1
|
Guo TY, Kuo WT, Tsai YS, Yu LCH, Huang CY. Glucose-Stimulated Mucus Secretion by Goblet Cells Mitigates Intestinal Barrier Dysfunction in a Rat Model of Mesenteric Ischemia/Reperfusion Injury. Curr Dev Nutr 2024; 8:104431. [PMID: 39263224 PMCID: PMC11388543 DOI: 10.1016/j.cdnut.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
Background Superior mesenteric ischemia/reperfusion (I/R) causes barrier dysfunction and facilitates bacterial translocation (BT) in the small intestine, which can even lead to systemic sepsis. Our previous research showed that luminal administration of glucose and its anaerobic glycolytic metabolites exerted cytoprotective effects on epithelial cells and ameliorated I/R-induced BT in the liver and spleen. Notably, the reduction of BT occurs over the whole intestinal tract, not only restricted in the ligated glucose-containing loop. Objectives In this study, we hypothesized that local jejunal glucose-contacting might confer on the remote intestinal epithelium regeneration potential, fortify their barrier function and goblet cell secretory activity. Methods Two 10-cm jejunal segments were isolated in Wistar rats. One segment was ligatured at both ends and infused with Krebs buffer containing 0- or 50-mM glucose (local loop), whereas the adjacent segment was left unaltered and not exposed to glucose (remote loop). The rats then underwent either a sham operation or I/R challenge by occlusion of the superior mesenteric artery for 20 min, followed by reperfusion for 1 h. Results Enteral addition of glucose in the local jejunum loop alleviated ischemia-induced barrier defects, histopathological scores, cell death, and mucosal inflammation (myeloperoxidase and inflammatory cytokine production) in the remote jejunum. After ischemia, goblet cells in the remote jejunum showed cavitation of mucin granules and low MUC2 expression. Local addition of glucose enhanced MUC2 synthesis and stimulated a jet-like mucus secretion in the remote jejunum, which was accompanied by the restoration of crypt activity. Conclusions Our results showed local enteral glucose effectively mitigates I/R-induced barrier dysfunction, suggesting that local glucose-stimulated mucus secretion by remote goblet cells may serve to mitigate mucosal inflammation and BT. We provide a more precise barrier protection role of enteral glucose upon I/R challenge, presenting new opportunities for future therapeutic potential.
Collapse
Affiliation(s)
- Ting-You Guo
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Ting Kuo
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Syuan Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Ying Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Yan Q, Jia S, Li D, Yang J. The role and mechanism of action of microbiota-derived short-chain fatty acids in neutrophils: From the activation to becoming potential biomarkers. Biomed Pharmacother 2023; 169:115821. [PMID: 37952355 DOI: 10.1016/j.biopha.2023.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, have emerged as critical mediators in the communication between the human microbiota and its host. As the first responder to the inflammatory site, neutrophils play an important role in protecting the host against bacterial infections. Recent investigations revealed that SCFAs generated from microbiota influence various neutrophil activities, including activation, migration, and generation of mediators of inflammatory processes. SCFAs have also been demonstrated to exhibit potential therapeutic benefits in a variety of disorders related to neutrophil dysfunction, including inflammatory bowel disease, viral infectious disorders, and cancer. This study aims to examine the molecular processes behind the complicated link between SCFAs and neutrophils, as well as their influence on neutrophil-driven inflammatory disorders. In addition, we will also provide an in-depth review of current research on the diagnostic and therapeutic value of SCFAs as possible biomarkers for neutrophil-related diseases.
Collapse
Affiliation(s)
- Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Shengnan Jia
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Dongfu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Junling Yang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
3
|
Gao J, Wang Y, Jia Z, Xue J, Zhou T, Zu G. (-)-Epigallocatechin-3-gallate promotes intestinal epithelial proliferation and barrier function after ischemia/reperfusion injury via activation of Nurr1. PHARMACEUTICAL BIOLOGY 2023; 61:1310-1317. [PMID: 37621064 PMCID: PMC10461505 DOI: 10.1080/13880209.2023.2245445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023]
Abstract
CONTEXT (-)-Epigallocatechin-3-gallate (EGCG) is involved in cell proliferation and ischemia/reperfusion (I/R) injury of several organs. OBJECTIVE To identify the role of EGCG in intestinal epithelial proliferation and barrier exposed to I/R injury. MATERIAL AND METHODS Fifty Sprague-Dawley rats were divided into sham, I/R, I/R + EGCG (12.5 mg/kg), I/R + EGCG (25 mg/kg) and I/R + EGCG (50 mg/kg). I/R group rats were subjected to intestinal ischemia for 1 h and 6 h reperfusion. The rats were supplemented with EGCG 12.5, 25 and 50 mg/kg daily for 3 days via intraperitoneal injection before surgery. We used IEC-6 to expose to hypoxia/reoxygenation (H/R) injury to mimic I/R in vivo. IEC-6 cells were divided into control, H/R and H/R + EGCG (40 μmol/L). The effects of EGCG and its mechanism was explored. RESULTS Pharmacological treatment with EGCG notably improves intestinal epithelial proliferation (12.5 mg/kg, 1.74-fold; 25 mg/kg, 2.93-fold, and 50 mg/kg, 4.33-fold) and barrier function after I/R injury. EGCG promoted cell proliferation (2.99-fold) and increased the expression of occludin (2.36-fold) and ZO-1 (1.64-fold) in IEC-6 cells after H/R injury. EGCG promoted proliferation of IEC-6 cells with ED50 values of 18.16 μmol/L. Further investigations indicated that EGCG activated Nurr1 expression in intestine after I/R injury. EGCG promote cell proliferation and increased the expression of occludin and ZO-1 in IEC-6 cells after H/R injury were abrogated in the knockdown of Nurr1 by siRNA. DISCUSSION AND CONCLUSION Our findings indicate that EGCG promotes intestinal epithelial cell proliferation and barrier function after I/R injury in vitro and in vivo via activation of Nurr1.
Collapse
Affiliation(s)
- Jiacheng Gao
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Yuhang Wang
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Zirui Jia
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Jiaming Xue
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Tingting Zhou
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guo Zu
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Dong LW, Chen YY, Chen CC, Ma ZC, Fu J, Huang BL, Liu FJ, Liang DC, Sun DM, Lan C. Adenosine 2A receptor contributes to the facilitation of post-infectious irritable bowel syndrome by γδ T cells via the PKA/CREB/NF-κB signaling pathway. World J Gastroenterol 2023; 29:1475-1491. [PMID: 36998428 PMCID: PMC10044852 DOI: 10.3748/wjg.v29.i9.1475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Immunological dysfunction-induced low-grade inflammation is regarded as one of the predominant pathogenetic mechanisms in post-infectious irritable bowel syndrome (PI-IBS). γδ T cells play a crucial role in innate and adaptive immunity. Adenosine receptors expressed on the surface of γδ T cells participate in intestinal inflammation and immunity regulation.
AIM To investigate the role of γδ T cell regulated by adenosine 2A receptor (A2AR) in PI-IBS.
METHODS The PI-IBS mouse model has been established with Trichinella spiralis (T. spiralis) infection. The intestinal A2AR and A2AR in γδ T cells were detected by immunohistochemistry, and the inflammatory cytokines were measured by western blot. The role of A2AR on the isolated γδ T cells, including proliferation, apoptosis, and cytokine production, were evaluated in vitro. Their A2AR expression was measured by western blot and reverse transcription polymerase chain reaction (RT-PCR). The animals were administered with A2AR agonist, or A2AR antagonist. Besides, γδ T cells were also injected back into the animals, and the parameters described above were examined, as well as the clinical features. Furthermore, the A2AR-associated signaling pathway molecules were assessed by western blot and RT-PCR.
RESULTS PI-IBS mice exhibited elevated ATP content and A2AR expression (P < 0.05), and suppression of A2AR enhanced PI-IBS clinical characteristics, indicated by the abdominal withdrawal reflex and colon transportation test. PI-IBS was associated with an increase in intestinal T cells, and cytokine levels of interleukin-1 (IL-1), IL-6, IL-17A, and interferon-α (IFN-α). Also, γδ T cells expressed A2AR in vitro and generated IL-1, IL-6, IL-17A, and IFN-α, which can be controlled by A2AR agonist and antagonist. Mechanistic studies demonstrated that the A2AR antagonist improved the function of γδ T cells through the PKA/CREB/NF-κB signaling pathway.
CONCLUSION Our results revealed that A2AR contributes to the facilitation of PI-IBS by regulating the function of γδ T cells via the PKA/CREB/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li-Wei Dong
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Yi-Yao Chen
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Chao-Chao Chen
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Zhi-Chao Ma
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Jiao Fu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Bai-Li Huang
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Fu-Jin Liu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Dong-Chun Liang
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90033, United States
| | - De-Ming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90033, United States
| | - Cheng Lan
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| |
Collapse
|
5
|
Morrison T, Watts ER, Sadiku P, Walmsley SR. The emerging role for metabolism in fueling neutrophilic inflammation. Immunol Rev 2023; 314:427-441. [PMID: 36326284 PMCID: PMC10953397 DOI: 10.1111/imr.13157] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neutrophils are a critical element of host defense and are rapidly recruited to inflammatory sites. Such sites are frequently limited in oxygen and/or nutrient availability, presenting a metabolic challenge for infiltrating cells. Long believed to be uniquely dependent on glycolysis, it is now clear that neutrophils possess far greater metabolic plasticity than previously thought, with the capacity to generate energy stores and utilize extracellular proteins to fuel central carbon metabolism and biosynthetic activity. Out-with cellular energetics, metabolic programs have also been implicated in the production of neutrophils and their progenitors in the bone marrow compartment, activation of neutrophil antimicrobial responses, inflammatory and cell survival signaling cascades, and training of the innate immune response. Thus, understanding the mechanisms by which metabolic processes sustain changes in neutrophil effector functions and how these are subverted in disease states provides exciting new avenues for the treatment of dysfunctional neutrophilic inflammation which are lacking in clinical practice to date.
