1
|
Li S, Zhang H, Yu H, Wu Y, Yan L, Guan X, Dong B, Zhao M, Tian X, Hao C, Wu J. Combination of eribulin and anlotinib exerts synergistic cytotoxicity in retroperitoneal liposarcoma by inducing endoplasmic reticulum stress. Cell Death Discov 2024; 10:355. [PMID: 39117615 PMCID: PMC11310505 DOI: 10.1038/s41420-024-02103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Primary retroperitoneal liposarcoma (RLPS) is a rare heterogeneous tumor occurring within retroperitoneal space, and its overall survival has not improved much in the past few decades. Based on a small-sample clinical practice at our center, patients with RLPS can greatly benefit from anlotinib and eribulin combination. In this study, we investigated the combinational effect of anlotinib and eribulin on RLPS. In vitro experiments revealed that a low dose of anlotinib significantly enhances the cytotoxic effects of eribulin, leading to a remarkable suppression of RLPS cell proliferation, viability, colony formation, migration, and cell-cycle progression compared to individual drug treatments. At the organoid level, the combination treatment causes the spheroids in Matrigel to disintegrate earlier than the single-drug group. In vivo, RLPS patient-derived xenograft (PDX) models demonstrated that the combination of these two drugs can obviously exert a safe and effective anti-tumor effect. Through transcriptome analysis, we uncovered and validated that the synergistic effect mainly is induced by the endoplasmic reticulum stress (ERS) pathway both in vitro and in vivo. Further analyses indicate that anlotinib plus eribulin treatment results in micro-vessel density and PD-L1 expression alterations, suggesting a potential impact on the tumor microenvironment. This study extensively explored the combination regimen at multiple levels and its underlying molecular mechanism in RLPS, thus providing a foundation for translational medicine research.
Collapse
Affiliation(s)
- Shuquan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hongtao Zhang
- Guowen (Changchun) International Hospital, Changchun, Jilin Province, China
| | - Hao Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yifan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jianhui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
2
|
Singh PK, Sarchet P, Hord C, Casadei L, Pollock R, Prakash S. Mechanical property estimation of sarcoma-relevant extracellular vesicles using transmission electron microscopy. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e158. [PMID: 38966868 PMCID: PMC11222873 DOI: 10.1002/jex2.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/18/2024] [Accepted: 05/11/2024] [Indexed: 07/06/2024]
Abstract
Analysis of single extracellular vesicles (EVs) has the potential to yield valuable label-free information on their morphological structure, biomarkers and therapeutic targets, though such analysis is hindered by the lack of reliable and quantitative measurements of the mechanical properties of these compliant nanoscale particles. The technical challenge in mechanical property measurements arises from the existing tools and methods that offer limited throughput, and the reported elastic moduli range over several orders of magnitude. Here, we report on a flow-based method complemented by transmission electron microscopy (TEM) imaging to provide a high throughput, whole EV deformation analysis for estimating the mechanical properties of liposarcoma-derived EVs as a function of their size. Our study includes extracting morphological data of EVs from a large dataset of 432 TEM images, with images containing single to multiple EVs, and implementing the thin-shell deformation theory. We estimated the elastic modulus, E = 0.16 ± 0.02 MPa (mean±SE) for small EVs (sEVs; 30-150 nm) and E = 0.17 ± 0.03 MPa (mean±SE) for large EVs (lEVs; >150 nm). To our knowledge, this is the first report on the mechanical property estimation of LPS-derived EVs and has the potential to establish a relationship between EV size and EV mechanical properties.
Collapse
Affiliation(s)
- Premanshu Kumar Singh
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Patricia Sarchet
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Catherine Hord
- Center for Life Sciences EducationThe Ohio State UniversityColumbusOhioUSA
| | - Lucia Casadei
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Raphael Pollock
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Shaurya Prakash
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
3
|
Tahara S, Sharma S, de Faria FCC, Sarchet P, Tomasello L, Rentsch S, Karna R, Calore F, Pollock RE. Comparison of three-dimensional cell culture techniques of dedifferentiated liposarcoma and their integration with future research. Front Cell Dev Biol 2024; 12:1362696. [PMID: 38500686 PMCID: PMC10945377 DOI: 10.3389/fcell.2024.1362696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Background: Dedifferentiated liposarcoma is a formidable sarcoma subtype due to its high local recurrence rate and resistance to medical treatment. While 2D cell cultures are still commonly used, 3D cell culture systems have emerged as a promising alternative, particularly scaffold-based techniques that enable the creation of 3D models with more accurate cell-stroma interactions. Objective: To investigate how 3D structures with or without the scaffold existence would affect liposarcoma cell lines growth morphologically and biologically. Methods: Lipo246 and Lipo863 cell lines were cultured in 3D using four different methods; Matrigel® ECM scaffold method, Collagen ECM scaffold method, ULA plate method and Hanging drop method, in addition to conventional 2D cell culture methods. All samples were processed for histopathological analysis (HE, IHC and DNAscope™), Western blot, and qPCR; moreover, 3D collagen-based models were treated with different doses of SAR405838, a well-known inhibitor of MDM2, and cell viability was assessed in comparison to 2D model drug response. Results: Regarding morphology, cell lines behaved differently comparing the scaffold-based and scaffold-free methods. Lipo863 formed spheroids in Matrigel® but not in collagen, while Lipo246 did not form spheroids in either collagen or Matrigel®. On the other hand, both cell lines formed spheroids using scaffold-free methods. All samples retained liposarcoma characteristic, such as high level of MDM2 protein expression and MDM2 DNA amplification after being cultivated in 3D. 3D collagen samples showed higher cell viability after SAR40538 treatment than 2D models, while cells sensitive to the drug died by apoptosis or necrosis. Conclusion: Our results prompt us to extend our investigation by applying our 3D models to further oncological relevant applications, which may help address unresolved questions about dedifferentiated liposarcoma biology.
Collapse
Affiliation(s)
- Sayumi Tahara
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Soumya Sharma
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Fernanda Costas Casal de Faria
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Patricia Sarchet
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Luisa Tomasello
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sydney Rentsch
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Roma Karna
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Raphael E. Pollock
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
4
|
Kassi ABF, Yenon KS, Kassi FMH, Adjeme AJ, Diarra KM, Bombet-Kouame C, Kouassi M. Giant dedifferentiated liposarcoma of the gastrocolic ligament: A case report. World J Gastrointest Surg 2023; 15:2376-2381. [PMID: 37969706 PMCID: PMC10642459 DOI: 10.4240/wjgs.v15.i10.2376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Dedifferentiated liposarcoma (DDLS) has a worse prognosis and occurs most commonly in the retroperitoneal region and rarely in the intraperitoneal region. Histological diagnosis was revolutionized by the combined contributions of histo-immuno-chemistry and molecular biology. Aside from surgery, there is no consensus on the optimal treatment for this chemoresistant cancer. CASE SUMMARY A thirty-year-old black female presented with a large painful abdominal mass occupying nearly the entire abdomen and progressive weight loss was admitted for surgery. Abdominal computed tomography showed a large heterogeneous mass of the mesentery that was sized 18 cm × 16 cm in size and had heterogeneous contrast enhancement. During laparotomy, en bloc excision of the large and multilobulated gastrocolic ligament mass was performed. The initial postoperative histopathological diagnosis was undifferentiated sarcoma. Finally, the results of immunohistochemistry and molecular biology allowed us to confirm the diagnosis of DDLS. The tumour followed an aggressive evolution with diffuse metastasis, causing the death of the patient less than 5 mo after the operation. CONCLUSION Dedifferentiated liposarcomas are rare tumours that typically originate in the retroperitoneum but may arise in unexpected locations.
Collapse
Affiliation(s)
- Assamoi Brou Fulgence Kassi
- Surgery and Surgical Specialities, Medical Sciences Training and Research Unit, Abidjan Felix Houphouet-Boigny University, Abidjan 01 BP V 34, Cote d'Ivoire
- Surgery and Surgical Specialities, Digestive Surgery Unit, University Hospital of Cocody, Abidjan 01 BP V13, Cote d'Ivoire
| | - Kacou Sebastien Yenon
- Surgery and Surgical Specialities, Medical Sciences Training and Research Unit, Abidjan Felix Houphouet-Boigny University, Abidjan 01 BP V 34, Cote d'Ivoire
- Surgery and Surgical Specialities, Digestive Surgery Unit, University Hospital of Cocody, Abidjan 01 BP V13, Cote d'Ivoire
| | - Fian Marc Herve Kassi
- Surgery and Surgical Specialities, Digestive Surgery Unit, University Hospital of Cocody, Abidjan 01 BP V13, Cote d'Ivoire
| | - Adja Jacob Adjeme
- Surgery and Surgical Specialities, Digestive Surgery Unit, University Hospital of Cocody, Abidjan 01 BP V13, Cote d'Ivoire
| | - Khader Morel Diarra
- Surgery and Surgical Specialities, Digestive Surgery Unit, University Hospital of Cocody, Abidjan 01 BP V13, Cote d'Ivoire
| | - Cynthia Bombet-Kouame
- Surgery and Surgical Specialities, Digestive Surgery Unit, University Hospital of Cocody, Abidjan 01 BP V13, Cote d'Ivoire
| | - Marcellin Kouassi
- Surgery and Surgical Specialities, Digestive Surgery Unit, University Hospital of Cocody, Abidjan 01 BP V13, Cote d'Ivoire
| |
Collapse
|
5
|
Ludwig MP, Galbraith MD, Eduthan NP, Hill AA, Clay MR, Tellez CM, Wilky BA, Elias A, Espinosa JM, Sullivan KD. Proteasome Inhibition Sensitizes Liposarcoma to MDM2 Inhibition with Nutlin-3 by Activating the ATF4/CHOP Stress Response Pathway. Cancer Res 2023; 83:2543-2556. [PMID: 37205634 PMCID: PMC10391328 DOI: 10.1158/0008-5472.can-22-3173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Liposarcoma is the most commonly occurring soft-tissue sarcoma and is frequently characterized by amplification of chromosome region 12q13-15 harboring the oncogenes MDM2 and CDK4. This unique genetic profile makes liposarcoma an attractive candidate for targeted therapeutics. While CDK4/6 inhibitors are currently employed for treatment of several cancers, MDM2 inhibitors have yet to attain clinical approval. Here, we report the molecular characterization of the response of liposarcoma to the MDM2 inhibitor nutlin-3. Treatment with nutlin-3 led to upregulation of two nodes of the proteostasis network: the ribosome and the proteasome. CRISPR/Cas9 was used to perform a genome-wide loss of function screen that identified PSMD9, which encodes a proteasome subunit, as a regulator of response to nutlin-3. Accordingly, pharmacologic studies with a panel of proteasome inhibitors revealed strong combinatorial induction of apoptosis with nutlin-3. Mechanistic studies identified activation of the ATF4/CHOP stress response axis as a potential node of interaction between nutlin-3 and the proteasome inhibitor carfilzomib. CRISPR/Cas9 gene editing experiments confirmed that ATF4, CHOP, and the BH3-only protein, NOXA, are all required for nutlin-3 and carfilzomib-induced apoptosis. Furthermore, activation of the unfolded protein response using tunicamycin and thapsigargin was sufficient to activate the ATF4/CHOP stress response axis and sensitize to nutlin-3. Finally, cell line and patient-derived xenograft models demonstrated combinatorial effects of treatment with idasanutlin and carfilzomib on liposarcoma growth in vivo. Together, these data indicate that targeting of the proteasome could improve the efficacy of MDM2 inhibitors in liposarcoma. SIGNIFICANCE Targeting the proteasome in combination with MDM2 inhibition activates the ATF4/CHOP stress response axis to induce apoptosis in liposarcoma, providing a potential therapeutic approach for the most common soft-tissue sarcoma.
Collapse
Affiliation(s)
- Michael P. Ludwig
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Amanda A. Hill
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cristiam Moreno Tellez
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Breelyn A. Wilky
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony Elias
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
6
|
Tien PC, Chen X, Elzey BD, Pollock RE, Kuang S. Notch signaling regulates a metabolic switch through inhibiting PGC-1α and mitochondrial biogenesis in dedifferentiated liposarcoma. Oncogene 2023; 42:2521-2535. [PMID: 37433985 PMCID: PMC10575759 DOI: 10.1038/s41388-023-02768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Human dedifferentiated liposarcoma (DDLPS) is a rare but lethal cancer with no driver mutations being identified, hampering the development of targeted therapies. We and others recently reported that constitutive activation of Notch signaling through overexpression of the Notch1 intracellular domain (NICDOE) in murine adipocytes leads to tumors resembling human DDLPS. However, the mechanisms underlying the oncogenic functions of Notch activation in DDLPS remains unclear. Here, we show that Notch signaling is activated in a subset of human DDLPS and correlates with poor prognosis and expression of MDM2, a defining marker of DDLPS. Metabolic analyses reveal that murine NICDOE DDLPS cells exhibit markedly reduced mitochondrial respiration and increased glycolysis, mimicking the Warburg effect. This metabolic switch is associated with diminished expression of peroxisome proliferator-activated receptor gamma coactivator 1α (Ppargc1a, encoding PGC-1α protein), a master regulator of mitochondrial biogenesis. Genetic ablation of the NICDOE cassette rescues the expression of PGC-1α and mitochondrial respiration. Similarly, overexpression of PGC-1α is sufficient to rescue mitochondria biogenesis, inhibit the growth and promote adipogenic differentiation of DDLPS cells. Together, these data demonstrate that Notch activation inhibits PGC-1α to suppress mitochondrial biogenesis and drive a metabolic switch in DDLPS.
