1
|
Al-Aqtash R, Collier DM. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism. Channels (Austin) 2024; 18:2355150. [PMID: 38762911 PMCID: PMC11110710 DOI: 10.1080/19336950.2024.2355150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.
Collapse
Affiliation(s)
- Rua’a Al-Aqtash
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
2
|
Bautista-Pérez R, Franco M. Purinergic Receptor Antagonists: A Complementary Treatment for Hypertension. Pharmaceuticals (Basel) 2024; 17:1060. [PMID: 39204165 PMCID: PMC11357398 DOI: 10.3390/ph17081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
The treatment of hypertension has improved in the last century; attention has been directed to restoring several altered pathophysiological mechanisms. However, regardless of the current treatments, it is difficult to control blood pressure. Uncontrolled hypertension is responsible for several cardiovascular complications, such as chronic renal failure, which is frequently observed in hypertensive patients. Therefore, new approaches that may improve the control of arterial blood pressure should be considered to prevent serious cardiovascular disorders. The contribution of purinergic receptors has been acknowledged in the pathophysiology of hypertension; this review describes the participation of these receptors in the alteration of kidney function in hypertension. Elevated interstitial ATP concentrations are essential for the activation of renal purinergic receptors; this becomes a fundamental pathway that leads to the development and maintenance of hypertension. High ATP levels modify essential mechanisms implicated in the long-term control of blood pressure, such as pressure natriuresis, the autoregulation of the glomerular filtration rate and renal blood flow, and tubuloglomerular feedback responses. Any alteration in these mechanisms decreases sodium excretion. ATP stimulates the release of vasoactive substances, causes renal function to decline, and induces tubulointerstitial damage. At the same time, a deleterious interaction involving angiotensin II and purinergic receptors leads to the deterioration of renal function.
Collapse
Affiliation(s)
- Rocio Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico;
| | - Martha Franco
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico
| |
Collapse
|
3
|
Nespoux J, Monaghan MLT, Jones NK, Stewart K, Denby L, Czopek A, Mullins JJ, Menzies RI, Baker AH, Bailey MA. P2X7 receptor knockout does not alter renal function or prevent angiotensin II-induced kidney injury in F344 rats. Sci Rep 2024; 14:9573. [PMID: 38670993 PMCID: PMC11053004 DOI: 10.1038/s41598-024-59635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
P2X7 receptors mediate immune and endothelial cell responses to extracellular ATP. Acute pharmacological blockade increases renal blood flow and filtration rate, suggesting that receptor activation promotes tonic vasoconstriction. P2X7 expression is increased in kidney disease and blockade/knockout is renoprotective. We generated a P2X7 knockout rat on F344 background, hypothesising enhanced renal blood flow and protection from angiotensin-II-induced renal injury. CRISPR/Cas9 introduced an early stop codon into exon 2 of P2rx7, abolishing P2X7 protein in kidney and reducing P2rx7 mRNA abundance by ~ 60% in bone-marrow derived macrophages. The M1 polarisation response to lipopolysaccharide was unaffected but P2X7 receptor knockout suppressed ATP-induced IL-1β release. In male knockout rats, acetylcholine-induced dilation of the renal artery ex vivo was diminished but not the response to nitroprusside. Renal function in male and female knockout rats was not different from wild-type. Finally, in male rats infused with angiotensin-II for 6 weeks, P2X7 knockout did not reduce albuminuria, tubular injury, renal macrophage accrual, and renal perivascular fibrosis. Contrary to our hypothesis, global P2X7 knockout had no impact on in vivo renal hemodynamics. Our study does not indicate a major role for P2X7 receptor activation in renal vascular injury.
Collapse
Affiliation(s)
- Josselin Nespoux
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Marie-Louise T Monaghan
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Natalie K Jones
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Kevin Stewart
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Laura Denby
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Alicja Czopek
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - John J Mullins
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Robert I Menzies
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Matthew A Bailey
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Lucero CM, Navarro L, Barros-Osorio C, Cáceres-Conejeros P, Orellana JA, Gómez GI. Activation of Pannexin-1 channels causes cell dysfunction and damage in mesangial cells derived from angiotensin II-exposed mice. Front Cell Dev Biol 2024; 12:1387234. [PMID: 38660621 PMCID: PMC11041381 DOI: 10.3389/fcell.2024.1387234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic kidney disease (CKD) is a prevalent health concern associated with various pathological conditions, including hypertensive nephropathy. Mesangial cells are crucial in maintaining glomerular function, yet their involvement in CKD pathogenesis remains poorly understood. Recent evidence indicates that overactivation of Pannexin-1 (Panx1) channels could contribute to the pathogenesis and progression of various diseases. Although Panx1 is expressed in the kidney, its contribution to the dysfunction of renal cells during pathological conditions remains to be elucidated. This study aimed to investigate the impact of Panx1 channels on mesangial cell function in the context of hypertensive nephropathy. Using an Ang II-infused mouse model and primary mesangial cell cultures, we demonstrated that in vivo exposure to Ang II sensitizes cultured mesangial cells to show increased alterations when they are subjected to subsequent in vitro exposure to Ang II. Particularly, mesangial cell cultures treated with Ang II showed elevated activity of Panx1 channels and increased release of ATP. The latter was associated with enhanced basal intracellular Ca2+ ([Ca2+]i) and increased ATP-mediated [Ca2+]i responses. These effects were accompanied by increased lipid peroxidation and reduced cell viability. Crucially, all the adverse impacts evoked by Ang II were prevented by the blockade of Panx1 channels, underscoring their critical role in mediating cellular dysfunction in mesangial cells. By elucidating the mechanisms by which Ang II negatively impacts mesangial cell function, this study provides valuable insights into the pathogenesis of renal damage in hypertensive nephropathy.
Collapse
Affiliation(s)
- Claudia M. Lucero
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Laura Navarro
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristián Barros-Osorio
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Patricio Cáceres-Conejeros
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I. Gómez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
5
|
Liu N, Gong Z, Li Y, Xu Y, Guo Y, Chen W, Sun X, Yin X, Liu W. CTRP3 inhibits myocardial fibrosis through the P2X7R-NLRP3 inflammasome pathway in SHR rats. J Hypertens 2024; 42:315-328. [PMID: 37850974 DOI: 10.1097/hjh.0000000000003591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND PURPOSE Reducing hypertensive myocardial fibrosis is the fundamental approach to preventing hypertensive ventricular remodelling. C1q/TNF-related protein-3 (CTRP3) is closely associated with hypertension. However, the role and mechanism of CTRP3 in hypertensive myocardial fibrosis are unclear. In this study, we aimed to explore the effect of CTRP3 on hypertensive myocardial fibrosis and the potential mechanism. METHODS AND RESULTS WKY and SHR rats were employed, blood pressure, body weight, heart weight, H/BW were measured, and fibrotic-related proteins, CTRP3 and Collagen I were tested in myocardium at 12 and 20 weeks by immunohistochemical staining and Western blotting, respectively. The results showed that compared with the WKY, SBP, DBP, mean arterial pressure and heart rate (HR) were all significantly increased in SHR at 12 and 20 weeks, while heart weight and H/BW were only increased at 20 weeks. Meanwhile, CTRP3 decreased, while Collagen I increased significantly in the SHR rat myocardium at 20 weeks, which compared to the WKY. Moreover, the expression of α-SMA increased from 12 weeks, Collagen I/III and MMP2/9 increased and TIMP-2 decreased until 20 weeks. In order to explore the function and mechanism of CTRP3 in hypertensive fibrosis, Angiotensin II (Ang II) was used to induce hypertension in primary neonatal rat cardiac fibroblasts in vitro . CTRP3 significantly inhibited the Ang II induced activation of fibrotic proteins, purinergic 2X7 receptor (P2X7R)-NLRP3 inflammasome pathway. The P2X7R agonist BzATP significantly exacerbated Ang II-induced NLRP3 inflammasome activation, which was decreased by the P2X7R antagonists A43079, CTRP3 and MCC950. CONCLUSION CTRP3 expression was decreased in the myocardium of SHR rats, and exogenous CTRP3 inhibited Ang II-induced fibrosis in cardiac fibroblasts by regulating the P2X7R-NLRP3 inflammasome pathway, suggesting that CTRP3 is a potential drug for alleviating myocardial fibrosis in hypertensive conditions.
Collapse
Affiliation(s)
- Na Liu
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Zhaowei Gong
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University
| | - Yang Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Yang Xu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Yutong Guo
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Wenjia Chen
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Xue Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Xinhua Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Wenxiu Liu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| |
Collapse
|
6
|
Shokoples BG, Berillo O, Comeau K, Chen HY, Higaki A, Caillon A, Ferreira NS, Engert JC, Thanassoulis G, Paradis P, Schiffrin EL. P2RX7 gene knockout or antagonism reduces angiotensin II-induced hypertension, vascular injury and immune cell activation. J Hypertens 2023; 41:1701-1712. [PMID: 37796207 DOI: 10.1097/hjh.0000000000003520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
OBJECTIVE Extracellular ATP is elevated in hypertensive mice and humans and may trigger immune activation through the purinergic receptor P2X7 (P2RX7) causing interleukin-1β production and T-cell activation and memory T-cell development. Furthermore, P2RX7 single nucleotide polymorphisms (SNP) are associated with hypertension. We hypothesized that P2RX7 activation contributes to hypertension and cardiovascular injury by promoting immune activation. METHODS Male wild-type and P2rx7-/- mice were infused or not with angiotensin II (AngII) for 14 days. A second group of AngII-infused wild-type mice were co-infused with the P2RX7 antagonist AZ10606120 or vehicle. BP was monitored by telemetry. Cardiac and mesenteric artery function and remodeling were assessed using ultrasound and pressure myography, respectively. T cells were profiled in thoracic aorta/perivascular adipose tissue by flow cytometry. Associations between SNPs within 50 kb of P2RX7 transcription, and BP or hypertension were modeled in 384 653 UK Biobank participants. RESULTS P2rx7 inactivation attenuated AngII-induced SBP elevation, and mesenteric artery dysfunction and remodeling. This was associated with decreased perivascular infiltration of activated and effector memory T-cell subsets. Surprisingly, P2rx7 knockout exaggerated AngII-induced cardiac dysfunction and remodeling. Treatment with a P2RX7 antagonist reduced BP elevation, preserved mesenteric artery function and reduced activated and effector memory T cell perivascular infiltration without adversely affecting cardiac function and remodeling in AngII-infused mice. Three P2RX7 SNPs were associated with increased odds of DBP elevation. CONCLUSION P2RX7 may represent a target for attenuating BP elevation and associated vascular damage by decreasing immune activation.
