1
|
Zhou Z, Xu L, Lv Y, Li L, Yuan H, Hu F. BAX pores facilitate mitochondrial DNA release in wasp sting-induced acute kidney injury. Int Immunopharmacol 2024; 143:113424. [PMID: 39437488 DOI: 10.1016/j.intimp.2024.113424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The role of B-cell lymphoma 2 (BCL2)-associated X (BAX) macropores in the leakage of mitochondrial DNA (mtDNA) and their impact on acute kidney injury (AKI) has recently been brought to the focus of researchers. This study aimed to explore the relationship between mtDNA leakage and BAX macropores during wasp sting-induced AKI. BAX mitochondrial translocation and macropores opening increased in both in vivo and in vitro models of wasp sting-induced AKI. In a mouse model, BAX inhibition dramatically attenuated mitochondrial impairment, cytoplasmic release of mtDNA, and suppressed activation of the mtDNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. This attenuation improved kidney function, reduced inflammatory response, and decreased apoptosis in mouse models. Furthermore, in cultured human proximal tubular epithelial cells (HK-2) treated with myoglobin and subjected to BAX knockdown, quantitative real-time polymerase chain reaction (PCR) directly demonstrated decreased mtDNA release into the cytoplasm. Consistent with in vivo results, downregulation of BAX expression in vitro ameliorated mitochondrial damage and attenuated subsequent inflammation and apoptosis caused by the activation of the mtDNA-cGAS-STING signaling pathway. Our findings revealed that mtDNA is released into the cytoplasm through BAX macropores in wasp sting-induced AKI, which provided an important novel perspective for understanding wasp sting-induced AKI and is conducive for identifying novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Zilin Zhou
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Liang Xu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Lv
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ling Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| |
Collapse
|
2
|
Cho J, Doo SW, Song N, Lee M, Lee H, Kim H, Jeon JS, Noh H, Kwon SH. Dapagliflozin Reduces Urinary Kidney Injury Biomarkers in Chronic Kidney Disease Irrespective of Albuminuria Level. Clin Pharmacol Ther 2024; 115:1441-1449. [PMID: 38451017 DOI: 10.1002/cpt.3237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
The beneficial effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors in patients with chronic kidney disease (CKD) with low albuminuria levels have not been established. This study aimed to compare the effects of dapagliflozin on kidney injury biomarkers in patients with CKD stratified by albuminuria level. We prospectively enrolled healthy volunteers (HVs; n = 20) and patients with CKD (n = 54) with and without diabetes mellitus. Patients with CKD were divided into two age-matched and sex-matched subgroups according to urinary albumin-creatinine ratio (uACR) levels (<300 mg/g and ≥300 mg/g). The CKD group received dapagliflozin (10 mg/day). Urine samples were collected before treatment and after 3 and 6 months of dapagliflozin. Urinary kidney injury molecule-1 (KIM-1), interleukin-1β (IL-1β), and mitochondrial DNA nicotinamide adenine dinucleotide dehydrogenase subunit-1 (mtND1) copy number were measured. The estimated glomerular filtration rate (eGFR) of patients with CKD was lower than that of HVs (P < 0.001). During the study period, eGFR decreased and uACR did not change in the CKD group. Kidney injury markers were significantly elevated in patients with CKD compared with those in HVs. Dapagliflozin reduced urinary KIM-1, IL-1β, and mtDNA copy number in patients with CKD after 6 months of treatment. In further, the levels of urinary KIM-1 and IL-1β, patients with CKD decreased after 6 months of dapagliflozin treatment regardless of albuminuria level. Dapagliflozin reduced urinary kidney injury biomarkers in patients with CKD, regardless of albuminuria level. These findings suggest that SGLT2 inhibitors may also attenuate the progression of low albuminuric CKD.
Collapse
Affiliation(s)
- Junghyun Cho
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Seung Whan Doo
- Department of Urology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Nayoung Song
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Minsul Lee
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Haekyung Lee
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hyongnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jin Seok Jeon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hyunjin Noh
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Soon Hyo Kwon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| |
Collapse
|
3
|
Zhang M, Cai Y, Zhong X, Liu W, Lin Y, Qiu Z, Liang R, Wei H, Wu K, Liu Q. Effects of cell-free DNA on kidney disease and intervention strategies. Front Pharmacol 2024; 15:1377874. [PMID: 38835660 PMCID: PMC11148383 DOI: 10.3389/fphar.2024.1377874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
Kidney disease has become a global public health problem. Patients with end-stage kidney disease must rely on dialysis or undergo renal transplantation, placing heavy burdens on their families and society. Therefore, it is important to develop new therapeutic targets and intervention strategies during early stages of chronic kidney disease. The widespread application of liquid biopsy has led to an increasing number of studies concerning the roles of cell-free DNA (cfDNA) in kidney disease. In this review, we summarize relevant studies concerning the roles of cfDNA in kidney disease and describe various strategies for targeted removal of cfDNA, with the goal of establishing novel therapeutic approaches for kidney disease.
Collapse
Affiliation(s)
- Mingying Zhang
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Yubin Cai
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Xiaoze Zhong
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Weijun Liu
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Yuan Lin
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Zhanyi Qiu
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Ruihuang Liang
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Huibo Wei
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Kefei Wu
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Qinghua Liu
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| |
Collapse
|
4
|
Karbasi A, Abbasi A, Mohagheghi A, Poorolajal J, Emami F, Moradkhani S, Khodadadi I, Gholyaf M, Tavilani H. The Effects of Coenzyme Q10 on Contrast-Induced Acute Kidney Injury in Type 2 Diabetes: A Randomized Clinical Trial. Chonnam Med J 2024; 60:59-68. [PMID: 38304125 PMCID: PMC10828077 DOI: 10.4068/cmj.2024.60.1.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) is a frequent challenge following the injection of contrast media and its subsequent oxidative stress. The aim of the present study was to evaluate the preventive effects of coenzyme Q10 (Q10), as a mitochondrial-targeted antioxidant in CI-AKI in diabetic patients, who account for a large proportion of angiographic cases. A total of 118 diabetic patients were randomly assigned to receive 120 mg of oral coenzyme Q10 (Q10 group) or placebo (Placebo group) for four days, starting 24 hours before contrast media injection. Blood urea nitrogen (BUN), serum and urinary creatinine, estimated glomerular filtration rate (eGFR), urinary malondialdehyde (UMDA), urinary total antioxidant capacity (UTAC), and urinary mitochondrial to nuclearDNA ratios (mtDNA/nDNA ratio) were evaluated before and after the treatment period. Urine sediments were also evaluated to report the urine microscopy score (UMS).The levels of BUN, serum and urine creatinine, and UMS were similar in the Q10 and placebo groups. EGFR was lower in the Q10 group before the treatment (p=0.013) but not after. The urinary mtDNA/nDNA ratio was 3.05±1.68 and 3.69±2.58 in placebo and Q10 groups, but UTAC was found to be lower in Q10 both before (p=0.006) and after the treatment (p<0.001). The incidence of CI-AKI was 14.40% and the mtDNA/nNDA ratio was similar between CI-AKI and non-CI-AKI patients. In conclusion, Q10 treatment shows no favorable effect on prevention of CI-AKI or a urinary mtDNA/nDNA ratio among diabetic patients.
Collapse
Affiliation(s)
- Ashkan Karbasi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Abbasi
- Department of Cardiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mohagheghi
- Department of Cardiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Poorolajal
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farzad Emami
- Department of Cardiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Moradkhani
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahmoud Gholyaf
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Infectious disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Shin IS, Kim DK, An S, Gong SC, Kim MH, Rahman MH, Kim CS, Sohn JH, Kim K, Ryu H. Biomarkers to Predict Multiorgan Distress Syndrome and Acute Kidney Injury in Critically Ill Surgical Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2054. [PMID: 38138157 PMCID: PMC10744752 DOI: 10.3390/medicina59122054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Critically ill surgical patients are susceptible to various postoperative complications, including acute kidney injury (AKI) and multiorgan distress syndrome (MODS). These complications intensify patient suffering and significantly increase morbidity and mortality rates. This study aimed to identify the biomarkers for predicting AKI and MODS in critically ill surgical patients. Materials and Methods: We prospectively enrolled critically ill surgical patients admitted to the intensive care unit via the emergency department between July 2022 and July 2023. A total of 83 patients were recruited, and their data were used to analyze MODS. Three patients who showed decreased creatinine clearance at the initial presentation were excluded from the analysis for AKI. Patient characteristics and laboratory parameters including white blood cell (WBC) count, neutrophil count, delta neutrophil index, urine and serum β2-microglobulin, and urine serum mitochondrial DNA copy number (mtDNAcn) were analyzed to determine the reliable biomarker to predict AKI and MODS. Results: The following parameters were independently correlated with MODS: systolic blood pressure (SBP), initial neutrophil count, and platelet count, according to a logistic regression model. The optimal cut-off values for SBP, initial neutrophil count, and platelet count were 113 mmHg (sensitivity 66.7%; specificity 73.9%), 8.65 (X3) (109/L) (sensitivity 72.2%; specificity 64.6%), and 195.0 (X3) (109/L) (sensitivity 66.7%; specificity 81.5%), respectively. According to the logistic regression model, diastolic blood pressure (DBP) and initial urine mtDNAcn were independently correlated with AKI. The optimal cut-off value for DBP and initial urine mtDNAcn were 68.5 mmHg (sensitivity 61.1%; specificity 79.5%) and 1225.6 copies/μL (sensitivity 55.6%; specificity 95.5%), respectively. Conclusions: SBP, initial neutrophil count, and platelet count were independent predictors of MODS in critically ill patients undergoing surgery. DBP and initial urine mtDNAcn levels were independent predictors of AKI in critically ill surgical patients. Large-scale multicenter prospective studies are needed to confirm our results.
Collapse
Affiliation(s)
- In Sik Shin
- Division of Acute Care Surgery, Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (I.S.S.); (M.H.K.)
| | - Da Kyung Kim
- Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Sanghyun An
- Division of Colorectal Surgery, Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
- Center of Evidence Based Medicine, Institute of Convergence Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Sung Chan Gong
- Division of Esophago-Gastrointestinal Surgery, Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Moo Hyun Kim
- Division of Acute Care Surgery, Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (I.S.S.); (M.H.K.)
| | - Md Habibur Rahman
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Cheol-Su Kim
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Joon Hyeong Sohn
- Central Research Laboratory, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Kwangmin Kim
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Hoon Ryu
- Division of Esophago-Gastrointestinal Surgery, Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| |
Collapse
|
6
|
Kroneisl M, Spraakman NA, Koomen JV, Hijazi Z, Hoogstra-Berends FH, Leuvenink HGD, Struys MMRF, Henning RH, Nieuwenhuijs-Moeke GJ. Peri-Operative Kinetics of Plasma Mitochondrial DNA Levels during Living Donor Kidney Transplantation. Int J Mol Sci 2023; 24:13579. [PMID: 37686384 PMCID: PMC10487554 DOI: 10.3390/ijms241713579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
During ischemia and reperfusion injury (IRI), mitochondria may release mitochondrial DNA (mtDNA). mtDNA can serve as a propagator of further injury but in specific settings has anti-inflammatory capacities as well. Therefore, the aim of this study was to study the perioperative dynamics of plasma mtDNA during living donor kidney transplantation (LDKT) and its potential as a marker of graft outcome. Fifty-six donor-recipient couples from the Volatile Anesthetic Protection of Renal Transplants-1 (VAPOR-1) trial were included. Systemic venous, systemic arterial, and renal venous samples were taken at multiple timepoints during and after LDKT. Levels of mtDNA genes changed over time and between vascular compartments. Several donor, recipient, and transplantation-related variables significantly explained the course of mtDNA genes over time. mtDNA genes predicted 1-month and 24-month estimated glomerular filtration rate (eGFR) and acute rejection episodes in the two-year follow-up period. To conclude, mtDNA is released in plasma during the process of LDKT, either from the kidney or from the whole body in response to transplantation. While circulating mtDNA levels positively and negatively predict post-transplantation outcomes, the exact mechanisms and difference between mtDNA genes are not yet understood and need further exploration.
