1
|
Tao Y, Lacko AG, Sabnis NA, Das‐Earl P, Ibrahim D, Crowe N, Zhou Z, Cunningham M, Castillo A, Ma R. Reconstituted HDL ameliorated renal injury of diabetic kidney disease in mice. Physiol Rep 2024; 12:e16179. [PMID: 39107084 PMCID: PMC11303015 DOI: 10.14814/phy2.16179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024] Open
Abstract
Diabetic kidney disease (DKD) is a devastating kidney disease and lacks effective therapeutic interventions. The present study was aimed to determine whether reconstituted high-density lipoprotein (rHDL) ameliorated renal injury in eNOS-/- dbdb mice, a mouse model of DKD. Three groups of mice, wild type C57BLKS/J (non-diabetes), eNOS-/- dbdb (diabetes), and eNOS-/- dbdb treated with rHDL (diabetes+rHDL) with both males and females were used. The rHDL nanoparticles were administered to eNOS-/- dbdb mice at Week 16 at 5 μg/g body weight in ~100 μL of saline solution twice per week for 4 weeks via retroorbital injection. We found that rHDL treatment significantly blunted progression of albuminuria and GFR decline observed in DKD mice. Histological examinations showed that the rHDLs significantly alleviated glomerular injury and renal fibrosis, and inhibited podocyte loss. Western blots and immunohistochemical examinations showed that increased protein abundances of fibronectin and collagen IV in the renal cortex of eNOS-/- dbdb mice were significantly reduced by the rHDLs. Taken together, the present study suggests a renoprotective effect of rHDLs on DKD.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Andras G. Lacko
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Nirupama A. Sabnis
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Paromita Das‐Earl
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Deena Ibrahim
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Nicole Crowe
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Zhengyang Zhou
- Department of Population and Community HealthUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Mark Cunningham
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Angie Castillo
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Rong Ma
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
2
|
Song J, Chen Y, Chen Y, Qiu M, Xiang W, Ke B, Fang X. DKK3 promotes oxidative stress injury and fibrosis in HK-2 cells by activating NOX4 via β-catenin/TCF4 signaling. Mol Cell Biochem 2024; 479:1231-1241. [PMID: 37368156 DOI: 10.1007/s11010-023-04789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Oxidative stress and fibrosis may accelerate the progression of chronic kidney disease (CKD). DKK3 is related to regulating renal fibrosis and CKD. However, the molecular mechanism of DKK3 in regulating oxidative stress and fibrosis during CKD development has not been clarified, which deserves to be investigated. Human proximal tubule epithelial cells (HK-2 cells) were treated with H2O2 to establish a cell model of renal fibrosis. The mRNA and protein expressions were analyzed using qRT-PCR and western blot, respectively. Cell viability and apoptosis were evaluated using MTT assay and flow cytometry, respectively. ROS production was estimated using DCFH-DA. The interactions among TCF4, β-catenin and NOX4 were validated using luciferase activity assay, ChIP and Co-IP. Herein, our results revealed that DKK3 was highly expressed in HK-2 cells treated with H2O2. DKK3 depletion increased H2O2-treated HK-2 cell viability and reduced cell apoptosis, oxidative stress, and fibrosis. Mechanically, DKK3 promoted formation of the β-catenin/TCF4 complex, and activated NOX4 transcription. Upregulation of NOX4 or TCF4 weakened the inhibitory effect of DKK3 knockdown on oxidative stress and fibrosis in H2O2-stimulated HK-2 cells. All our results suggested that DKK3 accelerated oxidative stress and fibrosis through promoting β-catenin/TCF4 complex-mediated activation of NOX4 transcription, which could lead to novel molecules and therapeutic targets for CKD.
Collapse
Affiliation(s)
- Jianling Song
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yanxia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Minzi Qiu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Wenliu Xiang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
3
|
Chu YT, Chen BH, Chen HH, Lee JC, Kuo TJ, Chiu HC, Lu WH. Hypoxia-Induced Kidney Injury in Newborn Rats. TOXICS 2023; 11:260. [PMID: 36977025 PMCID: PMC10053593 DOI: 10.3390/toxics11030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Exposure to hypoxia during the early postnatal period can have adverse effects on vital organs. Neonatal Sprague-Dawley rats housed in a hypoxic chamber were compared to those in a normoxic chamber from postnatal days 0 to 7. Arterial blood was collected to evaluate renal function and hypoxia. Kidney morphology and fibrosis were evaluated using staining methods and immunoblotting. In the kidneys of the hypoxic group, protein expressions of hypoxia-inducible factor-1 were higher than those in the normoxic group. Hypoxic rats had higher levels of hematocrit, serum creatinine, and lactate than normoxic rats. Body weight was reduced, and protein loss of kidney tissue was observed in hypoxic rats compared to normoxic rats. Histologically, hypoxic rats showed glomerular atrophy and tubular injury. Renal fibrosis with collagen fiber deposition was observed in the hypoxic group. The expression of nicotinamide adenine dinucleotide phosphate oxidases was enhanced in the kidneys of hypoxic rats. Proteins involved in apoptosis were upregulated in the kidneys of hypoxic rats. An increase in the expression of pro-inflammatory cytokines was also observed in the kidneys of hypoxic rats. Hypoxic kidney injury in neonatal rats was associated with oxidative stress, inflammation, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Yi-Ting Chu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Bo-Hau Chen
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 32551, Taiwan
| | - Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Jui-Chen Lee
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Tzu-Jiun Kuo
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Hsiang-Chin Chiu
- Department of Pediatrics, Pingtung Veterans General Hospital, Pingtung 91245, Taiwan
| | - Wen-Hsien Lu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
4
|
Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J, Deng B. The modulation effects of plant‐derived bioactive ingredients on chronic kidney disease: Focus on the gut–kidney axis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Zhongquan Xin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
5
|
Xing D, Li Q, Lin G, Lin H, Kang W, Zhang M, Ding R, Li N. The protective effects of propofol against renal ischemia-reperfusion injury are potentiated by norisoboldine treatment via inhibition of oxidative stress pathways. J Biochem Mol Toxicol 2021; 36:e22937. [PMID: 34719823 DOI: 10.1002/jbt.22937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 09/12/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is a significant worldwide health problem. The protective effects of norisoboldine (NOR) against ischemia/reperfusion (I/R) induced renal injury in a rat model were evaluated. AKI was induced in rats by I/R. Animals were treated with 20 mg/kg/h propofol, intraperitoneally administered and 10 mg/kg NOR 30 min before inducing renal ischemia. Biomarkers of kidney function, including cytokines and oxidative stress parameters, were measured in serum. The serum levels of creatinine and blood urea nitrogen in propofol- and NOR-treated rats were lower compared to the untreated I/R group. Moreover, treatment with propofol or NOR, alone and in combination, decreased the levels of cytokines and oxidative stress in rats with kidney injury. In conclusion, this study suggested that treatment with NOR potentiated the nephroprotective effects of propofol in rats with I/R-induced renal injury by ameliorating oxidative stress and apoptosis pathway.