Collapse
Affiliation(s)
- Pei-Chieh Tien
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Raphael E Pollock
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
Wang Y, Zhang H, La Ferlita A, Sp N, Goryunova M, Sarchet P, Hu Z, Sorkin M, Kim A, Huang H, Zhu H, Tsung A, Pollock RE, Beane JD. Phosphorylation of IWS1 by AKT maintains liposarcoma tumor heterogeneity through preservation of cancer stem cell phenotypes and mesenchymal-epithelial plasticity. Oncogenesis 2023; 12:30. [PMID: 37237004 DOI: 10.1038/s41389-023-00469-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Chemotherapy remains the mainstay of treatment for patients with advanced liposarcoma (LPS), but response rates are only 25% and the overall survival at 5 years is dismal at 20-34%. Translation of other therapies have not been successful and there has been no significant improvement in prognosis for nearly 20 years. The aberrant activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway has been implicated in the aggressive clinical behavior LPS and in resistance to chemotherapy, but the precise mechanism remains elusive and efforts to target AKT clinically have failed. Here we show that the AKT-mediated phosphorylation of the transcription elongation factor IWS1, promotes the maintenance of cancer stem cells in both cell and xenograft models of LPS. In addition, phosphorylation of IWS1 by AKT contributes to a "metastable" cell phenotype, characterized by mesenchymal/epithelial plasticity. The expression of phosphorylated IWS1 also promotes anchorage-dependent and independent growth, cell migration, invasion, and tumor metastasis. In patients with LPS, IWS1 expression is associated with reduced overall survival, increased frequency of recurrence, and shorter time to relapse after resection. These findings indicate that IWS1-mediated transcription elongation is an important regulator of human LPS pathobiology in an AKT-dependent manner and implicate IWS1 as an important molecular target to treat LPS.
Collapse
Affiliation(s)
- Yu Wang
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongji Zhang
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alessandro La Ferlita
- Department of Cancer Biology and Genetics, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Nipin Sp
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Marina Goryunova
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Patricia Sarchet
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Zhiwei Hu
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Michael Sorkin
- Department of Plastic and Reconstructive Surgery, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alex Kim
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Hai Huang
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Hua Zhu
- Department of Surgery, Division of Cardiac Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Allan Tsung
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Raphael E Pollock
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Joal D Beane
- Department of Surgery, Division of Surgical Oncology, James Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Liu T, Wang J, Yang H, Jin Q, Wang X, Fu Y, Luan Y, Wang Q, Youngblood MW, Lu X, Casadei L, Pollock R, Yue F. Enhancer Coamplification and Hijacking Promote Oncogene Expression in Liposarcoma. Cancer Res 2023; 83:1517-1530. [PMID: 36847778 PMCID: PMC10152236 DOI: 10.1158/0008-5472.can-22-1858] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/29/2022] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
SIGNIFICANCE Comprehensive profiling of the enhancer landscape and 3D genome structure in liposarcoma identifies extensive enhancer-oncogene coamplification and enhancer hijacking events, deepening the understanding of how oncogenes are regulated in cancer.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Yihao Fu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Mark W. Youngblood
- Department of Neurosurgery, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lucia Casadei
- Program in Translational Therapeutics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Raphael Pollock
- Program in Translational Therapeutics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Surgery, The Ohio State University, Columbus, Ohio
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| |
Collapse
|
9
|
Tahara S, de Faria FCC, Sarchet P, Calore F, Sharick J, Leight JL, Casadei L, Pollock RE. Three dimensional models of dedifferentiated liposarcoma cell lines: scaffold-based and scaffold-free approaches. Hum Cell 2023; 36:1081-1089. [PMID: 36763259 DOI: 10.1007/s13577-023-00865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023]
Abstract
Sarcomas are rare malignancies, the number of reports is limited, and this rarity makes further research difficult even though liposarcoma is one of major sarcomas. 2D cell culture remains an important role in establishing basic tumor biology research, but its various shortcomings and limitations are still of concern, and it is now well-accepted that the behavior of 3D-cultured cells is more reflective of in vivo cellular responses compared to 2D models. This study aimed to establish 3D cell culture of liposarcomas using two different methods: scaffold-based (Matrigel extracellular matrix [ECM] scaffold method) and scaffold-free (Ultra-low attachment [ULA] plate). Lipo246, Lipo224 and Lipo863 cell lines were cultured, and distinctive differences in structures were observed in Matrigel 3D model: Lipo224 and Lipo863 formed spheroids, whereas Lipo246 grew radially without forming spheres. In ULA plate approaches, all cell lines formed spheroids, but Lipo224 and Lipo863 spheroids showed bigger size and looser aggregation than Lipo246. Formalin fixed, paraffin embedded (FFPE) blocks were obtained from all 3D models, confirming the spheroid structures. The expression of MDM2, Ki-67 positivity and MDM2 amplification were confirmed by IHC and DNAscope™, respectively. Protein and DNA were extracted from all samples and MDM2 upregulation was confirmed by western blot and qPCR analysis. After treatment with MDM2 inhibitor SAR405838, DDLPS spheroids demonstrated different sensitivity patterns from 2D models. Taken together, we believed that 3D models would have a possibility to provide us a new predictability of efficacy and toxicity, and considered as one important process in in vitro pre-clinical phase prior to moving forward to clinical trials.
Collapse
Affiliation(s)
- Sayumi Tahara
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Avenue. Suite D920E, Columbus, OH, 43210, USA
| | - Fernanda Costas C de Faria
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Avenue. Suite D920E, Columbus, OH, 43210, USA
| | - Patricia Sarchet
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Avenue. Suite D920E, Columbus, OH, 43210, USA
| | - Federica Calore
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Avenue. Suite D920E, Columbus, OH, 43210, USA
| | - Joe Sharick
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Jennifer L Leight
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Lucia Casadei
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Avenue. Suite D920E, Columbus, OH, 43210, USA
| | - Raphael E Pollock
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Avenue. Suite D920E, Columbus, OH, 43210, USA.
| |
Collapse
|
10
|
Cassinelli G, Pasquali S, Lanzi C. Beyond targeting amplified MDM2 and CDK4 in well differentiated and dedifferentiated liposarcomas: From promise and clinical applications towards identification of progression drivers. Front Oncol 2022; 12:965261. [PMID: 36119484 PMCID: PMC9479065 DOI: 10.3389/fonc.2022.965261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Abstract
Well differentiated and dedifferentiated liposarcomas (WDLPS and DDLPS) are tumors of the adipose tissue poorly responsive to conventional cytotoxic chemotherapy which currently remains the standard-of-care. The dismal prognosis of the DDLPS subtype indicates an urgent need to identify new therapeutic targets to improve the patient outcome. The amplification of the two driver genes MDM2 and CDK4, shared by WDLPD and DDLPS, has provided the rationale to explore targeting the encoded ubiquitin-protein ligase and cell cycle regulating kinase as a therapeutic approach. Investigation of the genomic landscape of WD/DDLPS and preclinical studies have revealed additional potential targets such as receptor tyrosine kinases, the cell cycle kinase Aurora A, and the nuclear exporter XPO1. While the therapeutic significance of these targets is being investigated in clinical trials, insights into the molecular characteristics associated with dedifferentiation and progression from WDLPS to DDLPS highlighted additional genetic alterations including fusion transcripts generated by chromosomal rearrangements potentially providing new druggable targets (e.g. NTRK, MAP2K6). Recent years have witnessed the increasing use of patient-derived cell and tumor xenograft models which offer valuable tools to accelerate drug repurposing and combination studies. Implementation of integrated "multi-omics" investigations applied to models recapitulating WD/DDLPS genetics, histologic differentiation and biology, will hopefully lead to a better understanding of molecular alterations driving liposarcomagenesis and DDLPS progression, as well as to the identification of new therapies tailored on tumor histology and molecular profile.
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
- Sarcoma Service, Department of Surgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
11
|
Casadei L, Sarchet P, de Faria FCC, Calore F, Nigita G, Tahara S, Cascione L, Wabitsch M, Hornicek FJ, Grignol V, Croce CM, Pollock RE. In situ hybridization to detect DNA amplification in extracellular vesicles. J Extracell Vesicles 2022; 11:e12251. [PMID: 36043432 PMCID: PMC9428764 DOI: 10.1002/jev2.12251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/07/2022] Open
Abstract
EVs have emerged as an important component in tumour initiation, progression and metastasis. Although notable progresses have been made, the detection of EV cargoes remain significantly challenging for researchers to practically use; faster and more convenient methods are required to validate the EV cargoes, especially as biomarkers. Here we show, the possibility of examining embedded EVs as substrates to be used for detecting DNA amplification through ultrasensitive in situ hybridization (ISH). This methodology allows the visualization of DNA targets in a more direct manner, without time consuming optimization steps or particular expertise. Additionally, formalin-fixed paraffin-embedded (FFPE) blocks of EVs allows long-term preservation of samples, permitting future studies. We report here: (i) the successful isolation of EVs from liposarcoma tissues; (ii) the EV embedding in FFPE blocks (iii) the successful selective, specific ultrasensitive ISH examination of EVs derived from tissues, cell line, and sera; (iv) and the detection of MDM2 DNA amplification in EVs from liposarcoma tissues, cell lines and sera. Ultrasensitive ISH on EVs would enable cargo study while the application of ISH to serum EVs, could represent a possible novel methodology for diagnostic confirmation. Modification of probes may enable researchers to detect targets and specific DNA alterations directly in tumour EVs, thereby facilitating detection, diagnosis, and improved understanding of tumour biology relevant to many cancer types.
Collapse
Affiliation(s)
- Lucia Casadei
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Patricia Sarchet
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | | | - Federica Calore
- Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusOhioUSA
| | - Giovanni Nigita
- Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusOhioUSA
| | - Sayumi Tahara
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Luciano Cascione
- Institute of Oncology Research (IOR), Faculty of Biomedical SciencesUniversità della Svizzera italiana (USI), Bellinzona, Switzerland, Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine Division of Paediatric Endocrinology and Diabetes Centre for Hormonal Disorders in Children and AdolescentsUlm University HospitalUlmGermany
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Centerand the University of Miami Miller School of MedicineMiamiFloridaUSA
| | - Valerie Grignol
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Carlo M. Croce
- Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusOhioUSA
| | | |
Collapse
|
12
|
Experimental models of undifferentiated pleomorphic sarcoma and malignant peripheral nerve sheath tumor. J Transl Med 2022; 102:658-666. [PMID: 35228656 DOI: 10.1038/s41374-022-00734-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Undifferentiated pleomorphic sarcoma (UPS) and malignant peripheral nerve sheath tumor (MPNST) are aggressive soft tissue sarcomas that do not respond well to current treatment modalities. The limited availability of UPS and MPNST cell lines makes it challenging to identify potential therapeutic targets in a laboratory setting. Understanding the urgent need for improved treatments for these tumors and the limited cellular models available, we generated additional cell lines to study these rare cancers. Patient-derived tumors were used to establish 4 new UPS models, including one radiation-associated UPS-UPS271.1, UPS511, UPS0103, and RIS620, one unclassified spindle cell sarcoma-USC060.1, and 3 new models of MPNST-MPNST007, MPNST3813E, and MPNST4970. This study examined the utility of the new cell lines as sarcoma models by assessing their tumorigenic potential and mutation status for known sarcoma-related genes. All the cell lines formed colonies and migrated in vitro. The in vivo tumorigenic potential of the cell lines and corresponding xenografts was determined by subcutaneous injection or xenograft re-passaging into immunocompromised mice. USC060.1 and UPS511 cells formed tumors in mice upon subcutaneous injection. UPS0103 and RIS620 tumor implants formed tumors in vivo, as did MPNST007 and MPNST3813E tumor implants. Targeted sequencing analysis of a panel of genes frequently mutated in sarcomas identified TP53, RB1, and ATRX mutations in a subset of the cell lines. These new cellular models provide the scientific community with powerful tools for detailed studies of tumorigenesis and for investigating novel therapies for UPS and MPNST.
