarization in sterile inflammation. Front Immunol 2023; 14:1169560. [PMID: 37465676 PMCID: PMC10351389 DOI: 10.3389/fimmu.2023.1169560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023] Open
Abstract
Most of the leading causes of death, such as cardiovascular diseases, cancer, dementia, neurodegenerative diseases, and many more, are associated with sterile inflammation, either as a cause or a consequence of these conditions. The ability to control the progression of inflammation toward tissue resolution before it becomes chronic holds significant clinical potential. During sterile inflammation, the initiation of inflammation occurs through damage-associated molecular patterns (DAMPs) in the absence of pathogen-associated molecules. Macrophages, which are primarily localized in the tissue, play a pivotal role in sensing DAMPs. Furthermore, macrophages can also detect and respond to resolution-associated molecular patterns (RAMPs) and specific pro-resolving mediators (SPMs) during sterile inflammation. Macrophages, being highly adaptable cells, are particularly influenced by changes in the microenvironment. In response to the tissue environment, monocytes, pro-inflammatory macrophages, and pro-resolution macrophages can modulate their differentiation state. Ultimately, DAMP and RAMP-primed macrophages, depending on the predominant subpopulation, regulate the balance between inflammatory and resolving processes. While sterile injury and pathogen-induced reactions may have distinct effects on macrophages, most studies have focused on macrophage responses induced by pathogens. In this review, which emphasizes available human data, we illustrate how macrophages sense these mediators by examining the expression of receptors for DAMPs, RAMPs, and SPMs. We also delve into the signaling pathways induced by DAMPs, RAMPs, and SPMs, which primarily contribute to the regulation of macrophage differentiation from a pro-inflammatory to a pro-resolution phenotype. Understanding the regulatory mechanisms behind the transition between macrophage subtypes can offer insights into manipulating the transition from inflammation to resolution in sterile inflammatory diseases.
Collapse
Affiliation(s)
- Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Váradi
- Institute of Genetics, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Balázs Kardos
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Baker ML, Cantley LG. The Lymphatic System in Kidney Disease. KIDNEY360 2023; 4:e841-e850. [PMID: 37019177 PMCID: PMC10371377 DOI: 10.34067/kid.0000000000000120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
The high-capacity vessels of the lymphatic system drain extravasated fluid and macromolecules from nearly every part of the body. However, far from merely a passive conduit for fluid removal, the lymphatic system also plays a critical and active role in immune surveillance and immune response modulation through the presentation of fluid, macromolecules, and trafficking immune cells to surveillance cells in regional draining lymph nodes before their return to the systemic circulation. The potential effect of this system in numerous disease states both within and outside of the kidney is increasingly being explored for their therapeutic potential. In the kidneys, the lymphatics play a critical role in both fluid and macromolecule removal to maintain oncotic and hydrostatic pressure gradients for normal kidney function, as well as in shaping kidney immunity, and potentially in balancing physiological pathways that promote healthy organ maintenance and responses to injury. In many states of kidney disease, including AKI, the demand on the preexisting lymphatic network increases for clearance of injury-related tissue edema and inflammatory infiltrates. Lymphangiogenesis, stimulated by macrophages, injured resident cells, and other drivers in kidney tissue, is highly prevalent in settings of AKI, CKD, and transplantation. Accumulating evidence points toward lymphangiogenesis being possibly harmful in AKI and kidney allograft rejection, which would potentially position lymphatics as another target for novel therapies to improve outcomes. However, the extent to which lymphangiogenesis is protective rather than maladaptive in the kidney in various settings remains poorly understood and thus an area of active research.
Collapse
Affiliation(s)
- Megan L Baker
- Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
9
|
Donnan MD, Deb DK, David V, Quaggin SE. VEGF-C overexpression in kidney progenitor cells is a model of renal lymphangiectasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.538868. [PMID: 37205366 PMCID: PMC10187188 DOI: 10.1101/2023.05.03.538868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Lymphangiogenesis is believed to be a protective response in the setting of multiple forms of kidney injury and mitigates the progression of interstitial fibrosis. To augment this protective response, promoting kidney lymphangiogenesis is being investigated as a potential treatment to slow the progression of kidney disease.As injury related lymphangiogenesis is driven by signaling from the receptor VEGFR-3 in response to the cognate growth factor VEGF-C released by tubular epithelial cells, this signaling pathway is a candidate for future kidney therapeutics. However, the consequences to kidney development and function to targeting this signaling pathway remains poorly defined. Methods We generated a new mouse model expressing Vegf-C under regulation of the nephron progenitor Six2Cre driver strain (Six2Vegf-C). Mice underwent a detailed phenotypic evaluation. Whole kidneys were processed for histology and micro computed tomography 3-dimensional imaging. Results Six2Vegf-C mice had reduced body weight and kidney function compared to littermate controls. Six2Vegf-C kidneys demonstrated large peripelvic fluid filled lesions with distortion of the pelvicalcyceal system which progressed in severity with age. 3D imaging showed a 3-fold increase in total cortical vascular density. Histology confirmed a substantial increase in LYVE1+/PDPN+/VEGFR3+ lymphatic capillaries extending alongside EMCN+ peritubular capillaries. There was no change in EMCN+ peritubular capillary density. Conclusions Kidney lymphangiogenesis was robustly induced in the Six2Vegf-C mice. There were no changes in peritubular blood capillary density despite these endothelial cells also expressing VEGFR-3. The model resulted in a severe cystic kidney phenotype that resembled a human condition termed renal lymphangiectasia. This study defines the vascular consequences of augmenting VEGF-C signaling during kidney development and provides new insight into a mimicker of human cystic kidney disease.
Collapse
Affiliation(s)
- Michael D Donnan
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dilip K Deb
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Valentin David
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan E Quaggin
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
10
|
Ruliffson BNK, Whittington CF. Regulating Lymphatic Vasculature in Fibrosis: Understanding the Biology to Improve the Modeling. Adv Biol (Weinh) 2023; 7:e2200158. [PMID: 36792967 DOI: 10.1002/adbi.202200158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/19/2022] [Indexed: 02/17/2023]
Abstract
Fibrosis occurs in many chronic diseases with lymphatic vascular insufficiency (e.g., kidney disease, tumors, and lymphedema). New lymphatic capillary growth can be triggered by fibrosis-related tissue stiffening and soluble factors, but questions remain for how related biomechanical, biophysical, and biochemical cues affect lymphatic vascular growth and function. The current preclinical standard for studying lymphatics is animal modeling, but in vitro and in vivo outcomes often do not align. In vitro models can also be limited in their ability to separate vascular growth and function as individual outcomes, and fibrosis is not traditionally included in model design. Tissue engineering provides an opportunity to address in vitro limitations and mimic microenvironmental features that impact lymphatic vasculature. This review discusses fibrosis-related lymphatic vascular growth and function in disease and the current state of in vitro lymphatic vascular models while highlighting relevant knowledge gaps. Additional insights into the future of in vitro lymphatic vascular models demonstrate how prioritizing fibrosis alongside lymphatics will help capture the complexity and dynamics of lymphatics in disease. Overall, this review aims to emphasize that an advanced understanding of lymphatics within a fibrotic disease-enabled through more accurate preclinical modeling-will significantly impact therapeutic development toward restoring lymphatic vessel growth and function in patients.
Collapse
Affiliation(s)
- Brian N K Ruliffson
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609, USA
| | - Catherine F Whittington
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609, USA
| |
Collapse
|
11
|
Donnan MD, Deb DK, Onay T, Scott RP, Ni E, Zhou Y, Quaggin SE. Formation of the glomerular microvasculature is regulated by VEGFR-3. Am J Physiol Renal Physiol 2023; 324:F91-F105. [PMID: 36395385 PMCID: PMC9836230 DOI: 10.1152/ajprenal.00066.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Microvascular dysfunction is a key driver of kidney disease. Pathophysiological changes in the kidney vasculature are regulated by vascular endothelial growth factor receptors (VEGFRs), supporting them as potential therapeutic targets. The tyrosine kinase receptor VEGFR-3, encoded by FLT4 and activated by the ligands VEGF-C and VEGF-D, is best known for its role in lymphangiogenesis. Therapeutically targeting VEGFR-3 to modulate lymphangiogenesis has been proposed as a strategy to treat kidney disease. However, outside the lymphatics, VEGFR-3 is also expressed in blood vascular endothelial cells in several tissues including the kidney. Here, we show that Vegfr-3 is expressed in fenestrated microvascular beds within the developing and adult mouse kidney, which include the glomerular capillary loops. We found that expression levels of VEGFR-3 are dynamic during glomerular capillary loop development, with the highest expression observed during endothelial cell migration into the S-shaped glomerular body. We developed a conditional knockout mouse model for Vegfr-3 and found that loss of Vegfr-3 resulted in a striking glomerular phenotype characterized by aneurysmal dilation of capillary loops, absence of mesangial structure, abnormal interendothelial cell junctions, and poor attachment between glomerular endothelial cells and the basement membrane. In addition, we demonstrated that expression of the VEGFR-3 ligand VEGF-C by podocytes and mesangial cells is dispensable for glomerular development. Instead, VEGFR-3 in glomerular endothelial cells attenuates VEGFR-2 phosphorylation. Together, the results of our study support a VEGF-C-independent functional role for VEGFR-3 in the kidney microvasculature outside of lymphatic vessels, which has implications for clinical therapies that target this receptor.NEW & NOTEWORTHY Targeting VEGFR-3 in kidney lymphatics has been proposed as a method to treat kidney disease. However, expression of VEGFR-3 is not lymphatic-specific. We demonstrated developmental expression of VEGFR-3 in glomerular endothelial cells, with loss of Vegfr-3 leading to malformation of glomerular capillary loops. Furthermore, we showed that VEGFR-3 attenuates VEGFR-2 activity in glomerular endothelial cells independent of paracrine VEGF-C signaling. Together, these data provide valuable information for therapeutic development targeting these pathways.