Collapse
Affiliation(s)
- Brandon G Shokoples
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Kevin Comeau
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Hao Yu Chen
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute
| | - Akinori Higaki
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Antoine Caillon
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Nathanne S Ferreira
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - James C Engert
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute
- Department of Medicine, McGill University, Montreal, Canada
| | - George Thanassoulis
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute
- Department of Medicine, McGill University, Montreal, Canada
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
- Department of Medicine, McGill University, Montreal, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital
- Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Sulicka-Grodzicka J, Guzik TJ. The ATP connection: a new therapeutic promise of P2X7 targeting in hypertension and vascular injury. J Hypertens 2023; 41:1696-1698. [PMID: 37796205 DOI: 10.1097/hjh.0000000000003543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Affiliation(s)
- Joanna Sulicka-Grodzicka
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Krakow, Poland
- School of Infection and Immunity, University of Glasgow, Glasgow
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, UK
- Department of Medicine and Omicron Medial Genomics Laboratory, Jagiellonian University, Collegium Medicum, Poland
| |
Collapse
|
8
|
Kulthinee S, Tasanarong A, Franco M, Navar LG. Interaction of Angiotensin II AT1 Receptors with Purinergic P2X Receptors in Regulating Renal Afferent Arterioles in Angiotensin II-Dependent Hypertension. Int J Mol Sci 2023; 24:11413. [PMID: 37511174 PMCID: PMC10380633 DOI: 10.3390/ijms241411413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
In angiotensin II (Ang II)-dependent hypertension, Ang II activates angiotensin II type 1 receptors (AT1R) on renal vascular smooth muscle cells, leading to renal vasoconstriction with eventual glomerular and tubular injury and interstitial inflammation. While afferent arteriolar vasoconstriction is initiated by the increased intrarenal levels of Ang II activating AT1R, the progressive increases in arterial pressure stimulate the paracrine secretion of adenosine triphosphate (ATP), leading to the purinergic P2X receptor (P2XR)-mediated constriction of afferent arterioles. Thus, the afferent arteriolar tone is maintained by two powerful systems eliciting the co-existing activation of P2XR and AT1R. This raises the conundrum of how the AT1R and P2XR can both be responsible for most of the increased renal afferent vascular resistance existing in angiotensin-dependent hypertension. Its resolution implies that AT1R and P2XR share common receptor or post receptor signaling mechanisms which converge to maintain renal vasoconstriction in Ang II-dependent hypertension. In this review, we briefly discuss (1) the regulation of renal afferent arterioles in Ang II-dependent hypertension, (2) the interaction of AT1R and P2XR activation in regulating renal afferent arterioles in a setting of hypertension, (3) mechanisms regulating ATP release and effect of angiotensin II on ATP release, and (4) the possible intracellular pathways involved in AT1R and P2XR interactions. Emerging evidence supports the hypothesis that P2X1R, P2X7R, and AT1R actions converge at receptor or post-receptor signaling pathways but that P2XR exerts a dominant influence abrogating the actions of AT1R on renal afferent arterioles in Ang II-dependent hypertension. This finding raises clinical implications for the design of therapeutic interventions that will prevent the impairment of kidney function and subsequent tissue injury.
Collapse
Affiliation(s)
- Supaporn Kulthinee
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Adis Tasanarong
- Chulabhorn International College of Medicine, Thammasat University, Klong Luang 12120, Thailand
| | - Martha Franco
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - Luis Gabriel Navar
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Purinoceptor: a novel target for hypertension. Purinergic Signal 2023; 19:185-197. [PMID: 35181831 PMCID: PMC9984596 DOI: 10.1007/s11302-022-09852-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Hypertension is the leading cause of morbidity and mortality globally among all cardiovascular diseases. Purinergic signalling plays a crucial role in hypertension through the sympathetic nerve system, neurons in the brain stem, carotid body, endothelium, immune system, renin-angiotensin system, sodium excretion, epithelial sodium channel activity (ENaC), and renal autoregulation. Under hypertension, adenosine triphosphate (ATP) is released as a cotransmitter from the sympathetic nerve. It mediates vascular tone mainly through P2X1R activation on smooth muscle cells and activation of P2X4R and P2YR on endothelial cells and also via interaction with other purinoceptors, showing dual effects. P2Y1R is linked to neurogenic hypertension. P2X7R and P2Y11R are potential targets for immune-related hypertension. P2X3R located on the carotid body is the most promising novel therapeutic target for hypertension. A1R, A2AR, A2BR, and P2X7R are all related to renal autoregulation, which contribute to both renal damage and hypertension. The main focus is on the evidence addressing the involvement of purinoceptors in hypertension and therapeutic interventions.
Collapse
|
10
|
Hypertensive Nephropathy: Unveiling the Possible Involvement of Hemichannels and Pannexons. Int J Mol Sci 2022; 23:ijms232415936. [PMID: 36555574 PMCID: PMC9785367 DOI: 10.3390/ijms232415936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypertension is one of the most common risk factors for developing chronic cardiovascular diseases, including hypertensive nephropathy. Within the glomerulus, hypertension causes damage and activation of mesangial cells (MCs), eliciting the production of large amounts of vasoactive and proinflammatory agents. Accordingly, the activation of AT1 receptors by the vasoactive molecule angiotensin II (AngII) contributes to the pathogenesis of renal damage, which is mediated mostly by the dysfunction of intracellular Ca2+ ([Ca2+]i) signaling. Similarly, inflammation entails complex processes, where [Ca2+]i also play crucial roles. Deregulation of this second messenger increases cell damage and promotes fibrosis, reduces renal blood flow, and impairs the glomerular filtration barrier. In vertebrates, [Ca2+]i signaling depends, in part, on the activity of two families of large-pore channels: hemichannels and pannexons. Interestingly, the opening of these channels depends on [Ca2+]i signaling. In this review, we propose that the opening of channels formed by connexins and/or pannexins mediated by AngII induces the ATP release to the extracellular media, with the subsequent activation of purinergic receptors. This process could elicit Ca2+ overload and constitute a feed-forward mechanism, leading to kidney damage.
Collapse
|
11
|
Zhong W, Wang X, Yang L, Wang Y, Xiao Q, Yu S, Cannon RD, Bai Y, Zhang C, Chen D, Ji P, Gao X, Song J. Nanocarrier-Assisted Delivery of Metformin Boosts Remodeling of Diabetic Periodontal Tissue via Cellular Exocytosis-Mediated Regulation of Endoplasmic Reticulum Homeostasis. ACS NANO 2022; 16:19096-19113. [PMID: 36259964 DOI: 10.1021/acsnano.2c08146] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Endoplasmic reticulum (ER) dysfunction is a potential contributor to the impaired repair capacity of periodontal tissue in diabetes mellitus (DM) patients. Restoring ER homeostasis is thus critical for successful regenerative therapy of diabetic periodontal tissue. Recent studies have shown that metformin can modulate DM-induced ER dysfunction, yet its mechanism remains unclear. Herein, we show that high glucose elevates the intracellular miR-129-3p level due to exocytosis-mediated release failure and subsequently perturbs ER calcium homeostasis via downregulating transmembrane and coiled-coil domain 1 (TMCO1), an ER Ca2+ leak channel, in periodontal ligament stem cells (PDLSCs). This results in the degradation of RUNX2 via the ubiquitination-dependent pathway, in turn leading to impaired PDLSCs osteogenesis. Interestingly, metformin could upregulate P2X7R-mediated exosome release and decrease intracellular miR-129-3p accumulation, which restores ER homeostasis and thereby rescues the impaired PDLSCs. To further demonstrate the in vivo effect of metformin, a nanocarrier for sustained local delivery of metformin (Met@HALL) in periodontal tissue is developed. Our results demonstrate that compared to controls, Met@HALL with enhanced cytocompatibility and pro-osteogenic activity could boost the remodeling of diabetic periodontal tissue in rats. Collectively, our findings unravel a mechanism of metformin in restoring cellular ER homeostasis, enabling the development of a nanocarrier-mediated ER targeting strategy for remodeling diabetic periodontal tissue.
Collapse
Affiliation(s)
- Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xinyan Wang
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Lanxin Yang
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yue Wang
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Qingyue Xiao
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Simin Yu
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Richard D Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Yan Bai
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Duanjing Chen
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
12
|
Genetzakis E, Gilchrist J, Kassiou M, Figtree GA. Development and clinical translation of P2X7 receptor antagonists: A potential therapeutic target in coronary artery disease? Pharmacol Ther 2022; 237:108228. [DOI: 10.1016/j.pharmthera.2022.108228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
|
13
|
Batista Simões JL, Sobierai LD, Pereira SM, Rodrigues Dos Santos MV, Bagatini MD. Therapeutic potential of P2X7 purinergic receptor modulation in the main organs affected by the COVID-19 cytokine storm. Curr Pharm Des 2022; 28:1798-1814. [PMID: 35838210 DOI: 10.2174/1381612828666220713115906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/31/2022] [Indexed: 01/08/2023]
Abstract
Defined by the World Health Organization as a global public health pandemic, coronavirus 2019 (COVID-19) has a global impact and the death of thousands of people. The "severe acute respiratory syndrome coronavirus 2" virus (SARS-CoV-2) is the etiologic agent of this disease, which uses the angiotensin-converting enzyme receptor 2 (ACE2) to infect the body, so any organ that expresses the gene ACE2 is a possible target for the new coronavirus. In addition, in severe cases of COVID-19, a cytokine storm occurs, which triggers widespread systemic inflammation due to the uncontrolled release of proinflammatory cytokines. In this perspective, the modulation of purinergic receptors are highlighted in the literature as a possible therapy, considering its application in other viral infections and systemic inflammation. Therefore, the objective of this review is to gather information on the modulation of the P2X7 receptor in the main organs directly affected by the virus and by the cytokine storm: heart, brain, lung, liver and kidneys. Thus, demonstrating possible therapies for reducing inflammation, as well as reducing the level of morbidity and mortality of COVID-19.