Collapse
Affiliation(s)
- Marie Kroneisl
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nora A. Spraakman
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jeroen V. Koomen
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Zeinab Hijazi
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Femke H. Hoogstra-Berends
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Michel M. R. F. Struys
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Rob H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
7
|
Bhatia D, Choi ME. Autophagy and mitophagy: physiological implications in kidney inflammation and diseases. Am J Physiol Renal Physiol 2023; 325:F1-F21. [PMID: 37167272 PMCID: PMC10292977 DOI: 10.1152/ajprenal.00012.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Autophagy is a ubiquitous intracellular cytoprotective quality control program that maintains cellular homeostasis by recycling superfluous cytoplasmic components (lipid droplets, protein, or glycogen aggregates) and invading pathogens. Mitophagy is a selective form of autophagy that by recycling damaged mitochondrial material, which can extracellularly act as damage-associated molecular patterns, prevents their release. Autophagy and mitophagy are indispensable for the maintenance of kidney homeostasis and exert crucial functions during both physiological and disease conditions. Impaired autophagy and mitophagy can negatively impact the pathophysiological state and promote its progression. Autophagy helps in maintaining structural integrity of the kidney. Mitophagy-mediated mitochondrial quality control is explicitly critical for regulating cellular homeostasis in the kidney. Both autophagy and mitophagy attenuate inflammatory responses in the kidney. An accumulating body of evidence highlights that persistent kidney injury-induced oxidative stress can contribute to dysregulated autophagic and mitophagic responses and cell death. Autophagy and mitophagy also communicate with programmed cell death pathways (apoptosis and necroptosis) and play important roles in cell survival by preventing nutrient deprivation and regulating oxidative stress. Autophagy and mitophagy are activated in the kidney after acute injury. However, their aberrant hyperactivation can be deleterious and cause tissue damage. The findings on the functions of autophagy and mitophagy in various models of chronic kidney disease are heterogeneous and cell type- and context-specific dependent. In this review, we discuss the roles of autophagy and mitophagy in the kidney in regulating inflammatory responses and during various pathological manifestations.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
8
|
Mihaľová M, Šupčíková N, Kovalčíková AG, Breza J, Tóthová Ľ, Celec P, Breza J. Dynamics of Urinary Extracellular DNA in Urosepsis. Biomolecules 2023; 13:1008. [PMID: 37371588 DOI: 10.3390/biom13061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular DNA (ecDNA) is a promising candidate marker for the early diagnosis and monitoring of urinary tract infections (UTIs). The aim of our study is to describe the dynamics of ecDNA in the plasma and urine of patients with urosepsis as well as in a mouse model of UTI. Samples of blood and urine were collected from adult patients with UTIs and obstructive uropathy (n = 36) during the first 3 days at the hospital and during a follow-up. Bacterial burden and urinary ecDNA were evaluated in a mouse UTI model (n = 26) at baseline; 24, 48, and 72 h after UTI induction; and 7 days after UTI induction. The plasma ecDNA did not change during urosepsis, but the plasma DNase activity increased significantly at the follow-up. The urinary ecDNA decreased significantly during hospitalization and remained low until the follow-up (90% lower vs. admission). No change was seen in the urinary DNase activity. C-reactive protein (CRP) and procalcitonin are positively correlated with plasma and urinary ecDNA. A UTI caused sepsis in 23% of mice. The urinary ecDNA decreased by three-fold and remained low until day 7 post-infection. Urinary bacterial burden is correlated with urinary ecDNA. Urinary ecDNA is a potential non-invasive marker for monitoring the effects of treatment during urosepsis and is related to UTI progression in the experimental animal model.
Collapse
Affiliation(s)
- Michaela Mihaľová
- Department of Urology, Faculty of Medicine, University Hospital Bratislava and Comenius University, 83305 Bratislava, Slovakia
| | - Nadja Šupčíková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Alexandra Gaál Kovalčíková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
- Department of Paediatrics, Faculty of Medicine, National Institute of Children's Diseases, Comenius University in Bratislava, 83340 Bratislava, Slovakia
| | - Ján Breza
- Department of Pediatric Urology, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, 83101 Bratislava, Slovakia
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University in Bratislava, 81108 Bratislava, Slovakia
| | - Ján Breza
- Department of Urology, Faculty of Medicine, University Hospital Bratislava and Comenius University, 83305 Bratislava, Slovakia
| |
Collapse
|
9
|
Petrica L, Vlad A, Gadalean F, Muntean DM, Vlad D, Dumitrascu V, Bob F, Milas O, Suteanu-Simulescu A, Glavan M, Jianu DC, Ursoniu S, Balint L, Mogos-Stefan M, Ienciu S, Cretu OM, Popescu R. Mitochondrial DNA Changes in Blood and Urine Display a Specific Signature in Relation to Inflammation in Normoalbuminuric Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Int J Mol Sci 2023; 24:9803. [PMID: 37372951 DOI: 10.3390/ijms24129803] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial dysfunction is an important mechanism contributing to the development and progression of diabetic kidney disease (DKD). Mitochondrial DNA (mtDNA) levels in blood and urine were evaluated in relation to podocyte injury and proximal tubule (PT) dysfunction, as well as to a specific inflammatory response in normoalbuminuric DKD. A total of 150 type 2 diabetes mellitus (DM) patients (52 normoalbuminuric, 48 microalbuminuric, and 50 macroalbuminuric ones, respectively) and 30 healthy controls were assessed concerning the urinary albumin/creatinine ratio (UACR), biomarkers of podocyte damage (synaptopodin and podocalyxin), PT dysfunction (kidney injury molecule-1 (KIM-1) and N-acetyl-β-(D)-glucosaminidase (NAG)), and inflammation (serum and urinary interleukins (IL-17A, IL-18, and IL-10)). MtDNA-CN and nuclear DNA (nDNA) were quantified in peripheral blood and urine via qRT-PCR. MtDNA-CN was defined as the ratio of the number of mtDNA/nDNA copies via analysis of the CYTB/B2M and ND2/B2M ratio. Multivariable regression analysis provided models in which serum mtDNA directly correlated with IL-10 and indirectly correlated with UACR, IL-17A, and KIM-1 (R2 = 0.626; p < 0.0001). Urinary mtDNA directly correlated with UACR, podocalyxin, IL-18, and NAG, and negatively correlated with eGFR and IL-10 (R2 = 0.631; p < 0.0001). Mitochondrial DNA changes in serum and urine display a specific signature in relation to inflammation both at the podocyte and tubular levels in normoalbuminuric type 2 DM patients.
Collapse
Affiliation(s)
- Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Adrian Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Internal Medicine II, Division of Diabetes and Metabolic Diseases, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Florica Gadalean
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Danina Mirela Muntean
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Department of Functional Sciences III, Division of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Daliborca Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Biochemistry and Pharmacology IV, Division of Pharmacology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Victor Dumitrascu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Biochemistry and Pharmacology IV, Division of Pharmacology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Flaviu Bob
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Oana Milas
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Anca Suteanu-Simulescu
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Mihaela Glavan
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Dragos Catalin Jianu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Neurosciences VIII, Division of Neurology I, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Sorin Ursoniu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Functional Sciences III, Division of Public Health and Health and History of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Balint
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Maria Mogos-Stefan
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Silvia Ienciu
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Octavian Marius Cretu
- Department of Surgery I, Division of Surgical Semiology I, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Emergency Clinical Municipal Hospital Timisoara, 300041 Timisoara, Romania
| | - Roxana Popescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Microscopic Morphology II, Division of Cell and Molecular Biology II, "Victor Babes" University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
10
|
Hu Z, Zhang F, Brenner M, Jacob A, Wang P. The protective effect of H151, a novel STING inhibitor, in renal ischemia-reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol 2023; 324:F558-F567. [PMID: 37102684 PMCID: PMC10228668 DOI: 10.1152/ajprenal.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with high morbidity and mortality. Stimulator of interferon (IFN) genes (STING) is the cytosolic DNA-activated signaling pathway that mediates inflammation and injury. Our recent study showed that extracellular cold-inducible RNA-binding protein (eCIRP), a newly identified damage-associated molecular pattern, activates STING and exacerbates hemorrhagic shock. H151 is a small molecule that selectively binds to STING and inhibits STING-mediated activity. We hypothesized that H151 attenuates eCIRP-induced STING activation in vitro and inhibits RIR-induced AKI in vivo. In vitro, renal tubular epithelial cells incubated with eCIRP showed increased levels of IFN-β, STING pathway downstream cytokine, IL-6, tumor necrosis factor-α, and neutrophil gelatinase-associated lipocalin, whereas coincubation with eCIRP and H151 diminished those increases in a dose-dependent manner. In vivo, 24 h after bilateral renal ischemia-reperfusion, glomerular filtration rate was decreased in RIR-vehicle-treated mice, whereas glomerular filtration rate was unchanged in RIR-H151-treated mice. In contrast to sham, serum blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin were increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. In contrast to sham, kidney IFN-β mRNA, histological injury score, and TUNEL staining were also increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. Importantly, in contrast to sham, in a 10-day survival study, survival decreased to 25% in RIR-vehicle, but RIR-H151 had a survival of 63%. In conclusion, H151 inhibits eCIRP-induced STING activation in renal tubular epithelial cells. Therefore, STING inhibition by H151 can be a promising therapeutic intervention for RIR-induced AKI.NEW & NOTEWORTHY Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with a high morbidity and mortality rate. Stimulator of interferon genes (STING) is the cytosolic DNA-activated signaling pathway responsible for mediating inflammation and injury. Extracellular cold-inducible RNA-binding protein (eCIRP) activates STING and exacerbates hemorrhagic shock. H151, a novel STING inhibitor, attenuated eCIRP-induced STING activation in vitro and inhibited RIR-induced AKI. H151 shows promise as a therapeutic intervention for RIR-induced AKI.
Collapse
Affiliation(s)
- Zhijian Hu
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Fangming Zhang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| | - Asha Jacob
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| |
Collapse
|
11
|
Abayasekara K, Sullo N. The clinical use of urinary mitochondrial DNA in adult surgical critical care patients with acute kidney injury. Clin Exp Pharmacol Physiol 2023; 50:277-286. [PMID: 36594612 DOI: 10.1111/1440-1681.13746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
Acute kidney injury (AKI) affects 47% of adult surgical critical care patients (ASCCPs). AKI is induced through a common oxidative stress pathway resulting in mitochondrial and tubular cell injury with increased urinary mitochondrial DNA (UmtDNA) excretion. UmtDNA is an emerging and readily sampled novel biomarker for varied surgical critical care cohorts. This review aimed to determine the clinical use of UmtDNA genes (ND1 and COX3) in AKI in ASCCPs. PubMed, MEDLINE and Web of Science databases were searched. Eligibility criteria were based on the patient/problem, intervention, comparison and outcome framework. Methodological quality of studies was assessed with the Newcastle-Ottawa Quality Assessment Scale. WebPlot Digitizer version 4.4 was used to extract UmtDNA data from graphs and UmtDNA ratios were statistically analysed with PRISM version 9.1.0 (GraphPad Software). Six human studies (n = 391) with three translational murine models (n = 112) satisfied inclusion criteria. One sample t test suggested significantly high UmtDNA-ND1 ratios in progressive/severe AKI (or delayed renal transplant graft function) to no AKI (or immediate renal transplant graft function) and increased UmtDNA-COX3 ratios approached significance. Sensitivities and specificities for UmtDNA ranged from 68% to 85% and 52% to 83.6%, respectively, comparable with new biomarkers, neutrophil gelatinase-associated lipocalin and kidney injury molecule-1. Weak correlation was observed with serum creatinine. These findings were complemented in translational murine AKI experiments with significantly elevated ND1 and COX3. From bench to clinical practice, UmtDNA appears to be a promising novel biomarker of progressive/severe AKI (or delayed graft function). Large prospective, multi-centre studies reporting standardised UmtDNA findings should clarify use of UmtDNA in ASCCP-AKI management.
