1
|
Hegde S, Pierce TT, Heidari F, Ozturk A, Cheah E, Pope K, Blake MA, Shih A, Misdraji J, Samir AE. Noninvasive Assessment of Liver Fibrosis in Patients With Iron Overload. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:551-558. [PMID: 39690040 PMCID: PMC11757052 DOI: 10.1016/j.ultrasmedbio.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVE We assessed the diagnostic performance of ultrasound two-dimensional shear wave elastography (US 2D-SWE) to predict clinically significant fibrosis (CSF) in patients with serologic iron overload (SIO) and the subgroup with histologic liver iron overload (LIO). METHODS A single-center retrospective cross-sectional study of adults with SIO (serum ferritin ≥ 200 ng/mL in females and ≥ 300 ng/mL in males) and suspected chronic liver disease with nonfocal liver biopsy results and US 2D-SWE exams within 1 year was performed. Histopathological fibrosis stage ≥2 and liver iron ≥2+ was considered CSF and LIO, respectively. Univariate logistic regression to assess prediction of CSF by Young's modulus (YM) and serum ferritin was performed. Sensitivity and specificity were reported at optimal YM threshold determined by the Youden Index. RESULTS 272 cases were included (211 (77.6%) females, 88 (32.4%) CSF cases) with mean (± standard deviation) age of 50.0 (13.6) years. Median YM predicted CSF in patients with SIO (AUC 0.73, 95% confidence intervals (CI) 0.66 -0.80, odds ratio (OR) 1.12), p < 0.001. Optimal YM threshold was 11 kPa (sensitivity 58%, specificity 79%). Subgroup analysis of 47 LIO cases (39 women, mean age 52.5 ± 11.6 years, 17 (36.2%) CSF) showed that median YM predicted CSF (AUC 0.85, 95% CI 0.73-0.97, OR 1.39), p < 0.001. Optimal YM threshold was 11 kPa (sensitivity 77%, specificity 87%). CONCLUSION 2D-SWE is a promising, widely available, and noninvasive tool for diagnosing liver fibrosis in iron overload, including when magnetic resonance elastography may be nondiagnostic due to iron-related artifact.
Collapse
Affiliation(s)
- Siddhi Hegde
- Center for Ultrasound Research and Translation, Massachusetts General Hospital, Boston, MA, USA
| | - Theodore T Pierce
- Center for Ultrasound Research and Translation, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Firouzeh Heidari
- Center for Ultrasound Research and Translation, Massachusetts General Hospital, Boston, MA, USA
| | - Arinc Ozturk
- Center for Ultrasound Research and Translation, Massachusetts General Hospital, Boston, MA, USA
| | - Eugene Cheah
- Center for Ultrasound Research and Translation, Massachusetts General Hospital, Boston, MA, USA
| | - Kathleen Pope
- Center for Ultrasound Research and Translation, Massachusetts General Hospital, Boston, MA, USA
| | - Maria A Blake
- Center for Ultrasound Research and Translation, Massachusetts General Hospital, Boston, MA, USA
| | | | - Joseph Misdraji
- Yale School of Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Anthony E Samir
- Center for Ultrasound Research and Translation, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Nie Z, Xiao C, Wang Y, Li R, Zhao F. Heat shock proteins (HSPs) in non-alcoholic fatty liver disease (NAFLD): from molecular mechanisms to therapeutic avenues. Biomark Res 2024; 12:120. [PMID: 39396024 PMCID: PMC11470698 DOI: 10.1186/s40364-024-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a spectrum of liver conditions characterized by fat accumulation without excessive alcohol consumption, represents a significant global health burden. The intricate molecular landscape underlying NAFLD pathogenesis involves lipid handling, inflammation, oxidative stress, and mitochondrial dysfunction, with endoplasmic reticulum (ER) stress emerging as a key contributor. ER stress triggers the unfolded protein response (UPR), impacting hepatic steatosis in NAFLD and contributing to inflammation, fibrosis, and progression to NASH and eventually hepatocellular carcinoma (HCC). Heat shock proteins (HSPs), including small HSPs such as HSP20 and HSP27, HSP60, HSP70, GRP78, and HSP90, are integral to cellular stress responses. They aid in protein folding, prevent aggregation, and facilitate degradation, thus mitigating cellular damage under stress conditions. In NAFLD, aberrant HSP expression and function contribute to disease pathogenesis. Understanding the specific roles of HSP subtypes in NAFLD offers insights into potential therapeutic interventions. This review discusses the involvement of HSPs in NAFLD pathophysiology and highlights their therapeutic potential. By elucidating the molecular mechanisms underlying HSP-mediated protection in NAFLD, this article aims to pave the way for the development of targeted therapies for this prevalent liver disorder.
Collapse
Affiliation(s)
- Zhenwang Nie
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Congshu Xiao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yingzi Wang
- International Medical Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Rongkuan Li
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fangcheng Zhao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
4
|
Tsai LT, Weng TI, Chang TY, Lan KC, Chiang CK, Liu SH. Inhibition of Indoxyl Sulfate-Induced Reactive Oxygen Species-Related Ferroptosis Alleviates Renal Cell Injury In Vitro and Chronic Kidney Disease Progression In Vivo. Antioxidants (Basel) 2023; 12:1931. [PMID: 38001784 PMCID: PMC10669521 DOI: 10.3390/antiox12111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The accumulation of the uremic toxin indoxyl sulfate (IS) is a key pathological feature of chronic kidney disease (CKD). The effect of IS on ferroptosis and the role of IS-related ferroptosis in CKD are not well understood. We used a renal tubular cell model and an adenine-induced CKD mouse model to explore whether IS induces ferroptosis and injury and affects iron metabolism in the renal cells and the kidneys. Our results showed that exposure to IS induced several characteristics for ferroptosis, including iron accumulation, an impaired antioxidant system, elevated reactive oxygen species (ROS) levels, and lipid peroxidation. Exposure to IS triggered intracellular iron accumulation by upregulating transferrin and transferrin receptors, which are involved in cellular iron uptake. We also observed increased levels of the iron storage protein ferritin. The effects of IS-induced ROS generation, lipid peroxidation, ferroptosis, senescence, ER stress, and injury/fibrosis were effectively alleviated by treatments with an iron chelator deferoxamine (DFO) in vitro and the adsorbent charcoal AST-120 (scavenging the IS precursor) in vivo. Our findings suggest that IS triggers intracellular iron accumulation and ROS generation, leading to the induction of ferroptosis, senescence, ER stress, and injury/fibrosis in CKD kidneys. AST-120 administration may serve as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Li-Ting Tsai
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (L.-T.T.); (T.-Y.C.); (C.-K.C.)