Collapse
|
14
|
Prendecki M, McAdoo SP, Turner‐Stokes T, Garcia‐Diaz A, Orriss I, Woollard KJ, Behmoaras J, Cook HT, Unwin R, Pusey CD, Aitman TJ, Tam FWK. Glomerulonephritis and autoimmune vasculitis are independent of P2RX7 but may depend on alternative inflammasome pathways. J Pathol 2022; 257:300-313. [PMID: 35239186 PMCID: PMC9322550 DOI: 10.1002/path.5890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/09/2022]
Abstract
P2RX7, an ionotropic receptor for extracellular adenosine triphosphate (ATP), is expressed on immune cells, including macrophages, monocytes, and dendritic cells and is upregulated on nonimmune cells following injury. P2RX7 plays a role in many biological processes, including production of proinflammatory cytokines such as interleukin (IL)-1β via the canonical inflammasome pathway. P2RX7 has been shown to be important in inflammation and fibrosis and may also play a role in autoimmunity. We have developed and phenotyped a novel P2RX7 knockout (KO) inbred rat strain and, taking advantage of the human-resembling unique histopathological features of rat models of glomerulonephritis, we induced three models of disease: nephrotoxic nephritis, experimental autoimmune glomerulonephritis, and experimental autoimmune vasculitis. We found that deletion of P2RX7 does not protect rats from models of experimental glomerulonephritis or the development of autoimmunity. Notably, treatment with A-438079, a P2RX7 antagonist, was equally protective in WKY WT and P2RX7 KO rats, revealing its 'off-target' properties. We identified a novel ATP/P2RX7/K+ efflux-independent and caspase-1/8-dependent pathway for the production of IL-1β in rat dendritic cells, which was absent in macrophages. Taken together, these results comprehensively establish that inflammation and autoimmunity in glomerulonephritis is independent of P2RX7 and reveals the off-target properties of drugs previously known as selective P2RX7 antagonists. Rat mononuclear phagocytes may be able to utilise an 'alternative inflammasome' pathway to produce IL-1β independently of P2RX7, which may account for the susceptibility of P2RX7 KO rats to inflammation and autoimmunity in glomerulonephritis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Tabitha Turner‐Stokes
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Ana Garcia‐Diaz
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Isabel Orriss
- Department of Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK,Present address:
Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK,Programme in Cardiovascular and Metabolic Disorders and Centre for Computational Biology, Duke‐NUS Medical School SingaporeSingapore
| | - H Terence Cook
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Robert Unwin
- Department of Renal Medicine, Division of MedicineUniversity College LondonLondonUK,Present address:
Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Timothy J Aitman
- Centre for Genomic & Experimental MedicineInstitute of Genetics and Molecular Medicine, University of EdinburghEdinburghUK
| | - Frederick WK Tam
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| |
Collapse
|
15
|
Uncovering the Protective Mechanism of the Volatile Oil of Acorus tatarinowii against Acute Myocardial Ischemia Injury Using Network Pharmacology and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6630795. [PMID: 34239586 PMCID: PMC8241509 DOI: 10.1155/2021/6630795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Acorus tatarinowii is a traditional aromatic resuscitation drug that can be clinically used to prevent cardiovascular diseases. The volatile oil of Acorus tatarinowii (VOA) possesses important medicinal properties, including protection against acute myocardial ischemia (MI) injury. However, the pharmacodynamic material basis and molecular mechanisms underlying this protective effect remain unclear. Using network pharmacology and animal experiments, we studied the mechanisms and pathways implicated in the activity of VOA against acute MI injury. First, VOA was extracted from three batches of Acorus tatarinowii using steam distillation, and then, its chemical composition was determined by GC-MS. Next, the components-targets and protein-protein interaction networks were constructed using systematic network pharmacology. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were also conducted in order to predict the possible pharmacodynamic mechanisms. Furthermore, animal experiments including ELISAs, histological examinations, and Western blots were performed in order to validate the pharmacological effects of VOA. In total, 33 chemical components were identified in VOA, and ß-asarone was found to be the most abundant component. Based on network pharmacology analysis, the therapeutic effects of VOA against myocardial ischemia might be mediated by signaling pathways involving COX-2, PPAR-α, VEGF, and cAMP. Overall, the obtained results indicate that VOA alleviates the pathological manifestations of isoproterenol-hydrochloride-induced myocardial ischemia in rats, including the decreased SOD (superoxide dismutase) content and increased LDH (lactic dehydrogenase) content. Moreover, the anti-MI effect of VOA might be attributed to the downregulation of the COX-2 protein that inhibits apoptosis, the upregulation of the PPAR-α protein that regulates energy metabolism, and the activation of VEGF and cAMP signaling pathways.
Collapse
|
16
|
Palygin O, Klemens CA, Isaeva E, Levchenko V, Spires DR, Dissanayake LV, Nikolaienko O, Ilatovskaya DV, Staruschenko A. Characterization of purinergic receptor 2 signaling in podocytes from diabetic kidneys. iScience 2021; 24:102528. [PMID: 34142040 PMCID: PMC8188476 DOI: 10.1016/j.isci.2021.102528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023] Open
Abstract
Growing evidence suggests that renal purinergic signaling undergoes significant remodeling during pathophysiological conditions such as diabetes. This study examined the renal P2 receptor profile and ATP-mediated calcium response from podocytes in glomeruli from kidneys with type 1 or type 2 diabetic kidney disease (DKD), using type 2 diabetic nephropathy (T2DN) rats and streptozotocin-injected Dahl salt-sensitive (type 1 diabetes) rats. A dramatic increase in the ATP-mediated intracellular calcium flux in podocytes was observed in both models. Pharmacological inhibition established that P2X4 and P2X7 are the major receptors contributing to the augmented ATP-mediated intracellular calcium signaling in diabetic podocytes. The transition in purinergic receptor composition from metabotropic to ionotropic may disrupt intracellular calcium homeostasis in podocytes resulting in their dysfunction and potentially further aggravating DKD progression. Diabetic podocytes have sustained intracellular Ca2+ signaling in response to ATP Podocyte purinergic receptor signaling is predominantly ionotropic in diabetes Both type 1 and 2 diabetic podocytes have similar purinergic receptor remodeling
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Denisha R Spires
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Lashodya V Dissanayake
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Oksana Nikolaienko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| |
Collapse
|
17
|
Unwin RJ. Purinergic signalling in the kidney - A beginning with Geoffrey Burnstock. Auton Neurosci 2021; 234:102833. [PMID: 34118763 DOI: 10.1016/j.autneu.2021.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
This not an original publication or a current and up-to-date review of purinergic signalling and kidney function, but rather a tribute to Professor Geoffrey Burnstock, written as a short and personal memoir of our early collaborative work together on this topic: our beginnings and the subsequent journey we took with our many valued collaborators along the way.
Collapse
Affiliation(s)
- Robert J Unwin
- Department of Renal Medicine, University College London, UK.
| |
Collapse
|
18
|
Reichert KP, Castro MFV, Assmann CE, Bottari NB, Miron VV, Cardoso A, Stefanello N, Morsch VMM, Schetinger MRC. Diabetes and hypertension: Pivotal involvement of purinergic signaling. Biomed Pharmacother 2021; 137:111273. [PMID: 33524787 PMCID: PMC7846467 DOI: 10.1016/j.biopha.2021.111273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus (DM) and hypertension are highly prevalent worldwide health problems and frequently associated with severe clinical complications, such as diabetic cardiomyopathy, nephropathy, retinopathy, neuropathy, stroke, and cardiac arrhythmia, among others. Despite all existing research results and reasonable speculations, knowledge about the role of purinergic system in individuals with DM and hypertension remains restricted. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. The main components of this system that will be presented in this review are: P1 and P2 receptors and the enzymatic cascade composed by CD39 (NTPDase; with ATP and ADP as a substrate), CD73 (5'-nucleotidase; with AMP as a substrate), and adenosine deaminase (ADA; with adenosine as a substrate). The purinergic system has recently emerged as a central player in several physiopathological conditions, particularly those linked to inflammatory responses such as diabetes and hypertension. Therefore, the present review focuses on changes in both purinergic P1 and P2 receptor expression as well as the activities of CD39, CD73, and ADA in diabetes and hypertension conditions. It can be postulated that the manipulation of the purinergic axis at different levels can prevent or exacerbate the insurgency and evolution of diabetes and hypertension working as a compensatory mechanism.
Collapse
Affiliation(s)
- Karine Paula Reichert
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Milagros Fanny Vera Castro
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Nathieli Bianchin Bottari
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vanessa Valéria Miron
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Andréia Cardoso
- Academic Coordination, Medicine, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Naiara Stefanello
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
19
|
Zhou J, Zhou Z, Liu X, Yin HY, Tang Y, Cao X. P2X7 Receptor-Mediated Inflammation in Cardiovascular Disease. Front Pharmacol 2021; 12:654425. [PMID: 33995071 PMCID: PMC8117356 DOI: 10.3389/fphar.2021.654425] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Purinergic P2X7 receptor, a nonselective cation channel, is highly expressed in immune cells as well as cardiac smooth muscle cells and endothelial cells. Its activation exhibits to mediate nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation, resulting in the release of interleukin-1 beta (IL-1β) and interleukin-18 (IL-18), and pyroptosis, thus triggering inflammatory response. These pathological mechanisms lead to the deterioration of various cardiovascular diseases, including atherosclerosis, arrhythmia, myocardial infarction, pulmonary vascular remodeling, and cardiac fibrosis. All these worsening cardiac phenotypes are proven to be attenuated after the P2X7 receptor inhibition in experimental studies. The present review aimed to summarize key aspects of P2X7 receptor-mediated inflammation and pyroptosis in cardiovascular diseases. The main focus is on the evidence addressing the involvement of the P2X7 receptor in the inflammatory responses to the occurrence and development of cardiovascular disease and therapeutic interventions.