Collapse
Affiliation(s)
| | - Nikol Sullo
- Medical School, Swansea University, Swansea, UK
| |
Collapse
|
12
|
Janovičová Ľ, Kmeťová K, Tóthová Ľ, Vlková B, Celec P. DNA in fresh urine supernatant is not affected by additional centrifugation and is protected against deoxyribonuclease. Mol Cell Probes 2023; 68:101900. [PMID: 36764623 DOI: 10.1016/j.mcp.2023.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Urinary DNA is widely studied as a non-invasive marker for monitoring of kidneys after transplantation or the progression of urinary tract tumors. The quantity of urinary DNA especially of mitochondrial origin has been reported to mirror kidney damage in various renal diseases and their models. Processing of samples might affect urinary DNA concentrations but the details are not clear. Samples of urine were collected from fifteen healthy volunteers. DNA was extracted from the whole urine, but also from the supernatant after centrifugation at 1600 g and 16000 g. In addition, we have analyzed the DNA in the microparticles in the pellet after the last spin. DNA was measured using fluorometry and real time PCR targeting nuclear and mitochondrial sequences. Addition of deoxyribonuclease to aliquots of samples enabled the characterization of DNA protection. Centrifugation at 1600 g decreased the concentration of extracted DNA by 66% at least in samples with higher DNA in whole urine. Interestingly, the additional spin at 16000 g did not result in a significant decrease in DNA concentration in the supernatant despite detectable microparticle-associated DNA. Deoxyribonuclease decreases total and nuclear DNA by 26% and 31% in whole urine. The majority of urinary mitochondrial DNA seems to be protected against deoxyribonuclease. Our results indicate high variability in urinary DNA even in healthy probands. Extracellular urinary DNA is partially bound to cell debris or microparticles, but a considerable part is still in the supernatant and is protected against cleavage. Further research should identify the nature of the protection, especially for mitochondrial DNA. Better understanding of the biology of urinary DNA should help its clinical interpretation.
Collapse
Affiliation(s)
- Ľubica Janovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Katarína Kmeťová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Barbora Vlková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
13
|
Lee H, Kim H, Jeon JS, Noh H, Park R, Byun DW, Kim HJ, Suh K, Park HK, Kwon SH. Empagliflozin suppresses urinary mitochondrial DNA copy numbers and interleukin-1β in type 2 diabetes patients. Sci Rep 2022; 12:19103. [PMID: 36351983 PMCID: PMC9646895 DOI: 10.1038/s41598-022-22083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular and renal outcomes in type 2 diabetes mellitus (T2DM) patients. However, the mechanisms by which SGLT2 inhibitors improve the clinical outcomes remain elusive. We evaluated whether empagliflozin, an SGLT2 inhibitor, ameliorates mitochondrial dysfunction and inflammatory milieu of the kidneys in T2DM patients. We prospectively measured copy numbers of urinary and serum mitochondrial DNA (mtDNA) nicotinamide adenine dinucleotide dehydrogenase subunit-1 (mtND-1) and cytochrome-c oxidase 3 (mtCOX-3) and urinary interleukin-1β (IL-1β) in healthy volunteers (n = 22), in SGLT2 inhibitor-naïve T2DM patients (n = 21) at baseline, and in T2DM patients after 3 months of treatment with empagliflozin (10 mg, n = 17 or 25 mg, n = 4). Both urinary mtDNA copy numbers and IL-1β levels were higher in the T2DM group than in healthy volunteers. Baseline copy numbers of serum mtCOX-3 in the T2DM group were lower than those in healthy volunteers. Empagliflozin induced marked reduction in both urinary and serum mtND-1 and mtCOX-3 copy numbers, as well as in urinary IL-1β. Empagliflozin could attenuate mitochondrial damage and inhibit inflammatory response in T2DM patients. This would explain the beneficial effects of SGLT2 inhibitors on cardiovascular and renal outcomes.
Collapse
Affiliation(s)
- Haekyung Lee
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hyoungnae Kim
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Jin Seok Jeon
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hyunjin Noh
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Rojin Park
- grid.412678.e0000 0004 0634 1623Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Dong Won Byun
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hye Jeong Kim
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Kyoil Suh
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hyeong Kyu Park
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Soon Hyo Kwon
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| |
Collapse
|
14
|
Extracellular DNA concentrations in various aetiologies of acute kidney injury. Sci Rep 2022; 12:16812. [PMID: 36207374 PMCID: PMC9546839 DOI: 10.1038/s41598-022-21248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Extracellular DNA (ecDNA) in plasma is a non-specific biomarker of tissue damage. Urinary ecDNA, especially of mitochondrial origin, is a potential non-invasive biomarker of kidney damage. Despite prominent tissue damage, ecDNA has not yet been comprehensively analysed in acute kidney injury (AKI). We analysed different fractions of ecDNA, i.e. total, nuclear and mitochondrial, in plasma and urine of children, and different animal models of AKI. We also analysed the activity of the deoxyribonuclease (DNase), which is contributes to the degradation of ecDNA. Patients with AKI had higher total and nuclear ecDNA in both, plasma and urine (sixfold and 12-fold in plasma, and 800-fold in urine, respectively), with no difference in mitochondrial ecDNA. This was mainly found for patients with AKI due to tubulointerstitial nephritis and atypical haemolytic uremic syndrome. Increased plasma ecDNA was also found in animal models of AKI, including adenine nephropathy (fivefold), haemolytic uremic syndrome (fourfold), and ischemia–reperfusion injury (1.5-fold). Total urinary ecDNA was higher in adenine nephropathy and ischemia–reperfusion injury (1300-fold and twofold, respectively). DNase activity in urine was significantly lower in all animal models of AKI in comparison to controls. In conclusion, plasma total and nuclear ecDNA and urinary total ecDNA is increased in patients and animals with particular entities of AKI, suggesting a mechanism-dependent release of ecDNA during AKI. Further studies should focus on the dynamics of ecDNA and its potential role in the pathogenesis of AKI.
Collapse
|
15
|
Matsunaga T, Roesel MJ, Schroeter A, Xiao Y, Zhou H, Tullius SG. Preserving and rejuvenating old organs for transplantation: novel treatments including the potential of senolytics. Curr Opin Organ Transplant 2022; 27:481-487. [PMID: 35950886 PMCID: PMC9490781 DOI: 10.1097/mot.0000000000001019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Older donors have the potential to close the gap between demand and supply in solid organs transplantation. Utilizing older organs, at the same time, has been associated with worse short- and long-term outcomes. Here, we introduce potential mechanisms on how treatments during machine perfusion (MP) may safely improve the utilization of older organs. RECENT FINDINGS Consequences of ischemia reperfusion injury (IRI), a process of acute, sterile inflammation leading to organ injury are more prominent in older organs. Of relevance, organ age and IRI seem to act synergistically, leading to an increase of damage associated molecular patterns that trigger innate and adaptive immune responses. While cold storage has traditionally been considered the standard of care in organ preservation, accumulating data support that both hypothermic and normothermic MP improve organ quality, particularly in older organs. Furthermore, MP provides the opportunity to assess the quality of organs while adding therapeutic agents. Experimental data have already demonstrated the potential of applying treatments during MP. New experimental show that the depletion of senescent cells that accumulate in old organs improves organ quality and transplant outcomes. SUMMARY As the importance of expanding the donor pool is increasing, MP and novel treatments bear the potential to assess and regenerate older organs, narrowing the gap between demand and supply.
Collapse
Affiliation(s)
- Tomohisa Matsunaga
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Maximilian J. Roesel
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Institute of Medical Immunology, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Schroeter
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Yao Xiao
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hao Zhou
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Nishimoto S, Sata M, Fukuda D. Expanding role of deoxyribonucleic acid-sensing mechanism in the development of lifestyle-related diseases. Front Cardiovasc Med 2022; 9:881181. [PMID: 36176986 PMCID: PMC9513035 DOI: 10.3389/fcvm.2022.881181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
In lifestyle-related diseases, such as cardiovascular, metabolic, respiratory, and kidney diseases, chronic inflammation plays a causal role in their pathogenesis; however, underlying mechanisms of sterile chronic inflammation are not well-understood. Previous studies have confirmed the damage of cells in these organs in the presence of various risk factors such as diabetes, dyslipidemia, and cigarette smoking, releasing various endogenous ligands for pattern recognition receptors. These studies suggested that nucleic acids released from damaged tissues accumulate in these tissues, acting as an endogenous ligand. Undamaged DNA is an integral factor for the sustenance of life, whereas, DNA fragments, especially those from pathogens, are potent activators of the inflammatory response. Recent studies have indicated that inflammatory responses such as the production of type I interferon (IFN) induced by DNA-sensing mechanisms which contributes to self-defense system in innate immunity participates in the progression of inflammatory diseases by the recognition of nucleic acids derived from the host, including mitochondrial DNA (mtDNA). The body possesses several types of DNA sensors. Toll-like receptor 9 (TLR9) recognizes DNA fragments in the endosomes. In addition, the binding of DNA fragments in the cytosol activates cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS), resulting in the synthesis of the second messenger cyclic GMP-AMP (cGAMP). The binding of cGAMP to stimulator of interferon genes (STING) activates NF-κB and TBK-1 signaling and consequently the production of many inflammatory cytokines including IFNs. Numerous previous studies have demonstrated the role of DNA sensors in self-defense through the recognition of DNA fragments derived from pathogens. Beyond the canonical role of TLR9 and cGAS-STING, this review describes the role of these DNA-sensing mechanism in the inflammatory responses caused by endogenous DNA fragments, and in the pathogenesis of lifestyle-related diseases.
Collapse
Affiliation(s)
- Sachiko Nishimoto
- Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, Kobe, Japan
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Cardiovascular Medicine, Osaka Metropolitan University, Osaka, Japan
- *Correspondence: Daiju Fukuda, ,
| |
Collapse
|
17
|
Hepokoski M, Singh P. Mitochondria as mediators of systemic inflammation and organ cross talk in acute kidney injury. Am J Physiol Renal Physiol 2022; 322:F589-F596. [PMID: 35379000 PMCID: PMC9054254 DOI: 10.1152/ajprenal.00372.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute kidney injury (AKI) is a systemic inflammatory disease that contributes to remote organ failures. Multiple organ failure is the leading cause of death due to AKI, and lack of understanding of the mechanisms involved has precluded the development of novel therapies. Mitochondrial injury in AKI leads to mitochondrial fragmentation and release of damage-associated molecular patterns, which are known to active innate immune pathways and systemic inflammation. This review presents current evidence suggesting that extracellular mitochondrial damage-associated molecular patterns are mediators of remote organ failures during AKI that have the potential to be modifiable.