| | - Te-I Weng
- Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Ting-Yu Chang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (L.-T.T.); (T.-Y.C.); (C.-K.C.)
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (L.-T.T.); (T.-Y.C.); (C.-K.C.)
- Departments of Integrated Diagnostics & Therapeutics and Internal Medicine, College of Medicine and Hospital, National Taiwan University, Taipei 100, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (L.-T.T.); (T.-Y.C.); (C.-K.C.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 100, Taiwan
| |
Collapse
|
5
|
Martinez-Lopez S, Angel-Gomis E, Sanchez-Ardid E, Pastor-Campos A, Picó J, Gomez-Hurtado I. The 3Rs in Experimental Liver Disease. Animals (Basel) 2023; 13:2357. [PMID: 37508134 PMCID: PMC10376896 DOI: 10.3390/ani13142357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with cirrhosis present multiple physiological and immunological alterations that play a very important role in the development of clinically relevant secondary complications to the disease. Experimentation in animal models is essential to understand the pathogenesis of human diseases and, considering the high prevalence of liver disease worldwide, to understand the pathophysiology of disease progression and the molecular pathways involved, due to the complexity of the liver as an organ and its relationship with the rest of the organism. However, today there is a growing awareness about the sensitivity and suffering of animals, causing opposition to animal research among a minority in society and some scientists, but also about the attention to the welfare of laboratory animals since this has been built into regulations in most nations that conduct animal research. In 1959, Russell and Burch published the book "The Principles of Humane Experimental Technique", proposing that in those experiments where animals were necessary, everything possible should be done to try to replace them with non-sentient alternatives, to reduce to a minimum their number, and to refine experiments that are essential so that they caused the least amount of pain and distress. In this review, a comprehensive summary of the most widely used techniques to replace, reduce, and refine in experimental liver research is offered, to assess the advantages and weaknesses of available experimental liver disease models for researchers who are planning to perform animal studies in the near future.
Collapse
Affiliation(s)
- Sebastian Martinez-Lopez
- Instituto ISABIAL, Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain
- Departamento de Medicina Clínica, Universidad Miguel Hernández, 03550 Sant Joan, Spain
| | - Enrique Angel-Gomis
- Instituto ISABIAL, Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain
- Departamento de Medicina Clínica, Universidad Miguel Hernández, 03550 Sant Joan, Spain
| | - Elisabet Sanchez-Ardid
- CIBERehd, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Servicio de Patología Digestiva, Institut de Recerca IIB-Sant Pau, Hospital de Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Alberto Pastor-Campos
- Oficina de Investigación Responsable, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Joanna Picó
- Instituto ISABIAL, Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain
| | - Isabel Gomez-Hurtado
- Instituto ISABIAL, Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain
- Departamento de Medicina Clínica, Universidad Miguel Hernández, 03550 Sant Joan, Spain
- CIBERehd, Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
6
|
Salete-Granado D, Carbonell C, Puertas-Miranda D, Vega-Rodríguez VJ, García-Macia M, Herrero AB, Marcos M. Autophagy, Oxidative Stress, and Alcoholic Liver Disease: A Systematic Review and Potential Clinical Applications. Antioxidants (Basel) 2023; 12:1425. [PMID: 37507963 PMCID: PMC10376811 DOI: 10.3390/antiox12071425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Ethanol consumption triggers oxidative stress by generating reactive oxygen species (ROS) through its metabolites. This process leads to steatosis and liver inflammation, which are critical for the development of alcoholic liver disease (ALD). Autophagy is a regulated dynamic process that sequesters damaged and excess cytoplasmic organelles for lysosomal degradation and may counteract the harmful effects of ROS-induced oxidative stress. These effects include hepatotoxicity, mitochondrial damage, steatosis, endoplasmic reticulum stress, inflammation, and iron overload. In liver diseases, particularly ALD, macroautophagy has been implicated as a protective mechanism in hepatocytes, although it does not appear to play the same role in stellate cells. Beyond the liver, autophagy may also mitigate the harmful effects of alcohol on other organs, thereby providing an additional layer of protection against ALD. This protective potential is further supported by studies showing that drugs that interact with autophagy, such as rapamycin, can prevent ALD development in animal models. This systematic review presents a comprehensive analysis of the literature, focusing on the role of autophagy in oxidative stress regulation, its involvement in organ-organ crosstalk relevant to ALD, and the potential of autophagy-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
| | - Cristina Carbonell
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Puertas-Miranda
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Víctor-José Vega-Rodríguez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Marina García-Macia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Instituto de Biología Funcional y Genómica (IBFG), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
7
|
Sun Z, Pan X, Tian A, Surakka I, Wang T, Jiao X, He S, Song J, Tian X, Tong D, Wen J, Zhang Y, Liu W, Chen P. Genetic variants in HFE are associated with non-alcoholic fatty liver disease in lean individuals. JHEP Rep 2023; 5:100744. [PMID: 37235137 PMCID: PMC10206181 DOI: 10.1016/j.jhepr.2023.100744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 05/28/2023] Open
Abstract