Collapse
Affiliation(s)
- Michael D Donnan
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Dilip K Deb
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Tuncer Onay
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Rizaldy P Scott
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Eric Ni
- Lake Erie College of Osteopathic Medicine, Greensburg, Pennsylvania
| | - Yalu Zhou
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Susan E Quaggin
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| |
Collapse
|
12
|
Rodas L, Barnadas E, Pereira A, Castrejon N, Saurina A, Calls J, Calzada Y, Madrid Á, Blasco M, Poch E, García-Herrera A, Quintana LF. The Density of Renal Lymphatics Correlates With Clinical Outcomes in IgA Nephropathy. Kidney Int Rep 2022; 7:823-830. [PMID: 35497787 PMCID: PMC9039908 DOI: 10.1016/j.ekir.2021.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 11/06/2022] Open
Abstract
Introduction IgA nephropathy (IgAN) is the most common primary glomerulonephritis (GN) worldwide. The disease course fluctuates, and the most important challenge is the considerable variation in the time lag between diagnosis and the development of a hard clinical end point, such as end-stage kidney disease (ESKD). The reaction of renal tissue to damage resembles the common wound-healing response. One part of this repair in IgAN is the expansion of lymphatic vessels known as lymphangiogenesis. The aim of this work was to establish the prognostic value of the density of lymphatic vessels in the renal biopsy at the time of diagnosis, for predicting the risk of ESKD in a Spanish cohort of patients with IgAN. Methods We performed a retrospective multicenter study of 76 patients with IgAN. The end point of the study was progression to ESKD. The morphometric analysis of lymphatic vessels was performed on tissue sections stained with antipodoplanin antibody. Results Density of lymphatic vessels was significantly higher in patients with IgAN with mesangial hypercellularity >50%, segmental sclerosis, higher degrees of interstitial fibrosis, and tubular atrophy. Patients with more lymphatic vessels had significantly higher values of proteinuria and lower estimated glomerular filtration rate (eGFR). A density of lymphatic vessels ≥8 per mm2 was associated with a significantly higher rate of progression to ESKD at 3 years from biopsy. After adjustment for the International IgAN prediction score, at the multivariate logistic regression, high density of lymphatic vessels (≥8 per mm2) remained significantly associated with a higher rate of early progression to ESKD. Conclusion This study contributes to the understanding of the natural history of the progression to ESKD in patients with IgAN revealing the density of lymphatics vessels may optimize the prognostic value of the International IgA predicting tool to calculate the risk of ESKD, favoring the evaluation of new targeted therapies.
Collapse
Affiliation(s)
- Lida Rodas
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Esther Barnadas
- Department of Pathology, Hospital Clínic, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Arturo Pereira
- Department of Hematology, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Natalia Castrejon
- Department of Pathology, Hospital Clínic, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Anna Saurina
- Department of Nephrology, Hospital Terrasa, Cataluña, Spain
| | - Jordi Calls
- Department of Nephrology, Hospital de Mollet, Cataluña, Spain
| | - Yolanda Calzada
- Department of Nephrology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Álvaro Madrid
- Department of Nephrology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Miquel Blasco
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Esteban Poch
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Adriana García-Herrera
- Department of Pathology, Hospital Clínic, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Luis F. Quintana
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Catalán Group for the Study of Glomerular Diseases (GLOMCAT)
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
- Department of Pathology, Hospital Clínic, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
- Department of Hematology, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
- Department of Nephrology, Hospital Terrasa, Cataluña, Spain
- Department of Nephrology, Hospital de Mollet, Cataluña, Spain
- Department of Nephrology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Chen X, Ma L, Liu X, Wang J, Li Y, Xie Q, Liang J. Clostridium butyricum alleviates dextran sulfate sodium-induced experimental colitis and promotes intestinal lymphatic vessel regeneration in mice. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:341. [PMID: 35434001 PMCID: PMC9011313 DOI: 10.21037/atm-22-1059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Background Inflammatory bowel disease (IBD) is the most common precancerous lesion of colitis-associated colon cancer (CAC). Studies have confirmed that pathological changes in intestinal lymphatic vessels (LVs) significantly promoted the development of IBD-associated carcinogenesis. An imbalance in the microecology of the intestinal flora is a key factor in the progression of IBD. As a result, therapeutic techniques that focus on the relationship between LV regeneration and flora management might be a potential treatment strategy. Methods We investigated the role of Clostridium butyricum (C butyricum) in a dextran sulfate sodium (DSS)-induced IBD mouse model. Balb/c mice were given 3% DSS in their drinking water for 8 days to produce acute colitis and simultaneously administrated with C butyricum for 12 days. Hematoxylin and eosin (H&E) staining was used to evaluate the degree of colitis tissue damage. Levels of the lymphatic endothelial cell (LEC)-specific marker LYVE-1 and intestinal expressions of pro-lymphatic vascular endothelial growth factor (VEGF)-C and VEGF-D were determined using immunohistochemical assays. Results In a DSS-induced IBD mouse model, we found that butyric acid-producing C butyricum significantly reduced disease activity index (DAI) scores in mice, reversed the shortening of the colon, weakened the degree of damage to colonic epithelial tissues, inhibited lymphocyte infiltration, and reduced pathological damage to the colon. To our knowledge, this is the first time that tissue expressions of LYVE-1, VEGF-C, and VEGF-D have been seen to increase in IBD-model mice after treatment with C butyricum. Conclusions Our findings suggest that C butyricum might alleviate IBD in DSS-induced IBD-model mice by promoting intestinal LV regeneration.
Collapse
Affiliation(s)
- Xing Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Qingdao Women and Children's Hospital, Qingdao, China
| | - Lin Ma
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xiaolin Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Yan Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
14
|
Lin J, Chen Y, Zhu H, Cheng K, Wang H, Yu X, Tang M, Chen J. Lymphatic Reconstruction in Kidney Allograft Aggravates Chronic Rejection by Promoting Alloantigen Presentation. Front Immunol 2021; 12:796260. [PMID: 34956231 PMCID: PMC8695730 DOI: 10.3389/fimmu.2021.796260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic rejection of the renal allograft remains a major cause of graft loss. Here, we demonstrated that the remodeling of lymphatic vessels (LVs) after their broken during transplantation contributes to the antigen presenting and lymph nodes activating. Our studies observed a rebuilt of interrupted lymph draining one week after mouse kidney transplantation, involving preexisting lymphatic endothelial cells (LECs) from both the donor and recipient. These expanding LVs also release C-C chemokine ligand 21 (CCL21) and recruit CCR7+ cells, mainly dendritic cells (DCs), toward lymph nodes and spleen, evoking the adaptive response. This rejection could be relieved by LYVE-1 specific LVs knockout or CCR7 migration inhibition in mouse model. Moreover, in retrospective analysis, posttransplant patients exhibiting higher area density of LVs presented with lower eGFR, severe serum creatinine and proteinuria, and greater interstitial fibrosis. These results reveal a rebuilt pathway for alloantigen trafficking and lymphocytes activation, providing strategies to alleviate chronic transplantation rejection.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huijuan Zhu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Cheng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Huiping Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xianping Yu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mengmeng Tang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Jianghua Chen,
| |
Collapse
|
15
|
Black LM, Farrell ER, Barwinska D, Osis G, Zmijewska AA, Traylor AM, Esman SK, Bolisetty S, Whipple G, Kamocka MM, Winfree S, Spangler DR, Khan S, Zarjou A, El-Achkar TM, Agarwal A. VEGFR3 tyrosine kinase inhibition aggravates cisplatin nephrotoxicity. Am J Physiol Renal Physiol 2021; 321:F675-F688. [PMID: 34658261 PMCID: PMC8714977 DOI: 10.1152/ajprenal.00186.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Expansion of renal lymphatic networks, or lymphangiogenesis (LA), is well recognized during development and is now being implicated in kidney diseases. Although LA is associated with multiple pathological conditions, very little is known about its role in acute kidney injury. The purpose of this study was to evaluate the role of LA in a model of cisplatin-induced nephrotoxicity. LA is predominately regulated by vascular endothelial growth factor (VEGF)-C and VEGF-D, ligands that exert their function through their cognate receptor VEGF receptor 3 (VEGFR3). We demonstrated that use of MAZ51, a selective VEGFR3 inhibitor, caused significantly worse structural and functional kidney damage in cisplatin nephrotoxicity. Apoptotic cell death and inflammation were also increased in MAZ51-treated animals compared with vehicle-treated animals following cisplatin administration. Notably, MAZ51 caused significant upregulation of intrarenal phospho-NF-κB, phospho-JNK, and IL-6. Cisplatin nephrotoxicity is associated with vascular congestion due to endothelial dysfunction. Using three-dimensional tissue cytometry, a novel approach to explore lymphatics in the kidney, we detected significant vascular autofluorescence attributed to erythrocytes in cisplatin alone-treated animals. Interestingly, no such congestion was detected in MAZ51-treated animals. We found increased renal vascular damage in MAZ51-treated animals, whereby MAZ51 caused a modest decrease in the endothelial markers endomucin and von Willebrand factor, with a modest increase in VEGFR2. Our findings identify a protective role for de novo LA in cisplatin nephrotoxicity and provide a rationale for the development of therapeutic approaches targeting LA. Our study also suggests off-target effects of MAZ51 on the vasculature in the setting of cisplatin nephrotoxicity.NEW & NOTEWORTHY Little is known about injury-associated LA in the kidney and its role in the pathophysiology of acute kidney injury (AKI). Observed exacerbation of cisplatin-induced AKI after LA inhibition was accompanied by increased medullary damage and cell death in the kidney. LA inhibition also upregulated compensatory expression of LA regulatory proteins, including JNK and NF-κB. These data support the premise that LA is induced during AKI and lymphatic expansion is a protective mechanism in cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Laurence M Black
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elisa R Farrell
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Gunars Osis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna A Zmijewska
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amie M Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephanie K Esman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Subhashini Bolisetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Grace Whipple
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata M Kamocka
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Seth Winfree
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Daryll R Spangler
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shehnaz Khan
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tarek M El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
- Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
16
|
Donnan MD, Kenig-Kozlovsky Y, Quaggin SE. The lymphatics in kidney health and disease. Nat Rev Nephrol 2021; 17:655-675. [PMID: 34158633 DOI: 10.1038/s41581-021-00438-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The mammalian vascular system consists of two networks: the blood vascular system and the lymphatic vascular system. Throughout the body, the lymphatic system contributes to homeostatic mechanisms by draining extravasated interstitial fluid and facilitating the trafficking and activation of immune cells. In the kidney, lymphatic vessels exist mainly in the kidney cortex. In the medulla, the ascending vasa recta represent a hybrid lymphatic-like vessel that performs lymphatic-like roles in interstitial fluid reabsorption. Although the lymphatic network is mainly derived from the venous system, evidence supports the existence of lymphatic beds that are of non-venous origin. Following their development and maturation, lymphatic vessel density remains relatively stable; however, these vessels undergo dynamic functional changes to meet tissue demands. Additionally, new lymphatic growth, or lymphangiogenesis, can be induced by pathological conditions such as tissue injury, interstitial fluid overload, hyperglycaemia and inflammation. Lymphangiogenesis is also associated with conditions such as polycystic kidney disease, hypertension, ultrafiltration failure and transplant rejection. Although lymphangiogenesis has protective functions in clearing accumulated fluid and immune cells, the kidney lymphatics may also propagate an inflammatory feedback loop, exacerbating inflammation and fibrosis. Greater understanding of lymphatic biology, including the developmental origin and function of the lymphatics and their response to pathogenic stimuli, may aid the development of new therapeutic agents that target the lymphatic system.