Collapse
|
13
|
Dang TN, Tiongco RP, Brown LM, Taylor JL, Lyons JM, Lau FH, Floyd ZE. Expression of the preadipocyte marker ZFP423 is dysregulated between well-differentiated and dedifferentiated liposarcoma. BMC Cancer 2022; 22:300. [PMID: 35313831 PMCID: PMC8939188 DOI: 10.1186/s12885-022-09379-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background Well-differentiated and dedifferentiated liposarcomas are rare soft tissue tumors originating in adipose tissue that share genetic abnormalities but have significantly different metastatic potential. Dedifferentiated liposarcoma (DDLPS) is highly aggressive and has an overall 5-year survival rate of 30% as compared to 90% for well-differentiated liposarcoma (WDLPS). This discrepancy may be connected to their potential to form adipocytes, where WDLPS is adipogenic but DDLPS is adipogenic-impaired. Normal adipogenesis requires Zinc Finger Protein 423 (ZFP423), a transcriptional coregulator of Perixosome Proliferator Activated Receptor gamma (PPARG2) mRNA expression that defines committed preadipocytes. Expression of ZFP423 in preadipocytes is promoted by Seven-In-Absentia Homolog 2 (SIAH2)-mediated degradation of Zinc Finger Protein 521 (ZFP521). This study investigated the potential role of ZFP423, SIAH2 and ZFP521 in the adipogenic potential of WDLPS and DDLPS. Methods Human WDLPS and DDLPS fresh and paraffin-embedded tissues were used to assess the gene and protein expression of proadipogenic regulators. In parallel, normal adipose tissue stromal cells along with WDLPS and DDLPS cell lines were cultured, genetically modified, and induced to undergo adipogenesis in vitro. Results Impaired adipogenic potential in DDLPS was associated with reduced ZFP423 protein levels in parallel with reduced PPARG2 expression, potentially involving regulation of ZFP521. SIAH2 protein levels did not define a clear distinction related to adipogenesis in these liposarcomas. However, in primary tumor specimens, SIAH2 mRNA was consistently upregulated in DDLPS compared to WDLPS when assayed by fluorescence in situ hybridization or real-time PCR. Conclusions These data provide novel insights into ZFP423 expression in adipogenic regulation between WDLPS and DDLPS adipocytic tumor development. The data also introduces SIAH2 mRNA levels as a possible molecular marker to distinguish between WDLPS and DDLPS. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09379-6.
Collapse
Affiliation(s)
- Thanh N Dang
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA
| | - Rafael P Tiongco
- Tulane University School of Medicine, New Orleans, Louisiana, 70118, USA
| | - Loren M Brown
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, Louisiana, 70112, USA
| | - Jessica L Taylor
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA
| | - John M Lyons
- Our Lady of the Lake Medical Center, Baton Rouge, Louisiana, 70808, USA
| | - Frank H Lau
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, Louisiana, 70112, USA.
| | - Z Elizabeth Floyd
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA.
| |
Collapse
|
14
|
Casadei L, Choudhury A, Sarchet P, Mohana Sundaram P, Lopez G, Braggio D, Balakirsky G, Pollock R, Prakash S. Cross-flow microfiltration for isolation, selective capture and release of liposarcoma extracellular vesicles. J Extracell Vesicles 2021; 10:e12062. [PMID: 33643547 PMCID: PMC7887429 DOI: 10.1002/jev2.12062] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
We present a resource‐efficient approach to fabricate and operate a micro‐nanofluidic device that uses cross‐flow filtration to isolate and capture liposarcoma derived extracellular vesicles (EVs). The isolated extracellular vesicles were captured using EV‐specific protein markers to obtain vesicle enriched media, which was then eluted for further analysis. Therefore, the micro‐nanofluidic device integrates the unit operations of size‐based separation with CD63 antibody immunoaffinity‐based capture of extracellular vesicles in the same device to evaluate EV‐cargo content for liposarcoma. The eluted media collected showed ∼76% extracellular vesicle recovery from the liposarcoma cell conditioned media and ∼32% extracellular vesicle recovery from dedifferentiated liposarcoma patient serum when compared against state‐of‐art extracellular vesicle isolation and subsequent quantification by ultracentrifugation. The results reported here also show a five‐fold increase in amount of critical liposarcoma‐relevant extracellular vesicle cargo obtained in 30 min presenting a significant advance over existing state‐of‐art.
Collapse
Affiliation(s)
- Lucia Casadei
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA
| | - Adarsh Choudhury
- Department of Mechanical and Aerospace Engineering The Ohio State University Columbus Ohio USA
| | - Patricia Sarchet
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA
| | | | - Gonzalo Lopez
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA
| | - Danielle Braggio
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA
| | - Gita Balakirsky
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA
| | - Raphael Pollock
- Department of Mechanical and Aerospace Engineering The Ohio State University Columbus Ohio USA
| | - Shaurya Prakash
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA.,Department of Mechanical and Aerospace Engineering The Ohio State University Columbus Ohio USA
| |
Collapse
|
15
|
Sundaram PM, Casadei L, Lopez G, Braggio D, Balakirsky G, Pollock R, Prakash S. Multi-Layer Micro-Nanofluidic Device for Isolation and Capture of Extracellular Vesicles Derived from Liposarcoma Cell Conditioned Media. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2020; 29:776-782. [PMID: 33519169 PMCID: PMC7839931 DOI: 10.1109/jmems.2020.3006786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report on isolation, capture, and subsequent elution for analysis of extracellular vesicles derived from human liposarcoma cell conditioned media, using a multi-layer micro-nanofluidic device operated with tangential flow separation. Our device integrates size-based separation followed by immunoaffinity-based capture of extracellular vesicles in the same device. For liposarcomas, this is the first report on isolating, capturing, and then eluting the extracellular vesicles using a micro-nanofluidic device. The results show a significantly higher yield of the eluted extracellular vesicles (~84%) compared to the current methods of ultracentrifugation (~6%) and ExoQuick-based separations (~16%).
Collapse
Affiliation(s)
- Prashanth Mohana Sundaram
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Lucia Casadei
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Gonzalo Lopez
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Danielle Braggio
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Gita Balakirsky
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Raphael Pollock
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering and is also an affiliate of the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
16
|
Kaneko K, Sawada S, Satake C, Kondo K, Izumi T, Tanaka M, Imai J, Yamada T, Katsushima H, Fujishima F, Katagiri H. Extraordinarily long-inactive solitary fibrous tumor transformed to produce big insulin-like growth factor-2, leading to hypoglycemia and rapid liposarcoma growth: a case report. BMC Endocr Disord 2020; 20:148. [PMID: 32993631 PMCID: PMC7526150 DOI: 10.1186/s12902-020-00624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A high-molecular-weight form of insulin-like growth factor-2 (IGF-2), known as "big" IGF-2, is occasionally produced by various tumor types, leading to hypoglycemia. Although solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm, it has been estimated that 4-6% of SFT patients develop hypoglycemia due to circulating big IGF-2. The mean time elapsed from tumor detection until the onset of hypoglycemia is reportedly less than one year (8.5 ± 1.9 months). CASE PRESENTATION A 68-year-old man was hospitalized for exacerbation of recurring hypoglycemic episodes. He had been diagnosed with an SFT 17 years before the onset of hypoglycemia, and the SFT had already been very large at that time. The tumor, which was non-resectable and refractory to chemotherapies, had slowly increased in size since the initial diagnosis. Half a year before the hypoglycemic episodes manifested, another tumor, adjacent to the left kidney, was newly identified. Fluorodeoxyglucose positron emission tomography-computed tomography scanning, revealed the left peri-renal tumor to show much higher fluorodeoxyglucose uptake than the preexisting SFT, suggesting that it was unlikely to be a metastasis from the SFT. Abundant serum big IGF-2 was detected by western immunoblot analysis, indicating it to be the cause of the hypoglycemia. Since the 17 years between SFT detection and the onset of IGF-2-induced hypoglycemia was an extremely long period as compared with those in previous reports, we initially suspected that the new, peri-renal tumor had produced big IGF-2, but transcatheter arterial embolization of its feeding arteries did not suppress hypoglycemia. Notably, by measuring the tumor volume doubling time, the peri-renal tumor growth was shown to be markedly accelerated in parallel with exacerbation of the hypoglycemia. The patient died of heart failure 21 months after the onset of hypoglycemia. Unexpectedly, autopsy revealed that big IGF-2 had been produced only by the preexisting SFT, not the peri-renal tumor, and that the peri-renal tumor was a dedifferentiated liposarcoma. CONCLUSIONS We should keep in mind that even a long-inactive SFT can undergo transformation to produce big IGF-2, which then acts on both insulin and IGF-1 receptors, possibly leading to both hypoglycemia and the development/growth of another tumor, respectively.
Collapse
Affiliation(s)
- Keizo Kaneko
- Department of Diabetes and Metabolism, Tohoku University Hospital, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Shojiro Sawada
- Department of Diabetes and Metabolism, Tohoku University Hospital, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Chihiro Satake
- Department of Diabetes and Metabolism, Tohoku University Hospital, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Keiichi Kondo
- Department of Diabetes and Metabolism, Tohoku University Hospital, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Tomohito Izumi
- Department of Diabetes and Metabolism, Tohoku University Hospital, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Mamiko Tanaka
- Department of Diabetes and Metabolism, Tohoku University Hospital, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Junta Imai
- Department of Diabetes and Metabolism, Tohoku University Hospital, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Tetsuya Yamada
- Department of Diabetes and Metabolism, Tohoku University Hospital, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Hiroki Katsushima
- Division of Hematopathology, Tohoku University Hospital, Sendai, Aoba-ku Japan
| | - Fumiyoshi Fujishima
- Division of Hematopathology, Tohoku University Hospital, Sendai, Aoba-ku Japan
| | - Hideki Katagiri
- Department of Diabetes and Metabolism, Tohoku University Hospital, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| |
Collapse
|
17
|
Tien PC, Quan M, Kuang S. Sustained activation of notch signaling maintains tumor-initiating cells in a murine model of liposarcoma. Cancer Lett 2020; 494:27-39. [PMID: 32866607 DOI: 10.1016/j.canlet.2020.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Cells in a tumor are heterogeneous, often including a small number of tumor-initiating cells (TICs) and the majority of cancerous and non-cancerous cells. We have previously reported that constitutive activation of Notch signaling in adipocytes of mice leads to dedifferentiated liposarcoma (DDLPS), an aggressive liposarcoma (LPS) with no effective treatment. Here, we explored the role of Notch signaling in cellular heterogeneity of LPS. We performed serial transplantations to enrich for TICs, and derived cells exhibiting sustained Notch activation (mLPS1 cells) and cells with normal Notch activity (mLPS2 cells). Both mLPS1 and mLPS2 cells proliferated rapidly, and neither exhibited contact inhibition. However, only the mLPS1 cells exhibited tumorigenicity and gave rise to LPS upon engraftment into mice. The mLPS1 cells also highly expressed markers of cancer stem cells (Cd133), mesenchymal stem cells (Cd73, Cd90, Cd105, Dlk1) and the long non-coding RNA Rian. By contrast, the mLPS2 cells accumulated lipid droplets and expressed mature adipocyte markers when induced to differentiate. Most importantly, CRISPR-mediated disruption of Notch abrogated the tumorigenic properties of mLPS1 cells. These results reveal a key role of Notch signaling in maintaining TICs in LPS.
Collapse
Affiliation(s)
- Pei-Chieh Tien
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Menchus Quan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
18
|
Patt A, Demoret B, Stets C, Bill KL, Smith P, Vijay A, Patterson A, Hays J, Hoang M, Chen JL, Mathé EA. MDM2-Dependent Rewiring of Metabolomic and Lipidomic Profiles in Dedifferentiated Liposarcoma Models. Cancers (Basel) 2020; 12:cancers12082157. [PMID: 32759684 PMCID: PMC7463633 DOI: 10.3390/cancers12082157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
Dedifferentiated liposarcoma (DDLPS) is an aggressive mesenchymal cancer marked by amplification of MDM2, an inhibitor of the tumor suppressor TP53. DDLPS patients with higher MDM2 amplification have lower chemotherapy sensitivity and worse outcome than patients with lower MDM2 amplification. We hypothesized that MDM2 amplification levels may be associated with changes in DDLPS metabolism. Six patient-derived DDLPS cell line models were subject to comprehensive metabolomic (Metabolon) and lipidomic (SCIEX 5600 TripleTOF-MS) profiling to assess associations with MDM2 amplification and their responses to metabolic perturbations. Comparing metabolomic profiles between MDM2 higher and lower amplification cells yielded a total of 17 differentially abundant metabolites across both panels (FDR < 0.05, log2 fold change < 0.75), including ceramides, glycosylated ceramides, and sphingomyelins. Disruption of lipid metabolism through statin administration resulted in a chemo-sensitive phenotype in MDM2 lower cell lines only, suggesting that lipid metabolism may be a large contributor to the more aggressive nature of MDM2 higher DDLPS tumors. This study is the first to provide comprehensive metabolomic and lipidomic characterization of DDLPS cell lines and provides evidence for MDM2-dependent differential molecular mechanisms that are critical factors in chemoresistance and could thus affect patient outcome.