Background & Aims Around 20% of patients with non-alcoholic fatty liver disease (NAFLD) are lean. Increasing evidence suggests that lean NAFLD is a unique subtype of the disease. We aimed to explore the metabolic profile, genetic basis, causal risk factors, and clinical sequelae underlying lean NAFLD. Methods NAFLD was diagnosed by whole liver proton density fat fraction ≥5%. Whole liver proton density fat fraction and hepatic iron were quantified using magnetic resonance imaging in the UK Biobank. Individuals in this study were stratified according to the World Health Organization criteria of obesity, into lean, overweight, and obese. Mediation analysis, Mendelian randomisation analysis, and Bayesian networks were used to identify a risk factor or a clinical sequela of lean/obese NAFLD. Results Lean NAFLD manifested a distinct metabolic profile, featured by elevated hepatic iron and fasting glucose. Four loci, namely, HFE rs1800562, SLC17A3-SLC17A2-TRIM38 rs9348697, PNPLA3 rs738409, and TM6SF2 rs58542926, were associated with lean NAFLD (p <5 × 10-8). HFE rs1800562 was specifically associated with lean NAFLD and demonstrated a significant mediation effect through elevating hepatic iron. Type 2 diabetes was the most pronounced clinical sequela of lean NAFLD, followed by liver cirrhosis. Conclusions Our study suggested that HFE plays a potential steatogenic role rather than regulating iron homoeostasis in patients with lean NAFLD. The increased liver iron deposition is associated with lean NAFLD, whereas obese NAFLD is not related to hepatic iron. The clinical management of patients with lean NAFLD shall be concerned with the prevention and treatment of type 2 diabetes and liver cirrhosis. Impact and implications Lean NAFLD has a distinct natural history from obese NAFLD. This study underscored liver iron content and the genetic variant of the iron homoeostasis gene HFE as major risks of lean NAFLD, in addition to the unique metabolic profile. The development of type 2 diabetes or liver cirrhosis shall be closely monitored and prevented in patients with lean NAFLD.
Collapse
Affiliation(s)
- Zewen Sun
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xingchen Pan
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Aowen Tian
- Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Ida Surakka
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Tao Wang
- Software College of Jilin University, Changchun, China
| | - Xu Jiao
- Software College of Jilin University, Changchun, China
| | - Shanshan He
- Software College of Jilin University, Changchun, China
| | - Jinfang Song
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Xin Tian
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Dan Tong
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yonggang Zhang
- The Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
- Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
8
|
Sohal A, Chaudhry H, Kowdley KV. Genetic Markers Predisposing to Nonalcoholic Steatohepatitis. Clin Liver Dis 2023; 27:333-352. [PMID: 37024211 DOI: 10.1016/j.cld.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The growing prevalence of nonalcoholic fatty liver disease (NAFLD) has sparked interest in understanding genetics and epigenetics associated with the development and progression of the disease. A better understanding of the genetic factors related to progression will be beneficial in the risk stratification of patients. These genetic markers can also serve as potential therapeutic targets in the future. In this review, we focus on the genetic markers associated with the progression and severity of NAFLD.
Collapse
Affiliation(s)
- Aalam Sohal
- Liver Institute Northwest, 3216 Northeast 45th Place Suite 212, Seattle, WA 98105, USA
| | - Hunza Chaudhry
- Department of Internal Medicine, UCSF Fresno, 155 North Fresno Street, Fresno, CA 93722, USA
| | - Kris V Kowdley
- Liver Institute Northwest, 3216 Northeast 45th Place Suite 212, Seattle, WA 98105, USA; Elson S. Floyd College of Medicine, Washington State University, WA, USA.
| |
Collapse
|
9
|
Chen X, Xue W, Zhang J, Peng J, Huang W. Ginsenoside Rg1 attenuates the NASH phenotype by regulating the miR-375-3p/ATG2B/PTEN-AKT axis to mediate autophagy and pyroptosis. Lipids Health Dis 2023; 22:22. [PMID: 36759837 PMCID: PMC9912620 DOI: 10.1186/s12944-023-01787-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is one of the most frequent liver diseases at present, and there is no radical treatment. The consequences of a variety of ginsenoside compounds on this situation have before been reported, however, the specific effect on the monomeric ginsenoside Rg1 (Rg1) and its associated underlying molecular mechanism stay unknown. MATERIAL AND METHODS In vitro, the cell models were constructed by exposing free fatty acids (FFAs) to HepG2 cells. A methionine and choline deficiency (MCD)-induced NASH mouse model was also established over 5-6 weeks of treatment. Rg1 is a traditional Chinese medicine monomer. These NASH models were treated with Rg1 and analyzed by qRT-PCR, Western Blot, sequencing, Oil red O staining, immunofluorescence, enzyme activity, HE staining, ELISA, double luciferase reporter assay, and immunohistochemistry. RESULTS Overexpression of ATG2B, an autophagy-related protein, attenuated lipid droplet accumulation and reduces ALT, AST, inflammatory cytokines, hydrogen peroxide, and pyroptosis in established mouse and cellular models of NASH and increased levels of ATP and autophagy. The binding sites of miR-375-3p and ATG2B were verified by bioinformatic prediction and a dual-luciferase reporter gene. Knockdown of miR-375-3p promoted autophagy and inhibited pyroptosis. ATG2B knockdown substantially attenuated the impact of miR-375-3p on NASH. Rg1 appears to regulate the occurrence and development of NASH inflammation through miR-375-3p and ATG2B in vitro and in vivo, and is regulated by PTEN-AKT pathway. CONCLUSIONS This study showed that Rg1 participates in autophagy and pyroptosis through the miR-375-3p/ATG2B/PTEN-AKT pathway, thereby alleviating the occurrence and development of NASH, for that reason revealing Rg1 as a candidate drug for NASH.