Collapse
Affiliation(s)
- Dandan Xing
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - QiuChang Li
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Guanwen Lin
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hui Lin
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wenyue Kang
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Min Zhang
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Rong Ding
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Na Li
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan, China.,Department of Anesthesiology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
6
|
Ke G, Chen X, Liao R, Xu L, Zhang L, Zhang H, Kuang S, Du Y, Hu J, Lian Z, Dou C, Zhang Q, Zhao X, Zhang F, Zhu S, Ma J, Li Z, Li S, He C, Chen X, Wen Y, Feng Z, Zheng M, Lin T, Li R, Li B, Dong W, Chen Y, Wang W, Ye Z, Deng C, Xiao H, Xiao J, Liang X, Shi W, Liu S. Receptor activator of NF-κB mediates podocyte injury in diabetic nephropathy. Kidney Int 2021; 100:377-390. [PMID: 34051263 DOI: 10.1016/j.kint.2021.04.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/10/2021] [Accepted: 04/22/2021] [Indexed: 01/19/2023]
Abstract
Receptor activator of NF-κB (RANK) expression is increased in podocytes of patients with diabetic nephropathy. However, the relevance of RANK to diabetic nephropathy pathobiology remains unclear. Here, to evaluate the role of podocyte RANK in the development of diabetic nephropathy, we generated a mouse model of podocyte-specific RANK depletion (RANK-/-Cre T), and a model of podocyte-specific RANK overexpression (RANK TG), and induced diabetes in these mice with streptozotocin. We found that podocyte RANK depletion alleviated albuminuria, mesangial matrix expansion, and basement membrane thickening, while RANK overexpression aggravated these indices in streptozotocin-treated mice. Moreover, streptozotocin-triggered oxidative stress was increased in RANK overexpression but decreased in the RANK depleted mice. Particularly, the expression of NADPH oxidase 4, and its obligate partner, P22phox, were enhanced in RANK overexpression, but reduced in RANK depleted mice. In parallel, the transcription factor p65 was increased in the podocyte nuclei of RANK overexpressing mice but decreased in the RANK depleted mice. The relevant findings were largely replicated with high glucose-treated podocytes in vitro. Mechanistically, p65 could bind to the promoter regions of NADPH oxidase 4 and P22phox, and increased their respective gene promoter activity in podocytes, dependent on the levels of RANK. Taken together, these findings suggested that high glucose induced RANK in podocytes and caused the increase of NADPH oxidase 4 and P22phox via p65, possibly together with the cytokines TNF- α, MAC-2 and IL-1 β, resulting in podocyte injury. Thus, we found that podocyte RANK was induced in the diabetic milieu and RANK mediated the development of diabetic nephropathy, likely by promoting glomerular oxidative stress and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Guibao Ke
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xueqin Chen
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ruyi Liao
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lixia Xu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hong Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Sujuan Kuang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yue Du
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Juan Hu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhiwen Lian
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Caoshuai Dou
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Qianmei Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xingchen Zhao
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Fengxia Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Shuangshuang Zhu
- Department of Renal Pathology, King Medical Diagnostics Center, Guangzhou, Guangdong, China
| | - Jianchao Ma
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhuo Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Sijia Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Chaosheng He
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xia Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingzhen Wen
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhonglin Feng
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Minghao Zheng
- School of Surgery (Orthopaedics), University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Ting Lin
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Bohou Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Wei Dong
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Wenjian Wang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Chunyu Deng
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Houqin Xiao
- Department of Nephrology, Binhaiwan Central Hospital, Dongguan, Guangdong, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Wei Shi
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Lee HW, Gu MJ, Lee JY, Lee S, Kim Y, Ha SK. Methylglyoxal-Lysine Dimer, an Advanced Glycation End Product, Induces Inflammation via Interaction with RAGE in Mesangial Cells. Mol Nutr Food Res 2021; 65:e2000799. [PMID: 33890707 DOI: 10.1002/mnfr.202000799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/15/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Advanced glycation end products (AGEs) and receptor of advanced glycation end products (RAGE) mediate renal function during diabetic and non-diabetic nephropathy development. Methylglyoxal-lysine dimer (MOLD), a typical toxic advanced glycation end product (TAGE), contributes to inflammatory responses during renal diseases. This study determines the effect of MOLD on inflammatory responses in mouse mesangial cells. METHODS AND RESULTS The murine mesangial cell line SV40 MES 13 is used to assess nuclear factor-kappa B (NF-κB) expression, reactive oxygen species (ROS) production, and mitochondria labeling. The interaction model between RAGE and MOLD is also determined. MOLD treatment of mesangial cells markedly increases RAGE expression and the linkage with V-type Ig domain of RAGE. MOLD induces ROS production and mitochondrial dysfunction. MOLD activates phosphatidylinositol 3-kinase-protein kinase B (PI3KB) and NF-κB signaling pathways. It is confirmed that these changes are reversed when ROS is suppressed. These effects may be regulated through mitogen-activated protein kinases and pro-inflammatory cytokines in circulatory inflammation responses. CONCLUSION MOLD plays a major role in nephropathy via ROS production and mitochondrial dysfunction through direct association with RAGE. Further, the NF-kB and PI3K/AKT signaling pathways triggered by ROS mediate the inflammatory response to exacerbate MOLD-induced damages in inflammation-related diabetic and non-diabetic renal diseases.
Collapse
Affiliation(s)
- Hee-Weon Lee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Min Ji Gu
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Jee-Young Lee
- Molecular Design Team, New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Seungju Lee
- Molecular Design Team, New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Yoonsook Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea.,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
8
|
Cheng TH, Ma MC, Liao MT, Zheng CM, Lu KC, Liao CH, Hou YC, Liu WC, Lu CL. Indoxyl Sulfate, a Tubular Toxin, Contributes to the Development of Chronic Kidney Disease. Toxins (Basel) 2020; 12:E684. [PMID: 33138205 PMCID: PMC7693919 DOI: 10.3390/toxins12110684] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Indoxyl sulfate (IS), a uremic toxin, causes chronic kidney disease (CKD) progression via its tubulotoxicity. After cellular uptake, IS directly induces apoptotic and necrotic cell death of tubular cells. Additionally, IS increases oxidative stress and decreases antioxidant capacity, which are associated with tubulointerstitial injury. Injured tubular cells are a major source of transforming growth factor-β1 (TGF-β1), which induces myofibroblast transition from residual renal cells in damaged kidney, recruits inflammatory cells and thereby promotes extracellular matrix deposition in renal fibrosis. Moreover, IS upregulates signal transducers and activators of transcription 3 phosphorylation, followed by increases in TGF-β1, monocyte chemotactic protein-1 and α-smooth muscle actin production, which participate in interstitial inflammation, renal fibrosis and, consequently, CKD progression. Clinically, higher serum IS levels are independently associated with renal function decline and predict all-cause mortality in CKD. The poor removal of serum IS in conventional hemodialysis is also significantly associated with all-cause mortality and heart failure incidence in end-stage renal disease patients. Scavenging the IS precursor by AST-120 can markedly reduce tubular IS staining that attenuates renal tubular injury, ameliorates IS-induced oxidative stress and rescues antioxidant glutathione activity in tubular epithelial cells, thereby providing a protective role against tubular injury and ultimately retarding renal function decline.