Collapse
Affiliation(s)
- Andrew Patt
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD 20892, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Bryce Demoret
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.D.); (C.S.); (K.-L.B.); (J.H.); (M.H.)
| | - Colin Stets
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.D.); (C.S.); (K.-L.B.); (J.H.); (M.H.)
| | - Kate-Lynn Bill
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.D.); (C.S.); (K.-L.B.); (J.H.); (M.H.)
| | - Philip Smith
- The Huck Institutes of Life Sciences, Penn State University, State College, PA 16802, USA; (P.S.); (A.V.); (A.P.)
| | - Anitha Vijay
- The Huck Institutes of Life Sciences, Penn State University, State College, PA 16802, USA; (P.S.); (A.V.); (A.P.)
| | - Andrew Patterson
- The Huck Institutes of Life Sciences, Penn State University, State College, PA 16802, USA; (P.S.); (A.V.); (A.P.)
| | - John Hays
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.D.); (C.S.); (K.-L.B.); (J.H.); (M.H.)
| | - Mindy Hoang
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.D.); (C.S.); (K.-L.B.); (J.H.); (M.H.)
| | - James L. Chen
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.D.); (C.S.); (K.-L.B.); (J.H.); (M.H.)
- Correspondence: (J.L.C.); (E.A.M.)
| | - Ewy A. Mathé
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD 20892, USA
- Correspondence: (J.L.C.); (E.A.M.)
| |
Collapse
|
19
|
Casadei L, Calore F, Braggio DA, Zewdu A, Deshmukh AA, Fadda P, Lopez G, Wabitsch M, Song C, Leight JL, Grignol VP, Lev D, Croce CM, Pollock RE. MDM2 Derived from Dedifferentiated Liposarcoma Extracellular Vesicles Induces MMP2 Production from Preadipocytes. Cancer Res 2019; 79:4911-4922. [PMID: 31387924 DOI: 10.1158/0008-5472.can-19-0203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022]
Abstract
Dedifferentiated liposarcoma (DDLPS) is frequently diagnosed late, and patients typically respond poorly to treatments. DDLPS is molecularly characterized by wild-type p53 and amplification of the MDM2 gene, which results in overexpression of MDM2 protein, a key oncogenic process in DDLPS. In this study, we demonstrate that extracellular vesicles derived from patients with DDLPS or from DDLPS cell lines are carriers of MDM2 DNA that can be transferred to preadipocytes, a major and ubiquitous cellular component of the DDLPS tumor microenvironment, leading to impaired p53 activity in preadipocytes and increased proliferation, migration, and production of matrix metalloproteinase 2; treatment with MDM2 inhibitors repressed these effects. Overall, these findings indicate that MDM2 plays a crucial role in DDLPS by enabling cross-talk between tumor cells and the surrounding microenvironment and that targeting vesicular MDM2 could represent a therapeutic option for treating DDLPS. SIGNIFICANCE: Extracellular vesicles derived from dedifferentiated liposarcoma cells induce oncogenic properties in preadipocytes.
Collapse
Affiliation(s)
- Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Federica Calore
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Danielle A Braggio
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Abeba Zewdu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ameya A Deshmukh
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Ohio
| | - Paolo Fadda
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gonzalo Lopez
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine Division of Paediatric Endocrinology and Diabetes Centre for Hormonal Disorders in Children and Adolescents, Ulm University Hospital, Germany
| | - Chi Song
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, Ohio
| | - Jennifer L Leight
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Ohio
| | - Valerie P Grignol
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Dina Lev
- Department of Surgery "B," Sheba Medical Center and The Tel Aviv University, Tel Aviv, Israel
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Raphael E Pollock
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
20
|
Codenotti S, Mansoury W, Pinardi L, Monti E, Marampon F, Fanzani A. Animal models of well-differentiated/dedifferentiated liposarcoma: utility and limitations. Onco Targets Ther 2019; 12:5257-5268. [PMID: 31308696 PMCID: PMC6613351 DOI: 10.2147/ott.s175710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Liposarcoma is a malignant neoplasm of fat tissue. Well-differentiated and dedifferentiated liposarcoma (WDL/DDL) represent the two most clinically observed histotypes occurring in middle-aged to older adults, particularly within the retroperitoneum or extremities. WDL/DDL are thought to represent the broad spectrum of one disease, as they are both associated with the amplification in the chromosomal 12q13-15 region that causes MDM2 and CDK4 overexpression, the most useful predictor for liposarcoma diagnosis. In comparison to WDL, DDL contains additional genetic abnormalities, principally coamplifications of 1p32 and 6q23, that increase recurrence and metastatic rate. In this review, we discuss the xenograft and transgenic animal models generated for studying progression of WDL/DDL, highlighting utilities and pitfalls in such approaches that can facilitate or impede the development of new therapies.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Walaa Mansoury
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Pinardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
21
|
Thoenen E, Curl A, Iwakuma T. TP53 in bone and soft tissue sarcomas. Pharmacol Ther 2019; 202:149-164. [PMID: 31276706 DOI: 10.1016/j.pharmthera.2019.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Genomic and functional study of existing and emerging sarcoma targets, such as fusion proteins, chromosomal aberrations, reduced tumor suppressor activity, and oncogenic drivers, is broadening our understanding of sarcomagenesis. Among these mechanisms, the tumor suppressor p53 (TP53) plays significant roles in the suppression of bone and soft tissue sarcoma progression. Although mutations in TP53 were thought to be relatively low in sarcomas, modern techniques including whole-genome sequencing have recently illuminated unappreciated alterations in TP53 in osteosarcoma. In addition, oncogenic gain-of-function activities of missense mutant p53 (mutp53) have been reported in sarcomas. Moreover, new targeting strategies for TP53 have been discovered: restoration of wild-type p53 (wtp53) activity through inhibition of TP53 negative regulators, reactivation of the wtp53 activity from mutp53, depletion of mutp53, and targeting of vulnerabilities in cells with TP53 deletions or mutations. These discoveries enable development of novel therapeutic strategies for therapy-resistant sarcomas. We have outlined nine bone and soft tissue sarcomas for which TP53 plays a crucial tumor suppressive role. These include osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma (RMS), leiomyosarcoma (LMS), synovial sarcoma, liposarcoma (LPS), angiosarcoma, and undifferentiated pleomorphic sarcoma (UPS).
Collapse
Affiliation(s)
- Elizabeth Thoenen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Amanda Curl
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Tomoo Iwakuma
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Translational Laboratory Oncology Research, Children's Mercy Research Institute, Kansas City, MO 64108, USA.
| |
Collapse
|
22
|
Miyake K, Higuchi T, Oshiro H, Zhang Z, Sugisawa N, Park JH, Razmjooei S, Katsuya Y, Barangi M, Li Y, Nelson SD, Murakami T, Homma Y, Hiroshima Y, Matsuyama R, Bouvet M, Chawla SP, Singh SR, Endo I, Hoffman RM. The combination of gemcitabine and docetaxel arrests a doxorubicin-resistant dedifferentiated liposarcoma in a patient-derived orthotopic xenograft model. Biomed Pharmacother 2019; 117:109093. [PMID: 31200257 DOI: 10.1016/j.biopha.2019.109093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
Liposarcoma (LS) is a chemotherapy-resistant disease. The aim of the present study was to find precise therapy for a recurrent dedifferentiated liposarcoma (DDLS) in a patient-derived orthotopic xenograft (PDOX) model. The DDLS PDOX models were established orthotopically in the right inguinal area of nude mice. The DDLS PDOX models were randomized into five groups: untreated; doxorubicin (DOX); gemcitabine (GEM) combined with docetaxel (DOC); pazopanib (PAZ); and yondelis (YON). On day 15, all mice were sacrificed. Measurement of tumor volume and body weight were done two times a week. The DDLS PDOX was resistant to DOX (P > 0.184). YON suppressed tumor growth significantly compared to control group (P < 0.027). However, only GEM combined with DOC arrested the tumor growth (P < 0.001). These findings suggest that GEM combined with DOC has clinical potential for this and possibly other DDLS patients.
Collapse
Affiliation(s)
- Kentaro Miyake
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Higuchi
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Hiromichi Oshiro
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Zhiying Zhang
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Norihiko Sugisawa
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Jun Ho Park
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Sahar Razmjooei
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Yuki Katsuya
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Maryam Barangi
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Yunfeng Li
- Dept. of Pathology, University of California, Los Angeles, CA, USA
| | - Scott D Nelson
- Dept. of Pathology, University of California, Los Angeles, CA, USA
| | - Takashi Murakami
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Homma
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukihiko Hiroshima
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | | | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
23
|
Jo EB, Lee YS, Lee H, Park JB, Park H, Choi YL, Hong D, Kim SJ. Combination therapy with c-met inhibitor and TRAIL enhances apoptosis in dedifferentiated liposarcoma patient-derived cells. BMC Cancer 2019; 19:496. [PMID: 31126284 PMCID: PMC6534902 DOI: 10.1186/s12885-019-5713-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Liposarcoma (LPS) is a tumor derived from adipose tissue, and has the highest incidence among soft tissue sarcomas. Dedifferentiated liposarcoma (DDLPS) is a malignant tumor with poor prognosis. Recurrence and metastasis rates in LPS remain high even after chemotherapy and radiotherapy following complete resection. Therefore, the development of advanced treatment strategies for LPS is required. In the present study, we investigated the effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment, and of combination treatment using TRAIL and a c-Met inhibitor on cell viability and apoptosis in LPS and DDLPS cell lines of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment, and of combination treatment using TRAIL and a c-Met inhibitor. Methods We analyzed cell viability after treatment with TRAIL and a c-Met inhibitor by measuring CCK8 and death receptor 5 (DR5) expression levels via fluorescence activated cell sorting (FACS) in both sarcoma cell lines and DDLPS patient-derived cells (PDCs). Moreover, we validated the effects of TRAIL alone and in combination with c-Met inhibitor on apoptosis in LPS cell lines and DDLPS PDCs via FACS. Results Our results revealed that combination treatment with a c-Met inhibitor and human recombinant TRAIL (rhTRAIL) suppressed cell viability and induced cell death in both sarcoma cell lines and DDLPS PDCs, which showed varying sensitivities to rhTRAIL alone. Also, we confirmed that treatment with a c-Met inhibitor upregulated DR5 levels in sarcoma cell lines and DDLPS PDCs. In both TRAIL-susceptible and TRAIL-resistant cells subjected to combination treatment, promotion of apoptosis was dependent on DR5 upregulation. Conclusion From these results, our findings validated that DR5 up-regulation caused by combination therapy with a c-Met inhibitor and rhTRAIL enhanced TRAIL sensitization and promoted apoptosis. We propose the use of this approach to overcome TRAIL resistance and serve as a novel treatment strategy for clinical trials. Electronic supplementary material The online version of this article (10.1186/s12885-019-5713-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eun Byeol Jo
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.,Samsung Advanced Institute for Health Sciences and Technology, SKKU, Seoul, Republic of Korea
| | - Young Sang Lee
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.,Samsung Advanced Institute for Health Sciences and Technology, SKKU, Seoul, Republic of Korea
| | - Hyunjoo Lee
- Personalized Medicine, Children's Cancer Institute Australia, Sydney, NSW, Australia
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, SungKyunKwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Hyojun Park
- Department of Surgery, Samsung Medical Center, SungKyunKwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Yoon-La Choi
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.,Department of Pathology, Samsung Medical Center, Seoul, Republic of Korea
| | - Doopyo Hong
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Sung Joo Kim
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea. .,Samsung Advanced Institute for Health Sciences and Technology, SKKU, Seoul, Republic of Korea. .,Department of Surgery, Samsung Medical Center, SungKyunKwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
24
|
Co-expression of MDM2 and CDK4 in transformed human mesenchymal stem cells causes high-grade sarcoma with a dedifferentiated liposarcoma-like morphology. J Transl Med 2019; 99:1309-1320. [PMID: 31160689 PMCID: PMC6760642 DOI: 10.1038/s41374-019-0263-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Amplification and overexpression of MDM2 and CDK4 are well-known diagnostic criteria for well-differentiated liposarcoma (WDLPS)/dedifferentiated liposarcoma (DDLPS). Although it was reported that the depletion of MDM2 or CDK4 decreased proliferation in DDLPS cell lines, whether MDM2 and CDK4 induce WDLPS/DDLPS tumorigenesis remains unclear. We examined whether MDM2 and/or CDK4 cause WDLPS/DDLPS, using two types of transformed human bone marrow stem cells (BMSCs), 2H and 5H, with five oncogenic hits (overexpression of hTERT, TP53 degradation, RB inactivation, c-MYC stabilization, and overexpression of HRASv12). In vitro functional experiments revealed that the co-overexpression of MDM2 and CDK4 plays a key role in tumorigenesis by increasing cell growth and migration and inhibiting adipogenic differentiation potency when compared with the sole expression of MDM2 or CDK4. Using mouse xenograft models, we found that the co-overexpression of MDM2 and CDK4 in 5H cells with five additional oncogenic mutations can cause proliferative sarcoma with a DDLPS-like morphology in vivo. Our results suggest that the co-overexpression of MDM2 and CDK4, along with multiple genetic factors, increases the tendency for high-grade sarcoma with a DDLPS-like morphology in transformed human BMSCs by accelerating their growth and migration and blocking their adipogenic potential.