Collapse
Affiliation(s)
- Tyler Morrison
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| | - Emily R. Watts
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| | - Pranvera Sadiku
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| | - Sarah R. Walmsley
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| |
Collapse
|
6
|
Wan Y, Dong P, Zhu X, Lei Y, Shen J, Liu W, Liu K, Zhang X. Bibliometric and visual analysis of intestinal ischemia reperfusion from 2004 to 2022. Front Med (Lausanne) 2022; 9:963104. [PMID: 36052333 PMCID: PMC9426633 DOI: 10.3389/fmed.2022.963104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intestinal ischemia/reperfusion (I/R) injury is a common tissue-organ damage occurring in surgical practice. This study aims to comprehensively review the collaboration and impact of countries, institutions, authors, subject areas, journals, keywords, and critical literature on intestinal I/R injury from a bibliometric perspective, and to assess the evolution of clustering of knowledge structures and identify hot trends and emerging topics. Methods Articles and reviews related to intestinal I/R were retrieved through subject search from Web of Science Core Collection. Bibliometric analyses were conducted on Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 1069 articles and reviews were included from 2004 to 2022. The number of articles on intestinal I/R injury gradually plateaued, but the number of citations increased. These publications were mainly from 985 institutions in 46 countries, led by China and the United States. Liu Kx published the most papers, while Chiu Cj had the largest number of co-citations. Analysis of the journals with the most outputs showed that most journals focused on surgical sciences, cell biology, and immunology. Macroscopic sketch and microscopic characterization of the entire knowledge domain were achieved through co-citation analysis. The roles of cell death, exosomes, intestinal flora, and anesthetics in intestinal I/R injury are the current and developing research focuses. The keywords "dexmedetomidine", "proliferation", and "ferroptosis" may also become new trends and focus of future research. Conclusion This study comprehensively reviews the research on intestinal I/R injury using bibliometric and visualization methods, and will help scholars better understand the dynamic evolution of intestinal I/R injury and provide directions for future research.
Collapse
Affiliation(s)
- Yantong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Xiaobing Zhu
- Department of Anesthesiology, Hospital of Traditional Chinese Medicine of Zhongshan City, Zhongshan, China
| | - Yuqiong Lei
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Weifeng Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Kexuan Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiyang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Yang D, Liu J. Neutrophil Extracellular Traps: A New Player in Cancer Metastasis and Therapeutic Target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:233. [PMID: 34271947 PMCID: PMC8283906 DOI: 10.1186/s13046-021-02013-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
Neutrophil Extracellular Traps (NETs) are neutrophil-derived extracellular scaffolds, which typically consist of fibrous decondensed chromatins decorated with histones and granule proteins. Initially discovered as a host defence mechanism of neutrophil against pathogens, they have also been implicated in the progression of sterile inflammation-associated diseases such as autoimmune disease, diabetes, and cancer. In this review, we highlight and discuss the more recent studies on the roles of NETs in cancer development, with a special focus on cancer metastasis. Moreover, we present the strategies for targeting NETs in pre-clinical models, but also the challenging questions that need to be answered in the field.
Collapse
Affiliation(s)
- Dakai Yang
- Liver Disease and Cancer Institute, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China. .,Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China.
| | - Jing Liu
- Microbiology and Immunity Department, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China. .,Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
A rat model to investigate quality of recovery after abdominal surgery. Pain Rep 2021; 6:e943. [PMID: 34235345 PMCID: PMC8253582 DOI: 10.1097/pr9.0000000000000943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Major advances in therapies to optimize recovery after surgery have been limited by the lack of an animal model that can mimic major domains of postoperative sickness behavior in humans. We hypothesized that the integration of commonly impaired domains of quality of recovery in humans could be reproduced in a rat model. Objectives To create a rat model that can mimic surgical recovery in humans. Methods Adult male Sprague-Dawley rats were used in the development of a quality of recovery score after surgery. Six physiological parameters or behaviors were tested in naive, sham, and laparotomized animals. A quality of recovery score was constructed and ranged from 18 (no impairment) to 0 (gross impairment). We treated animals with a nutraceutical intervention consisting of aspirin and eicosapentaenoic acid. Inflammatory markers and specialized proresolving mediators were measured in serum and the intestinal mucosa of rats, respectively. Results We observed a significant reduction in quality of recovery scores on postoperative days 1 (median, interquartile: 6 [4.75-8.25] vs naive rats: 17.5 [15.5-18]), 2 (median, interquartile: 13 [11.25-13.25], P < 0.001 vs naive rats: 17 [17-18], P = 0.001), and 3 (median, interquartile: 14.5 [13.5-16] vs naive rats: 17 [15.75-18], P < 0.02). Surgery promoted a significant increase in the concentrations of inflammatory cytokines, but it reduced levels of interleukin-12p70 and macrophage colony-stimulating factor. Lipoxin B4 and 13-HODE were significantly higher in laparotomized rats. Aspirin + eicosapentaenoic acid substantially improved recovery scores and modulated the postsurgical inflammatory response. Conclusion Our novel rat model can be used to study mechanisms governing surgical recovery in rats.
Collapse
|
9
|
Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture. Sci Rep 2021; 11:13186. [PMID: 34162953 PMCID: PMC8222227 DOI: 10.1038/s41598-021-92574-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia and hyperthermia, which can be induced by high environmental temperature or strenuous exercise, are two common stressors that affect intestinal epithelial integrity and lead to multiple clinical symptoms. In this study, we developed an in-vitro intestinal monolayer model using two human colonic epithelial cell lines, Caco-2 and HT-29, co-cultured in Transwell inserts, and investigated the effects of heat treatment and/or hypoxia on the epithelial barrier function. The monolayer with a ratio of 9:1 (Caco-2:HT-29) showed high trans-epithelial electrical resistance (TEER), low Lucifer Yellow permeability and high mucin production. Hyperthermia and/or hypoxia exposure (2 h) triggered heat shock and oxidative stress responses. HSP-70 and HSF-1 protein levels were up-regulated by hyperthermia, which were further enhanced when hyperthermia was combined with hypoxia. Increased HIF-1α protein expression and Nrf2 nuclear translocation was only caused by hypoxia. Hyperthermia and/or hypoxia exposure disrupted the established monolayer by increasing paracellular permeability, decreasing ZO-1, claudin-3 and occludin protein/mRNA expression, while enhancing E-cadherin protein expression. Tight junction protein distribution in the monolayer was also modulated by the hyperthermia and/or hypoxia exposure. In addition, transcription levels of mucin genes, MUC-2 and MUC-5AC, were increased after 2 h of hyperthermia and/or hypoxia exposure. In conclusion, this Caco-2/HT-29 cell model is valid and effective for studying detrimental effects of hyperthermia and/or hypoxia on intestinal barrier function and related heat shock and oxidative stress pathways and can be used to investigate possible interventions to reverse hyperthermia and/or hypoxia-induced intestinal epithelial injury.
Collapse
|
10
|
Sun L, Li X, Guan H, Chen S, Fan X, Zhou C, Yang H, Xiao W. A Novel Role of A 2AR in the Maintenance of Intestinal Barrier Function of Enteric Glia from Hypoxia-Induced Injury by Combining with mGluR5. Front Pharmacol 2021; 12:633403. [PMID: 34093180 PMCID: PMC8173626 DOI: 10.3389/fphar.2021.633403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
During acute intestinal ischemia reperfusion (IR) injury, the intestinal epithelial barrier (IEB) function is often disrupted. Enteric glial cells (EGCs) play an important role in maintaining the integrity of IEB functions. However, how EGCs regulate IEB function under IR stimulation is unknown. The present study reveals that the adenosine A2A receptor (A2AR) is important for mediating the barrier-modulating roles of EGCs. A2AR knockout (KO) experiments revealed more serious intestinal injury in A2AR KO mice than in WT mice after IR stimulation. Moreover, A2AR expression was significantly increased in WT mice when challenged by IR. To further investigate the role of A2AR in IEB, we established an in vitro EGC-Caco-2 co-culture system. Hypoxia stimulation was used to mimic the process of in vivo IR. Treating EGCs with the CGS21680 A2AR agonist attenuated hypoxia-induced intestinal epithelium damage through up-regulating ZO-1 and occludin expression in cocultured Caco-2 monolayers. Furthermore, we showed that A2AR and metabotropic glutamate receptor 5 (mGluR5) combine to activate the PKCα-dependent pathway in conditions of hypoxia. This study shows, for the first time, that hypoxia induces A2AR-mGluR5 interaction in EGCs to protect IEB function via the PKCα pathway.
Collapse
Affiliation(s)
- Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiang Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Haidi Guan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shuaishuai Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xin Fan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chao Zhou
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Yasojima EY, Domingues RJDS, Silva RC, Sousa LFFD, Trindade Júnior SC. Comparison of remote and local postconditioning against hepatic ischemic-reperfusion injury in rats. Acta Cir Bras 2021; 36:e360101. [PMID: 33533826 PMCID: PMC7853697 DOI: 10.1590/acb360101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose: The aim of this study is to compare the hepatic protective effect of both
remote and local postconditioning (POS). Methods: Twenty-eight Wistar rats were assigned into four groups: sham group(SHAM),
ischemia-reperfusion group (IR), local ischemic POS group (lPOS) and remote
ischemic POS group (rPOS). Animals were subjected to liver ischemia for 30
min. Local ischemic POS group consisted of four cycles of 5 min liver
ischemia, followed by 5 min reperfusion (40 min). Remote ischemic POS group
consisted of four cycles of 5 min hind limb ischemia, followed by 5 min hind
limb perfusion after the main liver ischemia period. After 190 minutes
median and left liver lobes were harvested for biochemical and
histopathology analysis. Results: All the conditioning techniques were able to increase the level of
bothglutathione reductase and peroxidase, showing higher values in the rPOS
group when compared to the lPOS. Also, thiobarbituric acid reactive
substances were higher in all intervention groups when compared to SHAM, but
rPOS had the lower rates of increase, showing the best result. The
histopathology analysis showed that all groups had worst injury levels than
SHAM, but rPOS had lower degrees of damage when compared to the lPOS,
although it was not statistically significant. Conclusion: Remote postconditioning is a promising technique to reduce liver
ischemia-reperfusion injury, once it increased antioxidants substances and
reduced the damage.