Collapse
Affiliation(s)
- Tong-Hong Cheng
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Ming-Chieh Ma
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan;
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei 235, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan;
| | - Chun-Hou Liao
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Divisions of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei 23148, Taiwan
| | - Yi-Chou Hou
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei 234, Taiwan
| | - Wen-Chih Liu
- Division of Nephrology, Department of Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei 242, Taiwan;
| | - Chien-Lin Lu
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei 242, Taiwan
| |
Collapse
|
9
|
Younis NN, Elsherbiny NM, Shaheen MA, Elseweidy MM. Modulation of NADPH oxidase and Nrf2/HO-1 pathway by vanillin in cisplatin-induced nephrotoxicity in rats. J Pharm Pharmacol 2020; 72:1546-1555. [PMID: 32746497 DOI: 10.1111/jphp.13340] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the protective effect of vanillin in cisplatin (CP)-induced nephrotoxicity in rats and elucidate the role of nrf-2 and its downstream antioxidant molecules. METHODS Rats received vanillin (100 mg/kg orally) for 10 constitutive days and CP (7.5 mg/kg, once, ip) on day 6 of vanillin administration. KEY FINDINGS Cisplatin suppressed body weight gain, increased serum urea and creatinine and renal malondialdehyde and nitric oxide while decreased renal total antioxidant capacity. Up-regulation of NADPH oxidase-4 (NOX-4) was marked in renal tissue of CP-treated rats along with down-regulation of the antioxidant genes (nuclear factor erythroid 2-related factor2 (NRF2) and haem oxygenase-1(HO-1)). Increased tumour necrosis factor-α and decreased interleukin-10 with increased myeloperoxidase activity were apparent in renal tissue of CP-treated rats along with marked tubular injury, neutrophil infiltration and increased apoptosis (caspase-3) and some degree of interstitial fibrosis. Vanillin prophylactic administration prevented the deterioration of kidney function, oxidative and nitrosative stress. It also suppressed NOX-4 and up-regulated NRF2 and HO-1 expression in renal tissue. Inflammation, apoptosis and tubular injury were also inhibited by vanillin. CONCLUSIONS The antioxidant mechanism by which vanillin protected against CP-induced nephrotoxicity involved the inhibition of NOX-4 along with the stimulation of Nrf2/HO-1 signalling pathway. These in turn inhibited inflammation and apoptosis.
Collapse
Affiliation(s)
- Nahla N Younis
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nehal M Elsherbiny
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed A Shaheen
- Histology and Cell Biology department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M Elseweidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Cho S, Yu SL, Kang J, Jeong BY, Lee HY, Park CG, Yu YB, Jin DC, Hwang WM, Yun SR, Song HS, Park MH, Yoon SH. NADPH oxidase 4 mediates TGF-β1/Smad signaling pathway induced acute kidney injury in hypoxia. PLoS One 2019; 14:e0219483. [PMID: 31318905 PMCID: PMC6638919 DOI: 10.1371/journal.pone.0219483] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/25/2019] [Indexed: 01/22/2023] Open
Abstract
Hypoxia is an important cause of acute kidney injury (AKI) in various conditions because kidneys are one of the most susceptible organs to hypoxia. In this study, we investigated whether nicotinamide adenine dinucleotide 3-phosphate (NADPH) oxidase 4 (Nox4) plays a role in hypoxia induced AKI in a cellular and animal model. Expression of Nox4 in cultured human renal proximal tubular epithelial cells (HK-2) was significantly increased by hypoxic stimulation. TGF-β1 was endogenously secreted by hypoxic HK-2 cells. SB4315432 (a TGF-β1 receptor I inhibitor) significantly inhibited Nox4 expression in HK-2 cells through the Smad-dependent cell signaling pathway. Silencing of Nox4 using Nox4 siRNA and pharmacologic inhibition with GKT137831 (a specific Nox1/4 inhibitor) reduced the production of ROS and attenuated the apoptotic pathway. In addition, knockdown of Nox4 increased cell survival in hypoxic HK-2 cells and pretreatment with GKT137831 reproduce these results. This study demonstrates that hypoxia induces HK-2 cell apoptosis through a signaling pathway involving TGF-β1 via Smad pathway induction of Nox4-dependent ROS generation. In an ischemia/reperfusion rat model, pretreatment of GKT137831 attenuated ischemia/reperfusion induced acute kidney injury as indicated by preserved kidney function, attenuated renal structural damage and reduced apoptotic cells. Therapies targeting Nox4 may be effective against hypoxia-induced AKI.
Collapse
Affiliation(s)
- Sungkwon Cho
- Division of Nephrology and Department of Internal Medicine, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Seong-Lan Yu
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jaeku Kang
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Bo Young Jeong
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Chang Gyo Park
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Young-Bin Yu
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, Republic of Korea
| | - Dong-Chan Jin
- Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won-Min Hwang
- Division of Nephrology and Department of Internal Medicine, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Sung-Ro Yun
- Division of Nephrology and Department of Internal Medicine, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Ho Seung Song
- Department of Pathology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Moon Hyang Park
- Department of Pathology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Se-Hee Yoon
- Division of Nephrology and Department of Internal Medicine, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Yao Y, Hu X, Feng X, Zhao Y, Song M, Wang C, Fan H. Dexmedetomidine alleviates lipopolysaccharide-induced acute kidney injury by inhibiting the NLRP3 inflammasome activation via regulating the TLR4/NOX4/NF-κB pathway. J Cell Biochem 2019; 120:18509-18523. [PMID: 31243816 DOI: 10.1002/jcb.29173] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
Dexmedetomidine (DEX) prevents kidney damage caused by sepsis, but the mechanism of this effect remains unclear. In this study, the protective molecular mechanism of DEX in lipopolysaccharide (LPS)-induced acute kidney injury was investigated and its potential pharmacological targets from the perspective of inhibiting oxidative stress damage and the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation. Intraperitoneal injection of DEX (30 μg/kg) significantly improved LPS (10 mg/kg) induced renal pathological damage and renal dysfunction. DEX also ameliorated oxidative stress damage by reducing the contents of reactive oxygen species, malondialdehyde and hydrogen peroxide, and increasing the level of glutathione, as well as the activity of superoxide dismutase and catalase. In addition, DEX prevented nuclear factor-kappa B (NF-κB) activation and I-kappa B (IκB) phosphorylation, as well as the expressions of NLRP3 inflammasome-associated protein and downstream IL-18 and IL-1β. The messengerRNA (mRNA) and protein expressions of toll-like receptor 4 (TLR4), NADPH oxidase-4 (NOX4), NF-κB, and NLRP3 were also significantly reduced by DEX. Their expressions were further evaluated by immunohistochemistry, yielding results were consistent with the results of mRNA and protein detection. Interestingly, the protective effects of DEX were reversed by atipamezole-an alpha 2 adrenal receptor (α2 AR) inhibitor, whereas idazoxan-an imidazoline receptor (IR) inhibitor failed to reverse this change. In conclusion, DEX attenuated LPS-induced AKI by inhibiting oxidative stress damage and NLRP3 inflammasome activation via regulating the TLR4/NOX4/NF-κB pathway, mainly acting on the α2 AR rather than IR.