Collapse
|
25
|
The Role of the Anti-Aging Protein Klotho in IGF-1 Signaling and Reticular Calcium Leak: Impact on the Chemosensitivity of Dedifferentiated Liposarcomas. Cancers (Basel) 2018; 10:cancers10110439. [PMID: 30441794 PMCID: PMC6266342 DOI: 10.3390/cancers10110439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/09/2018] [Indexed: 01/23/2023] Open
Abstract
By inhibiting Insulin-Like Growth Factor-1-Receptor (IGF-1R) signaling, Klotho (KL) acts like an aging- and tumor-suppressor. We investigated whether KL impacts the aggressiveness of liposarcomas, in which IGF-1R signaling is frequently upregulated. Indeed, we observed that a higher KL expression in liposarcomas is associated with a better outcome for patients. Moreover, KL is downregulated in dedifferentiated liposarcomas (DDLPS) compared to well-differentiated tumors and adipose tissue. Because DDLPS are high-grade tumors associated with poor prognosis, we examined the potential of KL as a tool for overcoming therapy resistance. First, we confirmed the attenuation of IGF-1-induced calcium (Ca2+)-response and Extracellular signal-Regulated Kinase 1/2 (ERK1/2) phosphorylation in KL-overexpressing human DDLPS cells. KL overexpression also reduced cell proliferation, clonogenicity, and increased apoptosis induced by gemcitabine, thapsigargin, and ABT-737, all of which are counteracted by IGF-1R-dependent signaling and activate Ca2+-dependent endoplasmic reticulum (ER) stress. Then, we monitored cell death and cytosolic Ca2+-responses and demonstrated that KL increases the reticular Ca2+-leakage by maintaining TRPC6 at the ER and opening the translocon. Only the latter is necessary for sensitizing DDLPS cells to reticular stressors. This was associated with ERK1/2 inhibition and could be mimicked with IGF-1R or MEK inhibitors. These observations provide a new therapeutic strategy in the management of DDLPS.
Collapse
|
26
|
Yu PY, Lopez G, Braggio D, Koller D, Bill KLJ, Prudner BC, Zewdu A, Chen JL, Iwenofu OH, Lev D, Strohecker AM, Fenger JM, Pollock RE, Guttridge DC. miR-133a function in the pathogenesis of dedifferentiated liposarcoma. Cancer Cell Int 2018; 18:89. [PMID: 29983640 PMCID: PMC6019219 DOI: 10.1186/s12935-018-0583-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023] Open
Abstract
Background Sarcomas are malignant heterogeneous tumors of mesenchymal derivation. Dedifferentiated liposarcoma (DDLPS) is aggressive with recurrence in 80% and metastasis in 20% of patients. We previously found that miR-133a was significantly underexpressed in liposarcoma tissues. As this miRNA has recently been shown to be a tumor suppressor in many cancers, the objective of this study was to characterize the biological and molecular consequences of miR-133a underexpression in DDLPS. Methods Real-time PCR was used to evaluate expression levels of miR-133a in human DDLPS tissue, normal fat tissue, and human DDLPS cell lines. DDLPS cells were stably transduced with miR-133a vector to assess the effects in vitro on proliferation, cell cycle, cell death, migration, and metabolism. A Seahorse Bioanalyzer system was also used to assess metabolism in vivo by measuring glycolysis and oxidative phosphorylation (OXPHOS) in subcutaneous xenograft tumors from immunocompromised mice. Results miR-133a expression was significantly decreased in human DDLPS tissue and cell lines. Enforced expression of miR-133a decreased cell proliferation, impacted cell cycle progression kinetics, decreased glycolysis, and increased OXPHOS. There was no significant effect on cell death or migration. Using an in vivo xenograft mouse study, we showed that tumors with increased miR-133a expression had no difference in tumor growth compared to control, but did exhibit an increase in OXPHOS metabolic respiration. Conclusions Based on our collective findings, we propose that in DDPLS, loss of miR-133a induces a metabolic shift due to a reduction in oxidative metabolism favoring a Warburg effect in DDLPS tumors, but this regulation on metabolism was not sufficient to affect DDPLS. Electronic supplementary material The online version of this article (10.1186/s12935-018-0583-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter Y Yu
- 1Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA.,2College of Medicine, The Ohio State University, Columbus, OH USA
| | - Gonzalo Lopez
- 1Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA.,3Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH USA
| | - Danielle Braggio
- 1Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA.,3Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH USA
| | - David Koller
- 1Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA.,3Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH USA
| | - Kate Lynn J Bill
- 1Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA.,3Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH USA
| | - Bethany C Prudner
- 4Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH USA
| | - Abbie Zewdu
- 1Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA.,3Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH USA
| | - James L Chen
- 1Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA.,5Biomedical Informatics, Internal Medicine in the Division of Medical Oncology, The Ohio State University, Columbus, OH USA
| | - O Hans Iwenofu
- 1Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA.,6Department of Pathology & Laboratory Services, The Ohio State University, Columbus, OH USA
| | - Dina Lev
- 7Department of Surgery, Sheba Medical Center, Tel Aviv, Israel
| | - Anne M Strohecker
- 1Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA.,3Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH USA.,8Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH USA
| | - Joelle M Fenger
- 9Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA
| | - Raphael E Pollock
- 1Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA.,3Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH USA
| | - Denis C Guttridge
- 1Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA.,8Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH USA
| |
Collapse
|
27
|
May CD, Landers SM, Bolshakov S, Ma X, Ingram DR, Kivlin CM, Watson KL, Sannaa GAA, Bhalla AD, Wang WL, Lazar AJ, Torres KE. Co-targeting PI3K, mTOR, and IGF1R with small molecule inhibitors for treating undifferentiated pleomorphic sarcoma. Cancer Biol Ther 2017; 18:816-826. [PMID: 29099264 PMCID: PMC5678691 DOI: 10.1080/15384047.2017.1373230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Undifferentiated pleomorphic sarcomas (UPSs) are aggressive mesenchymal malignancies with no definitive cell of origin or specific recurrent genetic hallmarks. These tumors are largely chemoresistant; thus, identification of potential therapeutic targets is necessary to improve patient outcome. Previous studies demonstrated that high expression of activated protein kinase B (AKT) in patients with UPS corresponds to poor disease-specific survival. Here, we demonstrate that inhibiting phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR) signaling using a small molecule inhibitor reduced UPS cell proliferation and motility and xenograft growth; however, increased phosphorylation of insulin-like growth factor 1 receptor (IGF1R) indicated the potential for adaptive resistance following treatment through compensatory receptor activation. Co-treatment with a dual PI3K/mTOR inhibitor and an anti-IGF1R kinase inhibitor reduced in vivo tumor growth rates despite a lack of antiproliferative effects in vitro. Moreover, this combination treatment significantly decreased UPS cell migration and invasion, which is linked to changes in p27 subcellular localization. Our results demonstrate that targeted inhibition of multiple components of the IGF1R/PI3K/mTOR pathway was more efficacious than single-agent therapy and suggest that co-targeting this pathway could be a beneficial therapeutic strategy for patients with UPS.
Collapse
Affiliation(s)
- Caitlin D May
- a Department of Surgical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b The University of Texas Health Science Center at Houston , Graduate School of Biomedical Sciences , Houston , TX , USA
| | - Sharon M Landers
- a Department of Surgical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Svetlana Bolshakov
- a Department of Surgical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - XiaoYan Ma
- a Department of Surgical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Davis R Ingram
- c Department of Pathology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Christine M Kivlin
- a Department of Surgical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b The University of Texas Health Science Center at Houston , Graduate School of Biomedical Sciences , Houston , TX , USA
| | - Kelsey L Watson
- a Department of Surgical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Ghadah A Al Sannaa
- c Department of Pathology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Angela D Bhalla
- a Department of Surgical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Wei-Lien Wang
- c Department of Pathology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Alexander J Lazar
- b The University of Texas Health Science Center at Houston , Graduate School of Biomedical Sciences , Houston , TX , USA.,c Department of Pathology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Keila E Torres
- a Department of Surgical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b The University of Texas Health Science Center at Houston , Graduate School of Biomedical Sciences , Houston , TX , USA
| |
Collapse
|
28
|
Expression and role of TYRO3 and AXL as potential therapeutical targets in leiomyosarcoma. Br J Cancer 2017; 117:1787-1797. [PMID: 29024938 PMCID: PMC5729471 DOI: 10.1038/bjc.2017.354] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/31/2017] [Accepted: 09/07/2017] [Indexed: 12/26/2022] Open
Abstract
Background: Leiomyosarcoma (LMS) are 15% of adult sarcomas and remain seldom curable in metastatic phase. The TAM receptors and their ligands are overexpressed or activated in multiple malignancies, including LMS. Methods: The TAM receptor and ligand expression was evaluated in LMS cell lines and 358 sarcoma samples by either gene expression or immunohistochemistry. TYRO3 and AXL were knocked down. Crizotinib and foretinib were investigated in vitro. Results: High expression of TYRO3 and AXL was detected in LMS cell lines. TYRO3 or AXL gene knockdown reduced cell proliferation/colony formation. Crizotinib and foretinib decreased TYRO3 and AXL phosphorylation, apoptosis, G2/arrest and reduced colony formation. Immunohistochemistry performed in 107 sarcomas showed higher expression of TYRO3 and GAS6 in LMS vs other sarcomas and nuclear TYRO3 only in LMS. Microarray gene expression performed in 251 sarcomas revealed significantly higher expression of TYRO3 and GAS6 in LMS than other sarcomas. Leiomyosarcoma patients with high expression of GAS6 or PROS1 present a significantly worse PFS. Conclusions: Leiomyosarcoma patients, especially those whom develop metastasis, express higher levels of TYRO3 and GAS6. Crizotinib and foretinib showed effective antitumour activity in LMS through TYRO3 and AXL deactivation indicating that clinical trials using TYRO3 and AXL inhibitors are warranted in advanced LMS.
Collapse
|
29
|
Asano N, Yoshida A, Mitani S, Kobayashi E, Shiotani B, Komiyama M, Fujimoto H, Chuman H, Morioka H, Matsumoto M, Nakamura M, Kubo T, Kato M, Kohno T, Kawai A, Kondo T, Ichikawa H. Frequent amplification of receptor tyrosine kinase genes in welldifferentiated/ dedifferentiated liposarcoma. Oncotarget 2017; 8:12941-12952. [PMID: 28099935 PMCID: PMC5355068 DOI: 10.18632/oncotarget.14652] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/08/2017] [Indexed: 12/27/2022] Open
Abstract
Well-differentiated liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS) are closely related tumors commonly characterized by MDM2/CDK4 gene amplification, and lack clinically effective treatment options when inoperable. To identify novel therapeutic targets, we performed targeted genomic sequencing analysis of 19 WDLPS and 37 DDLPS tumor samples using a panel of 104 cancer-related genes (NCC oncopanel v3) developed specifically for genomic testing to select suitable molecular targeted therapies. The results of this analysis indicated that these sarcomas had very few gene mutations and a high frequency of amplifications of not only MDM2 and CDK4 but also other genes. Potential driver mutations were found in only six (11%) samples; however, gene amplification events (other than MDM2 and CDK4 amplification) were identified in 30 (54%) samples. Receptor tyrosine kinase (RTK) genes in particular were amplified in 18 (32%) samples. In addition, growth of a WDLPS cell line with IGF1R amplification was suppressed by simultaneous inhibition of CDK4 and IGF1R, using palbociclib and NVP-AEW541, respectively. Combination therapy with CDK4 and RTK inhibitors may be an effective therapeutic option for WDLPS/DDLPS patients with RTK gene amplification.