Collapse
Affiliation(s)
- Junteng Zhou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Xiaojing Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Xin Cao
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
20
|
Kanellopoulos JM, Almeida-da-Silva CLC, Rüütel Boudinot S, Ojcius DM. Structural and Functional Features of the P2X4 Receptor: An Immunological Perspective. Front Immunol 2021; 12:645834. [PMID: 33897694 PMCID: PMC8059410 DOI: 10.3389/fimmu.2021.645834] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular nucleotides are important mediators of activation, triggering various responses through plasma membrane P2 and P1 receptors. P2 receptors are further subdivided into ionotropic P2X receptors and G protein-coupled P2Y receptors. P2X4 is an ATP-gated cation channel broadly expressed in most tissues of the body. Within the P2X family, P2X4 has a unique subcellular distribution, being preferentially localized in lysosomes. In these organelles, high ATP concentrations do not trigger P2X4 because of the low pH. However, when the pH increases to 7.4, P2X4 can be stimulated by intra-lysosomal ATP, which is in its active, tetra-anionic form. Elucidation of P2X4, P2X3 and P2X7 structures has shed some light on the functional differences between these purinergic receptors. The potential interaction between P2X4 and P2X7 has been extensively studied. Despite intensive effort, it has not been possible yet to determine whether P2X4 and P2X7 interact as heterotrimers or homotrimers at the plasma membrane. However, several publications have shown that functional interactions between P2X4 and P2X7 do occur. Importantly, these studies indicate that P2X4 potentiates P2X7-dependent activation of inflammasomes, leading to increased release of IL-1β and IL-18. The role of P2X4 in various diseases could be beneficial or deleterious even though the pathophysiological mechanisms involved are still poorly defined. However, in diseases whose physiopathology involves activation of the NLRP3 inflammasome, P2X4 was found to exacerbate severity of disease. The recent production of monoclonal antibodies specific for the human and mouse P2X4, some of which are endowed with agonist or antagonist properties, raises the possibility that they could be used therapeutically. Analysis of single nucleotide polymorphisms of the human P2RX4 gene has uncovered the association of P2RX4 gene variants with susceptibility to several human diseases.
Collapse
Affiliation(s)
- Jean M Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Sirje Rüütel Boudinot
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States
| |
Collapse
|
21
|
Monaghan MLT, Bailey MA, Unwin RJ. Purinergic signalling in the kidney: In physiology and disease. Biochem Pharmacol 2020; 187:114389. [PMID: 33359067 DOI: 10.1016/j.bcp.2020.114389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Historically, the control of renal vascular and tubular function has, for the most part, concentrated on neural and endocrine regulation. However, in addition to these extrinsic factors, it is now appreciated that several complex humoral control systems exist within the kidney that can act in an autocrine and/or paracrine fashion. These paracrine systems complement neuroendocrine regulation by dynamically fine-tuning renal vascular and tubular function to buffer rapid changes in nephron perfusion and flow rate of tubular fluid. One of the most pervasive is the extracellular nucleotide/P2 receptor system, which is central to many of the intrinsic regulatory feedback loops within the kidney such as renal haemodynamic autoregulation and tubuloglomerular feedback (TGF). Although physiological actions of extracellular adenine nucleotides were reported almost 100 years ago, the conceptual framework for purinergic regulation of renal function owes much to the work of Geoffrey Burnstock. In this review, we reflect on our >20-year collaboration with Professor Burnstock and highlight the research that is still unlocking the potential of the renal purinergic system to understand and treat kidney disease.
Collapse
Affiliation(s)
- Marie-Louise T Monaghan
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom
| | - Robert J Unwin
- The Department of Renal Medicine, University College London, United Kingdom.
| |
Collapse
|
22
|
Shokoples BG, Paradis P, Schiffrin EL. P2X7 Receptors: An Untapped Target for the Management of Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2020; 41:186-199. [PMID: 32998520 PMCID: PMC7752223 DOI: 10.1161/atvbaha.120.315116] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic low-grade inflammation contributes to the development of several diseases, including cardiovascular disease. Adequate strategies to target inflammation in cardiovascular disease are in their infancy and remain an avenue of great interest. The purinergic receptor P2X7 is a ubiquitously expressed receptor that predominately mediates inflammation and cellular death. P2X7 is a ligand-gated cation channel that is activated in response to high concentrations of extracellular ATP, triggering the assembly and activation of the NLRP3 (nuclear oligomerization domain like receptor family pyrin domain containing 3) inflammasome and subsequent release of proinflammatory cytokines IL (interleukin)-1β and IL-18. Increased P2X7 activation and IL-1β and IL-18 concentrations have been implicated in the development of many cardiovascular conditions including hypertension, atherosclerosis, ischemia/reperfusion injury, and heart failure. P2X7 receptor KO (knockout) mice exhibit a significant attenuation of the inflammatory response, which corresponds with reduced disease severity. P2X7 antagonism blunts blood pressure elevation in hypertension and progression of atherosclerosis in animal models. IL-1β and IL-18 inhibition has shown efficacy in clinical trials reducing major adverse cardiac events, including myocardial infarction, and heart failure. With several P2X7 antagonists available with proven safety margins, P2X7 antagonism could represent an untapped potential for therapeutic intervention in cardiovascular disorders.
Collapse
Affiliation(s)
- Brandon G. Shokoples
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Pierre Paradis
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Ernesto L. Schiffrin
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Medicine (E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
The Role of P2X7 Purinergic Receptors in the Renal Inflammation Associated with Angiotensin II-induced Hypertension. Int J Mol Sci 2020; 21:ijms21114041. [PMID: 32516946 PMCID: PMC7312644 DOI: 10.3390/ijms21114041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
Purinergic receptors play a central role in the renal pathophysiology of angiotensin II-induced hypertension, since elevated ATP chronically activates P2X7 receptors in this model. The changes induced by the P2X antagonist Brilliant blue G (BBG) in glomerular hemodynamics and in tubulointerstitial inflammation resulting from angiotensin II infusion were studied. Rats received angiotensin II (435 ng·kg-1·min-1, 2 weeks) alone or in combination with BBG (50 mg/kg/day intraperitoneally). BBG did not modify hypertension (214.5 ± 1.4 vs. 212.7 ± 0.5 mmHg), but restored to near normal values afferent (7.03 ± 1.00 to 2.97 ± 0.27 dyn.s.cm-5) and efferent (2.62 ± 0.03 to 1.29 ± 0.09 dyn.s.cm-5) arteriolar resistances, glomerular plasma flow (79.23 ± 3.15 to 134.30 ± 1.11 nl/min), ultrafiltration coefficient (0.020 ± 0.002 to 0.036 ± 0.003 nl/min/mmHg) and single nephron glomerular filtration rate (22.28 ± 2.04 to 34.46 ± 1.54 nl/min). Angiotensin II induced overexpression of P2X7 receptors in renal tubular cells and in infiltrating T and B lymphocytes and macrophages. All inflammatory cells were increased by angiotensin II infusion and reduced by 20% to 50% (p < 0.05) by BBG administration. Increased IL-2, IL-6, TNFα, IL-1β, IL-18 and overexpression of NLRP3 inflammasome were induced by angiotensin II and suppressed by BBG. These studies suggest that P2X7 receptor-mediated renal vasoconstriction, tubulointerstitial inflammation and activation of NLRP3 inflammasome are associated with angiotensin II-induced hypertension.
Collapse
|
24
|
|
25
|
Kulthinee S, Shao W, Franco M, Navar LG. Purinergic P2X 1 receptor, purinergic P2X 7 receptor, and angiotensin II type 1 receptor interactions in the regulation of renal afferent arterioles in angiotensin II-dependent hypertension. Am J Physiol Renal Physiol 2020; 318:F1400-F1408. [PMID: 32308022 DOI: 10.1152/ajprenal.00602.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In ANG II-dependent hypertension, ANG II activates ANG II type 1 receptors (AT1Rs), elevating blood pressure and increasing renal afferent arteriolar resistance (AAR). The increased arterial pressure augments interstitial ATP concentrations activating purinergic P2X receptors (P2XRs) also increasing AAR. Interestingly, P2X1R and P2X7R inhibition reduces AAR to the normal range, raising the conundrum regarding the apparent disappearance of AT1R influence. To evaluate the interactions between P2XRs and AT1Rs in mediating the increased AAR elicited by chronic ANG II infusions, experiments using the isolated blood perfused juxtamedullary nephron preparation allowed visualization of afferent arteriolar diameters (AAD). Normotensive and ANG II-infused hypertensive rats showed AAD responses to increases in renal perfusion pressure from 100 to 140 mmHg by decreasing AAD by 26 ± 10% and 19 ± 4%. Superfusion with the inhibitor P2X1Ri (NF4490; 1 μM) increased AAD. In normotensive kidneys, superfusion with ANG II (1 nM) decreased AAD by 16 ± 4% and decreased further by 19 ± 5% with an increase in renal perfusion pressure. Treatment with P2X1Ri increased AAD by 30 ± 6% to values higher than those at 100 mmHg plus ANG II. In hypertensive kidneys, the inhibitor AT1Ri (SML1394; 1 μM) increased AAD by 10 ± 7%. In contrast, treatment with P2X1Ri increased AAD by 21 ± 14%; combination with P2X1Ri plus P2X7Ri (A438079; 1 μM) increased AAD further by 25 ± 8%. The results indicate that P2X1R, P2X7R, and AT1R actions converge at receptor or postreceptor signaling pathways, but P2XR exerts a dominant influence abrogating the actions of AT1Rs on AAR in ANG II-dependent hypertension.