Collapse
Affiliation(s)
- Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Manyu Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chaoran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,College of Veterinary Medicine, Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| |
Collapse
|
12
|
Jeong BY, Park SR, Cho S, Yu SL, Lee HY, Park CG, Kang J, Jung DY, Park MH, Hwang WM, Yun SR, Jung JY, Yoon SH. TGF-β-mediated NADPH oxidase 4-dependent oxidative stress promotes colistin-induced acute kidney injury. J Antimicrob Chemother 2019; 73:962-972. [PMID: 29329393 DOI: 10.1093/jac/dkx479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/17/2017] [Indexed: 11/14/2022] Open
Abstract
Background Colistin (polymyxin E) is an important constituent of the polymyxin class of cationic polypeptide antibiotics. Intrarenal oxidative stress can contribute to colistin-induced nephrotoxicity. Nicotinamide adenine dinucleotide 3-phosphate oxidases (Noxs) are important sources of reactive oxygen species. Among the various types of Noxs, Nox4 is predominantly expressed in the kidney. Objectives We investigated the role of Nox4 and benefit of Nox4 inhibition in colistin-induced acute kidney injury using in vivo and in vitro models. Methods Human proximal tubular epithelial (HK-2) cells were treated with colistin with or without NOX4 knockdown, or GKT137831 (most specific Nox1/4 inhibitor). Effects of Nox4 inhibition on colistin-induced acute kidney injury model in Sprague-Dawley rats were examined. Results Nox4 expression in HK-2 cells significantly increased following colistin exposure. SB4315432 (transforming growth factor-β1 receptor I inhibitor) significantly inhibited Nox4 expression in HK-2 cells. Knockdown of NOX4 transcription reduced reactive oxygen species production, lowered the levels of pro-inflammatory markers (notably mitogen-activated protein kinases) implicated in colistin-induced nephrotoxicity and attenuated apoptosis by altering Bax and caspase 3/7 activity. Pretreatment with GKT137831 replicated these effects mediated by downregulation of mitogen-activated protein kinase activities. In a rat colistin-induced acute kidney injury model, administration of GKT137831 resulted in attenuated colistin-induced acute kidney injury as indicated by attenuated impairment of glomerulus function, preserved renal structures, reduced expression of 8-hydroxyguanosine and fewer apoptotic cells. Conclusions Collectively, these findings identify Nox4 as a key source of reactive oxygen species responsible for kidney injury in colistin-induced nephrotoxicity and highlight a novel potential way to treat drug-related nephrotoxicity.
Collapse
Affiliation(s)
- Bo Young Jeong
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea
| | - Se-Ra Park
- Department of Veterinary Medicine, Institute of Veterinary Science, Chungnam National University, Daejeon, Korea
| | - Sungkwon Cho
- Division of Nephrology and Department of Internal Medicine, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Korea
| | - Seong-Lan Yu
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea
| | - Chang Gyo Park
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea
| | - Jaeku Kang
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea
| | - Da-Young Jung
- Department of Veterinary Medicine, Institute of Veterinary Science, Chungnam National University, Daejeon, Korea
| | - Moon Hyang Park
- Department of Pathology, College of Medicine, Konyang University, Daejeon, Korea
| | - Won-Min Hwang
- Division of Nephrology and Department of Internal Medicine, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Korea
| | - Sung-Ro Yun
- Division of Nephrology and Department of Internal Medicine, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Korea
| | - Ju-Young Jung
- Department of Veterinary Medicine, Institute of Veterinary Science, Chungnam National University, Daejeon, Korea
| | - Se-Hee Yoon
- Division of Nephrology and Department of Internal Medicine, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Korea
| |
Collapse
|
13
|
Tomar N, Sadri S, Cowley AW, Yang C, Quryshi N, Pannala VR, Audi SH, Dash RK. A thermodynamically-constrained mathematical model for the kinetics and regulation of NADPH oxidase 2 complex-mediated electron transfer and superoxide production. Free Radic Biol Med 2019; 134:581-597. [PMID: 30769160 PMCID: PMC6588456 DOI: 10.1016/j.freeradbiomed.2019.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/28/2022]
Abstract
Reactive oxygen species (ROS) play an important role in cell signaling, growth, and immunity. However, when produced in excess, they are toxic to the cell and lead to premature aging and a myriad of pathologies, including cardiovascular and renal diseases. A major source of ROS in many cells is the family of NADPH oxidase (NOX), comprising of membrane and cytosolic components. NOX2 is among the most widely expressed and well-studied NOX isoform. Although details on the NOX2 structure, its assembly and activation, and ROS production are well elucidated experimentally, there is a lack of a quantitative and integrative understanding of the kinetics of NOX2 complex, and the various factors such as pH, inhibitory drugs, and temperature that regulate the activity of this oxidase. To this end, we have developed here a thermodynamically-constrained mathematical model for the kinetics and regulation of NOX2 complex based on diverse published experimental data on the NOX2 complex function in cell-free and cell-based assay systems. The model incorporates (i) thermodynamics of electron transfer from NADPH to O2 through different redox centers of the NOX2 complex, (ii) dependence of the NOX2 complex activity upon pH and temperature variations, and (iii) distinct inhibitory effects of different drugs on the NOX2 complex activity. The model provides the first quantitative and integrated understanding of the kinetics and regulation of NOX2 complex, enabling simulation of diverse experimental data. The model also provides several novel insights into the NOX2 complex function, including alkaline pH-dependent inhibition of the NOX2 complex activity by its reaction product NADP+. The model provides a mechanistic framework for investigating the critical role of NOX2 complex in ROS production and its regulation of diverse cellular functions in health and disease. Specifically, the model enables examining the effects of specific targeting of various enzymatic sources of pathological ROS which could overcome the limitations of pharmacological efforts aimed at scavenging ROS which has resulted in poor outcomes of antioxidant therapies in clinical studies.