Collapse
Affiliation(s)
- Mark Hepokoski
- 1Veterans Affairs San Diego Healthcare System, San Diego, California,2Division of Pulmonary and Critical Care Medicine, University of California, San Diego, California
| | - Prabhleen Singh
- 1Veterans Affairs San Diego Healthcare System, San Diego, California,3Division of Nephrology and Hypertension, University of California, San Diego, California
| |
Collapse
|
18
|
Luo S, Yang M, Zhao H, Han Y, Liu Y, Xiong X, Chen W, Li C, Sun L. Mitochondrial DNA-dependent inflammation in kidney diseases. Int Immunopharmacol 2022; 107:108637. [DOI: 10.1016/j.intimp.2022.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/15/2022]
|
19
|
Renal mitochondrial injury in the pathogenesis of CKD: mtDNA and mitomiRs. Clin Sci (Lond) 2022; 136:345-360. [PMID: 35260892 PMCID: PMC10018514 DOI: 10.1042/cs20210512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 12/31/2022]
Abstract
Chronic kidney disease (CKD) is a public health concern that affects over 200 million people worldwide and is associated with a tremendous economic burden. Therefore, deciphering the mechanisms underpinning CKD is crucial to decelerate its progression towards end-stage renal disease (ESRD). Renal tubular cells are populated with a high number of mitochondria, which produce cellular energy and modulate several important cellular processes, including generation of reactive oxygen species (ROS), calcium homeostasis, proliferation, and apoptosis. Over the past few years, increasing evidence has implicated renal mitochondrial damage in the pathogenesis of common etiologies of CKD, such as diabetes, hypertension, metabolic syndrome (MetS), chronic renal ischemia, and polycystic kidney disease (PKD). However, most compelling evidence is based on preclinical studies because renal biopsies are not routinely performed in many patients with CKD. Previous studies have shown that urinary mitochondrial DNA (mtDNA) copy numbers may serve as non-invasive biomarkers of renal mitochondrial dysfunction. Emerging data also suggest that CKD is associated with altered expression of mitochondria-related microRNAs (mitomiRs), which localize in mitochondria and regulate the expression of mtDNA and nucleus-encoded mitochondrial genes. This review summarizes relevant evidence regarding the involvement of renal mitochondrial injury and dysfunction in frequent forms of CKD. We further provide an overview of non-invasive biomarkers and potential mechanisms of renal mitochondrial damage, especially focusing on mtDNA and mitomiRs.
Collapse
|
20
|
Chowdhury A, Witte S, Aich A. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Front Cell Dev Biol 2022; 10:796066. [PMID: 35223833 PMCID: PMC8873532 DOI: 10.3389/fcell.2022.796066] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria, in symbiosis with the host cell, carry out a wide variety of functions from generating energy, regulating the metabolic processes, cell death to inflammation. The most prominent function of mitochondria relies on the oxidative phosphorylation (OXPHOS) system. OXPHOS heavily influences the mitochondrial-nuclear communication through a plethora of interconnected signaling pathways. Additionally, owing to the bacterial ancestry, mitochondria also harbor a large number of Damage Associated Molecular Patterns (DAMPs). These molecules relay the information about the state of the mitochondrial health and dysfunction to the innate immune system. Consequently, depending on the intracellular or extracellular nature of detection, different inflammatory pathways are elicited. One group of DAMPs, the mitochondrial nucleic acids, hijack the antiviral DNA or RNA sensing mechanisms such as the cGAS/STING and RIG-1/MAVS pathways. A pro-inflammatory response is invoked by these signals predominantly through type I interferon (T1-IFN) cytokines. This affects a wide range of organ systems which exhibit clinical presentations of auto-immune disorders. Interestingly, tumor cells too, have devised ingenious ways to use the mitochondrial DNA mediated cGAS-STING-IRF3 response to promote neoplastic transformations and develop tumor micro-environments. Thus, mitochondrial nucleic acid-sensing pathways are fundamental in understanding the source and nature of disease initiation and development. Apart from the pathological interest, recent studies also attempt to delineate the structural considerations for the release of nucleic acids across the mitochondrial membranes. Hence, this review presents a comprehensive overview of the different aspects of mitochondrial nucleic acid-sensing. It attempts to summarize the nature of the molecular patterns involved, their release and recognition in the cytoplasm and signaling. Finally, a major emphasis is given to elaborate the resulting patho-physiologies.
Collapse
Affiliation(s)
- Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Steffen Witte
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging, from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Minimal Change Disease Is Associated with Mitochondrial Injury and STING Pathway Activation. J Clin Med 2022; 11:jcm11030577. [PMID: 35160028 PMCID: PMC8836778 DOI: 10.3390/jcm11030577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
We hypothesized that minimal change disease (MCD) pathogenesis may be associated with mitochondrial injury, and that the degree of mitochondrial injury at the time of diagnosis may serve as a valuable prognostic marker. We compared urinary mitochondrial DNA (mtDNA) at the time of diagnosis in patients with MCD and age- and sex-matched healthy controls (MHC) (n = 10 each). We analyzed the site and signal intensity of immunohistochemical (IHC) staining of stimulator of interferon genes (STING) using kidney tissues at the time of diagnosis in patients with MCD. Patients with MCD were divided into high (n = 6) and low-intensity (n = 14) subgroups according to the signal intensity. Urinary mtDNA levels were elevated in the MCD groups more than in the MHC group (p < 0.001). Time-averaged proteinuria and frequency of relapses during the follow-up period were higher in the high-intensity than in the low-intensity subgroup (1.18 ± 0.54 vs. 0.57 ± 0.45 g/day, p = 0.022; and 0.72 ± 0.60 vs. 0.09 ± 0.22 episodes/year, p = 0.022, respectively). Mitochondrial injury may be associated with MCD pathogenesis, and the signal intensity of STING IHC staining at the time of diagnosis could be used as a valuable prognostic marker in MCD.
Collapse
|
22
|
Zhang M, Zhang Y, Wu M, Li Z, Li X, Liu Z, Hu W, Liu H, Li X. Importance of urinary mitochondrial DNA in diagnosis and prognosis of kidney diseases. Mitochondrion 2021; 61:174-178. [PMID: 34673260 DOI: 10.1016/j.mito.2021.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 01/12/2023]
Abstract
Mitochondrial injury plays an important role in the occurrence and development of kidney diseases. However, the existing assays to determine mitochondrial function restrict our ability to understand the relationship between mitochondrial dysfunction and kidney damage. These limitations may be overcome by recent findings on urinary mitochondrial DNA (UmtDNA). Elevated UmtDNA level may serve as a surrogate biomarker of mitochondrial dysfunction, kidney damage, and progression and prognosis of kidney diseases. Herein, we review the recent research progress on UmtDNA in kidney diseases diagnosis and highlight the research areas that should be expanded in future as well as discuss the future perspectives.
Collapse
Affiliation(s)
- Minjie Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yaozhi Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Man Wu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zixian Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xingyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zejian Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Wenwen Hu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
23
|
Hao C, Zhang J, Zhang F, Wu J, Cao H, Wang W. Mitochondrial DNA may act as a biomarker to predict donor-kidney quality. Clin Transplant 2021; 35:e14469. [PMID: 34448256 DOI: 10.1111/ctr.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022]
Abstract
Kidney transplantation is the best therapy for end-stage renal disease. Demand for kidney transplantation rises year-on-year, and the gap between kidney supply and demand remains large. To meet this clinical need, a gradual expansion in the supply of donors is required. However, clinics lack appropriate tools capable of quickly and accurately predicting post-transplant renal allograft function, and thus assess donor-kidney quality before transplantation. Mitochondrial DNA (mtDNA) is a key component of damage-associated molecular patterns (DAMPs) and plays an important part in ischemia-reperfusion injury (IRI), accelerating the progression of IRI by inducing inflammation and type I interferon responses. mtDNA is known to be closely involved in delayed graft function (DGF) and acute kidney injury (AKI) after transplantation. Thus, mtDNA is a potential biomarker able to predict post-transplant renal allograft function. This review summarizes mtDNA biology, the role mtDNA plays in renal transplantation, outlines advances in detecting mtDNA, and details mtDNA's able to predict post-transplant renal allograft function. We aim to elucidate the potential value of mtDNA as a biomarker in the prediction of IRI, and eventually provide help for predicting donor-kidney quality.
Collapse
Affiliation(s)
- Changzhen Hao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Huawei Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Bordoni L, Petracci I, Pelikant-Malecka I, Radulska A, Piangerelli M, Samulak JJ, Lewicki L, Kalinowski L, Gabbianelli R, Olek RA. Mitochondrial DNA copy number and trimethylamine levels in the blood: New insights on cardiovascular disease biomarkers. FASEB J 2021; 35:e21694. [PMID: 34165220 DOI: 10.1096/fj.202100056r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Among cardiovascular disease (CVD) biomarkers, the mitochondrial DNA copy number (mtDNAcn) is a promising candidate. A growing attention has been also dedicated to trimethylamine-N-oxide (TMAO), an oxidative derivative of the gut metabolite trimethylamine (TMA). With the aim to identify biomarkers predictive of CVD, we investigated TMA, TMAO, and mtDNAcn in a population of 389 coronary artery disease (CAD) patients and 151 healthy controls, in association with established risk factors for CVD (sex, age, hypertension, smoking, diabetes, glomerular filtration rate [GFR]) and troponin, an established marker of CAD. MtDNAcn was significantly lower in CAD patients; it correlates with GFR and TMA, but not with TMAO. A biomarker including mtDNAcn, sex, and hypertension (but neither TMA nor TMAO) emerged as a good predictor of CAD. Our findings support the mtDNAcn as a promising plastic biomarker, useful to monitor the exposure to risk factors and the efficacy of preventive interventions for a personalized CAD risk reduction.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Irene Petracci
- School of Advanced Studies, University of Camerino, Camerino, Italy
| | - Iwona Pelikant-Malecka
- Division of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Adriana Radulska
- Division of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Marco Piangerelli
- Computer Science Division and Mathematics Division, School of Science and Technology, University of Camerino, Camerino, Italy
| | - Joanna J Samulak
- Doctoral School, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Lukasz Lewicki
- Department of Cardiology and Angiology, Kashubian Center for Heart and Vascular Diseases, Pomeranian Hospitals, Wejherowo, Poland
| | - Leszek Kalinowski
- Division of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland.,Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Robert A Olek
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznan, Poland
| |
Collapse
|
25
|
Mitochondrial DNA-Mediated Inflammation in Acute Kidney Injury and Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9985603. [PMID: 34306320 PMCID: PMC8263241 DOI: 10.1155/2021/9985603] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022]
Abstract
The integrity and function of mitochondria are essential for normal kidney physiology. Mitochondrial DNA (mtDNA) has been widely a concern in recent years because its abnormalities may result in disruption of aerobic respiration, cellular dysfunction, and even cell death. Particularly, aberrant mtDNA copy number (mtDNA-CN) is associated with the development of acute kidney injury and chronic kidney disease, and urinary mtDNA-CN shows the potential to be a promising indicator for clinical diagnosis and evaluation of kidney function. Several lines of evidence suggest that mtDNA may also trigger innate immunity, leading to kidney inflammation and fibrosis. In mechanism, mtDNA can be released into the cytoplasm under cell stress and recognized by multiple DNA-sensing mechanisms, including Toll-like receptor 9 (TLR9), cytosolic cGAS-stimulator of interferon genes (STING) signaling, and inflammasome activation, which then mediate downstream inflammatory cascades. In this review, we summarize the characteristics of these mtDNA-sensing pathways mediating inflammatory responses and their role in the pathogenesis of acute kidney injury, nondiabetic chronic kidney disease, and diabetic kidney disease. In addition, we highlight targeting of mtDNA-mediated inflammatory pathways as a novel therapeutic target for these kidney diseases.
Collapse
|
26
|
Liu J, Jia Z, Gong W. Circulating Mitochondrial DNA Stimulates Innate Immune Signaling Pathways to Mediate Acute Kidney Injury. Front Immunol 2021; 12:680648. [PMID: 34248963 PMCID: PMC8264283 DOI: 10.3389/fimmu.2021.680648] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial dysfunction is increasingly considered as a critical contributor to the occurrence and progression of acute kidney injury (AKI). However, the mechanisms by which damaged mitochondria mediate AKI progression are multifactorial and complicated. Mitochondrial DNA (mtDNA) released from damaged mitochondria could serve as a danger-associated molecular pattern (DAMP) and activate the innate immune system through STING, TLR9, NLRP3, and some other adaptors, and further mediate tubular cell inflammation and apoptosis. Accumulating evidence has demonstrated the important role of circulating mtDNA and its related pathways in the progression of AKI, and regulating the proteins involved in these pathways may be an effective strategy to reduce renal tubular injury and alleviate AKI. Here, we aim to provide a comprehensive overview of recent studies on mtDNA-mediated renal pathological events to provide new insights in the setting of AKI.