Collapse
Affiliation(s)
- Supaporn Kulthinee
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University Health Science Center, New Orleans, Louisiana.,Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Weijian Shao
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University Health Science Center, New Orleans, Louisiana
| | - Martha Franco
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología "Ignacio Chávez," México City, México
| | - L Gabriel Navar
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University Health Science Center, New Orleans, Louisiana
| |
Collapse
|
26
|
Guan Z, Makled MN, Inscho EW. Purinoceptors, renal microvascular function and hypertension. Physiol Res 2020; 69:353-369. [PMID: 32301620 DOI: 10.33549/physiolres.934463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proper renal blood flow (RBF) and glomerular filtration rate (GFR) are critical for maintaining normal blood pressure, kidney function and water and electrolyte homeostasis. The renal microvasculature expresses a multitude of receptors mediating vasodilation and vasoconstriction, which can influence glomerular blood flow and capillary pressure. Despite this, RBF and GFR remain quite stable when arterial pressure fluctuates because of the autoregulatory mechanism. ATP and adenosine participate in autoregulatory control of RBF and GFR via activation of two different purinoceptor families (P1 and P2). Purinoceptors are widely expressed in renal microvasculature and tubules. Emerging data show altered purinoceptor signaling in hypertension-associated kidney injury, diabetic nephropathy, sepsis, ischemia-reperfusion induced acute kidney injury and polycystic kidney disease. In this brief review, we highlight recent studies and new insights on purinoceptors regulating renal microvascular function and renal hemodynamics. We also address the mechanisms underlying renal microvascular injury and impaired renal autoregulation, focusing on purinoceptor signaling and hypertension-induced renal microvascular dysfunction. Interested readers are directed to several excellent and comprehensive reviews that recently covered the topics of renal autoregulation, and nucleotides in kidney function under physiological and pathophysiological conditions (Inscho 2009, Navar et al. 2008, Carlstrom et al. 2015, Vallon et al. 2020).
Collapse
Affiliation(s)
- Z Guan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, South Birmingham, USA.
| | | | | |
Collapse
|
27
|
Nascimento M, Punaro GR, Serralha RS, Lima DY, Mouro MG, Oliveira LCG, Casarini DE, Rodrigues AM, Higa EMS. Inhibition of the P2X 7 receptor improves renal function via renin-angiotensin system and nitric oxide on diabetic nephropathy in rats. Life Sci 2020; 251:117640. [PMID: 32259603 DOI: 10.1016/j.lfs.2020.117640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
AIM To evaluate the effects of P2X7 receptor blockade on renin-angiotensin system (RAS) in rats with diabetic nephropathy (DN). MAIN METHODS Wistar rats were unilaterally nephrectomized and received streptozotocin for diabetes mellitus (DM) induction; control animals (CTL) received the drug vehicle. The animals were submitted to P2X7 receptor silencing, forming the group (DM + siRNA). The animals were placed in metabolic cages for data collection and evaluation of renal function; at the end of the protocol, the kidney was removed for analysis of P2X7, renin, angiotensin-converting enzyme (ACE), ACE2, angiotensin, thiobarbituric acid reactive substance levels (TBARS), nitric oxide (NO) and qualitative histological. KEY FINDINGS The metabolic profile was attenuated in DM + siRNA vs. DM and there was a significant improvement in creatinine, urea and proteinuria levels in the same group. Renin expression was significantly decreased in DM + siRNA vs. DM. ACE and ACE2 were significantly reduced in DM + siRNA vs. DM. TBARS levels were decreased and NO showed an increase in DM + siRNA vs. DM, both significant. All histological alterations were improved in DM + siRNA vs. DM. SIGNIFICANCE Data have shown that although silencing of the P2X7 receptor did not decrease fasting glucose, it promoted an improvement in the metabolic profile and a significant recovery of renal function, revealing a protective action by the inhibition of this receptor. This effect must have occurred due to the inhibition of RAS and the increase of NO, suggesting that the use of P2X7 receptors inhibitors could be used as adjuvant therapy against DN progression.
Collapse
Affiliation(s)
- M Nascimento
- Nephrology, Universidade Federal de Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Brazil
| | - G R Punaro
- Nephrology, Universidade Federal de Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Brazil.
| | - R S Serralha
- Translational Medicine, Universidade Federal de Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Brazil
| | - D Y Lima
- Nephrology, Universidade Federal de Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Brazil
| | - M G Mouro
- Translational Medicine, Universidade Federal de Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Brazil
| | | | - D E Casarini
- Nephrology, Universidade Federal de Sao Paulo, Brazil; Translational Medicine, Universidade Federal de Sao Paulo, Brazil
| | - A M Rodrigues
- Translational Medicine, Universidade Federal de Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Brazil
| | - E M S Higa
- Nephrology, Universidade Federal de Sao Paulo, Brazil; Translational Medicine, Universidade Federal de Sao Paulo, Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo, Brazil; Emergency Division, Universidade Federal de Sao Paulo, Brazil
| |
Collapse
|
28
|
Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2020; 19:517-532. [PMID: 30992524 DOI: 10.1038/s41577-019-0160-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension affects 30% of adults and is the leading risk factor for heart attack and stroke. Traditionally, hypertension has been regarded as a disorder of two systems that are involved in the regulation of salt-water balance and cardiovascular function: the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS). However, current treatments that aim to limit the influence of the RAAS or SNS on blood pressure fail in ~40% of cases, which suggests that other mechanisms must be involved. This Review summarizes the clinical and experimental evidence supporting a contribution of immune mechanisms to the development of hypertension. In this context, we highlight the immune cell subsets that are postulated to either promote or protect against hypertension through modulation of cardiac output and/or peripheral vascular resistance. We conclude with an appraisal of knowledge gaps still to be addressed before immunomodulatory therapies might be applied to at least a subset of patients with hypertension.
Collapse
Affiliation(s)
- Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Tomasz J Guzik
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland.,BHF Centre of Research Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Price GW, Potter JA, Williams BM, Cliff CL, Squires PE, Hills CE. Connexin-mediated cell communication in the kidney: A potential therapeutic target for future intervention of diabetic kidney disease?: Joan Mott Prize Lecture. Exp Physiol 2020; 105:219-229. [PMID: 31785013 DOI: 10.1113/ep087770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
The ability of cells to communicate and synchronise their activity is essential for the maintenance of tissue structure, integrity and function. A family of membrane-bound proteins called connexins are largely responsible for mediating the local transfer of information between cells. Assembled in the cell membrane as a hexameric connexon, they either function as a conduit for paracrine signalling, forming a transmembrane hemi-channel, or, if aligned with connexons on neighbouring cells, form a continuous aqueous pore or gap junction, which allows for the direct transmission of metabolic and electrical signals. Regulation of connexin synthesis and activity is critical to cellular function, and a number of diseases are attributed to changes in the expression and/or function of these important proteins. A link between hyperglycaemia, connexin expression, altered nucleotide concentrations and impaired function highlights a potential role for connexin-mediated cell communication in complications of diabetes. In the diabetic kidney, glycaemic injury is the leading cause of end-stage renal failure, reflecting multiple aetiologies including glomerular hyperfiltration, albuminuria, increased deposition of extracellular matrix and tubulointerstitial fibrosis. Loss of connexin-mediated cell-to-cell communication in diabetic nephropathy may represent an early sign of disease progression, but our understanding of the process remains severely limited. This review focuses on recent evidence demonstrating that glucose-evoked changes in connexin-mediated cell communication and associated purinergic signalling may contribute to the pathogenesis of kidney disease in diabetes, highlighting the tantalising potential of targeting these proteins as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Gareth W Price
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Joe A Potter
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Bethany M Williams
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Chelsy L Cliff
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Paul E Squires
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Claire E Hills
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| |
Collapse
|
30
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
32
|
Franco M, Pérez-Méndez O, Kulthinee S, Navar LG. Integration of purinergic and angiotensin II receptor function in renal vascular responses and renal injury in angiotensin II-dependent hypertension. Purinergic Signal 2019; 15:277-285. [PMID: 31183668 PMCID: PMC6635571 DOI: 10.1007/s11302-019-09662-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022] Open
Abstract
Glomerular arteriolar vasoconstriction and tubulointerstitial injury are observed before glomerular damage occurs in models of hypertension. High interstitial ATP concentrations, caused by the increase in arterial pressure, alter renal mechanisms involved in the long-term control of blood pressure, autoregulation of glomerular filtration rate and blood flow, tubuloglomerular feedback (TGF) responses, and sodium excretion. Elevated ATP concentrations and augmented expression of P2X receptors have been demonstrated under a genetic background or induction of hypertension with vasoconstrictor peptides. In addition to the alterations of the microcirculation in the hypertensive kidney, the vascular actions of elevated intrarenal angiotensin II levels may be mitigated by the administration of broad purinergic P2 antagonists or specific P2Y12, P2X1, and P2X7 receptor antagonists. Furthermore, the prevention of tubulointerstitial infiltration with immunosuppressor compounds reduces the development of salt-sensitive hypertension, indicating that tubulointerstitial inflammation is essential for the development and maintenance of hypertension. Inflammatory cells also express abundant purinergic receptors, and their activation by ATP induces cytokine and growth factor release that in turn contributes to augment tubulointerstitial inflammation. Collectively, the evidence suggests a pathophysiological activation of purinergic P2 receptors in angiotensin-dependent hypertension. Coexistent increases in intrarenal angiotensin II and activates Ang II AT1 receptors, which interacts with over-activated purinergic receptors in a complex manner, suggesting convergence of their post-receptor signaling processes.