Collapse
Affiliation(s)
- Michael D Donnan
- Feinberg Cardiovascular & Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Susan E Quaggin
- Feinberg Cardiovascular & Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
17
|
Donnan MD. Kidney lymphatics: new insights in development and disease. Curr Opin Nephrol Hypertens 2021; 30:450-455. [PMID: 34027907 DOI: 10.1097/mnh.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review will highlight recent advances in our understanding of the kidney lymphatics regarding their development, physiologic function, and their potential role in the progression of kidney disease. RECENT FINDINGS Although sparse in comparison to the blood vasculature, lymphatic vessels within the healthy kidney perform an important role in maintaining homeostasis. Additionally, in response to kidney injury, lymphatic vessels undergo substantial expansion, termed lymphangiogenesis, which shows a direct correlation to the extent of tubulointerstitial fibrosis. Kidney lymphatics expand through both the proliferation of lymphatic endothelial cells from existing lymphatic vessels, as well as from direct contribution by other cell types of nonvenous origin. The primary driver of lymphatic growth is vascular endothelial growth factor C, both in development and in response to injury. The clinical implications of lymphangiogenesis in the setting of kidney diseases remains debated, however growing evidence suggests lymphatic vessels may perform a protective role in clearing away accumulating interstitial fluid, inflammatory cytokines, and cellular infiltrates that occur with injury. SUMMARY There is increasing evidence the kidney lymphatics perform an active role in the response to kidney injury and the development of fibrosis. Recent advances in our understanding of these vessels raise the possibility of targeting kidney lymphatics for the treatment of kidney disease.
Collapse
Affiliation(s)
- Michael D Donnan
- Feinberg Cardiovascular & Renal Research Institute.,Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
18
|
Zhang J, Cui J, Li X, Hao X, Guo L, Wang H, Liu H. Increased secretion of VEGF-C from SiO 2-induced pulmonary macrophages promotes lymphangiogenesis through the Src/eNOS pathway in silicosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112257. [PMID: 33933809 DOI: 10.1016/j.ecoenv.2021.112257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/20/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Silicosis, a type of lung inflammation and fibrosis caused by long-term inhalation of SiO2 particles, lacks effective treatment currently. Based on the results of our previous animal experiments, in lungs of SiO2-induced silicosis rats, a large number of lymphatic vessels are generated in the early stage of inflammation, which is of great significance for the removal of dust and inflammatory mediators. Here, the molecular mechanism of lymphangiogenesis is further studied. Vascular endothelial growth factor (VEGF-C) is a key pro-lymphangiogenic factor, and its elevated expression is closely related to lymphangiogenesis. In this investigation, we demonstrated that the protein level of VEGF-C was differentially expressed in bronchoalveolar lavage fluid (BALF) and alveolar macrophages (AM) in silicosis patients and healthy controls. We further stimulated human monocyte-macrophage line U937 with SiO2, collected the culture supernatants as conditioned medium (CM) for culturing lymphatic endothelial cells (LECs) in vitro, and observed the expression of VEGF-C in the supernatant and its effect on LEC tube formation. The results showed that both CM and single VEGF-C recombinant protein stimulation significantly enhanced LEC proliferation [(1.80 ± 0.18), (1.73 ± 0.16)], chemotaxis [chemotactic cell number (101.40 ± 13.83), (93.40 ± 9.61)], and tube formation [tube number (32.20 ± 7.26), (25.00 ± 6.25); branch number (77.20 ± 6.80), (84.60 ± 7.90)], whereas CM treated with VEGF-CmAb inhibited the proliferation (1.37 ± 0.17), chemotaxis [chemotactic cell number (57.40 ± 8.62)], and tube formation [tube number (7.40 ± 1.85); branch number (47.20 ± 13.44)] of LECs. In addition, CM and VEGF-C can promote the expression of vascular endothelial growth factor receptor 3 (VEGFR-3) and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) in LECs, which may further mediate lymphangiogenesis by up-regulating the Src/eNOS downstream signaling molecular pathway. This study is the first to clarify the molecular mechanism of pulmonary lymphangiogenesis in silicosis and may point in the direction of eventual treatments, surveillance, and regulation at a molecular level.
Collapse
Affiliation(s)
- Jinsong Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jie Cui
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xinying Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiaohui Hao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Lingli Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Hongli Wang
- Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Heliang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| |
Collapse
|
19
|
Creed HA, Rutkowski JM. Emerging roles for lymphatics in acute kidney injury: Beneficial or maleficent? Exp Biol Med (Maywood) 2021; 246:845-850. [PMID: 33467886 DOI: 10.1177/1535370220983235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury, a sudden decline in renal filtration, is a surprisingly common pathology resulting from ischemic events, local or systemic infection, or drug-induced toxicity in the kidney. Unchecked, acute kidney injury can progress to renal failure and even recovered acute kidney injury patients are at an increased risk for developing future chronic kidney disease. The initial extent of inflammation, the specific immune response, and how well inflammation resolves are likely determinants in acute kidney injury-to-chronic kidney disease progression. Lymphatic vessels and their roles in fluid, solute, antigen, and immune cell transport make them likely to have a role in the acute kidney injury response. Lymphatics have proven to be an attractive target in regulating inflammation and immunomodulation in other pathologies: might these strategies be employed in acute kidney injury? Acute kidney injury studies have identified elevated levels of lymphangiogenic ligands following acute kidney injury, with an expansion of the lymphatics in several models post-injury. Manipulating the lymphatics in acute kidney injury, by augmenting or inhibiting their growth or through targeting lymphatic-immune interactions, has met with a range of positive, negative, and sometimes inconclusive results. This minireview briefly summarizes the findings of lymphatic changes and lymphatic roles in the inflammatory response in the kidney following acute kidney injury to discuss whether renal lymphatics are a beneficial, maleficent, or a passive contributor to acute kidney injury recovery.
Collapse
Affiliation(s)
- Heidi A Creed
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Joseph M Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
20
|
Shelton EL, Yang HC, Zhong J, Salzman MM, Kon V. Renal lymphatic vessel dynamics. Am J Physiol Renal Physiol 2020; 319:F1027-F1036. [PMID: 33103446 DOI: 10.1152/ajprenal.00322.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Similar to other organs, renal lymphatics remove excess fluid, solutes, and macromolecules from the renal interstitium. Given the kidney's unique role in maintaining body fluid homeostasis, renal lymphatics may be critical in this process. However, little is known regarding the pathways involved in renal lymphatic vessel function, and there are no studies on the effects of drugs targeting impaired interstitial clearance, such as diuretics. Using pressure myography, we showed that renal lymphatic collecting vessels are sensitive to changes in transmural pressure and have an optimal range of effective pumping. In addition, they are responsive to vasoactive factors known to regulate tone in other lymphatic vessels including prostaglandin E2 and nitric oxide, and their spontaneous contractility requires Ca2+ and Cl-. We also demonstrated that Na+-K+-2Cl- cotransporter Nkcc1, but not Nkcc2, is expressed in extrarenal lymphatic vessels. Furosemide, a loop diuretic that inhibits Na+-K+-2Cl- cotransporters, induced a dose-dependent dilation in lymphatic vessels and decreased the magnitude and frequency of spontaneous contractions, thereby reducing the ability of these vessels to propel lymph. Ethacrynic acid, another loop diuretic, had no effect on vessel tone. These data represent a significant step forward in our understanding of the mechanisms underlying renal lymphatic vessel function and highlight potential off-target effects of furosemide that may exacerbate fluid accumulation in edema-forming conditions.
Collapse
Affiliation(s)
- Elaine L Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Hai-Chun Yang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Jianyong Zhong
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Michele M Salzman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
21
|
Summers KM, Bush SJ, Hume DA. Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. PLoS Biol 2020; 18:e3000859. [PMID: 33031383 PMCID: PMC7575120 DOI: 10.1371/journal.pbio.3000859] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/20/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The mononuclear phagocyte system (MPS) is a family of cells including progenitors, circulating blood monocytes, resident tissue macrophages, and dendritic cells (DCs) present in every tissue in the body. To test the relationships between markers and transcriptomic diversity in the MPS, we collected from National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) a total of 466 quality RNA sequencing (RNA-seq) data sets generated from mouse MPS cells isolated from bone marrow, blood, and multiple tissues. The primary data were randomly downsized to a depth of 10 million reads and requantified. The resulting data set was clustered using the network analysis tool BioLayout. A sample-to-sample matrix revealed that MPS populations could be separated based upon tissue of origin. Cells identified as classical DC subsets, cDC1s and cDC2s, and lacking Fcgr1 (encoding the protein CD64) were contained within the MPS cluster, no more distinct than other MPS cells. A gene-to-gene correlation matrix identified large generic coexpression clusters associated with MPS maturation and innate immune function. Smaller coexpression gene clusters, including the transcription factors that drive them, showed higher expression within defined isolated cells, including monocytes, macrophages, and DCs isolated from specific tissues. They include a cluster containing Lyve1 that implies a function in endothelial cell (EC) homeostasis, a cluster of transcripts enriched in intestinal macrophages, and a generic lymphoid tissue cDC cluster associated with Ccr7. However, transcripts encoding Adgre1, Itgax, Itgam, Clec9a, Cd163, Mertk, Mrc1, Retnla, and H2-a/e (encoding class II major histocompatibility complex [MHC] proteins) and many other proposed macrophage subset and DC lineage markers each had idiosyncratic expression profiles. Coexpression of immediate early genes (for example, Egr1, Fos, Dusp1) and inflammatory cytokines and chemokines (tumour necrosis factor [Tnf], Il1b, Ccl3/4) indicated that all tissue disaggregation and separation protocols activate MPS cells. Tissue-specific expression clusters indicated that all cell isolation procedures also co-purify other unrelated cell types that may interact with MPS cells in vivo. Comparative analysis of RNA-seq and single-cell RNA-seq (scRNA-seq) data from the same lung cell populations indicated that MPS heterogeneity implied by global cluster analysis may be even greater at a single-cell level. This analysis highlights the power of large data sets to identify the diversity of MPS cellular phenotypes and the limited predictive value of surface markers to define lineages, functions, or subpopulations.
Collapse
Affiliation(s)
- Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
22
|
Lin QY, Bai J, Liu JQ, Li HH. Angiotensin II Stimulates the Proliferation and Migration of Lymphatic Endothelial Cells Through Angiotensin Type 1 Receptors. Front Physiol 2020; 11:560170. [PMID: 33013481 PMCID: PMC7506107 DOI: 10.3389/fphys.2020.560170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/12/2020] [Indexed: 01/06/2023] Open
Abstract
Background/Aim The proliferation and migration of lymphatic endothelial cells (LECs) is essential for lymphatic vessel growth (also known as lymphangiogenesis), which plays a crucial role in regulating the tissue fluid balance and immune cell trafficking under physiological and pathological conditions. Several growth factors, such as VEGF-C, can stimulate lymphangiogenesis. However, the effects of angiotensin II (Ang II) on the proliferation and migration of mouse LECs and the underlying potential mechanisms remain unknown. Methods Wild-type mice were infused with Ang II (1,000 ng/kg/min) for 1–2 weeks. Murine LECs were stimulated with Ang II (500 nM) or saline for 12–48 h. Cell proliferation was determined with 5-bromo-2-deoxyuridine (BrdU) incorporation assays, while cell migration was assessed by scratch wound healing and transwell chamber assays. The gene expression profiles were obtained by time series microarray and real-time PCR analyses. Results Ang II treatment significantly induced lymphangiogenesis in the hearts of mice and the proliferation and migration of cultured LECs in a time-dependent manner. This effect was completely blocked by losartan, an angiotensin II type 1 receptor (AT1R) antagonist. The microarray results identified 1,385 differentially expressed genes (DEGs) at one or more time points in the Ang II-treated cells compared with the control saline-treated cells. These DEGs were primarily involved in biological processes and pathways, including sensory perception of smell, the G protein coupled receptor signaling pathway, cell adhesion, olfactory transduction, Jak-STAT, alcoholism, RIG-I-like receptor and ECM-receptor interaction. Furthermore, these DEGs were classified into 16 clusters, 7 of which (Nos. 13, 2, 8, 15, 7, 3, and 12, containing 586 genes) were statistically significant. Importantly, the Ang II-induced alterations the expression of lymphangiogenesis-related genes were reversed by losartan. Conclusion The results of the present indicate that Ang II can directly regulate the proliferation and migration of LECs through AT1R in vivo and in vitro, which may provide new potential treatments for Ang II-induced hypertension and cardiac remodeling.