Collapse
|
12
|
Kling L, Schreiber A, Eckardt KU, Kettritz R. Hypoxia-inducible factors not only regulate but also are myeloid-cell treatment targets. J Leukoc Biol 2020; 110:61-75. [PMID: 33070368 DOI: 10.1002/jlb.4ri0820-535r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia describes limited oxygen availability at the cellular level. Myeloid cells are exposed to hypoxia at various bodily sites and even contribute to hypoxia by consuming large amounts of oxygen during respiratory burst. Hypoxia-inducible factors (HIFs) are ubiquitously expressed heterodimeric transcription factors, composed of an oxygen-dependent α and a constitutive β subunit. The stability of HIF-1α and HIF-2α is regulated by oxygen-sensing prolyl-hydroxylases (PHD). HIF-1α and HIF-2α modify the innate immune response and are context dependent. We provide a historic perspective of HIF discovery, discuss the molecular components of the HIF pathway, and how HIF-dependent mechanisms modify myeloid cell functions. HIFs enable myeloid-cell adaptation to hypoxia by up-regulating anaerobic glycolysis. In addition to effects on metabolism, HIFs control chemotaxis, phagocytosis, degranulation, oxidative burst, and apoptosis. HIF-1α enables efficient infection defense by myeloid cells. HIF-2α delays inflammation resolution and decreases antitumor effects by promoting tumor-associated myeloid-cell hibernation. PHDs not only control HIF degradation, but also regulate the crosstalk between innate and adaptive immune cells thereby suppressing autoimmunity. HIF-modifying pharmacologic compounds are entering clinical practice. Current indications include renal anemia and certain cancers. Beneficial and adverse effects on myeloid cells should be considered and could possibly lead to drug repurposing for inflammatory disorders.
Collapse
Affiliation(s)
- Lovis Kling
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrian Schreiber
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
13
|
Schofield ZV, Wu MCL, Hansbro PM, Cooper MA, Woodruff TM. Acetate protects against intestinal ischemia‐reperfusion injury independent of its cognate free fatty acid 2 receptor. FASEB J 2020; 34:10418-10430. [DOI: 10.1096/fj.202000960r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Zoe V. Schofield
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
- The Institute for Molecular Bioscience The University of Queensland Brisbane QLD Australia
| | - Mike C. L. Wu
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
| | - Philip M. Hansbro
- Centre for Inflammation Centenary Institute Sydney NSW Australia
- Faculty of Science University of Technology Sydney Ultimo NSW Australia
| | - Matthew A. Cooper
- The Institute for Molecular Bioscience The University of Queensland Brisbane QLD Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
| |
Collapse
|
14
|
Huang CY, Yu LCH. Distinct patterns of interleukin-12/23 and tumor necrosis factor α synthesis by activated macrophages are modulated by glucose and colon cancer metabolites. CHINESE J PHYSIOL 2020; 63:7-14. [PMID: 32056981 DOI: 10.4103/cjp.cjp_75_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Chronic inflammation is a major risk factor for colitis-associated colorectal carcinoma (CRC). Macrophages play a key role in altering the tumor microenvironment by producing pro-inflammatory and anti-inflammatory cytokines. Our previous studies showed that glucose metabolism conferred death resistance for tumor progression and exerted anti-inflammatory effects in ischemic gut mucosa. However, the effect of glucose and cancer metabolites in modulating macrophage cytokine profiles remains poorly defined. We used an in vitro system to mimic intestinal microenvironment and to investigate the roles of glucose and cancer metabolites in the cross-talk between carcinoma cells and macrophages. Human monocyte-derived THP-1 macrophages were stimulated with bacterial lipopolysaccharide (LPS) in the presence of conditioned media (CM) collected from human CRC Caco-2 cells incubated in either glucose-free or glucose-containing media. Our results demonstrated that glucose modulated the macrophage cytokine production, including decreased LPS-induced pro-inflammatory cytokines (i.e., tumor necrosis factor [TNF]α and interleukin [IL]-6) and increased anti-inflammatory cytokine (i.e., IL-10), at resting state. Moreover, glucose-containing CM reduced the macrophage secretion of TNFα and IL-8 but elevated the IL-12 and IL-23 levels, showing an opposite pattern of distinct pro-inflammatory cytokines modulated by cancer glucose metabolites. In contrast, LPS-induced production of macrophage inflammatory protein-1 (a macrophage-derived chemoattractant for granulocytes) was not altered by glucose or CM, indicating that resident macrophages may play a more dominant role than infiltrating granulocytes for responding to cancer metabolites. In conclusion, glucose metabolites from CRC triggered distinct changes in the cytokine profiles in macrophages. The downregulation of death-inducing TNFα and upregulation of Th1/17-polarizing IL-12/IL-23 axis in macrophages caused by exposure to cancer-derived glucose metabolites may contribute to tumor progression.
Collapse
Affiliation(s)
- Ching-Ying Huang
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei; Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
15
|
Martz P, Georgiev P, Wehrend A. Prolonged second stage labour and consequences of hypoxia in the neonate: A review. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2019. [DOI: 10.15547/10.15547/bjvm.2012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hypoxia due to dystocia and its repercussions are serious issues concerning the health of neonates. In order to gain a better understanding of the cause and especially the effects and potential long-term disorders, a critical analysis of peer-reviewed literature was made. As shown by many authors, initially the most devastating peripartal cause of ill health in neonates is associated with the serious effects of prolonged and severe acidosis. Other life threatening complications are related to disorders such as meconium aspiration syndrome (MAS), neonatal respiratory distress syndrome, hypoxic ischaemic encephalopathy and necrotising enterocolitis. Despite the astonishing ability of neonates to compensate mixed metabolic and respiratory acidosis with breathing onset directly postpartum, the longer second stage labour takes and the more extreme the acidosis is, the more detrimental its consequences. Lungs are especially vulnerable in this phase of life, aspired meconium can result in increased expression of pro-inflammatory chemotactic cytokines, phospholipase A2 and PGE2 levels , exacerbating inflammatory reactions of lung tissue and exerting a deleterious effect on alveolar cells. Neonates experiencing dystocia could greatly benefit from administration of buffering substances and non-steroidal anti-inflammatory drugs.
Collapse
|
16
|
Lee T, Huang Y, Lu Y, Yeh Y, Yu LC. Hypoxia-induced intestinal barrier changes in balloon-assisted enteroscopy. J Physiol 2018; 596:3411-3424. [PMID: 29178568 PMCID: PMC6068115 DOI: 10.1113/jp275277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Balloon-assisted enteroscopy (BAE) is an emerging standard procedure by utilizing distensible balloons to facilitate deep endoscopy in the small and large intestine. Sporadic cases of bacteraemia were found after BAE. Balloon distension by BAE caused gut tissue hypoxia. The impact of balloon distension-induced hypoxia on intestinal barriers remains unclear. Murine models of BAE by colonic balloon distension showed that short- and long-term hypoxia evoked opposite effects on epithelial tight junctions (TJs). Short-term hypoxia fortified TJ integrity, whereas long-term hypoxia caused damage to barrier function. Our data showed for the first time the molecular mechanisms and signalling pathways of epithelial barrier fortification and TJ reorganization by short-term hypoxia for the maintenance of gut homeostasis. The findings suggest avoiding prolonged balloon distension during BAE to reduce the risk of hypoxia-induced gut barrier dysfunction. ABSTRACT Balloon-assisted enteroscopy (BAE) is an emerging standard procedure that uses distensible balloons to facilitate deep endoscopy. Intestines are known to harbour an abundant microflora. Whether balloon distension causes perturbation of blood flow and gut barrier dysfunction, and elicits risk of bacterial translocation remains unknown. Our aims were to (1) conduct a prospective study to gather microbiological and molecular evidence of bacterial translocation by BAE in patients, (2) establish a murine model of colonic balloon distension to investigate tissue hypoxia and intestinal barrier, and (3) assess the effect of short- and long-term hypoxia on epithelial permeability using cell lines. Thirteen patients were enrolled for BAE procedures, and blood samples were obtained before and after BAE for paired comparison. Four of the 13 patients (30.8%) had positive bacterial DNA in blood after BAE. Post-BAE endotoxaemia was higher than the pre-BAE level. Nevertheless, no clinical symptom of sepsis or fever was reported. To mimic clinical BAE, mice were subjected to colonic balloon distension. Local tissue hypoxia was observed during balloon inflation, and reoxygenation after deflation. A trend of increased gut permeability was seen after long-term distension, whereas a significant reduction of permeability was observed by short-term distension in the proximal colon. Human colonic epithelial Caco-2 cells exposed to hypoxia for 5-20 min exhibited increased tight junctional assembly, while those exposed to longer hypoxia displayed barrier disruption. In conclusion, sporadic cases of bacteraemia were found after BAE, without septic symptoms. Short-term hypoxia by balloon distension yielded a protective effect whereas long-term hypoxia caused damage to the gut barrier.