Collapse
Affiliation(s)
- Martha Franco
- Department of Nephrology, Renal Pathophysiology Laboratory, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No.1, 14080 Mexico City, DF Mexico
| | - Oscar Pérez-Méndez
- Department Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Supaporn Kulthinee
- Department of Physiology and Hypertension and Renal Center, Tulane University School of Medicine, New Orleans, LA USA
- Department of Cardiovascular and Thoracic Technology, Chulabhorn International College of Medicine, Thammasat University, Rangsit, Pathum Thani Thailand
| | - L. Gabriel Navar
- Department of Physiology and Hypertension and Renal Center, Tulane University School of Medicine, New Orleans, LA USA
| |
Collapse
|
33
|
Molecular Mechanisms of Kidney Injury and Repair in Arterial Hypertension. Int J Mol Sci 2019; 20:ijms20092138. [PMID: 31052201 PMCID: PMC6539752 DOI: 10.3390/ijms20092138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
The global burden of chronic kidney disease is rising. The etiologies, heterogeneous, and arterial hypertension, are key factors contributing to the development and progression of chronic kidney disease. Arterial hypertension is induced and maintained by a complex network of systemic signaling pathways, such as the hormonal axis of the renin-angiotensin-aldosterone system, hemodynamic alterations affecting blood flow, oxygen supply, and the immune system. This review summarizes the clinical and histopathological features of hypertensive kidney injury and focusses on the interplay of distinct systemic signaling pathways, which drive hypertensive kidney injury in distinct cell types of the kidney. There are several parallels between hypertension-induced molecular signaling cascades in the renal epithelial, endothelial, interstitial, and immune cells. Angiotensin II signaling via the AT1R, hypoxia induced HIFα activation and mechanotransduction are closely interacting and further triggering the adaptions of metabolism, cytoskeletal rearrangement, and profibrotic TGF signaling. The interplay of these, and other cellular pathways, is crucial to balancing the injury and repair of the kidneys and determines the progression of hypertensive kidney disease.
Collapse
|
34
|
Guerra Martinez C. P2X7 receptor in cardiovascular disease: The heart side. Clin Exp Pharmacol Physiol 2019; 46:513-526. [PMID: 30834550 DOI: 10.1111/1440-1681.13079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 01/10/2023]
Abstract
The P2X7 receptor is a ligand-gated purinergic receptor activated by extracellular ATP. The receptor is highly expressed in immune cells and in the brain, and, upon activation, the P2X7 receptor allows a cation flux, leading to the distinct activation of intracellular signalling pathways as the secretion of pro-inflammatory cytokines, and modulation of cell survival. Through these molecular mechanisms, P2X7 is known to play important roles in physiology and pathophysiology of a wide spectrum of diseases, including cancer, inflammatory diseases, neurological, respiratory and more recently cardiovascular diseases. Recent studies demonstrated that the P2X7 could modulate the assembly of the NLRP3 inflammasome, leading to the secretion of pro-inflammatory factors and worsen the cardiac disease phenotypes. This review discusses the critical molecular function of P2X7 in the modulation of the onset, progression and resolution of cardiovascular diseases and analyses the putative future use of P2X7-based therapies that modulate the IL-1β secretion arm and direct P2X7 antagonists.
Collapse
Affiliation(s)
- Camila Guerra Martinez
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas
| |
Collapse
|
35
|
Role of the P2X7 receptor in the pathogenesis of type 2 diabetes and its microvascular complications. Curr Opin Pharmacol 2019; 47:75-81. [PMID: 30954933 DOI: 10.1016/j.coph.2019.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022]
Abstract
P2X7 receptors can be found in many tissues and organs, where they mediate several biological functions. This review summarizes the current knowledge about the role of this receptor in the pathogenesis of type 2 diabetes, in which the key clinical features are impaired insulin secretion and sensitivity, hyperglycemia, coexistence of other cardiovascular risk factors such as dyslipidemia and hypertension, and subclinical inflammation. The receptor modulates crucial pathways in the pancreatic islets (where it can either exert a trophic or detrimental action on β cells), and in the liver, in the adipose tissue and in the skeletal muscle, which are main sites of insulin resistance. P2X7 receptors also modulate a series of inflammatory responses that participate in the development of the microvascular complications of the disease. Potent and selective P2X7R blockers are available to be tested in Phase I/II clinical studies for the treatment of several chronic diseases, and it might be worthwhile to consider inclusion of patients with type 2 diabetes and its complications.
Collapse
|
36
|
Mima A, Tansho K, Nagahara D, Tsubaki K. Incidence of acute kidney disease after receiving hematopoietic stem cell transplantation: a single-center retrospective study. PeerJ 2019; 7:e6467. [PMID: 30842899 PMCID: PMC6397753 DOI: 10.7717/peerj.6467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
Background Previous reports have shown that acute kidney injury (AKI) is common after hematopoietic stem cell transplantation (HSCT), which is a crucial treatment for patients with hematological disorders. AKI could increase mortality and induce adverse effects including the development of chronic kidney disease. The incidence of AKI in association with HSCT reportedly varies significantly because several definitions of AKI have been adopted. Acute kidney disease (AKD) is a new concept that can clinically define both AKI and persistent decreases in glomerular filtration rate (GFR) state. We conducted a retrospective cohort study to determine the incidence of AKD after HSCT. Methods This study included 108 patients aged between 16 and 70 years undergoing HSCT. In this study, AKD included clinical condition of AKI or subacute decreases in GFR. AKI was defined according to the Kidney Disease: Improving Global Outcomes guidelines based on serum creatinine. However, urine output data were not included to define AKI because the database lacked some of these data. Comparisons were made between groups using the Mann–Whitney U test. Results Acute kidney disease occurred in 17 patients (15.7%). There were significant differences between the AKD and non-AKD with respect to ABO-incompatible HSCT (p = 0.001) and incidence of acute graft versus host disease (GVHD) after HSCT (p < 0.001). The 100-day overall survival of patients with AKD and without AKD after HSCT was 70.6% and 79.8%, respectively (p = 0.409). Discussion ABO-incompatible HSCT and acute GVHD after HSCT were risk factors for the incidence of AKD. However, we could not find a significant association between AKD after HSCT and mortality.
Collapse
Affiliation(s)
- Akira Mima
- Department of Nephrology, Kindai University Faculty of Medicine, Kindai University Nara Hospital, Nara, Japan
| | - Kousuke Tansho
- Department of Nephrology, Kindai University Faculty of Medicine, Kindai University Nara Hospital, Nara, Japan
| | - Dai Nagahara
- Department of Nephrology, Kindai University Faculty of Medicine, Kindai University Nara Hospital, Nara, Japan
| | - Kazuo Tsubaki
- Department of Hematology, Kindai University Faculty of Medicine, Kindai University Nara Hospital, Nara, Japan
| |
Collapse
|
37
|
Angiotensin II-induced hypertension in rats is only transiently accompanied by lower renal oxygenation. Sci Rep 2018; 8:16342. [PMID: 30397212 PMCID: PMC6218546 DOI: 10.1038/s41598-018-34211-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 10/09/2018] [Indexed: 02/08/2023] Open
Abstract
Activation of the renin-angiotensin system may initiate chronic kidney disease. We hypothesised that renal hypoxia is a consequence of hemodynamic changes induced by angiotensin II and occurs prior to development of severe renal damage. Male Sprague-Dawley rats were infused continuously with angiotensin II (350 ng/kg/min) for 8 days. Mean arterial pressure (n = 5), cortical (n = 6) and medullary (n = 7) oxygenation (pO2) were continuously recorded by telemetry and renal tissue injury was scored. Angiotensin II increased arterial pressure gradually to 150 ± 18 mmHg. This was associated with transient reduction of oxygen levels in renal cortex (by 18 ± 2%) and medulla (by 17 ± 6%) at 10 ± 2 and 6 ± 1 hours, respectively after starting infusion. Thereafter oxygen levels normalised to pre-infusion levels and were maintained during the remainder of the infusion period. In rats receiving angiotensin II, adding losartan to drinking water (300 mg/L) only induced transient increase in renal oxygenation, despite normalisation of arterial pressure. In rats, renal hypoxia is only a transient phenomenon during initiation of angiotensin II-induced hypertension.
Collapse
|
38
|
Craigie E, Menzies RI, Larsen CK, Jacquillet G, Carrel M, Wildman SS, Loffing J, Leipziger J, Shirley DG, Bailey MA, Unwin RJ. The renal and blood pressure response to low sodium diet in P2X4 receptor knockout mice. Physiol Rep 2018; 6:e13899. [PMID: 30350402 PMCID: PMC6198136 DOI: 10.14814/phy2.13899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 01/02/2023] Open
Abstract
In the kidney, purinergic (P2) receptor-mediated ATP signaling has been shown to be an important local regulator of epithelial sodium transport. Appropriate sodium regulation is crucial for blood pressure (BP) control and disturbances in sodium balance can lead to hypo- or hypertension. Links have already been established between P2 receptor signaling and the development of hypertension, attributed mainly to vascular and/or inflammatory effects. A transgenic mouse model with deletion of the P2X4 receptor (P2X4-/- ) is known to have hypertension, which is thought to reflect endothelial dysfunction and impaired nitric oxide (NO) release. However, renal function in this model has not been characterized; moreover, studies in vitro have shown that the P2X4 receptor can regulate renal epithelial Na+ channel (ENaC) activity. Therefore, in the present study we investigated renal function and sodium handling in P2X4-/- mice, focusing on ENaC-mediated Na+ reabsorption. We confirmed an elevated BP in P2X4-/- mice compared with wild-type mice, but found that ENaC-mediated Na+ reabsorption is no different from wild-type and does not contribute to the raised BP observed in the knockout. However, when P2X4-/- mice were placed on a low sodium diet, BP normalized. Plasma aldosterone concentration tended to increase according to sodium restriction status in both genotypes; in contrast to wild-types, P2X4-/- mice did not show an increase in functional ENaC activity. Thus, although the increased BP in P2X4-/- mice has been attributed to endothelial dysfunction and impaired NO release, there is also a sodium-sensitive component.