Collapse
Affiliation(s)
- Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nabeel Quryshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Venkat R Pannala
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53223, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53223, USA.
| |
Collapse
|
14
|
Andrade-Guel M, Cabello-Alvarado C, Cruz-Delgado VJ, Bartolo-Perez P, De León-Martínez PA, Sáenz-Galindo A, Cadenas-Pliego G, Ávila-Orta CA. Surface Modification of Graphene Nanoplatelets by Organic Acids and Ultrasonic Radiation for Enhance Uremic Toxins Adsorption. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E715. [PMID: 30823647 PMCID: PMC6427473 DOI: 10.3390/ma12050715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Ultrasound energy is a green and economically viable alternative to conventional techniques for surface modification of materials. The main benefits of this technique are the decrease of processing time and the amount of energy used. In this work, graphene nanoplatelets were treated with organic acids under ultrasonic radiation of 350 W at different times (30 and 60 min) aiming to modify their surface with functional acid groups and to improve the adsorption of uremic toxins. The modified graphene nanoplatelets were characterized by Fourier transform infrared spectroscopy (FT⁻IR), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The optimum time for modification with organic acids was 30 min. The modified nanoplatelets were tested as adsorbent material for uremic toxins using the equilibrium isotherms where the adsorption isotherm of urea was adjusted for the Langmuir model. From the solution, 75% of uremic toxins were removed and absorbed by the modified nanoplatelets.
Collapse
Affiliation(s)
- M Andrade-Guel
- Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Saltillo 25294, Mexico.
| | - C Cabello-Alvarado
- CONACYT-Consorcio de Investigación Científica, Tecnológica y de Innovación del Estado de Tlaxcala, Tlaxcala 90000, Mexico.
| | - V J Cruz-Delgado
- CONACYT-Unidad de Materiales, Centro de Investigación Científica de Yucatán, A.C., Mérida 97205, Mexico.
| | - P Bartolo-Perez
- Centro de investigación y de Estudios Avanzados del IPN-Unidad Mérida, Departamento de Física Aplicada, Mérida 97310, Mexico.
| | - P A De León-Martínez
- Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Saltillo 25280, Mexico.
| | - A Sáenz-Galindo
- Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Saltillo 25280, Mexico.
| | - G Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Saltillo 25294, Mexico.
| | - C A Ávila-Orta
- Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Saltillo 25294, Mexico.
| |
Collapse
|
15
|
Ma TK, Xu L, Lu LX, Cao X, Li X, Li LL, Wang X, Fan QL. Ursolic Acid Treatment Alleviates Diabetic Kidney Injury By Regulating The ARAP1/AT1R Signaling Pathway. Diabetes Metab Syndr Obes 2019; 12:2597-2608. [PMID: 31849504 PMCID: PMC6910094 DOI: 10.2147/dmso.s222323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE This study aimed to investigate whether ursolic acid (UA) mitigates renal inflammation, oxidative stress and fibrosis by regulating the angiotensin II type 1 receptor-associated protein (ARAP1)/angiotensin II type 1 receptor (AT1R) signaling pathway and subsequently alleviating renal damage. METHODS db/db mice were divided randomly into a diabetic nephropathy (DN) group and a UA treatment group. Light microscopy and electron microscopy were used to observe pathological changes in renal tissues. Immunohistochemistry (IHC) was employed to examine changes in the expression of ARAP1, AT1R, 8-hydroxydeoxyguanosine (8-OHdG), NADPH oxidase 2 (NOX2), the extracellular matrix protein fibronectin (FN), IL-1β and IL-18 in renal tissues. Western blotting and RT-qPCR were used to detect the respective changes in the protein and mRNA levels of ARAP1, AT1R, NOX4, NOX2, transforming growth factor-β1 (TGF-β1), FN, collagen IV, IL-1β and IL-18 in renal tissues and mesangial cells. In addition, immunofluorescence staining was employed to examine changes in FN and NOX2 expression in mesangial cells. RESULTS UA treatment effectively reduced the body weights and blood glucose levels of db/db mice (p<0.05) as well as the urinary albumin/creatinine ratio (p<0.05). In addition, the renal tissue lesions and glomerulosclerosis index of the db/db mice were significantly improved after treatment (p<0.01). Histochemical analysis results showed significantly lower expression levels of ARAP1, AT1R, FN, NOX2, 8-OHdG, IL-1β and IL-18 in renal tissues in the UA treatment group than in the DN group. Western blotting and RT-qPCR data also revealed UA-induced decreases in the renal levels of the ARAP1, AT1, NOX4, NOX2, TGF-β1, FN, collagen IV, IL-1β and IL-18 proteins in vivo and/or in vitro (p<0.01). ARAP1 knockdown effectively reduced the expression of NOX2 and FN in vitro. CONCLUSION UA alleviated renal damage in type 2 diabetic db/db mice by downregulating proteins in the ARAP1/AT1R signaling pathway to inhibit extracellular matrix accumulation, renal inflammation, fibrosis and oxidative stress.
Collapse
Affiliation(s)
- Tian-Kui Ma
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Li Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
- Department of Clinical Laboratories, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Ling-Xu Lu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
- The First Respiratory Department, General Hospital of Fushun Mining Bureau, Fushun, Liaoning, People’s Republic of China
| | - Xu Cao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xin Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Lu-Lu Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xu Wang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Qiu-Ling Fan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
- Correspondence: Qiu-Ling Fan Email
| |
Collapse
|
16
|
Yang Q, Wu FR, Wang JN, Gao L, Jiang L, Li HD, Ma Q, Liu XQ, Wei B, Zhou L, Wen J, Ma TT, Li J, Meng XM. Nox4 in renal diseases: An update. Free Radic Biol Med 2018; 124:466-472. [PMID: 29969717 DOI: 10.1016/j.freeradbiomed.2018.06.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species derived from NADPH oxidase contribute to a wide variety of renal diseases. Nox4, the major NADPH isoform in kidney, produces mainly H2O2 that regulates physiological functions. Nox4 contributes to redox processes involved in diabetic nephropathy, acute kidney injury, obstructive nephropathy, hypertensive nephropathy, renal cell carcinoma and other renal diseases by activating multiple signaling pathways. Although Nox4 is found in a variety of cell types, including epithelial cells, podocytes, mesangial cells, endothelial cells and fibroblasts, its role is not clear and even controversial. In some conditions, Nox4 protects cells by promoting cell survival in response to harmful stimuli. In other scenarios it induces cell apoptosis, inflammation or fibrogenesis. This functional variability may be attributed to distinct cell types, subcellular localization, molecular concentrations, disease type or stage, and other factors yet unexplored. In this setting, we reviewed the function and mechanism of Nox4 in renal diseases, highlighted the contradictions in Nox4 literature, and discussed promising therapeutic strategies targeting Nox4 in the treatment of certain types of renal diseases.