Collapse
Affiliation(s)
- Jiaye Liu
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Prognostic significance of peritoneal dialysis effluent mitochondrial DNA level. Clin Chim Acta 2021; 519:1-9. [PMID: 33826951 DOI: 10.1016/j.cca.2021.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) resembles bacterial DNA and potentially triggers local and systemic inflammation. We evaluate the prognostic implications of PD effluent mtDNA level in peritoneal dialysis (PD) patients. METHODS We measured mtDNA in the PD effluent (PDE) sediment and supernatant of 168 incident PD patients. All patients were followed for hospitalization, technique and overall survival. RESULTS The median PD effluent supernatant and sediment mtDNA levels were 255.4 unit (interquartile range [IQR] 157.5-451.3) and 201.6 unit (IQR 147.8-267.3), respectively. Serum C-reactive protein level closely with PDE sediment mtDNA level (r = 0.471, p < 0.001) and less with supernatant mtDNA level (r = 0.156, p = 0.044). PDE supernatant mtDNA level correlates with dialysate-to-plasma creatinine ratio at 4 h (D/P4) (r = 0.361, p < 0.001) but not with any clinical outcome. PDE sediment mtDNA was an independent predictor of technique survival (p = 0.011) and the duration of hospitalization (p = 0.044) after adjusting for clinical confounding factors. CONCLUSIONS PDE sediment mtDNA level significantly correlated with systemic inflammation, while PDE supernatant mtDNA level correlated with peritoneal transport. PDE sediment mtDNA level also independently predicted technique survival and duration of hospitalization. The mechanism of the different implications between PDE sediment and supernatant mtDNA levels deserves further investigations.
Collapse
|
28
|
Han F, Sun Q, Huang Z, Li H, Ma M, Liao T, Luo Z, Zheng L, Zhang N, Chen N, Hong L, Na N, Sun Q. Donor plasma mitochondrial DNA is associated with antibody-mediated rejection in renal allograft recipients. Aging (Albany NY) 2021; 13:8440-8453. [PMID: 33714205 PMCID: PMC8034952 DOI: 10.18632/aging.202654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/22/2021] [Indexed: 11/25/2022]
Abstract
We previously showed that donor plasma mitochondrial DNA (dmtDNA) levels were correlated with renal allograft function. The aim of the current study was to determine whether dmtDNA levels are associated with the occurrence of antibody-mediated rejection (ABMR). This is a retrospective open cohort study comprised of 167 donors and 323 recipients enrolled from January 2015 to December 2017. We quantified the mtDNA level present in donor plasma using quantitative real-time polymerase chain reaction. The average plasma dmtDNA level in the acute rejection (AR) group was higher than that of the control group (0.156 versus 0.075, p<0.001). Multivariate logistic regression analysis showed that dmtDNA levels were also significantly associated with AR (OR=1.588, 95% CI 1.337-4.561, p<0.001). When the dmtDNA level was >0.156, the probability of AR was 62.9%. The plasma dmtDNA level in the ABMR group was significantly higher than that of the T cell-mediated rejection group (0.185 versus 0.099, p=0.032). The area under the receiver operating characteristic curve of dmtDNA for prediction of ABMR was as high as 0.910 (95% CI 0.843-0.977). We demonstrated that plasma dmtDNA was an independent risk factor for ABMR, which is valuable in organ evaluation. dmtDNA level is a possible first predictive marker for ABMR.
Collapse
Affiliation(s)
- Fei Han
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qipeng Sun
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhengyu Huang
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heng Li
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Maolin Ma
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Liao
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zihuang Luo
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lingling Zheng
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Nana Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nan Chen
- Laboratory of Cancer Biomarkers and Liquid Biopsy, Henan University, Kaifeng, China
| | - Liangqing Hong
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ning Na
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiquan Sun
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
29
|
Gong W, Lu L, Zhou Y, Liu J, Ma H, Fu L, Huang S, Zhang Y, Zhang A, Jia Z. The novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction. Am J Physiol Renal Physiol 2021; 320:F608-F616. [PMID: 33615891 DOI: 10.1152/ajprenal.00554.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stimulator of interferon genes (STING) is an important adaptor in cytosolic DNA-sensing pathways. A recent study found that the deletion of STING ameliorated cisplatin-induced acute kidney injury (AKI), suggesting that STING could serve as a potential target for AKI therapy. Up to now, a series of small-molecule STING inhibitors/antagonists have been identified. However, none of the research was performed to explore the role of human STING inhibitors in AKI. Here, we investigated the effect of a newly generated covalent antagonist, H151, which targets both human and murine STING, in cisplatin-induced AKI. We found that H151 treatment significantly ameliorated cisplatin-induced kidney injury as shown by the improvement of renal function, kidney morphology, and renal inflammation. In addition, tubular cell apoptosis and increased renal tubular injury marker neutrophil gelatinase-associated lipocalin induced by cisplatin were also effectively attenuated in H151-treated mice. Moreover, the mitochondrial injury caused by cisplatin was also reversed as evidenced by improved mitochondrial morphology, restored mitochondrial DNA content, and reversed mitochondrial gene expression. Finally, we observed enhanced mitochondrial DNA levels in the plasma of patients receiving platinum-based chemotherapy compared with healthy controls, which could potentially activate STING signaling. Taken together, these findings suggested that H151 could be a potential therapeutic agent for treating AKI possibly through inhibiting STING-mediated inflammation and mitochondrial injury.NEW & NOTEWORTHY Although various stimulator of interferon genes (STING) inhibitors have been identified, no research was performed to investigate the role of human STING inhibitors in AKI. Here, we evaluated the effect of H151 targeting both human and murine STING on cisplatin-induced AKI and observed a protection against renal injury possibly through ameliorating inflammation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Wei Gong
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lingling Lu
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Zhou
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaye Liu
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Haoyang Ma
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lvhan Fu
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Zhao M, Liu S, Wang C, Wang Y, Wan M, Liu F, Gong M, Yuan Y, Chen Y, Cheng J, Lu Y, Liu J. Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Mitochondrial Damage and Inflammation by Stabilizing Mitochondrial DNA. ACS NANO 2021; 15:1519-1538. [PMID: 33369392 DOI: 10.1021/acsnano.0c08947] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mitochondrial dysfunction is a key feature of injury to numerous tissues and stem cell aging. Although the tissue regenerative role of mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs) is well known, their specific role in regulating mitochondrial function in target cells remains elusive. Here, we report that MSC-EVs attenuated mtDNA damage and inflammation after acute kidney injury (AKI) and that this effect was at least partially dependent on the mitochondrial transcription factor A (TFAM) pathway. In detail, TFAM and mtDNA were depleted by oxidative stress in MSCs from aged or diabetic donors. Higher levels of TFAM mRNA and mtDNA were detected in normal control (NC) MSC-EVs than in TFAM-knockdown (TFAM-KD) and aged EVs. EV-mediated TFAM mRNA transfer in recipient cells was unaffected by transcriptional inhibition. Accordingly, the application of MSC-EVs restored TFAM protein and TFAM-mtDNA complex (nucleoid) stability, thereby reversing mtDNA deletion and mitochondrial oxidative phosphorylation (OXPHOS) defects in injured renal tubular cells. Loss of TFAM also led to downregulation of multiple anti-inflammatory miRNAs and proteins in MSC-EVs. In vivo, intravenously injected EVs primarily accumulated in the liver, kidney, spleen, and lung. MSC-EVs attenuated renal lesion formation, mitochondrial damage, and inflammation in mice with AKI, whereas EVs from TFAM-KD or aged MSCs resulted in poor therapeutic outcomes. Moreover, TFAM overexpression (TFAM-OE) improved the rescue effect of MSC-EVs on mitochondrial damage and inflammation to some extent. This study suggests that MSC-EVs are promising nanotherapeutics for diseases characterized by mitochondrial damage, and TFAM signaling is essential for maintaining their regenerative capacity.
Collapse
Affiliation(s)
- Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yizhuo Wang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Liu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Gong
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Leuthner TC, Hartman JH, Ryde IT, Meyer JN. PCR-Based Determination of Mitochondrial DNA Copy Number in Multiple Species. Methods Mol Biol 2021; 2310:91-111. [PMID: 34096001 DOI: 10.1007/978-1-0716-1433-4_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mitochondrial DNA (mtDNA) copy number is a critical component of overall mitochondrial health. In this chapter, we describe methods for simultaneous isolation of mtDNA and nuclear DNA (nucDNA), and measurement of their respective copy numbers using quantitative PCR. Methods differ depending on the species and cell type of the starting material, and availability of specific PCR reagents. We also briefly describe factors that affect mtDNA copy number and discuss caveats to its use as a biomarker.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Ian T Ryde
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
32
|
Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, Yang G, Chen Y, Cheng J, Lu Y, Liu J. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics 2021; 11:1845-1863. [PMID: 33408785 PMCID: PMC7778599 DOI: 10.7150/thno.50905] [Citation(s) in RCA: 348] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023] Open
Abstract
Aims: Ischemia-reperfusion injury (IRI)-induced acute kidney injury (IRI-AKI) is characterized by elevated levels of reactive oxygen species (ROS), mitochondrial dysfunction, and inflammation, but the potential link among these features remains unclear. In this study, we aimed to investigate the specific role of mitochondrial ROS (mtROS) in initiating mitochondrial DNA (mtDNA) damage and inflammation during IRI-AKI. Methods: The changes in renal function, mitochondrial function, and inflammation in IRI-AKI mice with or without mtROS inhibition were analyzed in vivo. The impact of mtROS on TFAM (mitochondrial transcription factor A), Lon protease, mtDNA, mitochondrial respiration, and cytokine release was analyzed in renal tubular cells in vitro. The effects of TFAM knockdown on mtDNA, mitochondrial function, and cytokine release were also analyzed in vitro. Finally, changes in TFAM and mtDNA nucleoids were measured in kidney samples from IRI-AKI mice and patients. Results: Decreasing mtROS levels attenuated renal dysfunction, mitochondrial damage, and inflammation in IRI-AKI mice. Decreasing mtROS levels also reversed the decrease in TFAM levels and mtDNA copy number that occurs in HK2 cells under oxidative stress. mtROS reduced the abundance of mitochondrial TFAM in HK2 cells by suppressing its transcription and promoting Lon-mediated TFAM degradation. Silencing of TFAM abolished the Mito-Tempo (MT)-induced rescue of mitochondrial function and cytokine release in HK2 cells under oxidative stress. Loss of TFAM and mtDNA damage were found in kidneys from IRI-AKI mice and AKI patients. Conclusion: mtROS can promote renal injury by suppressing TFAM-mediated mtDNA maintenance, resulting in decreased mitochondrial energy metabolism and increased cytokine release. TFAM defects may be a promising target for renal repair after IRI-AKI.