Collapse
Affiliation(s)
- Tsung‐Chun Lee
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwanROC
| | - Yi‐Chen Huang
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
| | - Yen‐Zhen Lu
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
| | - Yu‐Chang Yeh
- Department of AnesthesiologyNational Taiwan University HospitalTaipeiTaiwanROC
| | - Linda Chia‐Hui Yu
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
| |
Collapse
|
17
|
Li X, Ling Y, Cao Z, Shen J, Chen S, Liu W, Yuan B, Wen S. Targeting intestinal epithelial cell-programmed necrosis alleviates tissue injury after intestinal ischemia/reperfusion in rats. J Surg Res 2018; 225:108-117. [PMID: 29605020 DOI: 10.1016/j.jss.2018.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/19/2017] [Accepted: 01/04/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Intestinal dysfunction, especially acute pathologies linked to intestinal ischemia/reperfusion (I/R) injury, is profoundly affected by inflammation and improper execution of cell death. Few studies have examined the efficacy of combined strategies in regulated intestinal epithelial necrosis after intestinal I/R. Here, we evaluated the functional interaction between poly (adenosine diphosphate-ribose) polymerase 1 (PARP-1)-induced parthanatos and receptor-interacting protein 1/3 (RIP1/3) kinase-induced necroptosis in the pathophysiological course of acute ischemic intestinal injury. METHODS Anesthetized adult male Sprague-Dawley rats were subjected to superior mesenteric artery occlusion consisting of 1.5 h of ischemia and 6 h of reperfusion. The PARP-1-specific inhibitor PJ34 (10 mg/kg) and the RIP1-specific inhibitor Necrostatin-1 (1 mg/kg) were intraperitoneally administered 30 min before the induction of ischemia. RESULTS Intestinal I/R was found to result in PARP-1 activation and RIP1/3-mediated necrosome formation. PJ34 or Necrostatin-1 treatment significantly improved the mucosal injury, while the combined inhibition of PARP-1 and RIP1/3 conferred optimal protection of the intestine. Meanwhile, results from terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling assay showed a decrease in intestinal epithelial cell death. Interestingly, we further showed that PARP-1 might act as a downstream signaling molecule of RIP1 in the process of I/R-induced intestinal injury and that the RIP1/PARP-1-dependent cell death signaling pathway functioned independently of caspase 3 inhibition. CONCLUSIONS The results of our study provide a molecular basis for combination therapy that targets both pathways of regulated necrosis (parthanatos and necroptosis), to treat acute intestinal I/R-induced intestinal epithelial barrier disruption.
Collapse
Affiliation(s)
- Xiang Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yihong Ling
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongming Cao
- Department of Anesthesiology, Guangdong Cardiovascular Institute and Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiantong Shen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoqian Chen
- Department of Medical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baolong Yuan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Intravital imaging of neutrophil recruitment in intestinal ischemia-reperfusion injury. Biochem Biophys Res Commun 2017; 495:2296-2302. [PMID: 29287721 DOI: 10.1016/j.bbrc.2017.12.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neutrophils are known to be key players in innate immunity. Activated neutrophils induce local inflammation, which results in pathophysiologic changes during intestinal ischemia-reperfusion injury (IRI). However, most studies have been based on static assessments, and few have examined real-time intravital neutrophil recruitment. We herein report a method for imaging and evaluating dynamic changes in the neutrophil recruitment in intestinal IRI using two-photon laser scanning microscopy (TPLSM). METHODS LysM-eGFP mice were subjected to 45 min of warm intestinal ischemia followed by reperfusion. Mice received an intravenous injection of tetramethylrhodamine isothiocyanate-labeled albumin to visualize the microvasculature. Using a time-lapse TPLSM technique, we directly observed the behavior of neutrophils in intestinal IRI. RESULTS We were able to image all layers of the intestine without invasive surgical stress. At low-magnification, the number of neutrophils per field of view continued to increase for 4 h after reperfusion. High-magnification images revealed the presence or absence of blood circulation. At 0-2 h after reperfusion, rolling and adhesive neutrophils increased along the vasculature. At 2-4 h after reperfusion, the irregularity of crypt architecture and transmigration of neutrophils were observed in the lamina propria. Furthermore, TPLSM imaging revealed the villus height, the diameters of the crypt, and the number of infiltrating neutrophils in the crypt. In the IRI group, the villus height 4 h after reperfusion was significantly shorter than in the control group. CONCLUSIONS TPLSM imaging revealed the real-time neutrophil recruitment in intestinal IRI. Z-stack imaging was useful for evaluating pathophysiological changes in the intestinal wall.
Collapse
|
19
|
dos Santos CHM, Aydos RD, Nogueira E, Miiji LNO, Cassino PC, Alves II, Calheiros NM, Garcia M. Ischemic Postconditioning Assessment in the Liver of Rats Undergoing Mesenteric Ischemia and Reperfusion. Braz J Cardiovasc Surg 2017; 31:287-290. [PMID: 27849300 PMCID: PMC5094425 DOI: 10.5935/1678-9741.20160068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/04/2016] [Indexed: 12/17/2022] Open
Abstract
Introduction Ischemic postconditioning is a method that shows evidence of efficacy in
minimizing reperfusion injury; however, its effectiveness in preventing
injuries in distant organs is still unknown, especially in those who have
undergone mesenteric ischemia and reperfusion. Objective To evaluate the effect of ischemic postconditioning in preventing reperfusion
injury in the liver of rats submitted to mesenteric ischemia and
reperfusion, comparing two different methods of ischemic
postconditioning. Methods 30 Wistar male rats were used, distributed into three groups: Group A: Ten
rats submitted to intestinal ischemia for 30 minutes followed by reperfusion
for 60 minutes; Group B: Ten rats subjected to ischemia and reperfusion;
after ischemia, two cycles of reperfusion (two minutes each) interleaved
with two cycles of ischemia (two minutes each); and Group C: Ten rats
subjected to ischemia and reperfusion; after ischemia, four cycles of
reperfusion (30 seconds each) interspersed with four cycles of ischemia (30
seconds each). After the experiment, the left lobe of the liver was resected
for subsequent histological analysis, using the following classification:
grade 1 - centrilobular congestion; grade 2 - centrilobular congestion with
some degeneration of hepatocytes in one or two central veins; and grade 3 -
multifocal centrilobular congestion and degeneration of portal
hepatocytes. Results The mean degree of liver damage found was 1.8 in group A, 1.7 in group B and
1.3 in group C. There was no statistically significant difference between
the groups. Conclusion Ischemic postconditioning was unable to minimize reperfusion injury in rats
undergoing mesenteric ischemia and reperfusion.
Collapse
Affiliation(s)
| | - Ricardo Dutra Aydos
- Faculdade de Medicina da Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Ed Nogueira
- Faculdade de Medicina da Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Pedro Carvalho Cassino
- Faculdade de Medicina da Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Isadora Ishaq Alves
- Faculdade de Medicina da Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Milena Garcia
- Faculdade de Medicina da Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
20
|
Effects of Dexmedetomidine on Intestinal Microcirculation and Intestinal Epithelial Barrier in Endotoxemic Rats. Anesthesiology 2017; 125:355-67. [PMID: 27111533 DOI: 10.1097/aln.0000000000001135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dexmedetomidine reduces cytokine production in septic patients and reduces inflammation and mortality in experimental models of endotoxemia and sepsis. This study investigated whether dexmedetomidine attenuates endothelial dysfunction, intestinal microcirculatory dysfunction, and intestinal epithelial barrier disruption in endotoxemic rats. METHODS Ninety-two male Wistar rats were randomly assigned to the following four groups: (1) Sham; (2) lipopolysaccharide, received IV lipopolysaccharide 15 and 10 mg/kg at 0 and 120 min; (3) dexmedetomidine, received IV dexmedetomidine for 240 min; and (4) lipopolysaccharide + dexmedetomidine, received both lipopolysaccharide and dexmedetomidine. Sidestream dark-field videomicroscope, tissue oxygen monitor, and full-field laser perfusion image were used to investigate the microcirculation of the terminal ileum. Serum endocan level was measured. The Ussing chamber permeability assay, lumen-to-blood gadodiamide passage by magnetic resonance imaging, and bacterial translocation were conducted to determine epithelial barrier function. Mucosal apoptotic levels and tight junctional integrity were also examined. RESULTS The density of perfused small vessels in mucosa, serosal muscular layer, and Peyer patch in the lipopolysaccharide + dexmedetomidine group was higher than that of the lipopolysaccharide group. Serum endocan level was lower in the lipopolysaccharide + dexmedetomidine group than in the lipopolysaccharide group. Mucosal ratio of cleaved to full-length occludin and spleen bacterial counts were significantly lower in the lipopolysaccharide + dexmedetomidine group than in the lipopolysaccharide group. CONCLUSION The study finding suggests that dexmedetomidine protects against intestinal epithelial barrier disruption in endotoxemic rats by attenuating intestinal microcirculatory dysfunction and reducing mucosal cell death and tight junctional damage. (Anesthesiology 2016; 125:355-67).