Collapse
Affiliation(s)
- Qin Yang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Fan-Rong Wu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jia-Nan Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Li Gao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ling Jiang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Di Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Qiuying Ma
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xue-Qi Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Biao Wei
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Luyu Zhou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jiagen Wen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China
| | - Tao Tao Ma
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China.
| |
Collapse
|
17
|
Mitochondrial bioenergetics, redox state, dynamics and turnover alterations in renal mass reduction models of chronic kidney diseases and their possible implications in the progression of this illness. Pharmacol Res 2018; 135:1-11. [PMID: 30030169 DOI: 10.1016/j.phrs.2018.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/13/2023]
Abstract
Nowadays, chronic kidney disease (CKD) is considered a worldwide public health problem. CKD is a term used to describe a set of pathologies that structurally and functionally affect the kidney, it is mostly characterized by the progressive loss of kidney function. Current therapeutic approaches are insufficient to avoid the development of this disease, which highlights the necessity of developing new strategies to reverse or at least delay CKD progression. Kidney is highly dependent on mitochondrial homeostasis and function, consequently, the idea that mitochondrial pathologies could play a pivotal role in the genesis and development of kidney diseases has risen. Although many research groups have recently published studies of mitochondrial function in acute kidney disease models, the existing information about CKD is still limited, especially in renal mass reduction (RMR) models. This paper focuses on reviewing current experimental information about the bioenergetics, dynamics (fission and fusion processes), turnover (mitophagy and biogenesis) and redox mitochondrial alterations in RMR, to discuss and integrate the mitochondrial changes triggered by nephron loss, as well as its relationship with loss of kidney function in CKD, in these models. Understanding these mechanisms would allow us to design new therapies that target these mitochondrial alterations.
Collapse
|
18
|
Abstract
In chronic kidney disease (CKD), influx of urea and other retained toxins exerts a change in the gut microbiome. There is decreased number of beneficial bacteria that produce short-chain fatty acids, an essential nutrient for the colonic epithelium, concurrent with an increase in bacteria that produce uremic toxins such as indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide (TMAO). Due to intestinal wall inflammation and degradation of intercellular tight junctions, gut-derived uremic toxins translocate into the bloodstream and exert systemic effects. In this review, we discuss the evidence supporting a role for gut-derived uremic toxins in promoting multiorgan dysfunction via inflammatory, oxidative stress, and apoptosis pathways. End-organ effects include vascular calcification, kidney fibrosis, anemia, impaired immune system, adipocyte dysfunction with insulin resistance, and low turnover bone disease. Higher blood levels of gut-derived uremic toxins are associated with increased cardiovascular events and mortality in the CKD population. Clinical trials that have examined interventions to trap toxic products or reverse gut microbial dysbiosis via oral activated charcoal AST-120, prebiotics and probiotics have not shown impact on cardiovascular or survival outcomes but were limited by sample size and short trials. In summary, the gut microbiome is a major contributor to adverse cardiovascular outcomes and progression of CKD.
Collapse
|
19
|
Abstract
The mechanism by which TSC2 inactivation or deficiency contributes to the pathology of tuberous sclerosis complex (TSC) is not fully clear. We show that renal angiomyolipomas from TSC patients and kidney cortex from Tsc2+/− mice exhibit elevated levels of reactive oxygen species (ROS). Downregulation of tuberin (protein encoded by TSC2 gene) in renal proximal tubular epithelial cells significantly increased ROS concomitant with enhanced Nox4. Similarly, we found elevated levels of Nox4 in the renal cortex of Tsc2+/− mice and in the renal angiomyolipomas from TSC patients. Tuberin deficiency is associated with activation of mTORC1. Rapamycin, shRNAs targeting raptor, or inhibition of S6 kinase significantly inhibited the expression of Nox4, resulting in attenuation of production of ROS in tuberin-downregulated proximal tubular epithelial cells. In contrast, activation of mTORC1 increased Nox4 and ROS. These results indicate that Nox4 may be a potential target for tuberin-deficiency-derived diseases. Using a xenograft model from tuberin-null tubular cells in nude mice, both anti-sense Nox4 and GKT137831, a specific inhibitor of Nox1/4, significantly inhibited the tumor growth. Thus, our results demonstrate the presence of an antagonistic relationship between tuberin and Nox4 to drive oncogenesis in the tuberin deficiency syndrome and identify Nox4 as a target to develop a therapy for TSC.
Collapse
|
20
|
Liu Y, Li J, Yu J, Wang Y, Lu J, Shang EX, Zhu Z, Guo J, Duan J. Disorder of gut amino acids metabolism during CKD progression is related with gut microbiota dysbiosis and metagenome change. J Pharm Biomed Anal 2018; 149:425-435. [DOI: 10.1016/j.jpba.2017.11.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/29/2022]
|
21
|
Oxidative stress caused by activation of NADPH oxidase 4 promotes contrast-induced acute kidney injury. PLoS One 2018; 13:e0191034. [PMID: 29329317 PMCID: PMC5766150 DOI: 10.1371/journal.pone.0191034] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/27/2017] [Indexed: 11/20/2022] Open
Abstract
Contrast-induced acute kidney injury (CIAKI) is a leading cause of acute kidney injury following radiographic procedures. Intrarenal oxidative stress plays a critical role in CIAKI. Nicotinamide adenine dinucleotide 3-phosphate (NADPH) oxidases (Noxs) are important sources of reactive oxygen species (ROS). Among the various types of Noxs, Nox4 is expressed predominantly in the kidney in rodents. Here, we evaluated the role of Nox4 and benefit of Nox4 inhibition on CIAKI using in vivo and in vitro models. HK-2 cells were treated with iohexol, with or without Nox4 knockdown, or the most specific Nox1/4 inhibitor (GKT137831). Effects of Nox4 inhibition on CIAKI mice were examined. Expression of Nox4 in HK-2 cells was significantly increased following iohexol exposure. Silencing of Nox4 rescued the production of ROS, downregulated pro-inflammatory markers (particularly phospho-p38) implicated in CIAKI, and reduced Bax and caspase 3/7 activity, which resulted in increased cellular survival in iohexol-treated HK-2 cells. Pretreatment with GKT137831 replicated these effects by decreasing levels of phospho-p38. In a CIAKI mouse model, even though the improvement of plasma blood urea nitrogen was unclear, pretreatment with GKT137831 resulted in preserved structure, reduced expression of 8-hydroxy-2'-deoxyguanosine (8OHdG) and kidney injury molecule-1 (KIM-1), and reduced number of TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling)-positive cells. These results suggest Nox4 as a key source of reactive oxygen species responsible for CIAKI and provide a novel potential option for prevention of CIAKI.