Collapse
|
33
|
Jansen MPB, Pulskens WPC, Uil M, Claessen N, Nieuwenhuizen G, Standaar D, Hau CM, Nieuwland R, Florquin S, Bemelman FJ, Leemans JC, Roelofs JJTH. Urinary mitochondrial DNA associates with delayed graft function following renal transplantation. Nephrol Dial Transplant 2020; 35:1320-1327. [PMID: 30590723 DOI: 10.1093/ndt/gfy372] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ischaemia-reperfusion (IR) injury is an important determinant of delayed graft function (DGF) affecting allograft function. Mitochondrial DNA (mtDNA) is released upon cell death and platelet activation into the extracellular environment and has been suggested to be a biomarker in several diseases. Whether extracellular mtDNA accumulates in plasma and/or urine upon renal IR and predisposes DGF is unknown. METHODS C57BL/6J wild-type mice were subjected to renal IR. In addition, an observational case-control study was set up enrolling 43 patients who underwent kidney transplantation. One day post-IR in mice and a few days following renal transplantation in human, blood and urine were collected. Patients were stratified into DGF and non-DGF groups. RESULTS mtDNA-encoded genes accumulate in urine and plasma in both mice subjected to renal IR injury and in humans following renal transplantation. In human renal transplant recipients, cold ischaemia time and renal function correlate with urinary mtDNA levels. Urinary mtDNA levels but not urinary nuclear DNA levels were significantly higher in the DGF group compared with the non-DGF group. Multiple receiver operating characteristic curves revealed significant diagnostic performance for mtDNA-encoded genes cytochrome c oxidase III (COXIII); nicotinamide adenine dinucleotide hydrogen subunit 1 (NADH-deh); mitochondrially encoded, mitochondrially encoded nicotinamide adenine dinucleotide dehydrogenase 2 (MT-ND2) with an area under the curve of, respectively, 0.71 [P = 0.03; 95% confidence interval (CI) 0.54-0.89], 0.75 (P = 0.01; 95% CI 0.58-0.91) and 0.74 (P = 0.02; 95% CI 0.58-0.89). CONCLUSIONS These data suggest that renal ischaemia time determines the level of mtDNA accumulation in urine, which associates with renal allograft function and the diagnosis of DGF following renal transplantation.
Collapse
Affiliation(s)
- Marcel P B Jansen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wilco P C Pulskens
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Melissa Uil
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerrie Nieuwenhuizen
- Department of Nephrology, Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dorien Standaar
- Department of Nephrology, Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Chi M Hau
- Laboratory of Experimental Clinical Chemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederike J Bemelman
- Department of Nephrology, Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaklien C Leemans
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Seo M, Kim H, Noh H, Jeon JS, Byun DW, Kim SH, Kim HJ, Suh K, Park HK, Kwon SH. Effect of bariatric surgery on circulating and urinary mitochondrial DNA copy numbers in obesity with or without diabetes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001372. [PMID: 33020132 PMCID: PMC7536782 DOI: 10.1136/bmjdrc-2020-001372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/22/2020] [Accepted: 08/23/2020] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Recent studies have suggested that extracellular circulating and urinary mitochondrial DNA (mtDNA) are associated with mitochondrial dysfunction in obesity and type 2 diabetes mellitus (T2DM). However, the changes to cell-free serum and urinary mtDNA after bariatric surgery in patients with obesity with T2DM have not been investigated to date. RESEARCH DESIGN AND METHODS We prospectively recruited patients with obesity (n=18), and with obesity and T2DM (n=14) who underwent bariatric surgery, along with healthy volunteers (HV) as a control group (n=22). Serum and urinary mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit-1 (mtND-1) and cytochrome-c oxidase 3 (mtCOX-3) copy numbers were measured using quantitative PCR (qPCR). The mtDNA copy numbers of patients with obesity (with and without T2DM) were followed up 6 months after surgery. RESULTS The copy numbers of urinary mtND-1 and mtCOX-3 in patients with obesity, with or without T2DM, were higher than those in the HVs. Moreover, urinary mtCOX-3 copy number increased in patients with obesity with T2DM compared with patients with obesity without T2DM (p=0.018). Meanwhile, serum mtCOX-3 copy numbers in HV were higher in both obesity patient groups (p=0.040). Bariatric surgery reduced urinary mtND-1 and mtCOX-3 copy numbers, as well as serum mtCOX-3 copy numbers only in patients with obesity with T2DM. CONCLUSION These results suggest that T2DM induces greater kidney mitochondrial dysfunction in patients with obesity, which can be effectively restored with bariatric surgery.
Collapse
Affiliation(s)
- Mihae Seo
- Internal Medicine, Soonchunhyang University Hospital, Gumi, Gyeongsangbuk-do, The Republic of Korea
| | - Hyoungnae Kim
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
- Hyaonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Hyunjin Noh
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
- Hyaonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Jin Seok Jeon
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
- Hyaonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Dong Won Byun
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Sang Hyun Kim
- Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Hye Jeong Kim
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Kyoil Suh
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Hyeong Kyu Park
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| | - Soon Hyo Kwon
- Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
- Hyaonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, The Republic of Korea
| |
Collapse
|
35
|
Sabapathy V, Venkatadri R, Dogan M, Sharma R. The Yin and Yang of Alarmins in Regulation of Acute Kidney Injury. Front Med (Lausanne) 2020; 7:441. [PMID: 32974364 PMCID: PMC7472534 DOI: 10.3389/fmed.2020.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a major clinical burden affecting 20 to 50% of hospitalized and intensive care patients. Irrespective of the initiating factors, the immune system plays a major role in amplifying the disease pathogenesis with certain immune cells contributing to renal damage, whereas others offer protection and facilitate recovery. Alarmins are small molecules and proteins that include granulysins, high-mobility group box 1 protein, interleukin (IL)-1α, IL-16, IL-33, heat shock proteins, the Ca++ binding S100 proteins, adenosine triphosphate, and uric acid. Alarmins are mostly intracellular molecules, and their release to the extracellular milieu signals cellular stress or damage, generally leading to the recruitment of the cells of the immune system. Early studies indicated a pro-inflammatory role for the alarmins by contributing to immune-system dysregulation and worsening of AKI. However, recent developments demonstrate anti-inflammatory mechanisms of certain alarmins or alarmin-sensing receptors, which may participate in the prevention, resolution, and repair of AKI. This dual function of alarmins is intriguing and has confounded the role of alarmins in AKI. In this study, we review the contribution of various alarmins to the pathogenesis of AKI in experimental and clinical studies. We also analyze the approaches for the therapeutic utilization of alarmins for AKI.
Collapse
Affiliation(s)
| | | | | | - Rahul Sharma
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
36
|
Donor Plasma Mitochondrial DNA Is Correlated with Posttransplant Renal Allograft Function. Transplantation 2020; 103:2347-2358. [PMID: 30747854 DOI: 10.1097/tp.0000000000002598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The lack of accurate biomarkers makes it difficult to determine whether organs are suitable for transplantation. Mitochondrial DNA (mtDNA) correlates with tissue damage and kidney disease, making it a potential biomarker in organ evaluation. METHODS Donors who had experienced cardiac death and successfully donated their kidneys between January 2015 and May 2017 were included this study. We detected the level of mtDNA in the plasma of the donor using quantitative real-time polymerase chain reaction and then statistically analyzed the relationship between the level of mtDNA and the delayed graft function (DGF) of the recipient. RESULTS The incidence of DGF or slowed graft function (SGF) increased by 4 times (68% versus 16%, P < 0.001) when the donor mtDNA (dmtDNA) level was >0.114. When dmtDNA levels were >0.243, DGF and primary nonfunction were approximately 100% and 44%, respectively. Moreover, dmtDNA was an independent risk factor for slowed graft function and DGF. A prediction model for DGF based on dmtDNA achieved an area under the receiver operating characteristic curve for a prediction score as high as 0.930 (95% confidence interval 0.856-1.000), and the validation cohort results showed that the sensitivity and specificity of the model were 100% and 78%, respectively. dmtDNA levels were correlated with 6-month allograft function (R=0.332, P < 0.001) and 1-year graft survival (79% versus 99%, P < 0.001). CONCLUSIONS We conclusively demonstrated that plasma dmtDNA was an independent risk factor for DGF, which is valuable in organ evaluation. dmtDNA is a possible first predictive marker for primary nonfunction and worth further evaluation.
Collapse
|
37
|
Plasma Concentrations of Extracellular DNA in Acute Kidney Injury. Diagnostics (Basel) 2020; 10:diagnostics10030152. [PMID: 32168933 PMCID: PMC7151483 DOI: 10.3390/diagnostics10030152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Current diagnostic methods of acute kidney injury (AKI) have limited sensitivity and specificity. Tissue injury has been linked to an increase in the concentrations of extracellular DNA (ecDNA) in plasma. A rapid turnover of ecDNA in the circulation makes it a potential marker with high sensitivity. This study aimed to analyze the concentration of ecDNA in plasma in animal models of AKI. Three different fractions of ecDNA were measured—total ecDNA was assessed fluorometrically, while nuclear ecDNA (ncDNA) and mitochondrial DNA (mtDNA) were analyzed using quantitative real-time PCR. AKI was induced using four different murine models of AKI-bilateral ureteral obstruction (BUO), glycerol-induced AKI (GLY), ischemia–reperfusion injury (IRI) and bilateral nephrectomy (BNx). Total ecDNA was significantly higher in BUO (p < 0.05) and GLY (p < 0.05) compared to the respective control groups. ncDNA was significantly higher in BUO (p < 0.05) compared to SHAM. No significant differences in the concentrations of mtDNA were found between the groups. The plasma concentrations of different fractions of ecDNA are dependent on the mechanism of induction of AKI and warrant further investigation as potential surrogate markers of AKI.