Collapse
Affiliation(s)
- Qiu-Yue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Bai
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin-Qiu Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
23
|
Jafree DJ, Long DA. Beyond a Passive Conduit: Implications of Lymphatic Biology for Kidney Diseases. J Am Soc Nephrol 2020; 31:1178-1190. [PMID: 32295825 DOI: 10.1681/asn.2019121320] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The kidney contains a network of lymphatic vessels that clear fluid, small molecules, and cells from the renal interstitium. Through modulating immune responses and via crosstalk with surrounding renal cells, lymphatic vessels have been implicated in the progression and maintenance of kidney disease. In this Review, we provide an overview of the development, structure, and function of lymphatic vessels in the healthy adult kidney. We then highlight the contributions of lymphatic vessels to multiple forms of renal pathology, emphasizing CKD, transplant rejection, and polycystic kidney disease and discuss strategies to target renal lymphatics using genetic and pharmacologic approaches. Overall, we argue the case for lymphatics playing a fundamental role in renal physiology and pathology and treatments modulating these vessels having therapeutic potential across the spectrum of kidney disease.
Collapse
Affiliation(s)
- Daniyal J Jafree
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,MB/PhD Programme, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - David A Long
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
24
|
Targeting angiogenesis and lymphangiogenesis in kidney disease. Nat Rev Nephrol 2020; 16:289-303. [PMID: 32144398 DOI: 10.1038/s41581-020-0260-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
The kidney is permeated by a highly complex vascular system with glomerular and peritubular capillary networks that are essential for maintaining the normal functions of glomerular and tubular epithelial cells. The integrity of the renal vascular network depends on a balance of proangiogenic and antiangiogenic factors, and disruption of this balance has been identified in various kidney diseases. Decreased levels of the predominant proangiogenic factor, vascular endothelial growth factor A (VEGFA), can result in glomerular microangiopathy and contribute to the onset of preeclampsia, whereas upregulation of VEGFA has roles in diabetic kidney disease (DKD) and polycystic kidney disease (PKD). Other factors that regulate angiogenesis, such as angiopoietin 1 and vasohibin 1, have been shown to be protective in animal models of DKD and renal fibrosis. The renal lymphatic system is important for fluid homeostasis in the kidney, as well as the transport of immune cells and antigens. Experimental studies suggest that the lymphangiogenic factor VEGFC might have protective effects in PKD, DKD and renal fibrosis. Understanding the physiological and pathological roles of factors that regulate angiogenesis and lymphangiogenesis in the kidney has led to the development of novel therapeutic strategies for kidney diseases.
Collapse
|
25
|
Balasubbramanian D, Gelston CAL, Lopez AH, Iskander G, Tate W, Holderness H, Rutkowski JM, Mitchell BM. Augmenting Renal Lymphatic Density Prevents Angiotensin II-Induced Hypertension in Male and Female Mice. Am J Hypertens 2020; 33:61-69. [PMID: 31429865 DOI: 10.1093/ajh/hpz139] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Renal inflammation and immune cell infiltration are characteristic of several forms of hypertension. Our laboratory has previously demonstrated that renal-inflammation-associated lymphangiogenesis occurs in salt-sensitive and nitric-oxide-inhibition-induced hypertension. Moreover, enhancing renal lymphatic density prevented the development of these two forms of hypertension. Here, we investigated the effects of angiotensin II-induced hypertension on renal lymphatic vessel density in male and female mice. METHODS Wild-type and genetically engineered male and female mice were infused with angiotensin II for 2 or 3 weeks. Isolated splenocytes and peritoneal macrophages from mice, and commercially available mouse lymphatic endothelial cells were used for in vitro studies. RESULTS Compared to vehicle controls, angiotensin II-infused male and female mice had significantly increased renal lymphatic vessel density in association with pro-inflammatory immune cells in the kidneys of these mice. Direct treatment of lymphatic endothelial cells with angiotensin II had no effect as they lack angiotensin II receptors; however, angiotensin II treatment of splenocytes and peritoneal macrophages induced secretion of the lymphangiogenic growth factor VEGF-C in vitro. Utilizing our genetic mouse model of inducible renal lymphangiogenesis, we demonstrated that greatly augmenting renal lymphatic density prior to angiotensin II infusion prevented the development of hypertension in male and female mice and this was associated with a reduction in renal CD11c+F4/80- monocytes. CONCLUSION Renal lymphatics play a significant role in renal immune cell trafficking and blood pressure regulation, and represent a novel avenue of therapy for hypertension.
Collapse
Affiliation(s)
| | | | - Alexandra H Lopez
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Geina Iskander
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Winter Tate
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Haley Holderness
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
26
|
Wada H, Suzuki M, Matsuda M, Ajiro Y, Shinozaki T, Sakagami S, Yonezawa K, Shimizu M, Funada J, Takenaka T, Morita Y, Nakamura T, Fujimoto K, Matsubara H, Kato T, Unoki T, Takagi D, Ura S, Wada K, Iguchi M, Masunaga N, Ishii M, Yamakage H, Shimatsu A, Kotani K, Satoh-Asahara N, Abe M, Akao M, Hasegawa K. VEGF-C and Mortality in Patients With Suspected or Known Coronary Artery Disease. J Am Heart Assoc 2019; 7:e010355. [PMID: 30554564 PMCID: PMC6404168 DOI: 10.1161/jaha.118.010355] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The lymphatic system has been suggested to play an important role in cholesterol metabolism and cardiovascular disease. However, the relationships of vascular endothelial growth factor‐C (VEGF‐C), a central player in lymphangiogenesis, with mortality and cardiovascular events in patients with suspected or known coronary artery disease are unknown. Methods and Results We performed a multicenter, prospective cohort study of 2418 patients with suspected or known coronary artery disease undergoing elective coronary angiography. The primary predictor was serum levels of VEGF‐C. The primary outcome was all‐cause death. The secondary outcomes were cardiovascular death, and major adverse cardiovascular events defined as a composite of cardiovascular death, non‐fatal myocardial infarction, and non‐fatal stroke. During the 3‐year follow‐up, 254 patients died from any cause, 88 died from cardiovascular disease, and 165 developed major adverse cardiovascular events. After adjustment for established risk factors, VEGF‐C levels were significantly and inversely associated with all‐cause death (hazard ratio for 1‐SD increase, 0.69; 95% confidence interval, 0.60–0.80) and cardiovascular death (hazard ratio, 0.67; 95% confidence interval, 0.53–0.87), but not with major adverse cardiovascular events (hazard ratio, 0.85; 95% confidence interval, 0.72–1.01). Even after incorporation of N‐terminal pro‐brain natriuretic peptide, contemporary sensitive cardiac troponin‐I, and high‐sensitivity C‐reactive protein into a model with established risk factors, the addition of VEGF‐C levels further improved the prediction of all‐cause death, but not that of cardiovascular death or major adverse cardiovascular events. Consistent results were observed within 1717 patients with suspected coronary artery disease. Conclusions In patients with suspected or known coronary artery disease, a low VEGF‐C value may independently predict all‐cause mortality.
Collapse
Affiliation(s)
- Hiromichi Wada
- 1 Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Masahiro Suzuki
- 2 Department of Clinical Research National Hospital Organization Saitama National Hospital Saitama Japan
| | - Morihiro Matsuda
- 3 Division of Preventive Medicine Institute for Clinical Research National Hospital Organization Kure Medical Center Hiroshima Japan
| | - Yoichi Ajiro
- 4 Department of Cardiology National Hospital Organization Yokohama Medical Center Kanagawa Japan
| | - Tsuyoshi Shinozaki
- 5 Department of Cardiology National Hospital Organization Sendai Medical Center Sendai Japan
| | - Satoru Sakagami
- 6 Institute for Clinical Research National Hospital Organization Kanazawa Medical Center Kanazawa Japan
| | - Kazuya Yonezawa
- 7 Division of Clinical Research National Hospital Organization Hakodate Hospital Hakodate Japan
| | - Masatoshi Shimizu
- 8 Department of Cardiology National Hospital Organization Kobe Medical Center Kobe Japan
| | - Junichi Funada
- 9 Department of Cardiology National Hospital Organization Ehime Medical Center Ehime Japan
| | - Takashi Takenaka
- 10 Division of Cardiology National Hospital Organization Hokkaido Medical Center Sapporo Japan
| | - Yukiko Morita
- 11 Department of Cardiology National Hospital Organization Sagamihara National Hospital Kanagawa Japan
| | - Toshihiro Nakamura
- 12 Department of Cardiology National Hospital Organization Kyushu Medical Center Fukuoka Japan
| | - Kazuteru Fujimoto
- 13 Department of Cardiology National Hospital Organization Kumamoto Medical Center Kumamoto Japan
| | - Hiromi Matsubara
- 14 Department of Cardiology and Department of Clinical Science National Hospital Organization Okayama Medical Center Okayama Japan
| | - Toru Kato
- 15 Department of Clinical Research National Hospital Organization Tochigi Medical Center Utsunomiya Japan
| | - Takashi Unoki
- 1 Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Daisuke Takagi
- 16 Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Shuichi Ura
- 1 Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Kyohma Wada
- 1 Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Moritake Iguchi
- 16 Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Nobutoyo Masunaga
- 16 Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Mitsuru Ishii
- 16 Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Hajime Yamakage
- 17 Department of Endocrinology, Metabolism, and Hypertension National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Akira Shimatsu
- 18 Clinical Research Institute National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Kazuhiko Kotani
- 19 Division of Community and Family Medicine Jichi Medical University Shimotsuke Japan
| | - Noriko Satoh-Asahara
- 17 Department of Endocrinology, Metabolism, and Hypertension National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Mitsuru Abe
- 16 Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Masaharu Akao
- 16 Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Koji Hasegawa
- 1 Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan
| | | |
Collapse
|
27
|
Effect of FIGF overexpression on liver cells transforming to insulin-producing cells. J Biosci 2019. [DOI: 10.1007/s12038-019-9965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Zarjou A, Black LM, Bolisetty S, Traylor AM, Bowhay SA, Zhang MZ, Harris RC, Agarwal A. Dynamic signature of lymphangiogenesis during acute kidney injury and chronic kidney disease. J Transl Med 2019; 99:1376-1388. [PMID: 31019289 PMCID: PMC6716993 DOI: 10.1038/s41374-019-0259-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/07/2019] [Accepted: 03/29/2019] [Indexed: 11/09/2022] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected syndromes with significant attributable morbidity and mortality. The disturbing trend of increasing incidence and prevalence of these clinical disorders highlights the urgent need for better understanding of the underlying mechanisms that are involved in pathogenesis of these conditions. Lymphangiogenesis and its involvement in various inflammatory conditions is increasingly recognized while its role in AKI and CKD remains to be fully elucidated. Here, we studied lymphangiogenesis in three models of kidney injury. Our results demonstrate that the main ligands for lymphangiogenesis, VEGF-C and VEGF-D, are abundantly present in tubules at baseline conditions and the expression pattern of these ligands is significantly altered following injury. In addition, we show that both of these ligands increase in serum and urine post-injury and suggest that such increment may serve as novel urinary biomarkers of AKI as well as in progression of kidney disease. We also provide evidence that irrespective of the nature of initial insult, lymphangiogenic pathways are rapidly and robustly induced as evidenced by higher expression of lymphatic markers within the kidney.