Collapse
Affiliation(s)
- Xuanxin Chen
- grid.452206.70000 0004 1758 417XDepartment of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Wei Xue
- grid.452206.70000 0004 1758 417XDepartment of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jia Zhang
- grid.452206.70000 0004 1758 417XDepartment of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jiayi Peng
- grid.452206.70000 0004 1758 417XDepartment of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Wenxiang Huang
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
11
|
Repression of the iron exporter ferroportin may contribute to hepatocyte iron overload in individuals with type 2 diabetes. Mol Metab 2022; 66:101644. [PMID: 36436807 PMCID: PMC9719871 DOI: 10.1016/j.molmet.2022.101644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Hyperferremia and hyperferritinemia are observed in patients and disease models of type 2 diabetes mellitus (T2DM). Likewise, patients with genetic iron overload diseases develop diabetes, suggesting a tight link between iron metabolism and diabetes. The liver controls systemic iron homeostasis and is a central organ for T2DM. Here, we investigate how the control of iron metabolism in hepatocytes is affected by T2DM. METHODS Perls Prussian blue staining was applied to analyze iron distribution in liver biopsies of T2DM patients. To identify molecular mechanisms underlying hepatocyte iron accumulation we established cellular models of insulin resistance by treatment with palmitate and insulin. RESULTS We show that a subset of T2DM patients accumulates iron in hepatocytes, a finding mirrored in a hepatocyte model of insulin resistance. Iron accumulation can be explained by the repression of the iron exporter ferroportin upon palmitate and/or insulin treatment. While during palmitate treatment the activation of the iron regulatory hormone hepcidin may contribute to reducing ferroportin protein levels in a cell-autonomous manner, insulin treatment decreases ferroportin transcription via the PI3K/AKT and Ras/Raf/MEK/ERK signaling pathways. CONCLUSION Repression of ferroportin at the transcriptional and post-transcriptional level may contribute to iron accumulation in hepatocytes observed in a subset of patients with T2DM.
Collapse
|
12
|
Wang P, Cui Y, Liu Y, Li Z, Bai H, Zhao Y, Chang YZ. Mitochondrial ferritin alleviates apoptosis by enhancing mitochondrial bioenergetics and stimulating glucose metabolism in cerebral ischemia reperfusion. Redox Biol 2022; 57:102475. [PMID: 36179435 PMCID: PMC9526171 DOI: 10.1016/j.redox.2022.102475] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022] Open
Abstract
Oxidative stress and deficient bioenergetics are key players in the pathological process of cerebral ischemia reperfusion injury (I/R). As a mitochondrial iron storage protein, mitochondrial ferritin (FtMt) plays a pivotal role in protecting neuronal cells from oxidative damage under stress conditions. However, the effects of FtMt in mitochondrial function and activation of apoptosis under cerebral I/R are barely understood. In the present study, we found that FtMt deficiency exacerbates neuronal apoptosis via classical mitochondria-depedent pathway and the endoplasmic reticulum (ER) stress pathway in brains exposed to I/R. Conversely, FtMt overexpression significantly inhibited oxygen and glucose deprivation and reperfusion (OGD/R)-induced apoptosis and the activation of ER stress response. Meanwhile, FtMt overexpression rescued OGD/R-induced mitochondrial iron overload, mitochondrial dysfunction, the generation of reactive oxygen species (ROS) and increased neuronal GSH content. Using the Seahorse and O2K cellular respiration analyser, we demonstrated that FtMt remarkably improved the ATP content and the spare respiratory capacity under I/R conditions. Importantly, we found that glucose consumption was augmented in FtMt overexpressing cells after OGD/R insult; overexpression of FtMt facilitated the activation of glucose 6-phosphate dehydrogenase and the production of NADPH in cells after OGD/R, indicating that the pentose-phosphate pathway is enhanced in FtMt overexpressing cells, thus strengthening the antioxidant capacity of neuronal cells. In summary, our results reveal that FtMt protects against I/R-induced apoptosis through enhancing mitochondrial bioenergetics and regulating glucose metabolism via the pentose-phosphate pathway, thus preventing ROS overproduction, and preserving energy metabolism.
Collapse
Affiliation(s)
- Peina Wang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China; College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Yanmei Cui
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Yuanyuan Liu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Zhongda Li
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Huiyuan Bai
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Yashuo Zhao
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China; Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei Province, China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China.
| |
Collapse
|
13
|
Li N, Liao Y, Huang H, Fu S. Co-regulation of hepatic steatosis by ferritinophagy and unsaturated fatty acid supply. Hepatol Commun 2022; 6:2640-2653. [PMID: 35861547 PMCID: PMC9512465 DOI: 10.1002/hep4.2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/06/2022] Open
Abstract
Both iron overload and iron deficiency have been reported in obesity and metabolic syndromes. Due to the presence of multiple intracellular iron pools and the dynamic nature of iron mobilization and use, the actual status and contribution of free and metabolically active iron toward metabolic syndrome remain to be established. The discovery of nuclear receptor coactivator 4 (NCOA4) as a ferritinophagy receptor provides an opening to address the connection between iron and metabolic diseases. This study aims to specifically dissect the role of hepatic ferritinophagy in lipid metabolism and hepatic steatosis. We conducted a series of Ncoa4 gain- and loss-of-function experiments to examine how ferritinophagy affects lipid metabolism through phenotypic and lipidomic analyses both in vitro and in vivo. We show that ferritinophagy is required to release iron from ferritin cages for biological use, and is induced by lipid loading in vitro and during the development of obesity in vivo. Ncoa4 knockdown impairs mitochondrial morphology and reduces palmitate-induced lipid droplet formation in cultured cells and the development of hepatic steatosis in obese mice models. Importantly, the effect of Ncoa4 deficiency on mitochondrial morphology and lipid accumulation is specifically linked to lipidomic reductions in unsaturated fatty acid content in triglycerides and cardiolipins, and an external supply of unsaturated fatty acids reverses these phenotypes. Conclusion: This study shows that ferritinophagy-derived iron supports fatty acid desaturation and the synthesis of unsaturated fatty acid-rich lipids to reduce lipotoxicity. However, the continuous activation of ferritinophagy contributes to the development of hepatic steatosis and liver damage in obesity.