Collapse
|
21
|
Tumor Necrosis Factor α-Dependent Neutrophil Priming Prevents Intestinal Ischemia/Reperfusion-Induced Bacterial Translocation. Dig Dis Sci 2017; 62:1498-1510. [PMID: 28144894 DOI: 10.1007/s10620-017-4468-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intestinal ischemia/reperfusion (I/R) causes barrier impairment and bacterial influx. Protection against I/R injury in sterile organs by hypoxic preconditioning (HPC) had been attributed to erythropoietic and angiogenic responses. Our previous study showed attenuation of intestinal I/R injury by HPC for 21 days in a neutrophil-dependent manner. AIM To investigate the underlying mechanisms of neutrophil priming by HPC, and explore whether adoptive transfer of primed neutrophils is sufficient to ameliorate intestinal I/R injury. METHODS Rats raised in normoxia (NM) and HPC for 3 or 7 days were subjected to sham operation or superior mesenteric artery occlusion for I/R challenge. Neutrophils isolated from rats raised in NM or HPC for 21 days were intravenously injected into naïve controls prior to I/R. RESULTS Similar to the protective effect of HPC-21d, I/R-induced mucosal damage was attenuated by HPC-7d but not by HPC-3d. Naïve rats reconstituted with neutrophils of HPC-21d rats showed increase in intestinal phagocytic infiltration and myeloperoxidase activity, and barrier protection against I/R insult. Elevated free radical production, and higher bactericidal and phagocytic activity were observed in HPC neutrophils compared to NM controls. Moreover, increased serum levels of tumor necrosis factor α (TNFα) and cytokine-induced neutrophil chemoattractant-1 (CINC-1) were seen in HPC rats. Naïve neutrophils incubated with HPC serum or recombinant TNFα, but not CINC-1, exhibited heightened respiratory burst and bactericidal activity. Lastly, neutrophil priming effect was abolished by neutralization of TNFα in HPC serum. CONCLUSIONS TNFα-primed neutrophils by HPC act as effectors cells for enhancing barrier integrity under gut ischemia.
Collapse
|
22
|
Huang C, Kuo W, Huang C, Lee T, Chen C, Peng W, Lu K, Yang C, Yu LC. Distinct cytoprotective roles of pyruvate and ATP by glucose metabolism on epithelial necroptosis and crypt proliferation in ischaemic gut. J Physiol 2017; 595:505-521. [PMID: 27121603 PMCID: PMC5233659 DOI: 10.1113/jp272208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Intestinal ischaemia causes epithelial death and crypt dysfunction, leading to barrier defects and gut bacteria-derived septic complications. Enteral glucose protects against ischaemic injury; however, the roles played by glucose metabolites such as pyruvate and ATP on epithelial death and crypt dysfunction remain elusive. A novel form of necrotic death that involves the assembly and phosphorylation of receptor interacting protein kinase 1/3 complex was found in ischaemic enterocytes. Pyruvate suppressed epithelial cell death in an ATP-independent manner and failed to maintain crypt function. Conversely, replenishment of ATP partly restored crypt proliferation but had no effect on epithelial necroptosis in ischaemic gut. Our data argue against the traditional view of ATP as the main cytoprotective factor by glucose metabolism, and indicate a novel anti-necroptotic role of glycolytic pyruvate under ischaemic stress. ABSTRACT Mesenteric ischaemia/reperfusion induces epithelial death in both forms of apoptosis and necrosis, leading to villus denudation and gut barrier damage. It remains unclear whether programmed cell necrosis [i.e. receptor-interacting protein kinase (RIP)-dependent necroptosis] is involved in ischaemic injury. Previous studies have demonstrated that enteral glucose uptake by sodium-glucose transporter 1 ameliorated ischaemia/reperfusion-induced epithelial injury, partly via anti-apoptotic signalling and maintenance of crypt proliferation. Glucose metabolism is generally assumed to be cytoprotective; however, the roles played by glucose metabolites (e.g. pyruvate and ATP) on epithelial cell death and crypt dysfunction remain elusive. The present study aimed to investigate the cytoprotective effects exerted by distinct glycolytic metabolites in ischaemic gut. Wistar rats subjected to mesenteric ischaemia were enterally instilled glucose, pyruvate or liposomal ATP. The results showed that intestinal ischaemia caused RIP1-dependent epithelial necroptosis and villus destruction accompanied by a reduction in crypt proliferation. Enteral glucose uptake decreased epithelial cell death and increased crypt proliferation, and ameliorated mucosal histological damage. Instillation of cell-permeable pyruvate suppressed epithelial cell death in an ATP-independent manner and improved the villus morphology but failed to maintain crypt function. Conversely, the administration of liposomal ATP partly restored crypt proliferation but did not reduce epithelial necroptosis and histopathological injury. Lastly, glucose and pyruvate attenuated mucosal-to-serosal macromolecular flux and prevented enteric bacterial translocation upon blood reperfusion. In conclusion, glucose metabolites protect against ischaemic injury through distinct modes and sites, including inhibition of epithelial necroptosis by pyruvate and the promotion of crypt proliferation by ATP.
Collapse
Affiliation(s)
- Ching‐Ying Huang
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Wei‐Ting Kuo
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Chung‐Yen Huang
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Tsung‐Chun Lee
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Chin‐Tin Chen
- Department of Biochemical Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Wei‐Hao Peng
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Kuo‐Shyan Lu
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Chung‐Yi Yang
- Department of Medical Imaging, E‐Da HospitalI‐Shou UniversityKaohsiungTaiwan
- Department of Medical ImagingNational Taiwan University HospitalTaipeiTaiwan
| | - Linda Chia‐Hui Yu
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
23
|
Yeh YC, Yu LCH, Wu CY, Cheng YJ, Lee CT, Sun WZ, Tsai JC, Lin TY. Effects of endotoxin absorber hemoperfusion on microcirculation in septic pigs. J Surg Res 2016; 211:242-250. [PMID: 28501124 DOI: 10.1016/j.jss.2016.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/22/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND Endotoxins contribute to systemic inflammatory response and microcirculatory dysfunctions under conditions of sepsis. Polymyxin B hemoperfusion (PMX-HP) is used to remove circulating endotoxins and improve clinical outcomes. This study aims to investigate the effect of PMX-HP on microcirculation in septic pigs. MATERIALS AND METHODS By using a septic pig model, we tested the hypothesis that PMX-HP can correct intestinal microcirculation, tissue oxygenation saturation, and histopathologic alterations. A total of 18 male pigs were divided into three groups: (1) sham; (2) sepsis (fecal peritonitis); and (3) sepsis + PMX-HP groups. A sidestream dark field video microscope was used to record microcirculation throughout the terminal ileal mucosa, colon mucosa, kidney surface, and sublingual area. A superficial tissue oxygenation monitor employing the light reflectance spectroscopy technique was used to measure the tissue oxygen saturation. Hematoxylin and eosin staining was used for histologic examination. RESULTS The perfused small vessel density and tissue oxygen saturation of the ileal mucosa at 6 h were higher in the sepsis + PMX-HP group than those in the sepsis group. The fluid amount and norepinephrine infusion rate between the sepsis group and sepsis + PMX-HP groups did not differ significantly. The histologic score for the ileal mucosa was lower in the sepsis + PMX-HP group than that in the sepsis group. Finally, the urine output was higher in the sepsis + PMX-HP group than it was in the sepsis group. CONCLUSIONS This study demonstrates that PMX-HP attenuates microcirculatory dysfunction, tissue desaturation, and histopathologic alterations in the ileal mucosa in septic pigs.
Collapse
Affiliation(s)
- Yu-Chang Yeh
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Yu Wu
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Jung Cheng
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Tse Lee
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Zen Sun
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jui-Chang Tsai
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; Institute of Medical Device and Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei, Taiwan.
| | | |
Collapse
|
24
|
Limb Remote Ischemic Postconditioning Reduces Ischemia-Reperfusion Injury by Inhibiting NADPH Oxidase Activation and MyD88-TRAF6-P38MAP-Kinase Pathway of Neutrophils. Int J Mol Sci 2016; 17:ijms17121971. [PMID: 27898007 PMCID: PMC5187771 DOI: 10.3390/ijms17121971] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/30/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Limb remote ischemic postconditioning (LRIP) has been confirmed to reduce the ischemia-reperfusion injury but its mechanisms are still not clear. This study clarified the mechanism of LRIP based on the nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase and Myeloid differentiation factor 88 (MyD88)-Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6)-P38 pathway of neutrophils. Rat middle cerebral artery occlusion (MCAO) model was used in this study. Ischemia-reperfusion injury was carried out by MCAO 1.5 h followed by 24 h reperfusion. LRIP operation was performed to the left femoral artery at 0, 1 or 3 h after reperfusion. Behavioral testing, including postural reflex test, vibrissae-elicited forelimb placing test and tail hang test, showed that LRIP operated at 0 h of reperfusion could significantly ameliorate these behavioral scores. Pathological examinations, infarct size, Myeloperoxidase (MPO) activity showed that LRIP operated at 0 h of reperfusion could significantly ameliorate the pathological scores, reduce the infarct size and MPO activity in the brain and increase the MPO activity in the left leg. By using Neutrophil counting, immunofluorescence and real-time PCR techniques, we found that LRIP operated at 0 h of reperfusion could reduce neutrophil counts in the peripheral blood and downregulate the activation of neutrophil in the peripheral blood and rat brain. Western blots revealed that MyD88, TRAF6, p38 mitogen-activated protein kinase (p38-MAPK) in neutrophils and the phosphorylation of p47phox (Ser 304 and Ser 345) in neutrophil could be downregulated by LRIP. Our study suggests that LRIP inhibits the number and activation of neutrophils in the rat brain and peripheral blood linked to down-regulating the activation of NADPH oxidase in neutrophils by MyD88/TRAF6/p38-MAPK pathway.
Collapse
|
25
|
Lodge KM, Thompson AAR, Chilvers ER, Condliffe AM. Hypoxic regulation of neutrophil function and consequences for Staphylococcus aureus infection. Microbes Infect 2016; 19:166-176. [PMID: 27789256 DOI: 10.1016/j.micinf.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 01/22/2023]
Abstract
Staphylococcal infection and neutrophilic inflammation can act in concert to establish a profoundly hypoxic environment. In this review we summarise how neutrophils and Staphylococcus aureus are adapted to function under hypoxic conditions, with a particular focus on the impaired ability of hypoxic neutrophils to effect Staphylococcus aureus killing.