Collapse
Affiliation(s)
- Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Laurence M Black
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Subhashini Bolisetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Amie M Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sarah A Bowhay
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, USA
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Nashville Veterans Affairs Hospital, Nashville, TN, USA
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA.
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Veterans Affairs, Birmingham, AL, USA.
| |
Collapse
|
29
|
Zhuo H, Zhou D, Wang Y, Mo H, Yu Y, Liu Y. Sonic hedgehog selectively promotes lymphangiogenesis after kidney injury through noncanonical pathway. Am J Physiol Renal Physiol 2019; 317:F1022-F1033. [PMID: 31411078 DOI: 10.1152/ajprenal.00077.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kidney fibrosis is associated with an increased lymphangiogenesis, characterized by the formation and expansion of new lymphatic vessels. However, the trigger and underlying mechanism responsible for the growth of lymphatic vessels in diseased kidney remain poorly defined. Here, we report that tubule-derived sonic hedgehog (Shh) ligand is a novel lymphangiogenic factor that plays a crucial role in mediating lymphatic endothelial cell proliferation and expansion. Shh was induced in renal tubular epithelium in various models of fibrotic chronic kidney disease, and this was accompanied by an expansion of lymphatic vessels in adjacent areas. In vitro, Shh selectively promoted the proliferation of human dermal lymphatic endothelial cells (HDLECs) but not human umbilical vein endothelial cells, as assessed by cell counting, MTT assay, and bromodeoxyuridine incorporation. Shh also induced the expression of vascular endothelial growth factor receptor-3, cyclin D1, and proliferating cell nuclear antigen in HDLECs. Shh did not affect the expression of Gli1, the downstream target and readout of canonical hedgehog signaling, but activated ERK-1/2 in HDLECs. Inhibition of Smoothened with small-molecule inhibitor or blockade of ERK-1/2 activation abolished the lymphatic endothelial cell proliferation induced by Shh. In vivo, inhibition of Smoothened also repressed lymphangiogenesis and attenuated renal fibrosis. This study identifies Shh as a novel mitogen that selectively promotes lymphatic, but not vascular, endothelial cell proliferation and suggests that tubule-derived Shh plays an essential role in mediating lymphangiogenesis after kidney injury.
Collapse
Affiliation(s)
- Hui Zhuo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yuanyuan Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hongyan Mo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ying Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Serum sLYVE-1 is not associated with coronary disease but with renal dysfunction: a retrospective study. Sci Rep 2019; 9:10816. [PMID: 31346234 PMCID: PMC6658538 DOI: 10.1038/s41598-019-47367-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 07/16/2019] [Indexed: 01/14/2023] Open
Abstract
Recent evidence has indicated that the lymphatic vessel endothelial hyaluronan receptor (LYVE-1) is implicated in chronic inflammation and the lymphatic immune response. The soluble form of LYVE-1 (sLYVE-1) is produced by ectodomain shedding of LYVE-1 under pathological conditions including cancer and chronic inflammation. In this study, 1014 consecutive patients who underwent coronary angiography from May 2015 to September 2015 were included to investigate whether serum sLYVE-1 is associated with coronary artery disease (CAD) and its concomitant diseases includes chronic kidney disease (CKD). Results showed that there was no significant difference in sLYVE-1 levels between patients with CAD and without. However, a significantly higher level of sLYVE-1 was seen in patients with renal dysfunction compared to those with a normal eGFR. Results were validated in a separate cohort of 259 patients who were divided into four groups based on their kidney function assessed by estimated glomerular filtration rate (eGFR). Simple bivariate correlation analysis revealed that Lg[sLYVE-1] was negatively correlated with eGFR (r = −0.358, p < 0.001) and cystatin C (r = 0.303, p < 0.001). Multivariable logistic regression analysis revealed that the increase in Lg[sLYVE-1] was an independent determinant of renal dysfunction (odds ratio = 1.633, p = 0.007). Therefore, renal function should be considered when serum sLYVE-1 is used as a biomarker for the detection of pathological conditions such as chronic inflammation and cancer. Further study is required to elucidate the exact role of sLYVE-1 in renal function.
Collapse
|
31
|
Chang X, Yang Q, Zhang C, Zhang Y, Liang X, Liu Y, Xu G. Roles for VEGF-C/NRP-2 axis in regulating renal tubular epithelial cell survival and autophagy during serum deprivation. Cell Biochem Funct 2019; 37:290-300. [PMID: 31211440 PMCID: PMC6618243 DOI: 10.1002/cbf.3402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
Vascular endothelial growth factor C (VEGF-C) is an angiogenic and lymphangiogenic growth factor. Recent research has revealed the role for VEGF-C in regulating autophagy by interacting with a nontyrosine kinase receptor, neuropilin-2 (NRP-2). However, whether VEGF-C participates in regulating cell survival and autophagy in renal proximal tubular cells is unknown. To address this question, we employed a cell modal of serum deprivation to verify the role of VEGF-C and its receptor NRP-2 in regulating cell survival and autophagy in NRK52E cell lines. The results show that VEGF-C rescued the loss of cell viability induced by serum deprivation in a concentration-dependent manner. Furthermore, endogenous VEGF-C was knocked down in NRK52E cells by using specific small-interfering RNAs (siRNA), cells were more sensitive to serum deprivation-induced cell death. A similar increase in cell death rate was observed following NRP-2 depletion in serum-starved NRK52E cells. Autophagy activity in serum-starved NRK52E cells was confirmed by western blot analysis of microtubule-associated protein-1 chain 3 (LC3), immunofluorescence staining of endogenous LC3, and the formation of autophagosomes by electron microscopy. VEGF-C or NRP-2 depletion further increased LC3 expression induced by serum deprivation, suggesting that VEGF-C and NRP-2 were involved in controlling autophagy in NRK52E cells. We further performed autophagic flux experiments to identify that VEGF-C promotes the activation of autophagy in serum-starved NRK52E cells. Together, these results suggest for the first time that VEGF-C/NRP-2 axis promotes survival and autophagy in NRK52E cells under serum deprivation condition. SIGNIFICANCE OF THE STUDY: More researchers had focused on the regulation of autophagy in kidney disease. The effect of VEGF-C on cell death and autophagy in renal epithelial cells has not been examined. We first identified the VEGF-C as a regulator of cell survival and autophagy in NRK52E cell lines. And VEGF-C/NRP-2 may mediate autophagy by regulating the phosphorylation of 4EBP1 and P70S6K. VEGF-C treatment may be identified as a therapeutic target in renal injury repair due to its capacity to promote tubular cell survival in the future.
Collapse
Affiliation(s)
- Xiaoyan Chang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qian Yang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Conghui Zhang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ying Zhang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xinjun Liang
- Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanyan Liu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gang Xu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
32
|
Pei G, Yao Y, Yang Q, Wang M, Wang Y, Wu J, Wang P, Li Y, Zhu F, Yang J, Zhang Y, Yang W, Deng X, Zhao Z, Zhu H, Ge S, Han M, Zeng R, Xu G. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. SCIENCE ADVANCES 2019; 5:eaaw5075. [PMID: 31249871 PMCID: PMC6594767 DOI: 10.1126/sciadv.aaw5075] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/22/2019] [Indexed: 06/01/2023]
Abstract
Lymphangiogenesis is associated with chronic kidney disease (CKD) and occurs following kidney transplant. Here, we demonstrate that expanding lymphatic vessels (LVs) in kidneys and corresponding renal draining lymph nodes (RDLNs) play critical roles in promoting intrarenal inflammation and fibrosis following renal injury. Our studies show that lymphangiogenesis in the kidney and RDLN is driven by proliferation of preexisting lymphatic endothelium expressing the essential C-C chemokine ligand 21 (CCL21). New injury-induced LVs also express CCL21, stimulating recruitment of more CCR7+ dendritic cells (DCs) and lymphocytes into both RDLNs and spleen, resulting in a systemic lymphocyte expansion. Injury-induced intrarenal inflammation and fibrosis could be attenuated by blocking the recruitment of CCR7+ cells into RDLN and spleen or inhibiting lymphangiogenesis. Elucidating the role of lymphangiogenesis in promoting intrarenal inflammation and fibrosis provides a key insight that can facilitate the development of novel therapeutic strategies to prevent progression of CKD-associated fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Rui Zeng
- Corresponding author. (G.X.); (R.Z.)
| | - Gang Xu
- Corresponding author. (G.X.); (R.Z.)
| |
Collapse
|
33
|
Chen Y, Zhao W, Liu C, Meng W, Zhao T, Bhattacharya SK, Sun Y. Molecular and Cellular Effect of Angiotensin 1-7 on Hypertensive Kidney Disease. Am J Hypertens 2019; 32:460-467. [PMID: 30715105 DOI: 10.1093/ajh/hpz009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/25/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Studies implicate that angiotensin 1-7 (Ang1-7) imparts protective effects in the kidney. However, its relevance in hypertensive kidney disease is not fully understood. The purpose of this study was to explore the role of Ang1-7 on renal damage/remodeling during hypertension and its potential underlying molecular-cellular mechanisms. METHODS Hypertension was induced in adult Sprague-Dawley rats by infusion of aldosterone (ALDO; 0.75 μg/hour) for 4 weeks with or without co-treatment of Ang1-7 (1 mg/kg/day). Untreated rats served as controls. Systolic blood pressure was monitored by tail-cuff technique. Renal fibrosis was evaluated by picrosirius red staining and renal collagen volume fraction was quantitated using imaging analyzing system. The expression of profibrotic factors [transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-D (PDGF-D), fibroblast growth factor-1 (FGF-1), vascular endothelial growth factor-D (VEGF-D), and tissue inhibitors of metalloproteinases (TIMPs)] and free radical producing enzymes (inducible nitric oxide synthase and nicotinamide adenine dinucleotide phosphate [NADPH] oxidase) in the kidney were examined by reverse transcription-polymerase chain reaction and western blot. Renal oxidative stress was assessed by malondialdehyde (MDA) measurement. RESULTS Chronic ALDO infusion caused hypertension and hypertensive renal disease represented as glomerular damage/sclerosis. Ang1-7 co-treatment did not affect blood pressure in ALDO-treated rats, but significantly attenuated the glomerular damage/fibrosis. ALDO treatment significantly elevated renal expression of profibrogenic factors, including TGF-β1, TIMP-1/TIMP-2, FGF-1, PDGF-D, and VEGF-D, whereas Ang1-7 co-treatment significantly reduced renal TGF-β1, TIMP-1/TIMP-2, and FGF-1, but not PDGF-D and VEGF-D. Furthermore, ALDO infusion elevated NADPH oxidase (gp91phox) and MDA in the kidney, which was attenuated by Ang1-7 co-treatment. CONCLUSIONS Ang1-7 plays a protective role in the hypertensive kidney disease independent of blood pressure. The beneficial effects of Ang1-7 are likely mediated via suppressing TGF-β/FGF-1 pathways and oxidative stress.