Collapse
Affiliation(s)
- Ning Li
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Yilie Liao
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Haipeng Huang
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Suneng Fu
- Department of Basic ResearchGuangzhou LaboratoryGuangdongChina
| |
Collapse
|
14
|
Kocot AM, Wróblewska B. Nutritional strategies for autophagy activation and health consequences of autophagy impairment. Nutrition 2022; 103-104:111686. [PMID: 35843038 DOI: 10.1016/j.nut.2022.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
|
15
|
Li LX, Guo FF, Liu H, Zeng T. Iron overload in alcoholic liver disease: underlying mechanisms, detrimental effects, and potential therapeutic targets. Cell Mol Life Sci 2022; 79:201. [PMID: 35325321 PMCID: PMC11071846 DOI: 10.1007/s00018-022-04239-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is a global public health challenge due to the high incidence and lack of effective therapeutics. Evidence from animal studies and ALD patients has demonstrated that iron overload is a hallmark of ALD. Ethanol exposure can promote iron absorption by downregulating the hepcidin expression, which is probably mediated by inducing oxidative stress and promoting erythropoietin (EPO) production. In addition, ethanol may enhance iron uptake in hepatocytes by upregulating the expression of transferrin receptor (TfR). Iron overload in the liver can aggravate ethanol-elicited liver damage by potentiating oxidative stress via Fenton reaction, promoting activation of Kupffer cells (KCs) and hepatic stellate cells (HSCs), and inducing a recently discovered programmed iron-dependent cell death, ferroptosis. This article reviews the current knowledge of iron metabolism, regulators of iron homeostasis, the mechanism of ethanol-induced iron overload, detrimental effects of iron overload in the liver, and potential therapeutic targets.
Collapse
Affiliation(s)
- Long-Xia Li
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hong Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
16
|
Li H, Hu L, Wang L, Wang Y, Shao M, Chen Y, Wu W, Wang L. Iron Activates cGAS-STING Signaling and Promotes Hepatic Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2211-2220. [PMID: 35133148 DOI: 10.1021/acs.jafc.1c06681] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Iron deposition and chronic inflammation are associated with chronic liver diseases, such as alcoholic liver disease, nonalcoholic fatty liver disease, and chronic hepatitis B and C. However, the relationship between iron deposition and chronic inflammation in these diseases is still unclear. In the current study, we aimed to investigate the effect of iron on chronic inflammation in HepG2 cells and mice liver. We demonstrated that iron treatment enhanced the expression of cGAS, STING, and their downstream targets, including TBK1, IRF-3, and NF-κB in HepG2 cells and mice liver. We also found that treatment of HepG2 cells and mice with ferric ammonium citrate increased the expression of inflammatory cytokines, such as IFN-β. Finally, we found that genes involved in iron metabolism and the STING signaling pathway were up-regulated in liver cancer tissues, and the survival time of patients with high expression of these genes in tumor tissues was significantly shortened. These results suggest that iron overload may promote the progress of the chronic liver disease by activating cGAS-STING-mediated chronic inflammation, which provides a new idea for the development of drugs for the treatment of the chronic liver disease.
Collapse
Affiliation(s)
- Hailang Li
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China
| | - Ling Hu
- Department of Biotechnology, Quanzhou Normal University, Quanzhou 362000, China
| | - Liwen Wang
- Department of Biotechnology, Quanzhou Normal University, Quanzhou 362000, China
| | - Yixuan Wang
- Department of Biotechnology, Quanzhou Normal University, Quanzhou 362000, China
| | - Meiqi Shao
- Department of Biotechnology, Quanzhou Normal University, Quanzhou 362000, China
| | - Yupei Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China
| | - Wenlin Wu
- Department of Biotechnology, Quanzhou Normal University, Quanzhou 362000, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, China
| | - Lei Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
17
|
Wang X, Hu R, Wang C, Wei Z, Pi S, Li Y, Li G, Yang F, Zhang C. Nrf2 axis and endoplasmic reticulum stress mediated autophagy activation is involved in molybdenum and cadmium co-induced hepatotoxicity in ducks. J Inorg Biochem 2022; 229:111730. [DOI: 10.1016/j.jinorgbio.2022.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
|
18
|
Chen Y, Hu M, Deng F, Wang P, Lin J, Zheng Z, Liu Y, Dong L, Lu X, Chen Z, Zhou J, Zuo D. Mannan-binding lectin deficiency augments hepatic endoplasmic reticulum stress through IP3R-controlled calcium release. Cell Calcium 2021; 100:102477. [PMID: 34592660 DOI: 10.1016/j.ceca.2021.102477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
The aberrant release of endoplasmic reticulum (ER) calcium leads to the disruption of intracellular calcium homeostasis, which is associated with the occurrence of ER stress and closely related to the pathogenesis of liver damage. Mannan-binding lectin (MBL) is a soluble calcium-dependent protein synthesized primarily in hepatocytes and is a pattern recognition molecule in the innate immune system. MBL deficiency is highly prevalent in the population and has been reported to be associated with susceptibility to several liver diseases. We here showed that genetic MBL ablation strongly sensitized mice to ER stress-induced liver injury. Mechanistic studies established that MBL directly interacted with ER-resident chaperone immunoglobulin heavy chain binding protein (BiP), and MBL deficiency accelerated the separation of PKR-like ER kinase (PERK) from BiP during hepatic ER stress. Moreover, MBL deficiency led to enhanced activation of the PERK-C/EBP-homologous protein (CHOP) pathway and initiates an inositol 1,4,5-trisphosphate receptor (IP3R)-mediated calcium release from the ER, thereby aggravating the hepatic ER stress response. Our results demonstrate an unexpected function of MBL in ER calcium homeostasis and ER stress response, thus providing new insight into the liver injury related to ER stress in patients with MBL deficiency.