Collapse
|
22
|
Aparicio-Trejo OE, Tapia E, Molina-Jijón E, Medina-Campos ON, Macías-Ruvalcaba NA, León-Contreras JC, Hernández-Pando R, García-Arroyo FE, Cristóbal M, Sánchez-Lozada LG, Pedraza-Chaverri J. Curcumin prevents mitochondrial dynamics disturbances in early 5/6 nephrectomy: Relation to oxidative stress and mitochondrial bioenergetics. Biofactors 2017; 43:293-310. [PMID: 27801955 DOI: 10.1002/biof.1338] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/13/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Abstract
Five-sixths nephrectomy (5/6NX) is a widely used model to study the mechanisms leading to renal damage in chronic kidney disease (CKD). However, early alterations on renal function, mitochondrial dynamics, and oxidative stress have not been explored yet. Curcumin is an antioxidant that has shown nephroprotection in 5/6NX-induced renal damage. The aim of this study was to explore the effect of curcumin on early mitochondrial alterations induced by 5/6NX in rats. In isolated mitochondria, 5/6NX-induced hydrogen peroxide production was associated with decreased activity of complexes I and V, decreased activity of antioxidant enzymes, alterations in oxygen consumption and increased MDA-protein adducts. In addition, it was found that 5/6NX shifted mitochondrial dynamics to fusion, which was evidenced by increased optic atrophy 1 and mitofusin 1 (Mfn1) and decreased fission 1 and dynamin-related protein 1 expressions. These data were confirmed by morphological analysis and immunoelectron microscopy of Mfn-1. All the above-described mechanisms were prevented by curcumin. Also, it was found that curcumin prevented renal dysfunction by improving renal blood flow and the total antioxidant capacity induced by 5/6NX. Moreover, in glomeruli and proximal tubules 5/6NX-induced superoxide anion production by uncoupled nitric oxide synthase (NOS) and nicotinamide adenine dinucleotide phosphate oxidase (NOX) dependent way, this latter was associated with increased phosphorylation of serine 304 of p47phox subunit of NOX. In conclusion, this study shows that curcumin pretreatment decreases early 5/6NX-induced altered mitochondrial dynamics, bioenergetics, and oxidative stress, which may be associated with the preservation of renal function. © 2016 BioFactors, 43(2):293-310, 2017.
Collapse
Affiliation(s)
- Omar Emiliano Aparicio-Trejo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Edilia Tapia
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Eduardo Molina-Jijón
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del Instituto Politécnico Nacional (CIIEMAD-IPN), Ciudad de México, 07340, México
| | - Omar Noel Medina-Campos
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Norma Angélica Macías-Ruvalcaba
- Department of Physical Chemistry, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, 14000, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, 14000, Mexico
| | - Fernando E García-Arroyo
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Magdalena Cristóbal
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| |
Collapse
|
23
|
p-Cresyl sulfate is associated with carotid arteriosclerosis in hemodialysis patients and promotes atherogenesis in apoE-/- mice. Kidney Int 2017; 89:439-49. [PMID: 26466319 DOI: 10.1038/ki.2015.287] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/06/2015] [Accepted: 07/24/2015] [Indexed: 01/22/2023]
Abstract
p-Cresyl sulfate (PCS) is a risk factor of cardiovascular disease in patients with chronic kidney disease. Here we tested whether serum PCS levels were related to the rate and evolution of carotid atherosclerosis in hemodialysis patients and identified a potential mechanism. A total of 200 hemodialysis patients were categorized as with or without carotid atherosclerotic plaque and followed for 5 years. Serum PCS levels were found to be higher in patients with than without carotid atherosclerotic plaque and positively correlated with increased total plaque area during follow-up. Multiple logistic regression and mixed effects model analyses showed that serum PCS levels were independently associated with the incidence and progression of carotid atherosclerotic plaque. PCS induced inflammatory factor and adhesion molecule expression in endothelial cells and macrophages. In addition, PCS triggered monocyte-endothelial cell interaction in vitro and in vivo through increased production of reactive oxygen species. Compared with controls, increase of PCS levels produced by gavage promoted atherogenesis in 5/6-nephrectomized apoE-/- mice; a process attenuated by NADPH oxidase inhibitors. Thus, increased serum PCS levels are associated with the occurrence and progression of carotid atherosclerosis in hemodialysis patients and promote atherogenesis through increased reactive oxygen species production.
Collapse
|
24
|
Ma R, Chaudhari S, Li W. Canonical Transient Receptor Potential 6 Channel: A New Target of Reactive Oxygen Species in Renal Physiology and Pathology. Antioxid Redox Signal 2016; 25:732-748. [PMID: 26937558 PMCID: PMC5079416 DOI: 10.1089/ars.2016.6661] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
Abstract
SIGNIFICANCE Regulation of Ca2+ signaling cascade by reactive oxygen species (ROS) is becoming increasingly evident and this regulation represents a key mechanism for control of many fundamental cellular functions. Canonical transient receptor potential (TRPC) 6, a member of Ca2+-conductive channel in the TRPC family, is widely expressed in kidney cells, including glomerular mesangial cells, podocytes, tubular epithelial cells, and vascular myocytes in renal microvasculature. Both overproduction of ROS and dysfunction of TRPC6 channel are involved in renal injury in animal models and human subjects. Although regulation of TRPC channel function by ROS has been well described in other tissues and cell types, such as vascular smooth muscle, this important cell regulatory mechanism has not been fully reviewed in kidney cells. Recent Advances: Accumulating evidence has shown that TRPC6 is a redox-sensitive channel, and modulation of TRPC6 Ca2+ signaling by altering TRPC6 protein expression or TRPC6 channel activity in kidney cells is a downstream mechanism by which ROS induce renal damage. CRITICAL ISSUES This review highlights how recent studies analyzing function and expression of TRPC6 channels in the kidney and their response to ROS improve our mechanistic understanding of oxidative stress-related kidney diseases. FUTURE DIRECTIONS Although it is evident that ROS regulate TRPC6-mediated Ca2+ signaling in several types of kidney cells, further study is needed to identify the underlying molecular mechanism. We hope that the newly identified ROS/TRPC6 pathway will pave the way to new, promising therapeutic strategies to target kidney diseases such as diabetic nephropathy. Antioxid. Redox Signal. 25, 732-748.
Collapse
Affiliation(s)
- Rong Ma
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Sarika Chaudhari
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Weizu Li
- Department of Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
25
|
Okamura DM, Pennathur S. The balance of powers: Redox regulation of fibrogenic pathways in kidney injury. Redox Biol 2015; 6:495-504. [PMID: 26448394 PMCID: PMC4600846 DOI: 10.1016/j.redox.2015.09.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023] Open
Abstract
Oxidative stress plays a central role in the pathogenesis of diverse chronic inflammatory disorders including diabetic complications, cardiovascular disease, aging, and chronic kidney disease (CKD). Patients with moderate to advanced CKD have markedly increased levels of oxidative stress and inflammation that likely contribute to the unacceptable high rates of morbidity and mortality in this patient population. Oxidative stress is defined as an imbalance of the generation of reactive oxygen species (ROS) in excess of the capacity of cells/tissues to detoxify or scavenge them. Such a state of oxidative stress may alter the structure/function of cellular macromolecules and tissues that eventually leads to organ dysfunction. The harmful effects of ROS have been largely attributed to its indiscriminate, stochastic effects on the oxidation of protein, lipids, or DNA but in many instances the oxidants target particular amino acid residues or lipid moieties. Oxidant mechanisms are intimately involved in cell signaling and are linked to several key redox-sensitive signaling pathways in fibrogenesis. Dysregulation of antioxidant mechanisms and overproduction of ROS not only promotes a fibrotic milieu but leads to mitochondrial dysfunction and further exacerbates kidney injury. Our studies support the hypothesis that unique reactive intermediates generated in localized microenvironments of vulnerable tissues such as the kidney activate fibrogenic pathways and promote end-organ damage. The ability to quantify these changes and assess response to therapies will be pivotal in understanding disease mechanisms and monitoring efficacy of therapy.