Collapse
Affiliation(s)
- Katharine M Lodge
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK
| | - A A Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
26
|
Bigorgne AE, John B, Ebrahimkhani MR, Shimizu-Albergine M, Campbell JS, Crispe IN. TLR4-Dependent Secretion by Hepatic Stellate Cells of the Neutrophil-Chemoattractant CXCL1 Mediates Liver Response to Gut Microbiota. PLoS One 2016; 11:e0151063. [PMID: 27002851 PMCID: PMC4803332 DOI: 10.1371/journal.pone.0151063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background & Aims The gut microbiota significantly influences hepatic immunity. Little is known on the precise mechanism by which liver cells mediate recognition of gut microbes at steady state. Here we tested the hypothesis that a specific liver cell population was the sensor and we aimed at deciphering the mechanism by which the activation of TLR4 pathway would mediate liver response to gut microbiota. Methods Using microarrays, we compared total liver gene expression in WT versus TLR4 deficient mice. We performed in situ localization of the major candidate protein, CXCL1. With an innovative technique based on cell sorting, we harvested enriched fractions of KCs, LSECs and HSCs from the same liver. The cytokine secretion profile was quantified in response to low levels of LPS (1ng/mL). Chemotactic activity of stellate cell-derived CXCL1 was assayed in vitro on neutrophils upon TLR4 activation. Results TLR4 deficient liver had reduced levels of one unique chemokine, CXCL1 and subsequent decreased of neutrophil counts. Depletion of gut microbiota mimicked TLR4 deficient phenotype, i.e., decreased neutrophils counts in the liver. All liver cells were responsive to low levels of LPS, but hepatic stellate cells were the major source of chemotactic levels of CXCL1. Neutrophil migration towards secretory hepatic stellate cells required the TLR4 dependent secretion of CXCL1. Conclusions Showing the specific activation of TLR4 and the secretion of one major functional chemokine—CXCL1, the homolog of human IL-8-, we elucidate a new mechanism in which Hepatic Stellate Cells play a central role in the recognition of gut microbes by the liver at steady state.
Collapse
Affiliation(s)
- Amélie E. Bigorgne
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
- * E-mail:
| | - Beena John
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
| | - Mohammad R. Ebrahimkhani
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
| | - Masami Shimizu-Albergine
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| | - Jean S. Campbell
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| | - Ian N. Crispe
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| |
Collapse
|
27
|
Duodenojejunal Bypass Leads to Altered Gut Microbiota and Strengthened Epithelial Barriers in Rats. Obes Surg 2015; 26:1576-83. [DOI: 10.1007/s11695-015-1968-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
WANG ZHENRAN, TANG BO, TANG FANG, LI YANG, ZHANG GUANGYU, ZHONG LI, DONG CHENCHENG, HE SONGQING. Protection of rat intestinal epithelial cells from ischemia/reperfusion injury by (D-Ala2, D-Leu5)-enkephalin through inhibition of the MKK7-JNK signaling pathway. Mol Med Rep 2015; 12:4079-4088. [PMID: 26126577 PMCID: PMC4526098 DOI: 10.3892/mmr.2015.3991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/10/2015] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that (D‑Ala2, D‑Leu5)‑enkephalin (DADLE) protects rats from hepatic ischemia/reperfusion (I/R) injury. In the present study, DADLE was also observed to alleviate IR‑induced intestinal epithelial cell injury in rats by inhibiting mitogen‑activated protein kinase kinase 7 (MKK7)‑c‑Jun N‑terminal kinase (JNK) pathway signaling. To investigate the protective effect of DADLE on hypoxia/reoxygenation injury in rat intestinal epithelial cells, rat intestinal epithelial cells were treated with different concentrations of DADLE, following which the cell survival rate was determined using a tetrazolium (MTT) colorimetric assay, and apoptosis was determined using flow cytometry. To confirm whether the protective effect of DADLE was due to its effect on MKK7‑JNK signaling, the phosphorylation levels of MKK7 and JNK were analyzed using western blot analysis following treatment with different concentrations of DADLE. The results demonstrated that, following treatment with DADLE, the survival rate of the rat intestinal cells subjected to I/R‑induced injury increased significantly and the apoptotic rate decreased in a concentration‑dependent manner. In addition, the levels of phosphorylated MKK7 and JNK decreased in a concentration‑dependent manner following treatment with DADLE. Silencing the gene expression of MKK7 using small interfering RNA prior to DADLE treatment resulted in a reduction in the protective effects of DADLE on the rat intestinal epithelial cells subjected to I/R injury. Collectively, the results of the present study demonstrated that the protective effects of DADLE in I/R injury in rat intestinal cells occurred through inhibition of the MKK7‑JNK pathway.
Collapse
Affiliation(s)
- ZHENRAN WANG
- Departments of Gastrointestinal Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - BO TANG
- Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - FANG TANG
- Pathology, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - YANG LI
- Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - GUANGYU ZHANG
- Departments of Gastrointestinal Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - LI ZHONG
- Departments of Gastrointestinal Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - CHENCHENG DONG
- Departments of Gastrointestinal Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - SONGQING HE
- Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
29
|
Ji YY, Wang ZD, Wang SF, Wang BT, Yang ZA, Zhou XR, Lei NN, Yue WN. Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats. World J Gastroenterol 2015; 21:8081-8088. [PMID: 26185379 PMCID: PMC4499350 DOI: 10.3748/wjg.v21.i26.8081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/27/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023] Open
Abstract
AIM: To evaluate preventative effects of ischemic preconditioning (IP) in a rat model of intestinal injury induced by ischemia-reperfusion (IR).
METHODS: Male Sprague-Dawley rats (250-300 g) were fasted for 24 h with free access to water prior to the operation. Eighteen rats were randomly divided into three experimental groups: S group (n = 6), rats were subjected to isolation of the superior mesenteric artery (SMA) for 40 min, then the abdomen was closed; IR group (n = 6), rats were subjected to clamping the SMA 40 min, and the abdomen was closed followed by a 4-h reperfusion; IP group (n = 6) rats underwent three cycles of 5 min ischemia and 5 min reperfusion, then clamping of the SMA for 40 min, then the abdomen was closed and a 4-h reperfusion followed. All animals were euthanized by barbiturate overdose (150 mg/kg pentobarbital sodium, i.v.) for tissue collection, and the SMA was isolated via median abdominal incision. Intestinal histologic injury was observed. Malondialdehyde (MDA), myeloperoxidase (MPO) and tumor necrosis factor (TNF)-α concentrations in intestinal tissue were measured. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 expression, as well as nuclear factor (NF)-κB activity and expression in intestinal tissue were also determined.
RESULTS: Compared with the IR group, IP reduced IR-induced histologic injury of the intestine in rats (2.00 ± 0.71 vs 3.60 ± 0.84, P < 0.05). IP significantly inhibited the increase in MDA content (5.6 ± 0.15 μmol/L vs 6.84 ± 0.18 μmol/L, P < 0.01), MPO activity (0.13 ± 0.01 U/L vs 0.24 ± 0.01 U/L, P < 0.01), and TNF-α levels (7.79 ± 2.35 pg/mL vs 10.87 ± 2.48 pg/mL, P < 0.05) in the intestinal tissue of rats. IP also markedly ameliorated the increase in ICAM-1 (204.67 ± 53.27 vs 353.33 ± 45.19, P < 0.05) and VCAM-1 (256.67 ± 58.59 vs 377.33 ± 41.42, P < 0.05) protein expression in the intestinal tissues. Additionally, IP remarkably decreased NF-κB activity (0.48 ± 0.16 vs 0.76 ± 0.22, P < 0.05) and protein expression (320.23 ± 38.16 vs 520.76 ± 40.53, P < 0.01) in rat intestinal tissue.
CONCLUSION: IP may protect against IR-induced intestinal injury by attenuation of the neutrophil-endothelial adhesion cascade via reducing ICAM-1 and VCAM-1 expression and TNF-α-induced NF-κB signaling pathway activity.