Collapse
Affiliation(s)
- Yu Chen
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mengyao Hu
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Fan Deng
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ping Wang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jingmin Lin
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhuojun Zheng
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunzhi Liu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijun Dong
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao Lu
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhengliang Chen
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia Zhou
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China..
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| |
Collapse
|
19
|
Ma P, Wang Z, Wang Y, Hou B, Sun J, Tian H, Li B, Shui G, Yang X, Yang X, Qiang G, Liew CW, Du G. Integration of Metabolomics and Transcriptomics Reveals Ketone Body and Lipid Metabolism Disturbance Related to ER Stress in the Liver. J Proteome Res 2021; 20:3875-3888. [PMID: 34270263 DOI: 10.1021/acs.jproteome.1c00167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Once protein synthesis is excessive or misfolded protein becomes aggregated, which eventually overwhelms the capacity of the endoplasmic reticulum (ER), a state named ER stress would be reached. ER stress could affect many tissues, especially the liver, in which nonalcoholic fatty liver disease, liver steatosis, etc. have been reported relative. However, there is still a lack of systematic insight into ER stress in the liver, which can be obtained by integrating metabolomics and transcriptomics of the tissue. Here, tunicamycin was utilized to induce ER stress in C57BL/6N mice. Microarray and untargeted metabolomics were performed to identify the genes and metabolites significantly altered in liver tissues. Surprisingly, apart from the predictable unfolded protein response, liver lipid, arginine, and proline metabolisms were affirmed to be related to ER stress. Also, the ketone body metabolism changed most prominently in response to ER stress, with few studies backing. What is more, succinate receptor 1 (Sucnr1) may be a novel marker and therapeutical target of liver ER stress. In this study, the combination of the metabolome and transcriptome provided reliable information about liver pathological processes, including key relative pathways, potential markers, and targets involved in ER stress of the liver.
Collapse
Affiliation(s)
- Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Zijing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Yisa Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.,College of Pharmacy, Harbin University of Commerce, Harbin 510006, China
| | - Biyu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Jialin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qindao 266000, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bowen Li
- LipidALL Technologies Ltd., Changzhou 213125, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Xinyu Yang
- Department of Pharmaceutical Analysis, College of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, U.K
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Chong Wee Liew
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, 60612 Illinois, United States
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| |
Collapse
|
20
|
Skinner RC, Hagaman JA. The interplay of Western diet and binge drinking on the onset, progression, and outlook of liver disease. Nutr Rev 2021; 80:503-512. [PMID: 33969426 DOI: 10.1093/nutrit/nuab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease and alcoholic liver disease, the two most prevalent liver diseases worldwide, share a common pathology but have largely been considered disparate diseases. Liver diseases are widely underestimated, but their prevalence is increasing worldwide. The Western diet (high-fat, high-sugar) and binge drinking (rapid consumption of alcohol in a short period of time) are two highly prevalent features of standard life in the United States, and both are linked to the development and progression of liver disease. Yet, few studies have been conducted to elucidate their potential interactions. Data shows binge drinking is on the rise in several age groups, and poor dietary trends continue to be prevalent. This review serves to summarize the sparse findings on the hepatic consequences of the combination of binge drinking and consuming a Western diet, while also drawing conclusions on potential future impacts. The data suggest the potential for a looming liver disease epidemic, indicating that more research on its progression as well as its prevention is needed on this critical topic.
Collapse
Affiliation(s)
- R Chris Skinner
- R. C. Skinner and J. A. Hagaman are with the Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, Arkansas, USA
| | - Joel A Hagaman
- R. C. Skinner and J. A. Hagaman are with the Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, Arkansas, USA
| |
Collapse
|
21
|
Iron at the Interface of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22084097. [PMID: 33921027 PMCID: PMC8071427 DOI: 10.3390/ijms22084097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer incidence and mortality are rapidly growing, with liver cancer being the sixth most diagnosed cancer worldwide and the third leading cause of cancer death in 2020. A number of risk factors have been identified that trigger the progression to hepatocellular carcinoma. In this review, we focus on iron as a potential risk factor for liver carcinogenesis. Molecules involved in the regulation of iron metabolism are often upregulated in cancer cells, in order to provide a supply of this essential trace element for all stages of tumor development, survival, proliferation, and metastasis. Thus, cellular and systemic iron levels must be tightly regulated to prevent or delay liver cancer progression. Disorders associated with dysregulated iron metabolism are characterized with increased susceptibility to hepatocellular carcinoma. This review discusses the association of iron with metabolic disorders such as hereditary hemochromatosis, non-alcoholic fatty liver disease, obesity, and type 2 diabetes, in the background of hepatocellular carcinoma.