Collapse
Affiliation(s)
- Naofumi Asano
- Division of Rare Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.,Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akihiko Yoshida
- Department of Pathology and Clinical Laboratory, National Cancer Center Hospital, Chuo-ku, Tokyo 104-0045, Japan
| | - Sachiyo Mitani
- Department of Clinical Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo 104-0045, Japan
| | - Bunsyo Shiotani
- Division of Genetics, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Motokiyo Komiyama
- Department of Urology, National Cancer Center Hospital, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroyuki Fujimoto
- Department of Urology, National Cancer Center Hospital, Chuo-ku, Tokyo 104-0045, Japan
| | - Hirokazu Chuman
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo 104-0045, Japan
| | - Hideo Morioka
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Kubo
- Division of Translational Genomics, National Cancer Center-Exploratory Oncology Research and Clinical Trial Center, Chuo-ku, Tokyo 104-0045, Japan
| | - Mamoru Kato
- Department of Bioinformatics, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Translational Genomics, National Cancer Center-Exploratory Oncology Research and Clinical Trial Center, Chuo-ku, Tokyo 104-0045, Japan.,Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitoshi Ichikawa
- Department of Clinical Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.,Division of Translational Genomics, National Cancer Center-Exploratory Oncology Research and Clinical Trial Center, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
30
|
Lee H, Jo EB, Kim SJ, Yang HM, Kim YM, Sung YC, Park JB, Hong D, Park H, Choi YL, Kim SJ. Therapeutic strategies for locally recurrent and metastatic de-differentiated liposarcoma with herpes simplex virus-thymidine kinase-expressing mesenchymal stromal cells. Cytotherapy 2017; 19:1035-1047. [PMID: 28760351 DOI: 10.1016/j.jcyt.2017.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/24/2017] [Accepted: 05/18/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND AIMS Major challenges in de-differentiated liposarcoma (DDLPS) therapy are the high rate of sequential recurrence (>80%) and metastasis (20-30%) following surgical removal. However, well-defined therapeutic strategies for this rare malignancy are lacking and are critically needed. METHODS We investigated a new approach to DDLPS therapy with mesenchymal stromal cells expressing herpes simplex virus-thymidine kinase (MSC-TK). In an effort to evaluate this efficacy, in vitro cytotoxicity of MSC-TK against DDLPS cells was analyzed using an apoptosis assay. For pre-clinical study, the MSC-TK-induced reduction in recurrence and metastasis was validated in a recurrent DDLPS model after the macroscopic complete resection and lung metastasis DDLPS model. RESULTS MSC-TK induced apoptosis in DDLPS cells by bystander effects via gap junction intracellular communication (GJIC) of toxic ganciclovir (GCV). Recurrent DDLPS models following no residual tumor/microscopic tumor resection and lung metastasis DDLPS models were established, which suggested clinical relevance. MSC-TK markedly reduced locoregional recurrence rates and prolonged recurrence-free survival, thus increasing overall survival in the recurrent DDLPS model. MSC-TK followed by GCV treatment yielded a statistically significant reduction in early- and advanced-stage lung metastasis. DISCUSSION This therapeutic strategy may serve as an alternative or additional strategy by applying MSC-TK to target residual tumors following surgical resection, thus reducing local relapse and metastasis in these patients.
Collapse
Affiliation(s)
- Hyunjoo Lee
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea; Personalized Medicine, Children's Cancer Institute, Sydney, Australia
| | - Eun Byeol Jo
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| | - Su Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Heung Mo Yang
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - You Min Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Young Chul Sung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jae Berm Park
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea; Department of Surgery, Samsung Medical Center, Seoul, Republic of Korea
| | - Doopyo Hong
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyojun Park
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea; Department of Surgery, Samsung Medical Center, Seoul, Republic of Korea
| | - Yoon-La Choi
- Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea; Department of Pathology, Samsung Medical Center, Seoul, Republic of Korea.
| | - Sung Joo Kim
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea; Department of Surgery, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Casadei L, Calore F, Creighton CJ, Guescini M, Batte K, Iwenofu OH, Zewdu A, Braggio DA, Bill KL, Fadda P, Lovat F, Lopez G, Gasparini P, Chen JL, Kladney RD, Leone G, Lev D, Croce CM, Pollock RE. Exosome-Derived miR-25-3p and miR-92a-3p Stimulate Liposarcoma Progression. Cancer Res 2017; 77:3846-3856. [PMID: 28588009 DOI: 10.1158/0008-5472.can-16-2984] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/23/2017] [Accepted: 05/24/2017] [Indexed: 11/16/2022]
Abstract
Despite the development of combined modality treatments against liposarcoma in recent years, a significant proportion of patients respond only modestly to such approaches, possibly contributing to local or distant recurrence. Early detection of recurrent or metastatic disease could improve patient prognosis by triggering earlier clinical intervention. However, useful biomarkers for such purposes are lacking. Using both patient plasma samples and cell lines, we demonstrate here that miR-25-3p and miR-92a-3p are secreted by liposarcoma cells through extracellular vesicles and may be useful as potential biomarkers of disease. Both miR-25-3p and miR-92a-3p stimulated secretion of proinflammatory cytokine IL6 from tumor-associated macrophages in a TLR7/8-dependent manner, which in turn promoted liposarcoma cell proliferation, invasion, and metastasis via this interaction with the surrounding microenvironment. Our findings provide novel and previously unreported insight into liposarcoma progression, identifying communication between liposarcoma cells and their microenvironment as a process critically involved in liposarcoma progression. This study establishes the possibility that the pattern of circulating miRNAs may identify recurrence prior to radiological detectability while providing insight into disease outcome and as a possible approach to monitor treatment efficacy. Cancer Res; 77(14); 3846-56. ©2017 AACR.
Collapse
Affiliation(s)
- Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Federica Calore
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Houston, Texas
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Kara Batte
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - O Hans Iwenofu
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Abeba Zewdu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Danielle A Braggio
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Kate Lynn Bill
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Paolo Fadda
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Francesca Lovat
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gonzalo Lopez
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - James L Chen
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Raleigh D Kladney
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Molecular Genetics, College of Biological Sciences, The Ohio State University (OSU), Columbus, Ohio.,Comprehensive Cancer Center, Columbus, Ohio
| | - Gustavo Leone
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Molecular Genetics, College of Biological Sciences, The Ohio State University (OSU), Columbus, Ohio.,Comprehensive Cancer Center, Columbus, Ohio
| | - Dina Lev
- Department of Surgery 'B', Sheba Medical Center and The Tel Aviv University, Tel Aviv, Israel
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Raphael E Pollock
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. .,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
32
|
Patel RB, Li T, Liao Z, Jaldeepbhai JA, Perera HAPNV, Muthukuda SK, Dhirubhai DH, Singh V, Du X, Yang J. Recent translational research into targeted therapy for liposarcoma. Stem Cell Investig 2017; 4:21. [PMID: 28447036 DOI: 10.21037/sci.2017.02.09] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/19/2017] [Indexed: 12/18/2022]
Abstract
Liposarcomas (LPS) are among the most common soft tissue sarcomas, originating from adipocytes. Treatment for LPS typically involves surgical resection and radiation therapy, while the use of conventional cytotoxic chemotherapy for unresectable or metastatic LPS remains controversial. This review summarizes the results of recent translational research and trials of novel therapies targeting various genetic and molecular aberrations in different subtypes of LPS. Genetic aberrations such as the 12q13-15 amplicon, genetic amplification of MDM2, CDK4, TOP2A, PTK7, and CHEK1, point mutations in CTNNB1, CDH1, FBXW7, and EPHA1, as the fusion of FUS-DDIT3/EWSR1-DDIT3 are involved in the pathogenesis LPS and represent potential therapeutic candidates. Tyrosine kinase inhibitors targeting MET, AXL, IGF1R, EGFR, VEGFR2, PDGFR-β and Aurora kinase are effective in certain types of LPS. Abnormalities in the PI3K/Akt signaling pathway deregulation of C/EBP-α and its partner PPAR-γ, and the interaction between calreticulin (CRT) and CD47 are also promising therapeutic targets. These promising new approaches may help to supplement existing treatments for LPS.
Collapse
Affiliation(s)
- Rashi Bharat Patel
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Ting Li
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Zhichao Liao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Jivani Aakash Jaldeepbhai
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - H A Pavanika N V Perera
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Sujani Kaushalya Muthukuda
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Dholiya Hardeep Dhirubhai
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Vaibhav Singh
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Xiaoling Du
- Department of Diagnostics, Tianjin Medical University, Tianjin 300061, China
| | - Jilong Yang
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| |
Collapse
|
33
|
Bill KLJ, Casadei L, Prudner BC, Iwenofu H, Strohecker AM, Pollock RE. Liposarcoma: molecular targets and therapeutic implications. Cell Mol Life Sci 2016; 73:3711-8. [PMID: 27173057 PMCID: PMC7175098 DOI: 10.1007/s00018-016-2266-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/07/2016] [Accepted: 05/03/2016] [Indexed: 01/07/2023]
Abstract
Liposarcoma (LPS) is the most common soft tissue sarcoma and accounts for approximately 20 % of all adult sarcomas. Current treatment modalities (surgery, chemotherapy, and radiotherapy) all have limitations; therefore, molecularly driven studies are needed to improve the identification and increased understanding of genetic and epigenetic deregulations in LPS if we are to successfully target specific tumorigenic drivers. It can be anticipated that such biology-driven therapeutics will improve treatments by selectively deleting cancer cells while sparing normal tissues. This review will focus on several therapeutically actionable molecular markers identified in well-differentiated LPS and dedifferentiated LPS, highlighting their potential clinical applicability.
Collapse
Affiliation(s)
- Kate Lynn J Bill
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA
| | - Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA
| | - Bethany C Prudner
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA
| | - Hans Iwenofu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Anne M Strohecker
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, USA
| | - Raphael E Pollock
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA.
| |
Collapse
|
34
|
Bi P, Yue F, Karki A, Castro B, Wirbisky SE, Wang C, Durkes A, Elzey BD, Andrisani OM, Bidwell CA, Freeman JL, Konieczny SF, Kuang S. Notch activation drives adipocyte dedifferentiation and tumorigenic transformation in mice. J Exp Med 2016; 213:2019-37. [PMID: 27573812 PMCID: PMC5030803 DOI: 10.1084/jem.20160157] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/26/2016] [Indexed: 12/25/2022] Open
Abstract
Adipocyte-specific activation of Notch signaling suppresses lipid metabolism pathways that provide ligands to Pparγ, leading to adipocyte dedifferentiation and development of liposarcomas (LPSs) resembling human dedifferentiated LPSs with complete penetrance. Pparγ ligand supplementation prevents liposarcoma development. Liposarcomas (LPSs) are the most common soft-tissue cancer. Because of the lack of animal models, the cellular origin and molecular regulation of LPS remain unclear. Here, we report that mice with adipocyte-specific activation of Notch signaling (Ad/N1ICD) develop LPS with complete penetrance. Lineage tracing confirms the adipocyte origin of Ad/N1ICD LPS. The Ad/N1ICD LPS resembles human dedifferentiated LPS in histological appearance, anatomical localization, and gene expression signature. Before transformation, Ad/N1ICD adipocytes undergo dedifferentiation that leads to lipodystrophy and metabolic dysfunction. Although concomitant Pten deletion normalizes the glucose metabolism of Ad/N1ICD mice, it dramatically accelerates the LPS prognosis and malignancy. Transcriptomes and lipidomics analyses indicate that Notch activation suppresses lipid metabolism pathways that supply ligands to Pparγ, the master regulator of adipocyte homeostasis. Accordingly, synthetic Pparγ ligand supplementation induces redifferentiation of Ad/N1ICD adipocytes and tumor cells, and prevents LPS development in Ad/N1ICD mice. Importantly, the Notch target HES1 is abundantly expressed in human LPS, and Notch inhibition suppresses the growth of human dedifferentiated LPS xenografts. Collectively, ectopic Notch activation is sufficient to induce dedifferentiation and tumorigenic transformation of mature adipocytes in mouse.
Collapse
Affiliation(s)
- Pengpeng Bi
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Anju Karki
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Beatriz Castro
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN 47907
| | - Chao Wang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Abigail Durkes
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907 Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Ourania M Andrisani
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907 Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | | | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907 Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Stephen F Konieczny
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
35
|
Crago AM, Dickson MA. Liposarcoma: Multimodality Management and Future Targeted Therapies. Surg Oncol Clin N Am 2016; 25:761-73. [PMID: 27591497 DOI: 10.1016/j.soc.2016.05.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There are 3 biologic groups of liposarcoma: well-differentiated and dedifferentiated liposarcoma, myxoid/round cell liposarcoma, and pleomorphic liposarcoma. In all 3 groups, complete surgical resection is central in treatment aimed at cure and is based on grade. Radiation can reduce risk of local recurrence in high-grade lesions or minimize surgical morbidity in the myxoid/round cell liposarcoma group. The groups differ in chemosensitivity, so adjuvant chemotherapy is selectively used in histologies with metastatic potential but not in the resistant subtype dedifferentiated liposarcoma. Improved understanding of the genetic aberrations that lead to liposarcoma initiation is allowing for the rapid development of targeted therapies for liposarcoma.