Collapse
|
30
|
Shen X, Du J, Zhao Y, Guan W. Phosphatase Wip1 as a new therapeutic target for intestinal ischemia-reperfusion injury. Expert Rev Clin Immunol 2014; 10:1591-5. [DOI: 10.1586/1744666x.2014.975211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Yu LCH, Shih YA, Wu LL, Lin YD, Kuo WT, Peng WH, Lu KS, Wei SC, Turner JR, Ni YH. Enteric dysbiosis promotes antibiotic-resistant bacterial infection: systemic dissemination of resistant and commensal bacteria through epithelial transcytosis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G824-35. [PMID: 25059827 PMCID: PMC4214854 DOI: 10.1152/ajpgi.00070.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Antibiotic usage promotes intestinal colonization of antibiotic-resistant bacteria. However, whether resistant bacteria gain dominance in enteric microflora or disseminate to extraintestinal viscera remains unclear. Our aim was to investigate temporal diversity changes in microbiota and transepithelial routes of bacterial translocation after antibiotic-resistant enterobacterial colonization. Mice drinking water with or without antibiotics were intragastrically gavaged with ampicillin-resistant (Amp-r) nonpathogenic Escherichia coli (E. coli) and given normal water afterward. The composition and spatial distribution of intestinal bacteria were evaluated using 16S rDNA sequencing and fluorescence in situ hybridization. Bacterial endocytosis in epithelial cells was examined using gentamicin resistance assay and transmission electromicroscopy. Paracellular permeability was assessed by tight junctional immunostaining and measured by tissue conductance and luminal-to-serosal dextran fluxes. Our results showed that antibiotic treatment enabled intestinal colonization and transient dominance of orally acquired Amp-r E. coli in mice. The colonized Amp-r E. coli peaked on day 3 postinoculation and was competed out after 1 wk, as evidenced by the recovery of commensals, such as Escherichia, Bacteroides, Lachnospiraceae, Clostridium, and Lactobacillus. Mucosal penetration and extraintestinal dissemination of exogenous and endogenous enterobacteria were correlated with abnormal epithelial transcytosis but uncoupled with paracellular tight junctional damage. In conclusion, antibiotic-induced enteric dysbiosis predisposes to exogenous infection and causes systemic dissemination of both antibiotic-resistant and commensal enterobacteria through transcytotic routes across epithelial layers. These results may help explain the susceptibility to sepsis in antibiotic-resistant enteric bacterial infection.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- 1Graduate Institute of Physiology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan;
| | - Yi-An Shih
- 1Graduate Institute of Physiology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan;
| | - Li-Ling Wu
- 1Graduate Institute of Physiology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan;
| | - Yang-Ding Lin
- 2Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan;
| | - Wei-Ting Kuo
- 1Graduate Institute of Physiology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan;
| | - Wei-Hao Peng
- 3Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan;
| | - Kuo-Shyan Lu
- 3Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan;
| | - Shu-Chen Wei
- 4Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan; and
| | | | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan;
| |
Collapse
|
32
|
Perez-Chanona E, Mühlbauer M, Jobin C. The microbiota protects against ischemia/reperfusion-induced intestinal injury through nucleotide-binding oligomerization domain-containing protein 2 (NOD2) signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2965-75. [PMID: 25204845 DOI: 10.1016/j.ajpath.2014.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 12/14/2022]
Abstract
Nucleotide-binding oligomerization domain-containing protein 2 (NOD2), an intracellular pattern recognition receptor, induces autophagy on detection of muramyl dipeptide (MDP), a component of microbial cell walls. The role of bacteria and NOD2 signaling toward ischemia/reperfusion (I/R)-induced intestinal injury response is unknown. Herein, we report that I/R-induced intestinal injury in germ-free (GF) C57BL/6 wild-type (WT) mice is worse than in conventionally derived mice. More important, microbiota-mediated protection against I/R-induced intestinal injury is abrogated in conventionally derived Nod2(-/-) mice and GF Nod2(-/-) mice. Also, WT mice raised in specific pathogen-free (SPF) conditions fared better against I/R-induced injury than SPF Nod2(-/-) mice. Moreover, SPF WT mice i.p. administered 10 mg/kg MDP were protected against injury compared with mice administered the inactive enantiomer, l-MDP, an effect lost in Nod2(-/-) mice. However, MDP administration failed to protect GF mice from I/R-induced intestinal injury compared with control, a phenomenon correlating with undetectable Nod2 mRNA level in the epithelium of GF mice. More important, the autophagy-inducer rapamycin protected Nod2(-/-) mice against I/R-induced injury and increased the levels of LC3(+) puncta in injured tissue of Nod2(-/-) mice. These findings demonstrate that NOD2 protects against I/R and promotes wound healing, likely through the induction of the autophagy response.
Collapse
Affiliation(s)
- Ernesto Perez-Chanona
- Department of Medicine, University of Florida, Gainesville, Florida; Department of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida
| | - Marcus Mühlbauer
- Departments of Medicine, Microbiology and Immunology, and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida; Department of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida; Departments of Medicine, Microbiology and Immunology, and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
33
|
Commensal bacterial endocytosis in epithelial cells is dependent on myosin light chain kinase-activated brush border fanning by interferon-γ. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2260-74. [PMID: 24911373 DOI: 10.1016/j.ajpath.2014.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/24/2014] [Accepted: 05/05/2014] [Indexed: 12/18/2022]
Abstract
Abnormal bacterial adherence and internalization in enterocytes have been documented in Crohn disease, celiac disease, surgical stress, and intestinal obstruction and are associated with low-level interferon (IFN)-γ production. How commensals gain access to epithelial soma through densely packed microvilli rooted on the terminal web (TW) remains unclear. We investigated molecular and ultrastructural mechanisms of bacterial endocytosis, focusing on regulatory roles of IFN-γ and myosin light chain kinase (MLCK) in TW myosin phosphorylation and brush border fanning. Mouse intestines were sham operated on or obstructed for 6 hours by loop ligation with intraluminally administered ML-7 (a MLCK inhibitor) or Y27632 (a Rho-associated kinase inhibitor). After intestinal obstruction, epithelial endocytosis and extraintestinal translocation of bacteria were observed in the absence of tight junctional damage. Enhanced TW myosin light chain phosphorylation, arc formation, and brush border fanning coincided with intermicrovillous bacterial penetration, which were inhibited by ML-7 and neutralizing anti-IFN-γ but not Y27632. The phenomena were not seen in mice genetically deficient for long MLCK-210 or IFN-γ. Stimulation of human Caco-2BBe cells with IFN-γ caused MLCK-dependent TW arc formation and brush border fanning, which preceded caveolin-mediated bacterial internalization through cholesterol-rich lipid rafts. In conclusion, epithelial MLCK-activated brush border fanning by IFN-γ promotes adherence and internalization of normally noninvasive enteric bacteria. Transcytotic commensal penetration may contribute to initiation or relapse of chronic inflammation.
Collapse
|
34
|
Xiao W, Wang W, Chen W, Sun L, Li X, Zhang C, Yang H. GDNF is involved in the barrier-inducing effect of enteric glial cells on intestinal epithelial cells under acute ischemia reperfusion stimulation. Mol Neurobiol 2014; 50:274-89. [PMID: 24878766 DOI: 10.1007/s12035-014-8730-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/29/2014] [Indexed: 01/14/2023]
Abstract
Acute intestinal ischemia reperfusion (IR) injury is often associated with intestinal epithelial barrier (IEB) dysfunction. Enteric glial cells (EGCs) play an essential role in maintaining the integrity of IEB functions. However, the precise mechanism of EGCs under IR stimulation remains unclear. Here, we report that EGCs are closely involved in the modulation of IEB functions in response to IR challenge. The intestinal IR treatment led to the significant upregulation of the EGC activation marker, glial fibrillary acidic protein, accompanied by the increasing abundance of glial-derived neurotrophic factor (GDNF) and inducible nitric oxidase (iNOS) proteins, which was also confirmed in in vitro hypoxia reoxygenation (HR) tests. Co-culturing with EGCs attenuated the tight junctional abnormalities, blocked the downregulation of ZO-1 and occludin protein expression, and relieved the decrease of permeability of intestinal epithelial cell (IEC) monolayers under HR treatment. Furthermore, exogenous GDNF administration displays the barrier-protective effects similar to EGCs against HR stimulation, while RNA interference-mediated knockdown of GDNF significantly inhibited the protective capability of EGCs. The expression of both GDNF and iNOS proteins of EGCs was significantly upregulated by co-culturing with IECs, which was further increased by HR treatment. Interestingly, through inhibiting iNOS activity, the barrier-protective effect of EGCs was influenced in normal condition but enhanced in HR condition. These results suggest that GDNF plays an important role in the barrier-protective mechanism of activated EGCs under IR stimulation, whereas EGCs (via iNOS release) are also involved in intestinal inflammation response, which may contribute to IEB damage induced by IR injury.
Collapse
Affiliation(s)
- Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing, China, 400037
| | | | | | | | | | | | | |
Collapse
|
35
|
Stringa P, Romanin D, Lausada N, Machuca M, Raimondi JC, Cabanne A, Rumbo M, Gondolesi G. Ischemic preconditioning and tacrolimus pretreatment as strategies to attenuate intestinal ischemia-reperfusion injury in mice. Transplant Proc 2014; 45:2480-5. [PMID: 23953566 DOI: 10.1016/j.transproceed.2013.02.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/05/2013] [Indexed: 12/13/2022]
Abstract
The intestine is highly sensitive to ischemia-reperfusion injury (IRI), a phenomenon occurring in different intestinal diseases. Several strategies to mitigate IRI are in experimental stages; unfortunately, no consensus has been reached about the most appropriate one. We report a protocol to study ischemic preconditioning (IPC) evaluation in mice and to combine IPC and tacrolimus (TAC) pretreatment in a warm ischemia model. Mice were divided into treated (IPC, TAC, and IPC + TAC) and untreated groups before intestinal ischemia. IPC, TAC, and IPC + TAC groups were able to decrease postreperfusion nitrites levels (P < .05). IPC-containing groups had a major beneficial effect by preserving the integrity of the intestinal histology (P < .05) and improving animal survival (P < .002) compared with TAC alone or the untreated group. The IPC + TAC group was the only one that showed significant improvement in lung histological analysis (P < .05). The TAC and IPC + TAC groups down-regulated intestinal expression of interleukin (II)-6 and IL1b more than 10-fold compared with the control group. Although IPC and TAC alone reduced intestinal IRI, the used of a combined therapy produced the most significant results in all the local and distant evaluated parameters.