Collapse
Affiliation(s)
- Yuanjian Chen
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wenyuan Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chang Liu
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Weixin Meng
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Tieqiang Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Syamal K Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yao Sun
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
34
|
Inhibition of lymphatic proliferation by the selective VEGFR-3 inhibitor SAR131675 ameliorates diabetic nephropathy in db/db mice. Cell Death Dis 2019; 10:219. [PMID: 30833548 PMCID: PMC6399322 DOI: 10.1038/s41419-019-1436-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
Abstract
Recent studies have demonstrated that chronic inflammation-induced lymphangiogenesis plays a crucial role in the progression of various renal diseases, including diabetic nephropathy. SAR131675 is a selective vascular endothelial cell growth factor receptor-3 (VEGFR-3)-tyrosine kinase inhibitor that acts as a ligand for VEGF-C and VEGF-D to inhibit lymphangiogenesis. In this study, we evaluated the effect of SAR131675 on renal lymphangiogenesis in a mouse model of type 2 diabetes. Male C57BLKS/J db/m and db/db mice were fed either a regular chow diet or a diet containing SAR131675 for 12 weeks from 8 weeks of age. In addition, we studied palmitate-induced lymphangiogenesis in human kidney-2 (HK2) cells and RAW264.7 monocytes/macrophages, which play a major role in lymphangiogenesis in the kidneys. SAR131475 ameliorated dyslipidemia, albuminuria, and lipid accumulation in the kidneys of db/db mice, with no significant changes in glucose and creatinine levels and body weight. Diabetes-induced systemic inflammation as evidenced by increased systemic monocyte chemoattractant protein-1 and tumor necrosis factor-α level was decreased by SAR131475. SAR131475 ameliorated the accumulation of triglycerides and free fatty acids and reduced inflammation in relation to decreased chemokine expression and pro-inflammatory M1 macrophage infiltration in the kidneys. Downregulation of VEGF-C and VEGFR-3 by SAR131475 inhibited lymphatic growth as demonstrated by decreased expression of LYVE-1 and podoplanin that was further accompanied by reduced tubulointerstitial fibrosis, and inflammation in relation to improvement in oxidative stress and apoptosis. Treatment with SAR131475 improved palmitate-induced increase in the expression of VEGF-C, VEGFR-3, and LYVE-1, along with improvement in cytosolic and mitochondrial oxidative stress in RAW264.7 and HK2 cells. Moreover, the enhanced expression of M1 phenotypes in RAW264.7 cells under palmitate stress was reduced by SAR131475 treatment. The results suggest that modulation of lymphatic proliferation in the kidneys is a new treatment approach for type 2 diabetic nephropathy and that SAR131675 is a promising therapy to ameliorate renal damage by reducing lipotoxicity-induced lymphangiogenesis.
Collapse
|
35
|
Role of the high-affinity leukotriene B4 receptor signaling in fibrosis after unilateral ureteral obstruction in mice. PLoS One 2019; 14:e0202842. [PMID: 30818366 PMCID: PMC6394974 DOI: 10.1371/journal.pone.0202842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/10/2019] [Indexed: 12/28/2022] Open
Abstract
Leukotriene B4 (LTB4) is a lipid mediator that acts as a potent chemoattractant for inflammatory leukocytes. Kidney fibrosis is caused by migrating inflammatory cells and kidney-resident cells. Here, we examined the role of the high-affinity LTB4 receptor BLT1 during development of kidney fibrosis induced by unilateral ureteral obstruction (UUO) in wild-type (WT) mice and BLT1 knockout (BLT1-/-) mice. We found elevated expression of 5-lipoxygenase (5-LOX), which generates LTB4, in the renal tubules of UUO kidneys from WT mice and BLT1-/- mice. Accumulation of immunoreactive type I collagen in WT UUO kidneys increased over time; however, the increase was less prominent in BLT1-/- UUO kidneys. Accumulation of S100A4-positive fibroblasts increased temporally in WT UUO kidneys, but was again less pronounced in-BLT1-/- UUO kidneys. The same was true of mRNA encoding transforming growth factor-β (TGF)-β and fibroblast growth factor (FGF)-2. Finally, accumulation of F4/80-positive macrophages, which secrete TGF-β, increased temporally in WT UUO and BLT1-/- UUO kidneys, but to a lesser extent in the latter. Following LTB4 stimulation in vitro, macrophages showed increased expression of mRNA encoding TGF-β/FGF-2 and Col1a1, whereas L929 fibroblasts showed increased expression of mRNA encoding α smooth muscle actin (SMA). Bone marrow (BM) transplantation studies revealed that the area positive for type I collagen was significantly smaller in BLT1-/—BM→WT than in WT-BM→WT. Thus, LTB4-BLT1 signaling plays a critical role in fibrosis in UUO kidneys by increasing accumulation of macrophages and fibroblasts. Therefore, blocking BLT1 may prevent renal fibrosis.
Collapse
|
36
|
Renal Interstitial Lymphangiogenesis in Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:543-555. [PMID: 31399984 DOI: 10.1007/978-981-13-8871-2_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The basic physiological functions of the lymphatic system include absorption of water and macromolecular substances in the interstitial fluid to maintain the fluid homeostasis, promoting the intestinal absorption of nutrients such as lipids and vitamins from food. Recent studies have found that lymphangiogenesis is associated with some pathological conditions, such as tumor metastasis, injury repair, and chronic inflammation. For a long time, the study of lymphatic vessels (LVs) has been stagnant because of the lack of lymphatic-specific cytology and molecular markers. Renal interstitial lymphangiogenesis is found in patients with chronic kidney disease (CKD) and a series of animal models of renal fibrosis. Intervention of the formation or maturation of LVs in renal tissue of CKD may reduce the drainage of inflammatory cells, attenuate chronic inflammation, delay the progression of renal fibrosis, and improve renal function. This review will summarize the latest findings on renal interstitial lymphangiogenesis in CKD.
Collapse
|
37
|
Mi J, Hooker E, Balog S, Zeng H, Johnson DT, He Y, Yu EJ, Wu H, Le V, Lee DH, Aldahl J, Gonzalgo ML, Sun Z. Activation of hepatocyte growth factor/MET signaling initiates oncogenic transformation and enhances tumor aggressiveness in the murine prostate. J Biol Chem 2018; 293:20123-20136. [PMID: 30401749 DOI: 10.1074/jbc.ra118.005395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/04/2018] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence has shown that the hepatocyte growth factor (HGF) and its receptor, MET proto-oncogene, receptor tyrosine kinase (MET), promote cell proliferation, motility, morphogenesis, and angiogenesis. Whereas up-regulation of MET expression has been observed in aggressive and metastatic prostate cancer, a clear understanding of MET function in prostate tumorigenesis remains elusive. Here, we developed a conditional Met transgenic mouse strain, H11 Met/+ :PB-Cre4, to mimic human prostate cancer cells with increased MET expression in the prostatic luminal epithelium. We found that these mice develop prostatic intraepithelial neoplasia after HGF administration. To further assess the biological role of MET in prostate cancer progression, we bred H11 Met/+ /PtenLoxP/LoxP:PBCre4 compound mice, in which transgenic Met expression and deletion of the tumor suppressor gene Pten occurred simultaneously only in prostatic epithelial cells. These compound mice exhibited accelerated prostate tumor formation and invasion as well as increased metastasis compared with PtenLoxP/LoxP:PB-Cre4 mice. Moreover, prostatic sarcomatoid carcinomas and lesions resembling the epithelial-to-mesenchymal transition developed in tumor lesions of the compound mice. RNA-Seq and qRT-PCR analyses revealed a robust enrichment of known tumor progression and metastasis-promoting genes in samples isolated from H11 Met/+ /PtenLoxP/LoxP:PB-Cre4 compound mice compared with those from PtenLoxP/LoxP:PB-Cre4 littermate controls. HGF-induced cell proliferation and migration also increased in mouse embryonic fibroblasts (MEFs) from animals with both Met transgene expression and Pten deletion compared with Pten-null MEFs. The results from these newly developed mouse models indicate a role for MET in hastening tumorigenesis and metastasis when combined with the loss of tumor suppressors.
Collapse
Affiliation(s)
- Jiaqi Mi
- From the Departments of Cancer Biology and Pathology, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - Erika Hooker
- From the Departments of Cancer Biology and Pathology, Beckman Research Institute, City of Hope, Duarte, California 91010; the Department of Urology and Stanford University School of Medicine, Stanford, California 94305
| | - Steven Balog
- From the Departments of Cancer Biology and Pathology, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - Hong Zeng
- the Transgenic, Knockout and Tumor Model Center, Stanford University School of Medicine, Stanford, California 94305, and
| | - Daniel T Johnson
- the Department of Urology and Stanford University School of Medicine, Stanford, California 94305
| | - Yongfeng He
- From the Departments of Cancer Biology and Pathology, Beckman Research Institute, City of Hope, Duarte, California 91010; the Department of Urology and Stanford University School of Medicine, Stanford, California 94305
| | - Eun-Jeong Yu
- From the Departments of Cancer Biology and Pathology, Beckman Research Institute, City of Hope, Duarte, California 91010; the Department of Urology and Stanford University School of Medicine, Stanford, California 94305
| | - Huiqing Wu
- Pathology, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - Vien Le
- From the Departments of Cancer Biology and Pathology, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - Dong-Hoon Lee
- From the Departments of Cancer Biology and Pathology, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - Joseph Aldahl
- From the Departments of Cancer Biology and Pathology, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - Mark L Gonzalgo
- the Department of Urology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Zijie Sun
- From the Departments of Cancer Biology and Pathology, Beckman Research Institute, City of Hope, Duarte, California 91010; the Department of Urology and Stanford University School of Medicine, Stanford, California 94305.