Collapse
Affiliation(s)
- Aimee M Crago
- Sarcoma Disease Management Team, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, H1220, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA.
| | - Mark A Dickson
- Sarcoma Disease Management Team, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Sarcoma Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
36
|
G protein pathway suppressor 2 (GPS2) acts as a tumor suppressor in liposarcoma. Tumour Biol 2016; 37:13333-13343. [PMID: 27460081 PMCID: PMC5097092 DOI: 10.1007/s13277-016-5220-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/14/2016] [Indexed: 12/15/2022] Open
Abstract
Liposarcoma(LPS) is the most common type of soft tissue sarcoma accounting for 20 % of all adult sarcomas. However, the molecular pathogenesis of this malignancy is still poorly understood. Here, we showed that GPS2 expression was downregulated in LPS and correlated with the prognosis of this disease. In vitro study showed that knockdown of GPS2 resulted in enhanced proliferation and migration of LPS cell line SW872, without significant influence of cell death. Conclusively, our results suggest that GPS2 may act as a tumor suppressor in LPS and serve as a potential prognosis marker for this disease.
Collapse
|
37
|
Tseng WW, Chopra S, Engleman EG, Pollock RE. Hypothesis: The Intratumoral Immune Response against a Cancer Progenitor Cell Impacts the Development of Well-Differentiated versus Dedifferentiated Disease in Liposarcoma. Front Oncol 2016; 6:134. [PMID: 27376027 PMCID: PMC4901033 DOI: 10.3389/fonc.2016.00134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/23/2016] [Indexed: 12/26/2022] Open
Abstract
Well-differentiated/dedifferentiated (WD/DD) liposarcoma is a rare malignancy of adipocyte origin (“fat cancer”). Tumors may be entirely WD, WD with a DD component, or rarely DD without a clear WD component. WD tumors are low grade and generally indolent, while tumors with a DD component are high grade and behave much more aggressively, with a modest potential for distant metastasis. The presence of cancer progenitor cells in WD/DD liposarcoma is suggested by clinical evidence and reported research findings. In addition, there are emerging data to support the existence of a naturally occurring, antigen-driven, and adaptive immune response within the tumor microenvironment. We hypothesize that the intratumoral immune response is directed against a cancer progenitor cell and that the outcome of this response impacts the development of WD versus DD disease. Further study will likely provide interesting insights into the disease biology of WD/DD liposarcoma that may be readily translated to other more common cancers.
Collapse
Affiliation(s)
- William W Tseng
- Section of Surgical Oncology, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Sarcoma Program, Hoag Family Cancer Institute, Hoag Memorial Hospital Presbyterian, Newport Beach, CA, USA
| | - Shefali Chopra
- Department of Pathology, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine , Palo Alto, CA , USA
| | - Raphael E Pollock
- Division of Surgical Oncology, Department of Surgery, The James Comprehensive Cancer Center, Ohio State University , Columbus, OH , USA
| |
Collapse
|
38
|
Bill KLJ, Garnett J, Meaux I, Ma X, Creighton CJ, Bolshakov S, Barriere C, Debussche L, Lazar AJ, Prudner BC, Casadei L, Braggio D, Lopez G, Zewdu A, Bid H, Lev D, Pollock RE. SAR405838: A Novel and Potent Inhibitor of the MDM2:p53 Axis for the Treatment of Dedifferentiated Liposarcoma. Clin Cancer Res 2016; 22:1150-60. [PMID: 26475335 PMCID: PMC4775372 DOI: 10.1158/1078-0432.ccr-15-1522] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE Dedifferentiated liposarcoma (DDLPS) is an aggressive malignancy that can recur locally or disseminate even after multidisciplinary care. Genetically amplified and expressed MDM2, often referred to as a "hallmark" of DDLPS, mostly sustains a wild-type p53 genotype, substantiating the MDM2:p53 axis as a potential therapeutic target for DDLPS. Here, we report on the preclinical effects of SAR405838, a novel and highly selective MDM2 small-molecule inhibitor, in both in vitro and in vivo DDLPS models. EXPERIMENTAL DESIGN The therapeutic effectiveness of SAR405838 was compared with the known MDM2 antagonists Nutlin-3a and MI-219. The effects of MDM2 inhibition were assessed in both in vitro and in vivo. In vitro and in vivo microarray analyses were performed to assess differentially expressed genes induced by SAR405838, as well as the pathways that these modulated genes enriched. RESULTS SAR405838 effectively stabilized p53 and activated the p53 pathway, resulting in abrogated cellular proliferation, cell-cycle arrest, and apoptosis. Similar results were observed with Nutlin-3a and MI-219; however, significantly higher concentrations were required. In vitro effectiveness of SAR405838 activity was recapitulated in DDLPS xenograft models where significant decreases in tumorigenicity were observed. Microarray analyses revealed genes enriching the p53 signaling pathway as well as genomic stability and DNA damage following SAR405838 treatment. CONCLUSIONS SAR405838 is currently in early-phase clinical trials for a number of malignancies, including sarcoma, and our in vitro and in vivo results support its use as a potential therapeutic strategy for the treatment of DDLPS.
Collapse
Affiliation(s)
- Kate Lynn J Bill
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas. The University of Texas Graduate School of Biomedical Sciences, Houston, Texas. Department of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio
| | - Jeannine Garnett
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - XiaoYen Ma
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chad J Creighton
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Svetlana Bolshakov
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Alexander J Lazar
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bethany C Prudner
- Department of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio
| | - Lucia Casadei
- Department of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio
| | - Danielle Braggio
- Department of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio
| | - Gonzalo Lopez
- Department of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio
| | - Abbie Zewdu
- Department of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio
| | - Hemant Bid
- Department of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio
| | - Dina Lev
- Department of Surgery, The Sheba Medical Center, Tel Aviv, Israel
| | - Raphael E Pollock
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio. Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
39
|
Nakazawa MS, Eisinger-Mathason TSK, Sadri N, Ochocki JD, Gade TPF, Amin RK, Simon MC. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun 2016; 7:10539. [PMID: 26837714 PMCID: PMC4742834 DOI: 10.1038/ncomms10539] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022] Open
Abstract
In soft tissue sarcomas (STS), low intratumoural O2 (hypoxia) is a poor prognostic indicator. HIF-1α mediates key transcriptional responses to hypoxia, and promotes STS metastasis; however, the role of the related HIF-2α protein is unknown. Surprisingly, here we show that HIF-2α inhibits high-grade STS cell growth in vivo, as loss of HIF-2α promotes sarcoma proliferation and increases calcium and mTORC1 signalling in undifferentiated pleomorphic sarcoma and dedifferentiated liposarcoma. We find that most human STS have lower levels of EPAS1 (the gene encoding HIF-2α) expression relative to normal tissue. Many cancers, including STS, contain altered epigenetics, and our findings define an epigenetic mechanism whereby EPAS1 is silenced during sarcoma progression. The clinically approved HDAC inhibitor Vorinostat specifically increases HIF-2α, but not HIF-1α, accumulation in multiple STS subtypes. Vorinostat inhibits STS tumour growth, an effect ameliorated by HIF-2α deletion, implicating HIF-2α as a biomarker for Vorinostat efficacy in STS.
Collapse
Affiliation(s)
- Michael S Nakazawa
- Abramson Family Cancer Research Institute, University of Pennsylvania, BRB II/III Room 456, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, University of Pennsylvania, BRB II/III Room 456, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Navid Sadri
- Abramson Family Cancer Research Institute, University of Pennsylvania, BRB II/III Room 456, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joshua D Ochocki
- Abramson Family Cancer Research Institute, University of Pennsylvania, BRB II/III Room 456, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Terence P F Gade
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ruchi K Amin
- Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, BRB II/III Room 456, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
40
|
May CD, Garnett J, Ma X, Landers SM, Ingram DR, Demicco EG, Al Sannaa GA, Vu T, Han L, Zhang Y, Kivlin CM, Bolshakov S, Kalam AA, Liu J, Zhou F, Broccoli D, Wang WL, Lazar AJ, Pollock RE, Lev D, Torres KE. AXL is a potential therapeutic target in dedifferentiated and pleomorphic liposarcomas. BMC Cancer 2015; 15:901. [PMID: 26573603 PMCID: PMC4647521 DOI: 10.1186/s12885-015-1916-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AXL is a well-characterized, protumorigenic receptor tyrosine kinase that is highly expressed and activated in numerous human carcinomas and sarcomas, including aggressive subtypes of liposarcoma. However, the role of AXL in the pathogenesis of well-differentiated (WDLPS), dedifferentiated (DDLPS), and pleomorphic liposarcoma (PLS) has not yet been determined. METHODS Immunohistochemical analysis of AXL expression was conducted on two tissue microarrays containing patient WDLPS, DDLPS, and PLS samples. A panel of DDLPS and PLS cell lines were interrogated via western blot for AXL expression and activity and by ELISA for growth arrest-specific 6 (GAS6) production. AXL knockdown was achieved by siRNA or shRNA. The effects of AXL knockdown on cell proliferation, migration, and invasion were measured in vitro. In addition, AXL shRNA-containing DDLPS cells were assessed for their tumor-forming capacity in vivo. RESULTS In this study, we determined that AXL is expressed in a subset of WDLPS, DDLPS, and PLS patient tumor samples. In addition, AXL and its ligand GAS6 are expressed in a panel of DDLPS and PLS cell lines. We show that the in vitro activation of AXL via stimulation with exogenous GAS6 resulted in a significant increase in cell proliferation, migration, and invasion in DDLPS and PLS cell lines. Transient knockdown of AXL resulted in attenuation of these protumorigenic phenotypes in vitro. Stable AXL knockdown not only decreased migratory and invasive characteristics of DDLPS and PLS cells in vitro but also significantly diminished tumorigenicity of two dedifferentiated liposarcoma xenograft models in vivo. CONCLUSIONS Our results suggest that AXL signaling contributes to the aggressiveness of DDLPS and PLS, and that AXL is therefore a potential therapeutic target for treatment of these rare, yet devastating tumors.
Collapse
Affiliation(s)
- Caitlin D. May
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,The University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, TX USA
| | - Jeannine Garnett
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - XiaoYan Ma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Sharon M. Landers
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Davis R. Ingram
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Elizabeth G. Demicco
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Ghadah A. Al Sannaa
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Tona Vu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lixia Han
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,The University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, TX USA
| | - Yi Zhang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Christine M. Kivlin
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,The University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, TX USA
| | - Svetlana Bolshakov
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Azad Abul Kalam
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Juehui Liu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Fuguo Zhou
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Dominique Broccoli
- Curtis and Elizabeth Anderson Cancer Institute, Memorial University Medical Center, Savannah, GA USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Alexander J. Lazar
- The University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, TX USA ,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | | | - Dina Lev
- Department of Surgery, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Keila E. Torres
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,The University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, TX USA
| |
Collapse
|
41
|
Keung EZ, Rai K. H3K9me3-mediated repression of KLF6: Discovering a novel tumor suppressor in liposarcoma using a systematic epigenomic approach. Mol Cell Oncol 2015; 3:e1093691. [PMID: 27314083 DOI: 10.1080/23723556.2015.1093691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 10/22/2022]
Abstract
The pathogenesis of well-differentiated and dedifferentiated liposarcoma is poorly understood. We recently reported Kruppel-like factor 6 (KLF6) as a histone H3 lysine 9 trimethyl (H3K9me3)-regulated and differentially expressed transcription factor serving a previously unappreciated tumor suppressor role in liposarcoma. Mechanistically, KLF6 may drive adipocytic differentiation through increased expression of known regulators of adipogenesis.