Collapse
|
38
|
Li X, Hu R, Luo T, Peng C, Gong L, Hu J, Yang S, Li Q. Serum cell-free DNA and progression of diabetic kidney disease: a prospective study. BMJ Open Diabetes Res Care 2020; 8:8/1/e001078. [PMID: 32152147 PMCID: PMC7064129 DOI: 10.1136/bmjdrc-2019-001078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
AIMS Cell-free DNA (cfDNA) is associated with diabetes and cardiovascular diseases. Our study was to evaluate whether serum cfDNA could predict the progression of diabetic kidney disease (DKD). METHODS In this prospective study, a total of 160 patients with DKD were enrolled, and the kidney function was followed up by measurement of estimated glomerular filtration rate (eGFR) and urinary albumin-creatinine ratio (UACR) for three consecutive years. At baseline, concentrations of serum cfDNA were measured. DKD progression was defined as two-continuous decrease in eGFR and changes of UACR from less than 300 mg/g at baseline to higher than 300 mg/g at last follow-up. Regression models were used to analyze associations of serum cfDNA with the DKD progression. RESULTS In total, 131 patients finished all the follow-up visits. At the end of the study, 64 patients showed decreased eGFR and 29 patients had changes of UACR from less than 300 mg/g at baseline to higher than 300 mg/g at follow-up. At baseline, the progression group had higher serum cfDNA levels than the non-progression group (960.49 (816.53, 1073.65) ng/mL vs 824.51 (701.34, 987.06) ng/mL, p=0.014). Serum cfDNA levels were significantly negatively associated with the 1.5-year eGFR change (r=-0.219 p=0.009) and 3-year eGFR change (r=-0.181, p=0.043). Multivariate logistic analyses showed that after adjustment of age, gender, body mass index, fast plasma glucose, smoking, triglycerides, total cholesterol, duration of diabetes, systolic blood pressure, diabetic retinopathy, eGFR, high sensitivity C-reactive protein, angiotensin receptor blocker/ACE inhibitor usage, with the increase of one SD of serum cfDNA levels, the risk of DKD progression increased by 2.4 times (OR, 2.46; 95% CI 1.84 to 4.89). CONCLUSION Serum cfDNA is closely associated with DKD, and it might be a predictor of DKD progression in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Xuan Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - RenZhi Hu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Ting Luo
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Chuan Peng
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lilin Gong
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Jinbo Hu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Shumin Yang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| |
Collapse
|
39
|
Wu SJ, Yang X, Xu PC, Chen T, Gao S, Hu SY, Wei L, Yan TK. Urinary mitochondrial DNA is a useful biomarker for assessing kidney injury of antineutrophil cytoplasmic antibody -associated vasculitis. Clin Chim Acta 2020; 502:263-268. [DOI: 10.1016/j.cca.2019.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 12/18/2022]
|
40
|
Zhang WZ, Rice MC, Hoffman KL, Oromendia C, Barjaktarevic IZ, Wells JM, Hastie AT, Labaki WW, Cooper CB, Comellas AP, Criner GJ, Krishnan JA, Paine R, Hansel NN, Bowler RP, Barr RG, Peters SP, Woodruff PG, Curtis JL, Han MK, Ballman KV, Martinez FJ, Choi AM, Nakahira K, Cloonan SM, Choi ME. Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort. JCI Insight 2020; 5:133984. [PMID: 31895696 DOI: 10.1172/jci.insight.133984] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUNDMitochondrial dysfunction, a proposed mechanism of chronic obstructive pulmonary disease (COPD) pathogenesis, is associated with the leakage of mitochondrial DNA (mtDNA), which may be detected extracellularly in various bodily fluids. Despite evidence for the increased prevalence of chronic kidney disease in COPD subjects and for mitochondrial dysfunction in the kidneys of murine COPD models, whether urine mtDNA (u-mtDNA) associates with measures of disease severity in COPD is unknown.METHODSCell-free u-mtDNA, defined as copy number of mitochondrially encoded NADH dehydrogenase-1 (MTND1) gene, was measured by quantitative PCR and normalized to urine creatinine in cell-free urine samples from participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) cohort. Urine albumin/creatinine ratios (UACR) were measured in the same samples. Associations between u-mtDNA, UACR, and clinical disease parameters - including FEV1 % predicted, clinical measures of exercise tolerance, respiratory symptom burden, and chest CT measures of lung structure - were examined.RESULTSU-mtDNA and UACR levels were measured in never smokers (n = 64), smokers without airflow obstruction (n = 109), participants with mild/moderate COPD (n = 142), and participants with severe COPD (n = 168). U-mtDNA was associated with increased respiratory symptom burden, especially among smokers without COPD. Significant sex differences in u-mtDNA levels were observed, with females having higher u-mtDNA levels across all study subgroups. U-mtDNA associated with worse spirometry and CT emphysema in males only and with worse respiratory symptoms in females only. Similar associations were not found with UACR.CONCLUSIONU-mtDNA levels may help to identify distinct clinical phenotypes and underlying pathobiological differences in males versus females with COPD.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov ( NCT01969344).FUNDINGUS NIH, National Heart, Lung and Blood Institute, supplemented by contributions made through the Foundation for the NIH and the COPD Foundation from AstraZeneca/MedImmune, Bayer, Bellerophon Therapeutics, Boehringer-Ingelheim Pharmaceuticals Inc., Chiesi Farmaceutici S.p.A., Forest Research Institute Inc., GlaxoSmithKline, Grifols Therapeutics Inc., Ikaria Inc., Novartis Pharmaceuticals Corporation, Nycomed GmbH, ProterixBio, Regeneron Pharmaceuticals Inc., Sanofi, Sunovion, Takeda Pharmaceutical Company, and Theravance Biopharma and Mylan.
Collapse
Affiliation(s)
- William Z Zhang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Michelle C Rice
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, and
| | - Katherine L Hoffman
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Clara Oromendia
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Igor Z Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, Los Angeles, California, USA
| | - J Michael Wells
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Annette T Hastie
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Christopher B Cooper
- Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, Los Angeles, California, USA
| | - Alejandro P Comellas
- Division of Pulmonary and Critical Care, University of Iowa, Iowa City, Iowa, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care Medicine, National Jewish Health, Denver, Colorado, USA
| | - R Graham Barr
- Columbia University Medical Center, New York, New York, USA
| | - Stephen P Peters
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Prescott G Woodruff
- Division of Pulmonary and Critical Care Medicine, UCSF, School of Medicine, San Francisco, California, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.,Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Meilan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Karla V Ballman
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Augustine Mk Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA
| | - Mary E Choi
- New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA.,Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, and
| | | |
Collapse
|
41
|
Minor Glomerular Abnormalities are Associated with Deterioration of Long-Term Kidney Function and Mitochondrial Injury. J Clin Med 2019; 9:jcm9010033. [PMID: 31877839 PMCID: PMC7019622 DOI: 10.3390/jcm9010033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Minor glomerular abnormalities (MGAs) are unclassified glomerular lesions indicated by the presence of minor structural abnormalities that are insufficient for a specific pathological diagnosis. The long-term clinical outcomes and pathogenesis have not been examined. We hypothesized that MGAs would be associated with the deterioration of long-term kidney function and increased urinary mitochondrial DNA (mtDNA) copy numbers. We retrospectively enrolled patients with MGAs, age-/sex-/estimated glomerular filtration rate (eGFR)-matched patients with immunoglobulin A nephropathy (IgAN), and similarly matched healthy controls (MHCs; n = 49 each). We analyzed the time × group interaction effects of the eGFR and compared mean annual eGFR decline rates between the groups. We prospectively enrolled patients with MGAs, age- and sex-matched patients with IgAN, and MHCs (n = 15 each) and compared their urinary mtDNA copy numbers. Compared to the MHC group, the MGA and IgAN groups displayed differences in the time × group effects of eGFR, higher mean annual rates of eGFR decline, and higher urinary mtDNA copy numbers; however, these groups did not significantly differ from each other. The results indicate that MGAs are associated with deteriorating long-term kidney function, and mitochondrial injury, despite few additional pathological changes. We suggest that clinicians conduct close long-term follow-up of patients with MGAs.
Collapse
|
42
|
Kim K, Moon H, Lee YH, Seo JW, Kim YG, Moon JY, Kim JS, Jeong KH, Lee TW, Ihm CG, Lee SH. Clinical relevance of cell-free mitochondrial DNA during the early postoperative period in kidney transplant recipients. Sci Rep 2019; 9:18607. [PMID: 31819080 PMCID: PMC6901568 DOI: 10.1038/s41598-019-54694-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
Recent studies indicate that urinary mitochondrial DNA (mtDNA) is predictive of ischemic AKI and is related to delayed graft function (DGF) in renal transplantation. Nevertheless, the clinical implications and prognostic value of urinary mtDNA in kidney transplantation remain undetermined. Here, we aimed to evaluate the associations between cell-free mtDNA and clinical parameters, including pathological findings in allograft biopsy and post-transplant renal function. A total of 85 renal transplant recipients were enrolled, and blood and urine samples were collected at a median of 17 days after transplantation. Cell-free nuclear and mtDNA levels were measured by quantitative polymerase chain reaction for LPL and ND1 genes. Urinary cell-free mtDNA levels were significantly higher in patients with DGF (P < 0.001) and cases of deceased donor transplantation (P < 0.001). The subjects with acute rejection showed higher urinary mtDNA levels than those without abnormalities (P = 0.043). In addition, allograft functions at 9- and 12-month post-transplantation were significantly different between tertile groups of mtDNA independent of the presence of DGF or acute rejection, showing significantly better graft outcome in the lowest tertile group. Urinary cell-free mtDNA levels during the early post-transplant period are significantly associated with DGF, acute rejection in graft biopsy, and short-term post-transplant renal function.
Collapse
Affiliation(s)
- Kipyo Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Haena Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jung-Woo Seo
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Kyung-Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Tae Won Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Chun-Gyoo Ihm
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea. .,Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
43
|
IgA nephropathy is associated with elevated urinary mitochondrial DNA copy numbers. Sci Rep 2019; 9:16068. [PMID: 31690796 PMCID: PMC6831703 DOI: 10.1038/s41598-019-52535-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial injury plays important roles in the pathogenesis of various kidney diseases. However, mitochondrial injury in IgA nephropathy (IgAN) remains largely unexplored. Here, we examined the associations among mitochondrial injury, IgAN, and treatment outcomes. We prospectively enrolled patients with IgAN and age-/sex-matched healthy volunteers (HVs) as controls (n = 31 each). Urinary copy numbers of the mitochondrial DNA (mtDNA) genes cytochrome-c oxidase-3 (COX3) and nicotinamide adenine dinucleotide dehydrogenase subunit-1 (ND1) were measured. Urinary mtDNA levels were elevated in the IgAN group compared with that in HVs (p < 0.001). Urinary ND1 levels were significantly higher in the low proteinuria group than in the high proteinuria group (p = 0.027). Changes in urinary levels of ND1 and COX3 were positively correlated with changes in proteinuria (p = 0.038 and 0.024, respectively) and inversely correlated with changes in the estimated glomerular filtration rate (p = 0.033 and 0.017, respectively) after medical treatment. Mitochondrial injury played important roles in IgAN pathogenesis and may be involved in early-stage glomerular inflammation, prior to pathological changes and increased proteinuria. The correlation between changes in urinary mtDNA and proteinuria suggest that these factors may be promising biomarkers for treatment outcomes in IgAN.
Collapse
|
44
|
Chang CC, Chiu PF, Wu CL, Kuo CL, Huang CS, Liu CS, Huang CH. Urinary cell-free mitochondrial and nuclear deoxyribonucleic acid correlates with the prognosis of chronic kidney diseases. BMC Nephrol 2019; 20:391. [PMID: 31660901 PMCID: PMC6816217 DOI: 10.1186/s12882-019-1549-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/04/2019] [Indexed: 01/16/2023] Open
Abstract
Introduction Cell-free deoxyribonucleic acid DNA (cf-DNA) in urine is promising due to the advantage of urine as an easily obtained and non-invasive sample source over tissue and blood. In clinical practice, it is important to identify non-invasive biomarkers of chronic kidney disease (CKD) in monitoring and surveillance of disease progression. Information is limited, however, regarding the relationship between urine and plasma cf-DNA and the renal outcome in CKD patients. Methods One hundred and thirty-one CKD patients were enrolled between January 2016 and September 2018. Baseline urine and plasma cell-free mitochondrial DNA (cf-mtDNA) and cell-free nuclear DNA (cf-nDNA) were isolated using quantitative real-time PCR. Estimated glomerular filtration rate (eGFR) measurement was performed at baseline and 6-month follow-up. Favorable renal outcome was defined as eGFR at 6 months minus baseline eGFR> = 0. Receiver operator characteristics (ROC) curve analysis was performed to assess different samples of cf-DNA to predict favorable renal outcomes at 6 months. A multivariate linear regression model was used to evaluate independent associations between possible predictors and different samples of cf-DNA. Results Patients with an advanced stage of CKD has significantly low plasma cf-nDNA and high plasma neutrophil gelatinase-associated lipocalin (NGAL) levels. Low urine cf-mtDNA, cf-nDNA levels and low plasma NGAL were significantly correlated with favorable renal outcomes at 6 months. The urine albumin-creatinine ratio (ACR) or urine protein-creatinine ratio (PCR) level is a robust predictor of cf-mtDNA and cf-nDNA in CKD patients. Baseline urine levels of cf-mtDNA and cf-nDNA could predict renal outcomes at 6 months. Conclusions Urinary cf-mtDNA and cf-nDNA may provide novel prognostic biomarkers for renal outcome in CKD patients. The levels of plasma cf-nDNA and plasma NGAL are significantly correlated with the severity of CKD. Electronic supplementary material The online version of this article (10.1186/s12882-019-1549-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chia-Chu Chang
- Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan.,Department of Nutrition, Hungkuang University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ping-Fang Chiu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Nephrology Division, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,Vascular & Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Center of General Education Tunghai University, Taichung, Taiwan
| | - Chia-Lin Wu
- Nephrology Division, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,Internal Medicine Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Cheng-Ling Kuo
- Vascular & Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Shan Huang
- Vascular & Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chin-San Liu
- Vascular & Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Hui Huang
- Vascular & Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan. .,Department of Cardiology, Changhua Christian Hospital, Changhua, Taiwan. .,Institute of Statistics and Information Science, National Changhua University of Education, Changhua, Taiwan. .,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Beauty Science and Graduate Institute of Beauty Science Technology, Chienkuo Technology University, Changhua, Taiwan.