| |
Collapse
|
38
|
Beaini S, Saliba Y, Hajal J, Smayra V, Bakhos JJ, Joubran N, Chelala D, Fares N. VEGF-C attenuates renal damage in salt-sensitive hypertension. J Cell Physiol 2018; 234:9616-9630. [PMID: 30378108 DOI: 10.1002/jcp.27648] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 10/02/2018] [Indexed: 12/18/2022]
Abstract
Salt-sensitive hypertension is a major risk factor for renal impairment leading to chronic kidney disease. High-salt diet leads to hypertonic skin interstitial volume retention enhancing the activation of the tonicity-responsive enhancer-binding protein (TonEBP) within macrophages leading to vascular endothelial growth factor C (VEGF-C) secretion and NOS3 modulation. This promotes skin lymphangiogenesis and blood pressure regulation. Whether VEGF-C administration enhances renal and skin lymphangiogenesis and attenuates renal damage in salt-sensitive hypertension remains to be elucidated. Hypertension was induced in BALB/c mice by a high-salt diet. VEGF-C was administered subcutaneously to high-salt-treated mice as well as control animals. Analyses of kidney injury, inflammation, fibrosis, and biochemical markers were performed in vivo. VEGF-C reduced plasma inflammatory markers in salt-treated mice. In addition, VEGF-C exhibited a renal anti-inflammatory effect with the induction of macrophage M2 phenotype, followed by reductions in interstitial fibrosis. Antioxidant enzymes within the kidney as well as urinary RNA/DNA damage markers were all revelatory of abolished oxidative stress under VEGF-C. Furthermore, VEGF-C decreased the urinary albumin/creatinine ratio and blood pressure as well as glomerular and tubular damages. These improvements were associated with enhanced TonEBP, NOS3, and lymphangiogenesis within the kidney and skin. Our data show that VEGF-C administration plays a major role in preserving renal histology and reducing blood pressure. VEGF-C might constitute an interesting potential therapeutic target for improving renal remodeling in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Shadia Beaini
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Youakim Saliba
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joelle Hajal
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Viviane Smayra
- Divisions of Nephrology and Anatomopathology, Faculty of Medicine, Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Jules-Joel Bakhos
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Najat Joubran
- Division of Nephrology, Faculty of Medicine and Medical Sciences, Saint Georges Hospital, Balamand University, Beirut, Lebanon
| | - Dania Chelala
- Divisions of Nephrology and Anatomopathology, Faculty of Medicine, Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Nassim Fares
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
39
|
Roles of the TGF-β⁻VEGF-C Pathway in Fibrosis-Related Lymphangiogenesis. Int J Mol Sci 2018; 19:ijms19092487. [PMID: 30142879 PMCID: PMC6163754 DOI: 10.3390/ijms19092487] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022] Open
Abstract
Lymphatic vessels drain excess tissue fluids to maintain the interstitial environment. Lymphatic capillaries develop during the progression of tissue fibrosis in various clinical and pathological situations, such as chronic kidney disease, peritoneal injury during peritoneal dialysis, tissue inflammation, and tumor progression. The role of fibrosis-related lymphangiogenesis appears to vary based on organ specificity and etiology. Signaling via vascular endothelial growth factor (VEGF)-C, VEGF-D, and VEGF receptor (VEGFR)-3 is a central molecular mechanism for lymphangiogenesis. Transforming growth factor-β (TGF-β) is a key player in tissue fibrosis. TGF-β induces peritoneal fibrosis in association with peritoneal dialysis, and also induces peritoneal neoangiogenesis through interaction with VEGF-A. On the other hand, TGF-β has a direct inhibitory effect on lymphatic endothelial cell growth. We proposed a possible mechanism of the TGF-β–VEGF-C pathway in which TGF-β promotes VEGF-C production in tubular epithelial cells, macrophages, and mesothelial cells, leading to lymphangiogenesis in renal and peritoneal fibrosis. Connective tissue growth factor (CTGF) is also involved in fibrosis-associated renal lymphangiogenesis through interaction with VEGF-C, in part by mediating TGF-β signaling. Further clarification of the mechanism might lead to the development of new therapeutic strategies to treat fibrotic diseases.
Collapse
|
40
|
Balasubbramanian D, Lopez Gelston CA, Rutkowski JM, Mitchell BM. Immune cell trafficking, lymphatics and hypertension. Br J Pharmacol 2018; 176:1978-1988. [PMID: 29797446 DOI: 10.1111/bph.14370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Activated immune cell infiltration into organs contributes to the development and maintenance of hypertension. Studies targeting specific immune cell populations or reducing their inflammatory signalling have demonstrated a reduction in BP. Lymphatic vessels play a key role in immune cell trafficking and in resolving inflammation, but little is known about their role in hypertension. Studies from our laboratory and others suggest that inflammation-associated or induction of lymphangiogenesis is organ protective and anti-hypertensive. This review provides the basis for hypertension as a disease of chronic inflammation in various tissues and highlights how renal lymphangiogenesis is a novel regulator of kidney health and BP. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
| | | | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX, USA
| |
Collapse
|
41
|
Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 2018; 65:16-36. [PMID: 29909119 DOI: 10.1016/j.mam.2018.06.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. It is considered as the underlying pathological process of chronic kidney disease (CKD), which affects more than 10% of world population and for which treatment options are limited. Renal fibrosis is defined by excessive deposition of extracellular matrix, which disrupts and replaces the functional parenchyma that leads to organ failure. Kidney's histological structure can be divided into three main compartments, all of which can be affected by fibrosis, specifically termed glomerulosclerosis in glomeruli, interstitial fibrosis in tubulointerstitium and arteriosclerosis and perivascular fibrosis in vasculature. In this review, we summarized the different appearance, cellular origin and major emerging processes and mediators of fibrosis in each compartment. We also depicted and discussed the challenges in translation of anti-fibrotic treatment to clinical practice and discuss possible solutions and future directions.
Collapse
|
42
|
Lee AS, Sung MJ, Kim W, Jung YJ. COMP-angiopoietin-1 ameliorates inflammation-induced lymphangiogenesis in dextran sulfate sodium (DSS)-induced colitis model. J Mol Med (Berl) 2018; 96:459-467. [PMID: 29610929 PMCID: PMC5897474 DOI: 10.1007/s00109-018-1633-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Abstract
Alterations in the intestinal lymphatic network are pathological processes as related to inflammatory bowel disease (IBD). In this study, we demonstrated that reduction in inflammation-induced lymphangiogenesis ameliorates experimental acute colitis. A soluble and stable angiopoietin-1 (Ang1) variant, COMP-Ang1, possesses anti-inflammatory and angiogenic effects. We investigated the effects of COMP-Ang1 on an experimental colonic inflammation model. Experimental colitis was induced in mice by administering 3% dextran sulfate sodium (DSS) via drinking water. We determined body weight, disease activity indices, histopathological scores, lymphatic density, anti-ER-HR3 staining, and the expression of members of the vascular endothelial growth factor (VEGF) family and various inflammatory cytokines in the mice. The density of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) and VEGFR-3-positive lymphatic vessels increased in mice with DSS-induced colitis. We observed that COMP-Ang1-treated mice showed less weight loss, fewer clinical signs of colitis, and longer colons than Ade-DSS-treated mice. COMP-Ang1 also significantly reduced the density of LYVE-1-positive lymphatic vessels and the disruption of colonic architecture that is normally associated with colitis and repressed the immunoregulatory response. Further, COMP-Ang1 treatment reduced both M1 and M2 macrophage infiltration into the inflamed colon, which involved inhibition of VEGF-C and D expression. Thus, COMP-Ang1, which acts by reducing inflammation-induced lymphangiogenesis, may be used as a novel therapeutic for the treatment of IBD and other inflammatory diseases. KEY MESSAGES COMP-Ang1 decreases inflammatory-induced lymphangiogenesis in experimental acute colitis. COMP-Ang1 improves the symptom of DSS-induced inflammatory response. COMP-Ang1 reduces the expression of pro-inflammatory cytokines in inflamed colon. COMP-Ang1 reduces the expression of VEGFs in inflamed colon. COMP-Ang1 prevents infiltration of macrophages in a DSS-induced colitis model.
Collapse
Affiliation(s)
- Ae Sin Lee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju_Gun, Jeollabuk-do, 55365, Republic of Korea.
| | - Mi Jeong Sung
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju_Gun, Jeollabuk-do, 55365, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Division of Nephrology, Chonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Yu Jin Jung
- Department of Internal Medicine, Division of Nephrology, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
43
|
Xie Q, Chen X, Xu Y, Liang J, Wang F, Liu J. CEACAM1 resists hypoxia-induced inhibition of tube formation of human dermal lymphatic endothelial cells. Cell Signal 2018; 45:145-152. [PMID: 29427637 DOI: 10.1016/j.cellsig.2018.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 11/30/2022]
Abstract
Tube formation is one of the fundamental events required by angiogenesis and lymphangiogenesis. To date, there is little knowledge on the effects of hypoxia on tube formation of human dermal lymphatic endothelial cells (HDLECs). In this study, we found that tube formation of HDLECs was inhibited under hypoxic condition with decreased expressions of VEGF-D, CEACAM1 and Prox1 genes. However, hypoxia-induced inhibition of tube formation of HDLECs was reversed by conditional media from hypoxic tumor cells. After knockdown of CEACAM1 by siRNA transfection, tube formation of HDLECs was increased with elevated Prox1 expression, suggesting that CEACAM1 downregulates Prox1 and plays an inhibitory role in tube formation of HDLECs. Since the expressions of CEACAM1 and Prox1 were both decreased by hypoxia, there are additional mechanisms downregulating Prox1 expressions during hypoxia-inhibited tube formation of HDLECs.
Collapse
Affiliation(s)
- Qi Xie
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Xiaocui Chen
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Yinghua Xu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Jing Liang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Fufang Wang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; Key laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, Shandong 250012, PR China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China.
| |
Collapse
|
44
|
Hasegawa S, Nakano T, Torisu K, Tsuchimoto A, Eriguchi M, Haruyama N, Masutani K, Tsuruya K, Kitazono T. Vascular endothelial growth factor-C ameliorates renal interstitial fibrosis through lymphangiogenesis in mouse unilateral ureteral obstruction. J Transl Med 2017; 97:1439-1452. [PMID: 29083411 DOI: 10.1038/labinvest.2017.77] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/30/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022] Open
Abstract
Renal fibrosis is the final common pathway of chronic kidney diseases. Lymphatic vessel (LV) proliferation is found in human renal diseases and other fibrotic diseases, suggesting that lymphangiogenesis is associated with the progression or suppression of kidney diseases. However, the purpose of LV proliferation is not completely understood. We investigated the effect of vascular endothelial growth factor (VEGF)-C on lymphangiogenesis, inflammation, and fibrosis in the mouse kidney using the unilateral ureteral obstruction (UUO) model. In UUO mice, significant proliferation of LVs was accompanied by tubulointerstitial nephritis and fibrosis. We continuously administered recombinant human VEGF-C to UUO model mice using an osmotic pump (UUO+VEGF-C group). Lymphangiogenesis was significantly induced in the UUO+VEGF-C group compared with the vehicle group, despite similar numbers of capillaries in both groups. The number of infiltrating macrophages, and levels of inflammatory cytokines and transforming growth factor-β1 were reduced in the UUO+VEGF-C group compared with the vehicle group. Renal fibrosis was consequently attenuated in the UUO+VEGF-C group. In cultured lymphatic endothelial cells, administration of VEGF-C increased the activity and proliferation of lymphatic endothelial cells (LECs) and expression of adhesion molecules such as vascular cell adhesion molecule-1. These findings suggest that induction of lymphangiogenesis ameliorates inflammation and fibrosis in the renal interstitium. Enhancement of the VEGF-C signaling pathway in LECs may be a therapeutic strategy for renal fibrosis.