Collapse
Affiliation(s)
- Emily Z Keung
- Department of Surgery, Brigham and Women's Hospital , Boston, MA, USA
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
42
|
Peritoneal sarcomatosis: site of origin for the establishment of an in vitro and in vivo cell line model to study therapeutic resistance in dedifferentiated liposarcoma. Tumour Biol 2015; 37:2341-51. [DOI: 10.1007/s13277-015-4050-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/02/2015] [Indexed: 12/31/2022] Open
|
43
|
Hwang JA, Yang HM, Hong DP, Joo SY, Choi YL, Park JH, Lazar AJ, Pollock RE, Lev D, Kim SJ. Gankyrin is a predictive and oncogenic factor in well-differentiated and dedifferentiated liposarcoma. Oncotarget 2015; 5:9065-78. [PMID: 25238053 PMCID: PMC4253419 DOI: 10.18632/oncotarget.2375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Liposarcoma is one of the most common histologic types of soft tissue sarcoma and is frequently an aggressive cancer with poor outcome. Hence, alternative approaches other than surgical excision are necessary to improve treatment of well-differentiated/dedifferentiated liposarcoma (WDLPS/DDLPS). For this reason, we performed a two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry/mass spectrometry (MALDI-TOF/MS) analysis to identify new factors for WDLPS and DDLPS. Among the selected candidate proteins, gankyrin, known to be an oncoprotein, showed a significantly high level of expression pattern and inversely low expression of p53/p21 in WDLPS and DDLPS tissues, suggesting possible utility as a new predictive factor. Moreover, inhibition of gankyrin not only led to reduction of in vitro cell growth ability including cell proliferation, colony-formation, and migration, but also in vivo DDLPS cell tumorigenesis, perhaps via downregulation of the p53 tumor suppressor gene and its p21 target and also reduction of AKT/mTOR signal activation. This study identifies gankyrin, for the first time, as new potential predictive and oncogenic factor of WDLPS and DDLPS, suggesting the potential for service as a future LPS therapeutic approach.
Collapse
Affiliation(s)
- Ju-Ae Hwang
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea. Department of Biology, Changwon National University, Changwon, Kyungnam, Republic of Korea
| | - Heung-Mo Yang
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Doo-Pyo Hong
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Sung-Yeon Joo
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea. Samsung Advanced Institute for Health Sciences and Technology, Graduate School, Department of Health Sciences and Technology, Sungkyunkwan University
| | - Yoon-La Choi
- Department of Pathology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joo-Hung Park
- Department of Biology, Changwon National University, Changwon, Kyungnam, Republic of Korea
| | - Alexander J Lazar
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raphael E Pollock
- Division of Surgical Oncology, James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Dina Lev
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sung Joo Kim
- Transplantation Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea. Department of Surgery, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. Sarcoma Research Center, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
44
|
Bill KLJ, Garnett J, Ma X, May C, Bolshakov S, Lazar AJ, Lev D, Pollock RE. The hepatocyte growth factor receptor as a potential therapeutic target for dedifferentiated liposarcoma. J Transl Med 2015; 95:951-61. [PMID: 26006023 PMCID: PMC4520775 DOI: 10.1038/labinvest.2015.62] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/25/2022] Open
Abstract
Dedifferentiated liposarcomas (DDLPS) are highly resistant to conventional chemo- and radiotherapies, with surgical resection remaining the classic treatment strategy; therefore, there is a pressing need for novel anti-DDLPS-targeted chemotherapeutics. Hepatocyte growth factor receptor (Met) expression is elevated in DDLPS, but the functional role of Met signaling in this disease is not known. We found that the in vitro stimulation of DDLPS cells with hepatocyte growth factor (HGF) elevated the degree of PI3K/AKT and MAPK pathway signaling, and that pro-tumorigenic phenotypes such as cell proliferation, invasion, and migration were significantly enhanced. Conversely, Met knockdown using shRNA-mediated interference decreased HGF-induced Met signaling, the invasive and migratory nature of DDLPS cells in vitro, and the tumorigenicity of DDLPS cells in vivo. These data strongly support the role for Met as a DDLPS therapeutic target. To that end, using EMD1214063, an ATP-competitive kinase inhibitor that targets Met more specifically than other kinases, inhibited Met-dependent signaling, reduced the oncogenicity of DDLPS cells in vitro, and significantly increased the survival of nude mice bearing subcutaneous DDLPS xenografts. These findings support further investigations of HGF-induced Met signaling inhibition in DDLPS, as a potential strategy to enhance clinical outcomes for this disease.
Collapse
Affiliation(s)
- Kate Lynn J. Bill
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, OH, USA
| | - Jeannine Garnett
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoyan Ma
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caitlin May
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Svetlana Bolshakov
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J. Lazar
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
| | - Dina Lev
- Department of Surgery, The Sheba Medical Center, Tel Aviv, Israel
| | - Raphael E. Pollock
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, OH, USA
| |
Collapse
|
45
|
Keung EZ, Akdemir KC, Al Sannaa GA, Garnett J, Lev D, Torres KE, Lazar AJ, Rai K, Chin L. Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma. J Clin Invest 2015; 125:2965-78. [PMID: 26193637 DOI: 10.1172/jci77976] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 06/04/2015] [Indexed: 12/29/2022] Open
Abstract
Liposarcoma (LPS) can be divided into 4 different subtypes, of which well-differentiated LPS (WDLPS) and dedifferentiated LPS (DDLPS) are the most common. WDLPS is typically low grade, whereas DDLPS is high grade, aggressive, and carries a worse prognosis. WDLPS and DDLPS frequently co-occur in patients. However, it is not clear whether DDLPS arises independently from WDLPS, or whether epigenomic alterations underly the histopathological differences of these subtypes. Here, we profiled 9 epigenetic marks in tumor samples from 151 patients with LPS and showed elevated trimethylation of histone H3 at Lys9 (H3K9me3) levels in DDLPS tumors. Integrated ChIP-seq and gene expression analyses of patient-derived cell lines revealed that H3K9me3 mediates differential regulation of genes involved in cellular differentiation and migration. Among these, Kruppel-like factor 6 (KLF6) was reduced in DDLPS, with increased H3K9me3 at associated regulatory regions. Pharmacologic inhibition of H3K9me3 with chaetocin decreased DDLPS proliferation and increased expression of the adipogenesis-associated factors PPARγ, CEBPα, and CEBPβ, suggesting that increased H3K9me3 may mediate DDLPS-associated aggressiveness and dedifferentiation properties. KLF6 overexpression partially phenocopied chaetocin treatment in DDLPS cells and induced phenotypic changes that were consistent with adipocytic differentiation, suggesting that the effects of increased H3K9me3 may be mediated through KLF6. In conclusion, we provide evidence of an epigenetic basis for the transition between WDLPS and DDLPS.
Collapse
|
46
|
Eisinger-Mathason TSK, Mucaj V, Biju KM, Nakazawa MS, Gohil M, Cash TP, Yoon SS, Skuli N, Park KM, Gerecht S, Simon MC. Deregulation of the Hippo pathway in soft-tissue sarcoma promotes FOXM1 expression and tumorigenesis. Proc Natl Acad Sci U S A 2015; 112:E3402-11. [PMID: 26080399 PMCID: PMC4491775 DOI: 10.1073/pnas.1420005112] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetic aberrations responsible for soft-tissue sarcoma formation in adults are largely unknown, with targeted therapies sorely needed for this complex and heterogeneous family of diseases. Here we report that that the Hippo pathway is deregulated in many soft-tissue sarcomas, resulting in elevated expression of the effector molecule Yes-Associated Protein (YAP). Based on data gathered from human sarcoma patients, a novel autochthonous mouse model, and mechanistic analyses, we determined that YAP-dependent expression of the transcription factor forkhead box M1 (FOXM1) is necessary for cell proliferation/tumorigenesis in a subset of soft-tissue sarcomas. Notably, FOXM1 directly interacts with the YAP transcriptional complex via TEAD1, resulting in coregulation of numerous critical pro-proliferation targets that enhance sarcoma progression. Finally, pharmacologic inhibition of FOXM1 decreases tumor size in vivo, making FOXM1 an attractive therapeutic target for the treatment of some sarcoma subtypes.
Collapse
Affiliation(s)
- T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Vera Mucaj
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Kevin M Biju
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Michael S Nakazawa
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Mercy Gohil
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Timothy P Cash
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Nicolas Skuli
- INSERM U1037, Institut Claudius Regaud, 31052 Toulouse, France
| | - Kyung Min Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
47
|
Cui YQ, Geng Q, Yu T, Zhang FL, Lin HC, Li J, Zhu MX, Liu L, Yao M, Yan MX. Establishment of a highly metastatic model with a newly isolated lung adenocarcinoma cell line. Int J Oncol 2015; 47:927-40. [PMID: 26134302 DOI: 10.3892/ijo.2015.3065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/18/2015] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the leading cause of malignancy-related death worldwide, and metastasis always results in a poor prognosis. However, therapeutic progress is hampered by a deficiency of appropriate pre-clinical metastatic models. To bridge this experimental gap, we developed an in vivo metastatic model via subcutaneous (s.c.) injection. The original cell line (XL-2) adopted in this model was newly isolated from the ascites of a patient with extensive metastases of lung adenocarcinoma, thereby avoiding any alteration of its initial molecular biology features from artificial serial cultivation. After comprehensive phenotypical and histological analysis, it was identified as a lung adenocarcinoma cell line. Additionally, the drug test showed that XL-2 cell line was sensitive to docetaxel, and resistant to doxorubicin, indicating it might serve as a cell line model of drug resistance for identifying mechanisms of tumors resistant to doxorubicin. Through this s.c. model, we further obtained a highly metastatic cell line (designated XL-2sci). The metastatic rate of mice in XL-2 group was 3/10, in contrast to the rate of 9/10 in XL-2sci group. Optical imaging, micro-computed tomography (micro-CT) scanning and Transwell assays were further applied to identify the enhanced metastatic capacity of Xl-2sci cells both in vivo and in vitro. Compared with XL-2 cells, ITRAQ labeled proteomics profiling study showed that some tumor metastasis-associated proteins were upregulated in XL-2sci cells, which also indicated the reliability of our model. Proliferation ability of XL-2 and XL-2sci were also evaluated. Results showed that highly metastatic XL-2sci possessed a decreased proliferation capacity versus XL-2, which demonstrated that its increased metastatic activity was not facilitated by a faster growth rate. In conclusion, we successfully developed an in vivo metastatic model using a newly established lung adenocarcinoma cell line, which will be beneficial to further investigations of lung cancer metastasis and to the development of anti-metastasis drugs.
Collapse
Affiliation(s)
- Yong-Qi Cui
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Qin Geng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Tao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Fang-Lin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - He-Chun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Jing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Miao-Xin Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Lei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Ming-Xia Yan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
48
|
Analysis of the intratumoral adaptive immune response in well differentiated and dedifferentiated retroperitoneal liposarcoma. Sarcoma 2015; 2015:547460. [PMID: 25705114 PMCID: PMC4326351 DOI: 10.1155/2015/547460] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/07/2015] [Indexed: 01/08/2023] Open
Abstract
Treatment options are limited in well differentiated (WD) and dedifferentiated (DD) retroperitoneal liposarcoma. We sought to study the intratumoral adaptive immune response and explore the potential feasibility of immunotherapy in this disease. Tumor-infiltrating lymphocytes (TILs) were isolated from fresh surgical specimens and analyzed by flow cytometry for surface marker expression. Previously reported immune cell aggregates known as tertiary lymphoid structures (TLS) were further characterized by immunohistochemistry. In all fresh tumors, TILs were found. The majority of TILs were CD4 T cells; however cytotoxic CD8 T cells were also seen (average: 20% of CD3 T cells). Among CD8 T cells, 65% expressed the immune checkpoint molecule PD-1. Intratumoral TLS may be sites of antigen presentation as DC-LAMP positive, mature dendritic cells were found juxtaposed next to CD4 T cells. Clinicopathologic correlation, however, demonstrated that presence of TLS was associated with worse recurrence-free survival in WD disease and worse overall survival in DD disease. Our data suggest that an adaptive immune response is present in WD/DD retroperitoneal liposarcoma but may be hindered by TLS, among other possible microenvironmental factors; further investigation is needed. Immunotherapy, including immune checkpoint blockade, should be evaluated as a treatment option in this disease.
Collapse
|
49
|
Guan Z, Yu X, Wang H, Wang H, Zhang J, Li G, Cao J, Teng L. Advances in the targeted therapy of liposarcoma. Onco Targets Ther 2015; 8:125-36. [PMID: 25609980 PMCID: PMC4293924 DOI: 10.2147/ott.s72722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Liposarcoma (LPS) is the most common type of soft-tissue sarcoma. Complete surgical resection is the only curative means for localized disease; however, both radiation and conventional cytotoxic chemotherapy remain controversial for metastatic or unresectable disease. An increasing number of trials with novel targeted therapy of LPS have provided encouraging data during recent years. This review will provide an overview of the advances in our understanding of LPS and summarize the results of recent trials with novel therapies targeting different genetic and molecular aberrations for different subtypes of LPS.
Collapse
Affiliation(s)
- Zhonghai Guan
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Xiongfei Yu
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Haohao Wang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Haiyong Wang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Jing Zhang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Guangliang Li
- Department of Medicine Oncology, Zhejiang Cancer Hospital, Zhejiang, People's Republic of China
| | - Jiang Cao
- Clinical Research Center, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lisong Teng
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| |
Collapse
|
50
|
Abstract
The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context.
Collapse
|