Collapse
Affiliation(s)
- Eilidh Craigie
- Centre for NephrologyUniversity College London Medical SchoolLondonUnited Kingdom
- Institue for AnatomyUniversity of ZürichZürichSwitzerland
| | - Robert I. Menzies
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUnited Kingdom
| | - Casper K. Larsen
- Department of Biomedicine, PhysiologyAarhus UniversityAarhus CDenmark
| | - Grégory Jacquillet
- Centre for NephrologyUniversity College London Medical SchoolLondonUnited Kingdom
| | - Monique Carrel
- Institue for AnatomyUniversity of ZürichZürichSwitzerland
| | - Scott S. Wildman
- Urinary System Physiology UnitMedway School of PharmacyUniversity of KentKentUnited Kingdom
| | | | - Jens Leipziger
- Department of Biomedicine, PhysiologyAarhus UniversityAarhus CDenmark
| | - David G. Shirley
- Centre for NephrologyUniversity College London Medical SchoolLondonUnited Kingdom
| | - Matthew A. Bailey
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUnited Kingdom
| | - Robert J. Unwin
- Centre for NephrologyUniversity College London Medical SchoolLondonUnited Kingdom
- CVRM iMEDAstraZeneca GothenburgGothenburgSweden
| |
Collapse
|
39
|
Angiotensin II-Induced Mesangial Cell Damaged Is Preceded by Cell Membrane Permeabilization Due to Upregulation of Non-Selective Channels. Int J Mol Sci 2018; 19:ijms19040957. [PMID: 29570626 PMCID: PMC5979336 DOI: 10.3390/ijms19040957] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Connexin43 (Cx43), pannexin1 (Panx1) and P2X7 receptor (P2X7R) are expressed in kidneys and are known to constitute a feedforward mechanism leading to inflammation in other tissues. However, the possible functional relationship between these membrane channels and their role in damaged renal cells remain unknown. In the present work, we found that MES-13 cells, from a cell line derived from mesangial cells, stimulated with angiotensin II (AngII) developed oxidative stress (OS, thiobarbituric acid reactive species (TBARS) and generated pro-inflammatory cytokines (ELISA; IL-1β and TNF-α). The membrane permeability increased progressively several hours before the latter outcome, which was a response prevented by Losartan, indicating the involvement of AT1 receptors. Western blot analysis showed that the amount of phosphorylated MYPT (a substrate of RhoA/ROCK) and Cx43 increased progressively and in parallel in cells treated with AngII, a response followed by an increase in the amount in Panx1 and P2X7R. Greater membrane permeability was partially explained by opening of Cx43 hemichannels (Cx43 HCs) and Panx1 channels (Panx1 Chs), as well as P2X7Rs activation by extracellular ATP, which was presumably released via Cx HCs and Panx1 Chs. Additionally, inhibition of RhoA/ROCK blocked the progressive increase in membrane permeability, and the remaining response was explained by the other non-selective channels. The rise of activity in the RhoA/ROCK-dependent pathway, as well as in Cx HCs, P2X7R, and to a minor extent in Panx1 Chs led to higher amounts of TBARS and pro-inflammatory cytokines. We propose that AngII-induced mesangial cell damage could be effectively inhibited by concomitantly inhibiting the RhoA/ROCK-dependent pathway and one or more non-selective channel(s) activated through this pathway.
Collapse
|
40
|
Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon? Front Pharmacol 2018; 9:52. [PMID: 29467654 PMCID: PMC5808178 DOI: 10.3389/fphar.2018.00052] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Under physiological conditions, adenosine triphosphate (ATP) is present at low levels in the extracellular milieu, being massively released by stressed or dying cells. Once outside the cells, ATP and related nucleotides/nucleoside generated by ectonucleotidases mediate a high evolutionary conserved signaling system: the purinergic signaling, which is involved in a variety of pathological conditions, including inflammatory diseases. Extracellular ATP has been considered an endogenous adjuvant that can initiate inflammation by acting as a danger signal through the activation of purinergic type 2 receptors-P2 receptors (P2Y G-protein coupled receptors and P2X ligand-gated ion channels). Among the P2 receptors, the P2X7 receptor is the most extensively studied from an immunological perspective, being involved in both innate and adaptive immune responses. P2X7 receptor activation induces large-scale ATP release via its intrinsic ability to form a membrane pore or in association with pannexin hemichannels, boosting purinergic signaling. ATP acting via P2X7 receptor is the second signal to the inflammasome activation, inducing both maturation and release of pro-inflammatory cytokines, such as IL-1β and IL-18, and the production of reactive nitrogen and oxygen species. Furthermore, the P2X7 receptor is involved in caspases activation, as well as in apoptosis induction. During adaptive immune response, P2X7 receptor modulates the balance between the generation of T helper type 17 (Th17) and T regulatory (Treg) lymphocytes. Therefore, this receptor is involved in several inflammatory pathological conditions. In infectious diseases and cancer, P2X7 receptor can have different and contrasting effects, being an angel or a demon depending on its level of activation, cell studied, type of pathogen, and severity of infection. In neuroinflammatory and neurodegenerative diseases, P2X7 upregulation and function appears to contribute to disease progression. In this review, we deeply discuss P2X7 receptor dual function and its pharmacological modulation in the context of different pathologies, and we also highlight the P2X7 receptor as a potential target to treat inflammatory related diseases.
Collapse
Affiliation(s)
- Luiz E B Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Cleide Gonçalves da Silva
- Division of Vascular Surgery, Department of Surgery, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Mullins LJ, Conway BR, Menzies RI, Denby L, Mullins JJ. Renal disease pathophysiology and treatment: contributions from the rat. Dis Model Mech 2017; 9:1419-1433. [PMID: 27935823 PMCID: PMC5200898 DOI: 10.1242/dmm.027276] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rat has classically been the species of choice for pharmacological studies and disease modeling, providing a source of high-quality physiological data on cardiovascular and renal pathophysiology over many decades. Recent developments in genome engineering now allow us to capitalize on the wealth of knowledge acquired over the last century. Here, we review rat models of hypertension, diabetic nephropathy, and acute and chronic kidney disease. These models have made important contributions to our understanding of renal diseases and have revealed key genes, such as Ace and P2rx7, involved in renal pathogenic processes. By targeting these genes of interest, researchers are gaining a better understanding of the etiology of renal pathologies, with the promised potential of slowing disease progression or even reversing the damage caused. Some, but not all, of these target genes have proved to be of clinical relevance. However, it is now possible to generate more sophisticated and appropriate disease models in the rat, which can recapitulate key aspects of human renal pathology. These advances will ultimately be used to identify new treatments and therapeutic targets of much greater clinical relevance. Summary: This Review highlights the key role that the rat continues to play in improving our understanding of the etiologies of renal pathologies, and how these insights have opened up new therapeutic avenues.
Collapse
Affiliation(s)
- Linda J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Bryan R Conway
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Robert I Menzies
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Laura Denby
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - John J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
42
|
Franco M, Bautista-Pérez R, Cano-Martínez A, Pacheco U, Santamaría J, del Valle Mondragón L, Pérez-Méndez O, Navar LG. Physiopathological implications of P2X1and P2X7receptors in regulation of glomerular hemodynamics in angiotensin II-induced hypertension. Am J Physiol Renal Physiol 2017; 313:F9-F19. [DOI: 10.1152/ajprenal.00663.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 11/22/2022] Open
Abstract
Deleterious effects of purinergic P2X1and P2X7receptors (P2XRs) in ANG II-dependent hypertension include increased renal vascular resistance, and impaired autoregulation and pressure natriuresis. However, their specific effects on the determinants of glomerular hemodynamics remain incompletely delineated. To investigate the P2XR contributions to altered glomerular hemodynamics in hypertension, the effects of acute blockade of P2X1R, P2X7R, and P2X4R with NF449, A438079, and PSB12054, respectively, were evaluated in ANG II-infused rats (435 ng·kg−1·min−1). P2X1R or P2X7R blockade reduced afferent (6.85 ± 1.05 vs. 2.37 ± 0.20 dyn·s−1·cm−5) and efferent (2.85 ± 0.38 vs. 0.99 ± 0.07 dyn·s−1·cm−5) arteriolar resistances, leading to increases in glomerular plasma flow (75.82 ± 5.58 vs. 206.7 ± 16.38 nl/min), ultrafiltration coefficient (0.0198 ± 0.0024 vs. 0.0512 ± 0.0046 nl·min−1·mmHg−1), and single-nephron glomerular filtration rate (22.73 ± 2.02 vs. 51.56 ± 3.87 nl/min) to near normal values. Blockade of P2X4R did not elicit effects in hypertensive rats. In normotensive sham-operated rats, only the P2X1R antagonist caused an increase plasma flow and single-nephron glomerular filtration rate, whereas the P2X4R antagonist induced glomerular vasoconstriction that was consistent with evidence that P2X4R stimulation increases release of nitric oxide from endothelial cells. Mean arterial pressure remained unchanged in both hypertensive and normotensive groups. Western blot analysis showed overexpression of P2X1R, P2X7R, and P2X4R proteins in hypertensive rats. Whereas it has been generally assumed that the altered glomerular vascular resistances in ANG II hypertension are due to AT1receptor-mediated vasoconstriction, these data indicate a predominant P2X1R and P2X7R control of glomerular hemodynamics in ANG II hypertension.