Collapse
Affiliation(s)
- Shoko Hasegawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Eriguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Haruyama
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Masutani
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Tsuruya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
45
|
Yamagata Y, Tomioka H, Sakamoto K, Sato K, Harada H, Ikeda T, Kayamori K. CD163-Positive Macrophages Within the Tumor Stroma Are Associated With Lymphangiogenesis and Lymph Node Metastasis in Oral Squamous Cell Carcinoma. J Oral Maxillofac Surg 2017; 75:2144-2153. [DOI: 10.1016/j.joms.2017.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/01/2023]
|
46
|
Guo YC, Zhang M, Wang FX, Pei GC, Sun F, Zhang Y, He X, Wang Y, Song J, Zhu FM, Pandupuspitasari NS, Liu J, Huang K, Yang P, Xiong F, Zhang S, Yu Q, Yao Y, Wang CY. Macrophages Regulate Unilateral Ureteral Obstruction-Induced Renal Lymphangiogenesis through C-C Motif Chemokine Receptor 2-Dependent Phosphatidylinositol 3-Kinase-AKT-Mechanistic Target of Rapamycin Signaling and Hypoxia-Inducible Factor-1α/Vascular Endothelial Growth Factor-C Expression. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [PMID: 28627412 DOI: 10.1016/j.ajpath.2017.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lymphangiogenesis occurs during renal fibrosis in patients with chronic kidney diseases and vascular endothelial growth factor (VEGF)-C is required for the formation of lymphatic vessels; however, the underlying mechanisms remain unclear. We demonstrate that macrophages can regulate unilateral ureteral obstruction (UUO)-induced renal lymphangiogenesis by expressing high levels of VEGF-C by C-C motif chemokine receptor 2 (CCR2)-mediated signaling. Mice deficient in Ccr2 manifested repressed lymphangiogenesis along with attenuated renal injury and fibrosis after UUO induction. The infiltrated macrophages after UUO induction generated a microenvironment in favor of lymphangiogenesis, which likely depended on Ccr2 expression. Mechanistic studies revealed that CCR2 is required for macrophages to activate phosphatidylinositol 3-kinase (PI3K)-AKT-mechanistic target of rapamycin (mTOR) signaling in response to its ligand monocyte chemoattractant protein 1 stimulation, whereas hypoxia-inducible factor (HIF)-1α is downstream of PI3K-AKT-mTOR signaling. HIF-1α directly bound to the VEGF-C promoter to drive its expression to enhance lymphangiogenesis. Collectively, we characterized a novel regulatory network in macrophages, in which CCR2 activates PI3K-AKT-mTOR signaling to mediate HIF-1α expression, which then drives VEGF-C expression to promote lymphangiogenesis.
Collapse
Affiliation(s)
- Yan-Chao Guo
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China; Department of Nephrology, Tongji Hospital, Wuhan, China
| | - Meng Zhang
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China; Department of Nephrology, Tongji Hospital, Wuhan, China
| | - Fa-Xi Wang
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China
| | | | - Fei Sun
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China
| | - Ying Zhang
- Department of Nephrology, Tongji Hospital, Wuhan, China
| | - Xiaoyu He
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China
| | - Yi Wang
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China
| | - Jia Song
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China
| | - Feng-Ming Zhu
- Department of Nephrology, Tongji Hospital, Wuhan, China
| | - Nuruliarizki S Pandupuspitasari
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China
| | - Jing Liu
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ping Yang
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China
| | - Fei Xiong
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China
| | - Shu Zhang
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China
| | - Qilin Yu
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China
| | - Ying Yao
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China; Department of Nephrology, Tongji Hospital, Wuhan, China.
| | - Cong-Yi Wang
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, China.
| |
Collapse
|
47
|
Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis. Kidney Int 2017; 92:850-863. [PMID: 28545716 DOI: 10.1016/j.kint.2017.03.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 11/20/2022]
Abstract
Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor β induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its possible involvement in lymphangiogenesis has not been explored. We found prominent lymphangiogenesis during tubulointerstitial fibrosis to be associated with increased expression of CTGF and VEGF-C in human obstructed nephropathy as well as in diabetic kidney disease. Using CTGF knockout mice, we investigated the involvement of CTGF in development of fibrosis and associated lymphangiogenesis in obstructive nephropathy. The increase of lymphatic vessels and VEGF-C in obstructed kidneys was significantly reduced in CTGF knockout compared to wild-type mice. Also in mouse kidneys subjected to ischemia-reperfusion injury, CTGF knockdown was associated with reduced lymphangiogenesis. In vitro, CTGF induced VEGF-C production in HK-2 cells, while CTGF siRNA suppressed transforming growth factor β1-induced VEGF-C upregulation. Furthermore, surface plasmon resonance analysis showed that CTGF and VEGF-C directly interact. Interestingly, VEGF-C-induced capillary-like tube formation by human lymphatic endothelial cells was suppressed by full-length CTGF but not by naturally occurring proteolytic CTGF fragments. Thus, CTGF is significantly involved in fibrosis-associated renal lymphangiogenesis through regulation of, and direct interaction with, VEGF-C.
Collapse
|
48
|
Saad A, Dietz AB, Herrmann SMS, Hickson LJ, Glockner JF, McKusick MA, Misra S, Bjarnason H, Armstrong AS, Gastineau DA, Lerman LO, Textor SC. Autologous Mesenchymal Stem Cells Increase Cortical Perfusion in Renovascular Disease. J Am Soc Nephrol 2017; 28:2777-2785. [PMID: 28461553 DOI: 10.1681/asn.2017020151] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/24/2017] [Indexed: 01/12/2023] Open
Abstract
Atherosclerotic renovascular disease (RVD) reduces renal blood flow (RBF) and GFR and accelerates poststenotic kidney (STK) tissue injury. Preclinical studies indicate that mesenchymal stem cells (MSCs) can stimulate angiogenesis and modify immune function in experimental RVD. We assessed the safety and efficacy of adding intra-arterial autologous adipose-derived MSCs into STK to standardized medical treatment in human subjects without revascularization. The intervention group (n=14) received a single infusion of MSC (1.0 × 105 or 2.5 × 105 cells/kg; n=7 each) plus standardized medical treatment; the medical treatment only group (n=14) included subjects matched for age, kidney function, and stenosis severity. We measured cortical and medullary volumes, perfusion, and RBF using multidetector computed tomography. We assessed tissue oxygenation by blood oxygen level-dependent MRI and GFR by iothalamate clearance. MSC infusions were well tolerated. Three months after infusion, cortical perfusion and RBF rose in the STK (151.8-185.5 ml/min, P=0.01); contralateral kidney RBF increased (212.7-271.8 ml/min, P=0.01); and STK renal hypoxia (percentage of the whole kidney with R2*>30/s) decreased (12.1% [interquartile range, 3.3%-17.8%] to 6.8% [interquartile range, 1.8%-12.9%], P=0.04). No changes in RBF occurred in medical treatment only subjects. Single-kidney GFR remained stable after MSC but fell in the medical treatment only group (-3% versus -24%, P=0.04). This first-in-man dose-escalation study provides evidence of safety of intra-arterial infusion of autologous MSCs in patients with RVD. MSC infusion without main renal artery revascularization associated with increased renal tissue oxygenation and cortical blood flow.
Collapse
Affiliation(s)
- Ahmed Saad
- Divisions of *Nephrology and Hypertension and
| | | | | | | | | | | | - Sanjay Misra
- Interventional Radiology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | |
Collapse
|
49
|
Abouelkheir GR, Upchurch BD, Rutkowski JM. Lymphangiogenesis: fuel, smoke, or extinguisher of inflammation's fire? Exp Biol Med (Maywood) 2017; 242:884-895. [PMID: 28346012 DOI: 10.1177/1535370217697385] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lymphangiogenesis is a recognized hallmark of inflammatory processes in tissues and organs as diverse as the skin, heart, bowel, and airways. In clinical and animal models wherein the signaling processes of lymphangiogenesis are manipulated, most studies demonstrate that an expanded lymphatic vasculature is necessary for the resolution of inflammation. The fundamental roles that lymphatics play in fluid clearance and immune cell trafficking from the periphery make these results seemingly obvious as a mechanism of alleviating locally inflamed environments: the lymphatics are simply providing a drain. Depending on the tissue site, lymphangiogenic mechanism, or induction timeframe, however, evidence shows that inflammation-associated lymphangiogenesis (IAL) may worsen the pathology. Recent studies have identified lymphatic endothelial cells themselves to be local regulators of immune cell activity and its consequential phenotypes - a more active role in inflammation regulation than previously thought. Indeed, results focusing on the immunocentric roles of peripheral lymphatic function have revealed that the basic drainage task of lymphatic vessels is a complex balance of locally processed and transported antigens as well as interstitial cytokine and immune cell signaling: an interplay that likely defines the function of IAL. This review will summarize the latest findings on how IAL impacts a series of disease states in various tissues in both preclinical models and clinical studies. This discussion will serve to highlight some emerging areas of lymphatic research in an attempt to answer the question relevant to an array of scientists and clinicians of whether IAL helps to fuel or extinguish inflammation. Impact statement Inflammatory progression is present in acute and chronic tissue pathologies throughout the body. Lymphatic vessels play physiological roles relevant to all medical fields as important regulators of fluid balance, immune cell trafficking, and immune identity. Lymphangiogenesis is often concurrent with inflammation and can potentially aide or worsen disease progression. How new lymphatic vessels impact inflammation and by which mechanism is an important consideration in current and future clinical therapies targeting inflammation and/or vasculogenesis. This review identifies, across a range of tissue-specific pathologies, the current understanding of inflammation-associated lymphangiogenesis in the progression or resolution of inflammation.
Collapse
Affiliation(s)
- Gabriella R Abouelkheir
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| | - Bradley D Upchurch
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| | - Joseph M Rutkowski
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| |
Collapse
|
50
|
Abstract
The glomerulus is a highly specialized microvascular bed that filters blood to form primary urinary filtrate. It contains four cell types: fenestrated endothelial cells, specialized vascular support cells termed podocytes, perivascular mesangial cells, and parietal epithelial cells. Glomerular cell-cell communication is critical for the development and maintenance of the glomerular filtration barrier. VEGF, ANGPT, EGF, SEMA3A, TGF-β, and CXCL12 signal in paracrine fashions between the podocytes, endothelium, and mesangium associated with the glomerular capillary bed to maintain filtration barrier function. In this review, we summarize the current understanding of these signaling pathways in the development and maintenance of the glomerulus and the progression of disease.
Collapse
Affiliation(s)
- Christina S Bartlett
- Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois 60611; ,
| | - Marie Jeansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden;
| | - Susan E Quaggin
- Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois 60611; ,
| |
Collapse
|