| |
Collapse
|
45
|
Extracellular Mitochondrial DNA and N-Formyl Peptides in Trauma and Critical Illness: A Systematic Review. Crit Care Med 2019; 46:2018-2028. [PMID: 30113320 DOI: 10.1097/ccm.0000000000003381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Extracellular mitochondrial DNA and N-formyl peptides released following tissue damage may contribute to systemic inflammation through stimulation of the innate immune system. In this review, we evaluate existing in vivo human data regarding a role for mitochondrial DNA and N-formyl peptides in producing systemic inflammation in trauma and critical illness, investigate the utility of these molecules in risk prediction and clinical decision support, and provide suggestions for standardization of future research. DATA SOURCES PubMed, Embase (1971-2017). STUDY SELECTION Studies measuring extracellular mitochondrial DNA and/or N-formyl peptides in acutely ill patients. DATA EXTRACTION Fifty-four studies were analyzed. Data extracted included article characteristics, methods, results, and performance in clinical prediction. DATA SYNTHESIS The most common patient types investigated were trauma (19 studies) and sepsis (eight). In studies comparing patient mitochondrial DNA or N-formyl peptide levels to healthy controls, 38 (90.5%) reported significantly elevated mitochondrial DNA levels in patients at first reported time point, as did the one study making this comparison for N-formyl peptides. Nine studies (81.8%) reported significantly elevated plasma/serum mitochondrial DNA levels in at least one time point in patients who developed inflammatory complications of their primary pathology compared with patients without inflammatory complications. For the ability of mitochondrial DNA to predict complications or outcomes, the area under the curve was 0.7 or greater in 84.6% of receiver operating characteristic curves, and 92.9% of odds, adjusted odds, risk, and hazard ratios were statistically significant. CONCLUSIONS Extracellular mitochondrial DNA levels are elevated early in patients' hospital courses in many acute illnesses and are higher in patients who develop inflammatory complications. Elevated mitochondrial DNA levels may be clinically useful in risk prediction and clinical decision support systems. Further research is needed to determine the role of extracellular N-formyl peptides in systemic inflammation and their possible clinical utility.
Collapse
|
46
|
Abstract
Acute kidney injury (AKI), a major public health problem associated with high mortality and increased risk of progression towards end-stage renal disease, is characterized by the activation of intra-renal haemostatic and inflammatory processes. Platelets, which are present in high numbers in the circulation and can rapidly release a broad spectrum of bioactive mediators, are important acute modulators of inflammation and haemostasis, as they are the first cells to arrive at sites of acute injury, where they interact with endothelial cells and leukocytes. Diminished control of platelet reactivity by endothelial cells and/or an increased release of platelet-activating mediators can lead to uncontrolled platelet activation in AKI. As increased platelet sequestration and increased expression levels of the markers P-selectin, thromboxane A2, CC-chemokine ligand 5 and platelet factor 4 on platelets have been reported in kidneys following AKI, platelet activation likely plays a part in AKI pathology. Results from animal models and some clinical studies highlight the potential of antiplatelet therapies in the preservation of renal function in the context of AKI, but as current strategies also affect other cell types and non-platelet-derived mediators, additional studies are required to further elucidate the extent of platelet contribution to the pathology of AKI and to determine the best therapeutic approach by which to specifically target related pathogenic pathways.
Collapse
Affiliation(s)
- Marcel P B Jansen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
47
|
Wei PZ, Kwan BCH, Chow KM, Cheng PMS, Luk CCW, Li PKT, Szeto CC. Urinary mitochondrial DNA level is an indicator of intra-renal mitochondrial depletion and renal scarring in diabetic nephropathy. Nephrol Dial Transplant 2019; 33:784-788. [PMID: 29301017 DOI: 10.1093/ndt/gfx339] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023] Open
Abstract
Background Mitochondrial dysfunction plays an important role in the pathogenesis and progression of diabetic nephropathy (DN). We study the relation between urinary and intra-renal mitochondrial deoxyribonucleic acid (mtDNA) levels and renal dysfunction in DN. Methods We recruited 92 patients with biopsy-proven DN. Urinary sediment, urinary supernatant and intra-renal mtDNA levels were measured and compared with baseline renal biopsy, kidney scarring and renal function decline in the subsequent 24 months. Results mtDNA could be detected in all urine supernatant, urine sediment and renal biopsy specimens. There was a modest but statistically significant inverse correlation between urinary supernatant and intra-renal mtDNA levels (r = -0.453, P = 0.012). Urinary supernatant mtDNA level had modest but statistically significant correlations, inversely with estimated glomerular filtration rate (r = -0.214, P = 0.04), and positively with interstitial fibrosis (r = 0.300, P = 0.005). Intra-renal mtDNA had significant inverse correlation with interstitial fibrosis (r = -0.537, P = 0.003). However, there was no significant relation between renal function decline and urinary supernatant, urinary sediment or intra-renal mtDNA levels. Conclusions mtDNA is readily detectable in urinary supernatant and kidney tissue, and their levels correlate with renal function and scarring in DN. Further studies are needed to determine the accuracy of urinary supernatant mtDNA level as a prognostic indicator of DN, as well as its role in other kidney diseases.
Collapse
Affiliation(s)
- Pascal Zhongping Wei
- Department of Medicine & Therapeutics, Carol and Richard Yu Peritoneal Dialysis Research Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Bonnie Ching-Ha Kwan
- Department of Medicine & Therapeutics, Carol and Richard Yu Peritoneal Dialysis Research Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kai Ming Chow
- Department of Medicine & Therapeutics, Carol and Richard Yu Peritoneal Dialysis Research Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Phyllis Mei-Shan Cheng
- Department of Medicine & Therapeutics, Carol and Richard Yu Peritoneal Dialysis Research Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Cathy Choi-Wan Luk
- Department of Medicine & Therapeutics, Carol and Richard Yu Peritoneal Dialysis Research Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Philip Kam-Tao Li
- Department of Medicine & Therapeutics, Carol and Richard Yu Peritoneal Dialysis Research Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Cheuk Chun Szeto
- Department of Medicine & Therapeutics, Carol and Richard Yu Peritoneal Dialysis Research Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
48
|
Yang YY, Gong DJ, Zhang JJ, Liu XH, Wang L. Diabetes aggravates renal ischemia-reperfusion injury by repressing mitochondrial function and PINK1/Parkin-mediated mitophagy. Am J Physiol Renal Physiol 2019; 317:F852-F864. [PMID: 31390235 DOI: 10.1152/ajprenal.00181.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabetes could aggravate ischemia-reperfusion (I/R) injury, but the underlying mechanism is unclear. In the present study, we aimed to investigate whether diabetes exacerbates renal I/R injury and its possible mechanism. In vitro, HK-2 cells under normal or high glucose conditions were subjected to hypoxia (12 h) followed by reoxygenation (3 h) (H/R). Cell viability, intracellular ATP content, mitochondrial membrane potential, reactive oxygen species production, and apoptosis were measured. In vivo, streptozotocin-induced diabetic and nondiabetic rats were subjected to I/R. Renal pathology, function, and apoptosis were evaluated by hematoxylin and eosin staining, transmission electron microscopy, and Western blot analysis. Compared with the normal glucose + H/R group, mitochondrial function (ATP, mitochondrial membrane potential, and reactive oxygen species) and mitophagy were reduced in the high glucose + H/R group, as was expression of phosphatase and tensin homolog-induced putative kinase 1 (PINK1) and Parkin. Also, cells in the high glucose + H/R group exhibited more apoptosis compared with the normal glucose + H/R group, as assessed by flow cytometry, TUNEL staining, and Western blot analysis. Compared with normal rats that underwent I/R, diabetic rats that underwent I/R exhibited more severe tubular damage and renal dysfunction as well as expression of the apoptotic protein caspase-3. Meanwhile, diabetes alleviated mitophagy-associated protein expression in rats subjected to I/R, including expression of PINK1 and Parkin. Transmission electron microscopy indicated that the mitophagosome could be hardly observed and that mitochondrial morphology and structure were obviously damaged in the diabetes + I/R group. In conclusion, our results, for the first time, indicate that diabetes could aggravate I/R injury by repressing mitochondrial function and PINK1/Parkin-mediated mitophagy in vivo and in vitro.
Collapse
Affiliation(s)
- Yuan-Yuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dao-Jing Gong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian-Jian Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
49
|
Biomarkers of Acute Kidney Injury after Cardiac Surgery: A Narrative Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7298635. [PMID: 31346523 PMCID: PMC6620851 DOI: 10.1155/2019/7298635] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
Cardiac surgery-associated acute kidney injury (CSA-AKI) is a major and serious complication in patients undergoing cardiac surgery and is independently associated with perioperative mortality and mortality. Therapeutic intervention aiming at reversing kidney dysfunction seems disappointing across multiple settings. Consequently, attention has shifted from treatment to prevention and early detection. The Kidney Disease: Improving Global Outcomes (KDIGO) guidelines have unified diagnostic standards mainly based on the serum creatinine (Scr) level or urine output, but neither marker is kidney specific. Efforts have been made to identify novel biomarkers with high sensitivity and specificity. The diagnostic capabilities of neutrophil gelatinase-associated lipocalin (NGAL) and G1 cell cycle arrest biomarker as biomarkers have been confirmed in a large number of clinical trials. The utility of biomarkers of cardiac function and inflammation has been validated in clinical studies. Aiming to offer valuable information for further research, we summarize the progress in defining current markers relevant to CSA-AKI in the last three years.
Collapse
|
50
|
Lee H, Oh S, Yang W, Park R, Kim H, Jeon JS, Noh H, Han DC, Cho KW, Kim YJ, Kwon SH. Bariatric Surgery Reduces Elevated Urinary Mitochondrial DNA Copy Number in Patients With Obesity. J Clin Endocrinol Metab 2019; 104:2257-2266. [PMID: 30657970 DOI: 10.1210/jc.2018-01935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/11/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Obesity is an independent risk factor for chronic kidney disease. Recently, urinary mitochondrial DNA (mtDNA) has been used as a surrogate marker of mitochondrial damage in various kidney diseases. However, there are no data regarding its use in patients with obesity or the change in urinary mtDNA copy number after surgery. DESIGN We prospectively recruited age- and sex-matched healthy volunteers and patients with obesity (n = 22 in each group: nine men and 13 women). The copy number of urinary and serum mtDNA nicotinamide adenine dinucleotide dehydrogenase subunit-1 (mtND-1) and cytochrome-c oxidase 3 (mtCOX-3) was measured using quantitative PCR. We measured urinary mtDNA and body weight and carried out laboratory tests, 6 months after surgery. RESULTS Urinary mtND-1 copy number was significantly higher in the obese group than in healthy volunteers. However, urinary mtCOX-3 and serum ND-1 copy numbers in the obese group did not differ from that in the healthy volunteers. When patients with obesity were divided into two groups, according to their baseline mtND-1 copy number, bariatric surgery reduced the mtND-1 copy number (P = 0.006) in the high baseline mtDNA copy-number group. The change in urinary mtND-1 copy number was correlated with a change in urinary albumin (r = 0.478, P = 0.025). CONCLUSIONS Obesity is associated with elevated urinary mtND-1 copy number. Bariatric surgery reduces the elevated urinary mtND-1 copy number in patients with obesity. This suggests that bariatric surgery could attenuate mitochondrial damage in the kidney cells of patients with obesity.
Collapse
Affiliation(s)
- Haekyung Lee
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Songhee Oh
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Wonmi Yang
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Rojin Park
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hyoungnae Kim
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Jin Seok Jeon
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hyunjin Noh
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Dong Cheol Han
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Kae Won Cho
- Soonchunhyang Institute of Med-Bio Science, Soonchunhyang University, Cheonan, Chungchung nam do, Republic of Korea
| | - Yong Jin Kim
- Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Soon Hyo Kwon
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| |
Collapse
|