Collapse
|
22
|
Anderson GJ, Bardou-Jacquet E. Revisiting hemochromatosis: genetic vs. phenotypic manifestations. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:731. [PMID: 33987429 PMCID: PMC8106074 DOI: 10.21037/atm-20-5512] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron overload disorders represent an important class of human diseases. Of the primary iron overload conditions, by far the most common and best studied is HFE-related hemochromatosis, which results from homozygosity for a mutation leading to the C282Y substitution in the HFE protein. This disease is characterized by reduced expression of the iron-regulatory hormone hepcidin, leading to increased dietary iron absorption and iron deposition in multiple tissues including the liver, pancreas, joints, heart and pituitary. The phenotype of HFE-related hemochromatosis is quite variable, with some individuals showing little or no evidence of increased body iron, yet others showing severe iron loading, tissue damage and clinical sequelae. The majority of genetically predisposed individuals show at least some evidence of iron loading (increased transferrin saturation and serum ferritin), but a minority show clinical symptoms and severe consequences are rare. Thus, the disorder has a high biochemical penetrance, but a low clinical prevalence. Nevertheless, it is such a common condition in Caucasian populations (1:100–200) that it remains an important clinical entity. The phenotypic variability can largely be explained by a range of environmental, genetic and physiological factors. Men are far more likely to manifest significant disease than women, with the latter losing iron through menstrual blood loss and childbirth. Other forms of blood loss, immune system influences, the amount of bioavailable iron in the diet and lifestyle factors such as high alcohol intake can also contribute to iron loading and disease expression. Polymorphisms in a range of genes have been linked to variations in body iron levels, both in the general population and in hemochromatosis. Some of the genes identified play well known roles in iron homeostasis, yet others are novel. Other factors, including both co-morbidities and genetic polymorphisms, do not affect iron levels per se, but determine the propensity for tissue pathology.
Collapse
Affiliation(s)
- Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute and School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Edouard Bardou-Jacquet
- Liver Disease Department, University of Rennes and French Reference Center for Hemochromatosis and Iron Metabolism Disease, Rennes, France
| |
Collapse
|
23
|
Li S, Jin S, Chen W, Yu J, Fang P, Zhou G, Li J, Jin L, Chen Y, Chen P, Pan C. Mangiferin alleviates endoplasmic reticulum stress in acute liver injury by regulating the miR-20a/miR-101a-Nrf2 axis. J Biochem 2021; 168:365-374. [PMID: 32413114 DOI: 10.1093/jb/mvaa056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 04/20/2020] [Indexed: 01/19/2023] Open
Abstract
This study aimed to investigate the mechanism of mangiferin on regulating endoplasmic reticulum (ER) stress in acute liver injury. The mouse model of acute liver injury was established by injection of LPS/D-GalN. The primary mouse hepatocytes were stimulated with LPS to induce the in vitro model. The effect of miR-20a/101a on the luciferase activity of Nrf2 3'-UTR was assessed by luciferase reporter assay. Mangiferin improved the liver function, inhibited the oxidative stress and ER stress and down-regulated the expressions of miR-20a and miR-101a in LPS/D-GalN-induced mice and LPS-induced hepatocytes. The knockdown of miR-20a and miR-101a co-operatively alleviated ER stress of LPS-induced hepatocytes. miR-20a and miR-101a both targeted Nrf2 and the over-expression of miR-20a or miR-101a decreased Nrf2 protein level, while their silences increased Nrf2 protein level. The silence of miR-20a and miR-101a promoted Nrf2 expression and inhibited the ER stress in LPS-induced hepatocytes, while the knockdown of Nrf2 reversed these effects. The over-expression of miR-20a and miR-101a eliminated the effects of mangiferin on Nrf2 protein level and ER stress in LPS-induced hepatocytes and Nrf2 over-expression altered these trends. Our findings suggest that mangiferin alleviates ER stress in acute liver injury by regulating the miR-20a/miR-101a-Nrf2 axis.
Collapse
Affiliation(s)
- Shaoxun Li
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China.,Department of Infectious Disease, The Second School of Medicine, Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang China
| | - Shuanghong Jin
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China.,Department of Infectious Disease, The Second School of Medicine, Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang China
| | - Weilai Chen
- Department of Neurology, Wenzhou People's Hospital, No. 57 Canghou Road, Wenzhou 325000, Zhejiang, China
| | - Jiake Yu
- Department of Infectious Disease, The Second School of Medicine, Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang China.,Department of Pediatric Hepatitis and Liver Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| | - Peipei Fang
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China.,Department of Pediatric Hepatitis and Liver Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| | - Guangyao Zhou
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| | - Jie Li
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| | - Lingxiang Jin
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| | - Yiping Chen
- Department of Pediatric Hepatitis and Liver Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| | - Ping Chen
- Department of Infectious Disease, Shulan Hospital, No.848 Dongxin Road, Hangzhou 310006, Zhejiang, China.,Department of Infectious Disease, The Third People's Hospital of Zhengzhou, No.136 Nanshuncheng Road, Zhengzhou 450000, Henan, China
| | - Chenwei Pan
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China.,Department of Pediatric Hepatitis and Liver Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West College Road, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
24
|
Delli Bovi AP, Marciano F, Mandato C, Siano MA, Savoia M, Vajro P. Oxidative Stress in Non-alcoholic Fatty Liver Disease. An Updated Mini Review. Front Med (Lausanne) 2021; 8:595371. [PMID: 33718398 PMCID: PMC7952971 DOI: 10.3389/fmed.2021.595371] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it remains still orphan of an adequate therapeutic strategy. Herein we focus on the interplay between oxidative stress (OS) and the other causal pathogenetic factors. Different reactive oxygen species (ROS) generators contribute to NAFLD inflammatory and fibrotic progression, which is quite strictly linked to the lipotoxic liver injury from fatty acids and/or a wide variety of their biologically active metabolites in the context of either a two-hit or a (more recent) multiple parallel hits theory. An antioxidant defense system is usually able to protect hepatic cells from damaging effects caused by ROS, including those produced into the gastrointestinal tract, i.e., by-products generated by usual cellular metabolic processes, normal or dysbiotic microbiota, and/or diet through an enhanced gut–liver axis. Oxidative stress originating from the imbalance between ROS generation and antioxidant defenses is under the influence of individual genetic and epigenetic factors as well. Healthy diet and physical activity have been shown to be effective on NAFLD also with antioxidant mechanisms, but compliance to these lifestyles is very low. Among several considered antioxidants, vitamin E has been particularly studied; however, data are still contradictory. Some studies with natural polyphenols proposed for NAFLD prevention and treatment are encouraging. Probiotics, prebiotics, diet, or fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors will likely assist in further selecting the treatment that could work best for a specific patient.