Collapse
Affiliation(s)
- P Stringa
- Laboratorio de Microcirugía Experimental, Instituto de Trasplante Multiorgánico, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
The cyclin-dependent kinase inhibitor p21 is essential for the beneficial effects of renal ischemic preconditioning on renal ischemia/reperfusion injury in mice. Kidney Int 2014; 85:871-9. [DOI: 10.1038/ki.2013.496] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/23/2013] [Accepted: 08/22/2013] [Indexed: 01/02/2023]
|
37
|
Modulating the p66shc signaling pathway with protocatechuic acid protects the intestine from ischemia-reperfusion injury and alleviates secondary liver damage. ScientificWorldJournal 2014; 2014:387640. [PMID: 24757420 PMCID: PMC3976807 DOI: 10.1155/2014/387640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/16/2014] [Indexed: 01/23/2023] Open
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a serious clinical pathophysiological process that may result in acute local intestine and remote liver injury. Protocatechuic acid (PCA), which has been widely studied as a polyphenolic compound, induces expression of antioxidative genes that combat oxidative stress and cell apoptosis. In this study, we investigated the effect of PCA pretreatment for protecting intestinal I/R-induced local intestine and remote liver injury in mice. Intestinal I/R was established by superior mesenteric artery occlusion for 45 min followed by reperfusion for 90 min. After the reperfusion period, PCA pretreatment markedly alleviated intestine and liver injury induced by intestinal I/R as indicated by histological alterations, decreases in serological damage parameters and nuclear factor-kappa B and phospho-foxo3a protein expression levels, and increases in glutathione, glutathione peroxidase, manganese superoxide dismutase protein expression, and Bcl-xL protein expression in the intestine and liver. These parameters were accompanied by PCA-induced adaptor protein p66shc suppression. These results suggest that PCA has a significant protective effect in the intestine and liver following injury induced by intestinal I/R. The protective effect of PCA may be attributed to the suppression of p66shc and the regulation of p66shc-related antioxidative and antiapoptotic factors.
Collapse
|
38
|
Zhou M, Li TM. Impact of airplane cabin pressure on biliary motility in rabbits. Shijie Huaren Xiaohua Zazhi 2013; 21:3983-3987. [DOI: 10.11569/wcjd.v21.i35.3983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effect of the change in barometric pressure on biliary motility by using a hypobaric chamber to simulate a civil aircraft in flight.
METHODS: Forty-two rabbits were randomly divided into a control group (n = 14), a Ta group (n = 14, hypobaric exposure in a hypobaric chamber 3 times in 3 d) and a Tb group (n = 14, hypobaric exposure in a hypobaric chamber 7 times in 7 d). The level of cholecystokinin 8 (CCK8) was measured in the duodenal tissue and plasma. The expression of CCK-A receptor (CCK-AR) mRNA in gallbladder tissues was detected by RT-PCR. Quantitative analysis of 99mTc-EHIDA hepatobiliary dynamic imaging was made in each group.
RESULTS: Compared to the control group, the Ta group had lower levels of CCK8 both in duodenal tissue and plasma (Ta group vs C group, 5.24 pg/mL ± 0.56 pg/mL vs 6.25 pg/mL ± 0.53 pg/mL in duodenal tissue, P < 0.05; 3.59 pg/mL ± 0.20 pg/mL vs 4.61 pg/mL ± 0.10 pg/mL in plasma, P < 0.05) and a significant delay in duodenal appearance time (Ta group vs C group, 114.73 s ± 13.34 s vs 79.52 s ± 10.83 s, P < 0.05). Besides a delay in DAT and lower level of CCK8, decreased expression of CCK-A receptor mRNA was found in gallbladder tissues in the Tb group compared to the control group and Ta group (CCK-AR/β-actin: Tb group vs C group: 0.56 ± 0.21 vs 0.82 ± 0.16, P < 0.05; Tb group vs Ta group: 0.56 ± 0.21 vs 0.75 ± 0.29, P < 0.05).
CONCLUSION: Barometric pressure change in a civil aircraft in flight shows some inhibitory effects on biliary motility.
Collapse
|
39
|
Chen TL, Chen S, Wu HW, Lee TC, Lu YZ, Wu LL, Ni YH, Sun CH, Yu WH, Buret AG, Yu LCH. Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice. Gut Pathog 2013; 5:26. [PMID: 23991642 PMCID: PMC3765889 DOI: 10.1186/1757-4749-5-26] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/29/2013] [Indexed: 12/20/2022] Open
Abstract
Background Recent studies of Giardia lamblia outbreaks have indicated that 40–80% of infected patients experience long-lasting functional gastrointestinal disorders after parasitic clearance. Our aim was to assess changes in the intestinal barrier and spatial distribution of commensal bacteria in the post-clearance phase of Giardia infection. Methods Mice were orogastrically inoculated with G. lamblia trophozoites (strain GS/M) or pair-fed with saline and were sacrificed on post-infective (PI) days 7 (colonization phase) and 35 (post-clearance phase). Gut epithelial barrier function was assessed by Western blotting for occludin cleavage and luminal-to-serosal macromolecular permeability. Gut-associated, superficial adherent, and mucosal endocytosed bacteria were measured by agar culturing and were examined by fluorescence in situ hybridization. Intracellular bacteria cultured from isolated mucosal cells were characterized by 16S rDNA sequencing. Neutrophil-specific esterase staining, a myeloperoxidase activity assay, and enzyme-linked immunosorbent assays for cytokine concentrations were used to verify intestinal tissue inflammation. Results Tight junctional damage was detected in the intestinal mucosa of Giardia-infected mice on PI days 7 and 35. Although intestinal bacterial overgrowth was evident only during parasite colonization (PI day 7), enhanced mucosal adherence and endocytosis of bacteria were observed on PI days 7 and 35. Multiple bacterial strains, including Bacillus, Lactobacillus, Staphylococcus, and Phenylobacterium, penetrated the gut mucosa in the post-infective phase. The mucosal influx of bacteria coincided with increases in neutrophil infiltration and myeloperoxidase activity on PI days 7 and 35. Elevated intestinal IFNγ, TNFα, and IL-1β levels also were detected on PI day 35. Conclusions Giardia-infected mice showed persistent tight junctional damage and bacterial penetration, accompanied by mucosal inflammation, after parasite clearance. These novel findings suggest that the host’s unresolved immune reactions toward its own microbiota, due to an impaired epithelial barrier, may partly contribute to the development of post-infective gut disorders.
Collapse
Affiliation(s)
- Tzu-Ling Chen
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
New insights in intestinal ischemia-reperfusion injury: implications for intestinal transplantation. Curr Opin Organ Transplant 2013; 18:298-303. [PMID: 23449345 DOI: 10.1097/mot.0b013e32835ef1eb] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Ischemia-reperfusion injury is inevitable during intestinal transplantation and can negatively affect the transplant outcome. Here, an overview is provided of the recent advances in the pathophysiological mechanisms of intestinal ischemia-reperfusion injury and how this may impact graft survival. RECENT FINDINGS The intestine hosts a wide range of microorganisms and its mucosa is heavily populated by immune cells. Intestinal ischemia-reperfusion results in the disruption of the epithelial lining, affecting also protective Paneth cells (antimicrobials) and goblet cells (mucus), and creates a more hostile intraluminal microenvironment. Consequently, both damage-associated molecular patterns as well as pathogen-associated molecular patterns are released from injured tissue and exogenous microorganisms, respectively. These 'danger' signals may synergistically activate the innate immune system. Exaggerated innate immune responses, involving neutrophils, mast cells, platelets, dendritic cells, as well as Toll-like receptors and complement proteins, may shape the adaptive T-cell response, thereby triggering the destructive alloimmune response toward the graft and resulting in transplant rejection. SUMMARY Innate immune activation as a consequence of ischemia-reperfusion injury may compromise engraftment of the intestine. More dedicated research is required to further establish this concept in man and to design more effective therapeutic strategies to better tolerize intestinal grafts.
Collapse
|
41
|
Resistance to hypoxia-induced necroptosis is conferred by glycolytic pyruvate scavenging of mitochondrial superoxide in colorectal cancer cells. Cell Death Dis 2013; 4:e622. [PMID: 23640464 PMCID: PMC3674358 DOI: 10.1038/cddis.2013.149] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells may survive under oxygen and nutrient deprivation by metabolic reprogramming for high levels of anaerobic glycolysis, which contributes to tumor growth and drug resistance. Abnormally expressed glucose transporters (GLUTs) are colocalized with hypoxia (Hx) inducible factor (HIF)1α in peri-necrotic regions in human colorectal carcinoma. However, the underlying mechanisms of anti-necrotic resistance conferred by glucose metabolism in hypoxic cancer cells remain poorly understood. Our aim was to investigate signaling pathways of Hx-induced necroptosis and explore the role of glucose pyruvate metabolite in mechanisms of death resistance. Human colorectal carcinoma cells were Hx exposed with or without glucose, and cell necroptosis was examined by receptor-interacting protein (RIP)1/3 kinase immunoprecipitation and (32)P kinase assays. Our results showed increased RIP1/3 complex formation and phosphorylation in hypoxic, but not normoxic cells in glucose-free media. Blocking RIP1 signaling, by necrostatin-1 or gene silencing, decreased lactodehydrogenase (LDH) leakage and plasma membrane disintegration. Generation of mitochondrial superoxide was noted after hypoxic challenge; its reduction by antioxidants inhibited RIP signaling and cell necrosis. Supplementation of glucose diminished the RIP-dependent LDH leakage and morphological damage in hypoxic cells, whereas non-metabolizable sugar analogs did not. Hypoxic cells given glucose showed nuclear translocation of HIF1α associated with upregulation of GLUT-1 and GLUT-4 expression, as well as increase of intracellular ATP, pyruvate and lactate levels. The glucose-mediated death resistance was ablated by iodoacetate (an inhibitor to glyceraldehyde-3-phosphate dehydrogenase), but not by UK5099 (an inhibitor to mitochondrial pyruvate carrier), suggesting that glycolytic pathway was involved in anti-necrotic mechanism. Lastly, replacing glucose with cell-permeable pyruvate derivative also led to decrease of Hx-induced necroptosis by suppression of mitochondrial superoxide in an energy-independent manner. In conclusion, glycolytic metabolism confers resistance to RIP-dependent necroptosis in hypoxic cancer cells partly through pyruvate scavenging of mitochondrial free radicals.
Collapse
|