Collapse
Affiliation(s)
- Daryl M Okamura
- Seattle Children's Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Subramaniam Pennathur
- University of Michigan, Department of Medicine, Division of Nephrology, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Wu P, Wang Y, Davis ME, Zuckerman JE, Chaudhari S, Begg M, Ma R. Store-Operated Ca2+ Channels in Mesangial Cells Inhibit Matrix Protein Expression. J Am Soc Nephrol 2015; 26:2691-702. [PMID: 25788524 DOI: 10.1681/asn.2014090853] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/22/2014] [Indexed: 11/03/2022] Open
Abstract
Accumulation of extracellular matrix derived from glomerular mesangial cells is an early feature of diabetic nephropathy. Ca(2+) signals mediated by store-operated Ca(2+) channels regulate protein production in a variety of cell types. The aim of this study was to determine the effect of store-operated Ca(2+) channels in mesangial cells on extracellular matrix protein expression. In cultured human mesangial cells, activation of store-operated Ca(2+) channels by thapsigargin significantly decreased fibronectin protein expression and collagen IV mRNA expression in a dose-dependent manner. Conversely, inhibition of the channels by 2-aminoethyl diphenylborinate significantly increased the expression of fibronectin and collagen IV. Similarly, overexpression of stromal interacting molecule 1 reduced, but knockdown of calcium release-activated calcium channel protein 1 (Orai1) increased fibronectin protein expression. Furthermore, 2-aminoethyl diphenylborinate significantly augmented angiotensin II-induced fibronectin protein expression, whereas thapsigargin abrogated high glucose- and TGF-β1-stimulated matrix protein expression. In vivo knockdown of Orai1 in mesangial cells of mice using a targeted nanoparticle siRNA delivery system resulted in increased expression of glomerular fibronectin and collagen IV, and mice showed significant mesangial expansion compared with controls. Similarly, in vivo knockdown of stromal interacting molecule 1 in mesangial cells by recombinant adeno-associated virus-encoded shRNA markedly increased collagen IV protein expression in renal cortex and caused mesangial expansion in rats. These results suggest that store-operated Ca(2+) channels in mesangial cells negatively regulate extracellular matrix protein expression in the kidney, which may serve as an endogenous renoprotective mechanism in diabetes.
Collapse
Affiliation(s)
- Peiwen Wu
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Yanxia Wang
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Mark E Davis
- Chemical Engineering, California Institute of Technology, Pasadena, California; and
| | - Jonathan E Zuckerman
- Chemical Engineering, California Institute of Technology, Pasadena, California; and
| | - Sarika Chaudhari
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Malcolm Begg
- Respiratory Therapy Area Unit, Medicines Research Center, GlaxoSmithKline, Stevenage, United Kingdom
| | - Rong Ma
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas;
| |
Collapse
|
27
|
Chao CT, Chiang CK. Uremic toxins, oxidative stress, and renal fibrosis: an interwined complex. J Ren Nutr 2014; 25:155-9. [PMID: 25511523 DOI: 10.1053/j.jrn.2014.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/29/2014] [Indexed: 11/11/2022] Open
Abstract
The prevalence of end-stage renal diseases is currently on the rise globally, and finding the way to curb this tide is urgently needed. Tubulointerstitial fibrosis is a common pathway for essentially all the nephropathy categories known to date, and the manifestations of renal fibrosis include excessive deposition of extracellular matrix with distortion of renal microstructures and functional deterioration. Uremic toxins have been gradually found to play an important role in the development of progressive renal fibrosis, with protein-bound indoxyl sulfate, p-cresol, and p-cresyl sulfate receiving the most attention. However, the contribution of oxidative stress among the pathogenesis of uremic toxins and renal fibrosis has not been evaluated much until recently. In this review, we will discuss about the nature and sources of oxidative stress in the kidney and how uremic toxins use oxidative stress to orchestrate the processes of renal fibrosis.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Kang Chiang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Integrative Diagnostics and Therapeutics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
28
|
Cifuentes-Pagano E, Meijles DN, Pagano PJ. The quest for selective nox inhibitors and therapeutics: challenges, triumphs and pitfalls. Antioxid Redox Signal 2014; 20:2741-54. [PMID: 24070014 PMCID: PMC4026400 DOI: 10.1089/ars.2013.5620] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Numerous studies in animal models and human subjects corroborate that elevated levels of reactive oxygen species (ROS) play a pivotal role in the progression of multiple diseases. As a major source of ROS in many organ systems, the NADPH oxidase (Nox) has become a prime target for therapeutic development. RECENT ADVANCES In recent years, intense efforts have been dedicated to the development of pan- and isoform-specific Nox inhibitors as opposed to antioxidants that proved ineffective in clinical trials. Over the past decade, an array of compounds has been proposed in an attempt to fill this void. CRITICAL ISSUES Although many of these compounds have proven effective as Nox enzyme family inhibitors, isoform specificity has posed a formidable challenge to the scientific community. This review surveys the most prominent Nox inhibitors, and discusses potential isoform specificity, known mechanisms of action, and shortcomings. Some of these inhibitors hold substantial promise as targeted therapeutics. FUTURE DIRECTIONS Increased insight into the mechanisms of action and regulation of this family of enzymes as well as atomic structures of key Nox subunits are expected to give way to a broader spectrum of more potent, efficacious, and specific molecules. These lead molecules will assuredly serve as a basis for drug development aimed at treating a wide array of diseases associated with increased Nox activity.
Collapse
Affiliation(s)
- Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
29
|
Watanabe H. Molecular mechanisms for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection. YAKUGAKU ZASSHI 2014; 133:889-95. [PMID: 23903229 DOI: 10.1248/yakushi.13-00170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic kidney disease (CKD), marked by a progressive loss in renal function, is a leading cause of hemodialysis initiation and cardiovascular disease (CVD). There are currently 13.3 million patients with CKD and 300 thousand patients are currently undergoing hemodialysis in Japan. Therefore, preventing the initiation of dialysis and reducing the risk of cardiovascular death are high-priority issues from the viewpoint of public health and economic implications. Understanding the molecular mechanism responsible for the progression of CKD and cardiovascular damage regarding crosstalk between the kidney and cardiovascular system is an important issue in controlling the pathogenesis of CKD-CVD. However, the mechanisms involved in CKD-CVD are not well understood. This hinders the development of new treatment strategies. We have been investigating the role of protein bound uremic toxins, that are difficult to remove by hemodialysis, on the onset and progression of CKD and CVD. The relationship between their redox properties and the pathogenesis of CKD-CVD was examined. In this review, we focus on two sulfate conjugated uremic toxins, namely, indoxyl sulfate (IS) and p-cresyl sulfate (PCS), and summarize recent studies that provide new insights on the molecular mechanisms responsible for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- Department of Biopharmaceutics, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|