Collapse
Affiliation(s)
- Martha Franco
- Renal Pathophysiology Laboratory, Department of Nephrology, Instituto Nacional de Cardiología “Ignacio Chávez,” México City, México
| | - Rocío Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez,” México City, México
| | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez,” México City, México
| | - Ursino Pacheco
- Renal Pathophysiology Laboratory, Department of Nephrology, Instituto Nacional de Cardiología “Ignacio Chávez,” México City, México
| | - José Santamaría
- Renal Pathophysiology Laboratory, Department of Nephrology, Instituto Nacional de Cardiología “Ignacio Chávez,” México City, México
| | | | - Oscar Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez,” México City, México
| | - L. Gabriel Navar
- Department of Physiology and Hypertension and Renal Center, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
43
|
Burnstock G. Purinergic Signaling in the Cardiovascular System. Circ Res 2017; 120:207-228. [PMID: 28057794 DOI: 10.1161/circresaha.116.309726] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
There is nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory-motor nerves, as well as in intracardiac neurons. Centers in the brain control heart activities and vagal cardiovascular reflexes involve purines. Adenine nucleotides and nucleosides act on purinoceptors on cardiomyocytes, AV and SA nodes, cardiac fibroblasts, and coronary blood vessels. Vascular tone is controlled by a dual mechanism. ATP, released from perivascular sympathetic nerves, causes vasoconstriction largely via P2X1 receptors. Endothelial cells release ATP in response to changes in blood flow (via shear stress) or hypoxia, to act on P2 receptors on endothelial cells to produce nitric oxide, endothelium-derived hyperpolarizing factor, or prostaglandins to cause vasodilation. ATP is also released from sensory-motor nerves during antidromic reflex activity, to produce relaxation of some blood vessels. Purinergic signaling is involved in the physiology of erythrocytes, platelets, and leukocytes. ATP is released from erythrocytes and platelets, and purinoceptors and ectonucleotidases are expressed by these cells. P1, P2Y1, P2Y12, and P2X1 receptors are expressed on platelets, which mediate platelet aggregation and shape change. Long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides promote migration and proliferation of vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis, vessel remodeling during restenosis after angioplasty and atherosclerosis. The involvement of purinergic signaling in cardiovascular pathophysiology and its therapeutic potential are discussed, including heart failure, infarction, arrhythmias, syncope, cardiomyopathy, angina, heart transplantation and coronary bypass grafts, coronary artery disease, diabetic cardiomyopathy, hypertension, ischemia, thrombosis, diabetes mellitus, and migraine.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- From the Autonomic Neuroscience Institute, Royal Free and University College Medical School, London, United Kingdom.
| |
Collapse
|
44
|
Menzies RI, Booth JWR, Mullins JJ, Bailey MA, Tam FWK, Norman JT, Unwin RJ. Hyperglycemia-induced Renal P2X7 Receptor Activation Enhances Diabetes-related Injury. EBioMedicine 2017; 19:73-83. [PMID: 28434946 PMCID: PMC5440600 DOI: 10.1016/j.ebiom.2017.04.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022] Open
Abstract
Diabetes is a leading cause of renal disease. Glomerular mesangial expansion and fibrosis are hallmarks of diabetic nephropathy and this is thought to be promoted by infiltration of circulating macrophages. Monocyte chemoattractant protein-1 (MCP-1) has been shown to attract macrophages in kidney diseases. P2X7 receptors (P2X7R) are highly expressed on macrophages and are essential components of pro-inflammatory signaling in multiple tissues. Here we show that in diabetic patients, renal P2X7R expression is associated with severe mesangial expansion, impaired glomerular filtration (≤40ml/min/1.73sq.m.), and increased interstitial fibrosis. P2X7R activation enhanced the release of MCP-1 in human mesangial cells cultured under high glucose conditions. In mice, P2X7R-deficiency prevented glomerular macrophage attraction and collagen IV deposition; however, the more severe interstitial inflammation and fibrosis often seen in human diabetic kidney diseases was not modelled. Finally, we demonstrate that a P2X7R inhibitor (AZ11657312) can reduce renal macrophage accrual following the establishment of hyperglycemia in a model of diabetic nephropathy. Collectively these data suggest that P2X7R activation may contribute to the high prevalence of kidney disease found in diabetics.
Collapse
Affiliation(s)
- Robert I Menzies
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
| | - John W R Booth
- UCL Centre for Nephrology, University College London, London, UK
| | - John J Mullins
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Frederick W K Tam
- Imperial College Renal and Transplant Centre, Department of Medicine, Imperial College London, London, UK
| | - Jill T Norman
- UCL Centre for Nephrology, University College London, London, UK
| | - Robert J Unwin
- UCL Centre for Nephrology, University College London, London, UK; Cardiovascular and Metabolic Diseases (CVMD) iMed, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
45
|
Kuczeriszka M, Dobrowolski L, Walkowska A, Sadowski J. Influence of P2X receptors on renal medullary circulation is not altered by angiotensin II pretreatment. Pharmacol Rep 2016; 68:1230-1236. [DOI: 10.1016/j.pharep.2016.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/20/2016] [Accepted: 07/29/2016] [Indexed: 12/26/2022]
|
46
|
Menzies RI, Tam FW, Unwin RJ, Bailey MA. Purinergic signaling in kidney disease. Kidney Int 2016; 91:315-323. [PMID: 27780585 DOI: 10.1016/j.kint.2016.08.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 02/04/2023]
Abstract
Nucleotides are key subunits for nucleic acids and provide energy for intracellular metabolism. They can also be released from cells to act physiologically as extracellular messengers or pathologically as danger signals. Extracellular nucleotides stimulate membrane receptors in the P2 and P1 family. P2X are ATP-activated cation channels; P2Y and P1 are G-protein coupled receptors activated by ATP, ADP, UTP, and UDP in the case of P2 or adenosine for P1. Renal P2 receptors influence both vascular contractility and tubular function. Renal cells also express ectonucleotidases that rapidly hydrolyze extracellular nucleotides. These enzymes integrate this multireceptor purinergic-signaling complex by determining the nucleotide milieu to titrate receptor activation. Purinergic signaling also regulates immune cell function by modulating the synthesis and release of various cytokines such as IL1-β and IL-18 as part of inflammasome activation. Abnormal or excessive stimulation of this intricate paracrine system can be pro- or anti-inflammatory, and is also linked to necrosis and apoptosis. Kidney tissue injury causes a localized increase in ATP concentration, and sustained activation of P2 receptors can lead to renal glomerular, tubular, and vascular cell damage. Purinergic receptors also regulate the activity and proliferation of fibroblasts, promoting both inflammation and fibrosis in chronic disease. In this short review we summarize some of the recent findings related to purinergic signaling in the kidney. We focus predominantly on the P2X7 receptor, discussing why antagonists have so far disappointed in clinical trials and how advances in our understanding of purinergic signaling might help to reposition these compounds as potential treatments for renal disease.
Collapse
Affiliation(s)
- Robert I Menzies
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Frederick W Tam
- Imperial College Renal and Transplant Centre, Department of Medicine, Imperial College London, UK
| | - Robert J Unwin
- Cardiovascular and Metabolic Diseases Biotech Unit, AstraZeneca Gothenburg, Sweden; UCL Centre for Nephrology, University College London, London, UK.
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
47
|
Apostolova P, Zeiser R. The Role of Purine Metabolites as DAMPs in Acute Graft-versus-Host Disease. Front Immunol 2016; 7:439. [PMID: 27818661 PMCID: PMC5073102 DOI: 10.3389/fimmu.2016.00439] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Acute graft-versus-host disease (GvHD) causes high mortality in patients undergoing allogeneic hematopoietic cell transplantation. An early event in the classical pathogenesis of acute GvHD is tissue damage caused by the conditioning treatment or infection that consecutively leads to translocation of bacterial products [pathogen-associated molecular patterns (PAMPs)] into blood or lymphoid tissue, as well as danger-associated molecular patterns (DAMPs), mostly intracellular components that act as pro-inflammatory agents, once they are released into the extracellular space. A subtype of DAMPs is nucleotides, such as adenosine triphosphate released from dying cells that can activate the innate and adaptive immune system by binding to purinergic receptors. Binding to certain purinergic receptors leads to a pro-inflammatory microenvironment and promotes allogeneic T cell priming. After priming, T cells migrate to the acute GvHD target organs, mainly skin, liver, and the gastrointestinal tract and induce cell damage that further amplifies the release of intracellular components. This review summarizes the role of different purinergic receptors in particular P2X7 and P2Y2 as well as nucleotides in the pathogenesis of GvHD.
Collapse
Affiliation(s)
- Petya Apostolova
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Albert Ludwig University of Freiburg , Freiburg , Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Albert Ludwig University of Freiburg , Freiburg , Germany
| |
Collapse
|
48
|
Ilatovskaya DV, Palygin O, Staruschenko A. Functional and therapeutic importance of purinergic signaling in polycystic kidney disease. Am J Physiol Renal Physiol 2016; 311:F1135-F1139. [PMID: 27654892 DOI: 10.1152/ajprenal.00406.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
Polycystic kidney diseases (PKD) are a group of inherited nephropathies marked with the formation of fluid-filled cysts along the nephron. This renal disorder affects millions of people worldwide, but current treatment strategies are unfortunately limited to supportive therapy, dietary restrictions, and, eventually, renal transplantation. Recent advances in PKD management are aimed at targeting exaggerated cell proliferation and dedifferentiation to interfere with cyst growth. However, not nearly enough is known about the ion transport properties of the cystic cells, or specific signaling pathways modulating channels and transporters in this condition. There is growing evidence that abnormally elevated concentrations of adenosine triphosphate (ATP) in PKD may contribute to cyst enlargement; change in the profile of purinergic receptors may also result in promotion of cystogenesis. The current mini-review is focused on the role of ATP and associated signaling affecting ion transport properties of the renal cystic epithelia.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The kidney mediates the excretion or conservation of water and electrolytes in the face of changing fluid and salt intake and losses. To ultrafilter and reabsorb the exact quantities of free water and salts to maintain euvolemia a range of endocrine, paracrine, and hormonal signaling systems have evolved linking the tubules, capillaries, glomeruli, arterioles, and other intrinsic cells of the kidney. Our understanding of these systems remains incomplete. RECENT FINDINGS Recent work has provided new insights into the workings of the communication pathways between tubular segments and the glomeruli and vasculature, with novel therapeutic agents in development. Particular progress has also been made in the visualization of tubuloglomerular feedback. SUMMARY The review summarizes our current understanding of pathway functions in health and disease, as well as future therapeutic options to protect the healthy and injured kidney.
Collapse
Affiliation(s)
- David A. Ferenbach
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph V. Bonventre
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|