Collapse
Affiliation(s)
- Anna Pia Delli Bovi
- Pediatrics Section, Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Francesca Marciano
- Pediatrics Section, Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Claudia Mandato
- Department of Pediatrics, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Maria Anna Siano
- Pediatrics Section, Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Marcella Savoia
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Pietro Vajro
- Pediatrics Section, Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| |
Collapse
|
25
|
Deng Q, Wang Y, Wang X, Wang Q, Yi Z, Xia J, Hu Y, Zhang Y, Wang J, Wang L, Jiang S, Li R, Wan D, Yang H, Yin Y. Effects of dietary iron level on growth performance, hematological status, and intestinal function in growing-finishing pigs. J Anim Sci 2021; 99:skab002. [PMID: 33515478 PMCID: PMC7846194 DOI: 10.1093/jas/skab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
This study investigated the different addition levels of iron (Fe) in growing-finishing pigs and the effect of different Fe levels on growth performance, hematological status, intestinal barrier function, and intestinal digestion. A total of 1,200 barrows and gilts ([Large White × Landrace] × Duroc) with average initial body weight (BW; 27.74 ± 0.28 kg) were housed in 40 pens of 30 pigs per pen (gilts and barrows in half), blocked by BW and gender, and fed five experimental diets (eight replicate pens per diet). The five experimental diets were control diet (basal diet with no FeSO4 supplementation), and the basal diet being supplemented with 150, 300, 450, or 600 mg/kg Fe as FeSO4 diets. The trial lasted for 100 d and was divided into the growing phase (27 to 60 kg of BW) for the first 50 d and the finishing phase (61 to 100 kg of BW) for the last 50 d. The basal diet was formulated with an Fe-free trace mineral premix and contained 203.36 mg/kg total dietary Fe in the growing phase and 216.71 mg/kg in the finishing phase based on ingredient contributions. And at the end of the experiment, eight pigs (four barrows and four gilts) were randomly selected from each treatment (selected one pig per pen) for digesta, blood, and intestinal samples collection. The results showed that the average daily feed intake (P = 0.025), average daily gain (P = 0.020), and BW (P = 0.019) increased linearly in the finishing phase of pigs fed with the diets containing Fe. On the other hand, supplementation with different Fe levels in the diet significantly increased serum iron and transferrin saturation concentrations (P < 0.05), goblet cell numbers of duodenal villous (P < 0.001), and MUC4 mRNA expression (P < 0.05). The apparent ileal digestibility (AID) of amino acids (AA) for pigs in the 450 and 600 mg/kg Fe groups was greater (P < 0.05) than for pigs in the control group. In conclusion, dietary supplementation with 450 to 600 mg/kg Fe improved the growth performance of pigs by changing hematological status and by enhancing intestinal goblet cell differentiation and AID of AA.
Collapse
Affiliation(s)
- Qingqing Deng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yancan Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhenfeng Yi
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jun Xia
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yuyao Hu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yiming Zhang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jingjing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Lei Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shuzhong Jiang
- Hunan Jiuding Technology (Group) Co., Ltd. Yueyang, Hunan, China
| | - Rong Li
- Hunan Longhua Agriculture and Animal Husbandry Development Co., Ltd., TRS Group, Zhuzhou, Hunan, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
26
|
Significance of Simple Steatosis: An Update on the Clinical and Molecular Evidence. Cells 2020; 9:cells9112458. [PMID: 33187255 PMCID: PMC7698018 DOI: 10.3390/cells9112458] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is defined clinicopathologically by the accumulation of lipids in >5% of hepatocytes and the exclusion of secondary causes of fat accumulation. NAFLD encompasses a wide spectrum of liver damage, extending from simple steatosis or non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH)—the latter is characterized by inflammation and hepatocyte ballooning degeneration, in addition to the steatosis, with or without fibrosis. NAFLD is now the most common cause of chronic liver disease in Western countries and affects around one quarter of the general population. It is a multisystem disorder, which is associated with an increased risk of type 2 diabetes mellitus as well as liver- and cardiovascular-related mortality. Although earlier studies had suggested that NAFL is benign (i.e., non-progressive), cumulative evidence challenges this dogma, and recent data suggest that nearly 25% of those with NAFL may develop fibrosis. Importantly, NAFLD patients are more susceptible to the toxic effects of alcohol, drugs, and other insults to the liver. This is likely due to the functional impairment of steatotic hepatocytes, which is virtually undetectable by current clinical tests. This review provides an overview of the current evidence on the clinical significance of NAFL and discusses the molecular basis for NAFL development and progression.
Collapse
|
27
|
Shao M, Ye Z, Qin Y, Wu T. Abnormal metabolic processes involved in the pathogenesis of non-alcoholic fatty liver disease (Review). Exp Ther Med 2020; 20:26. [PMID: 32934691 PMCID: PMC7471863 DOI: 10.3892/etm.2020.9154] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and can lead to liver cirrhosis or liver cancer in severe cases. In recent years, the incidence of NAFLD has increased substantially. The trend has continued to increase and has become a key point of concern for health systems. NAFLD is often associated with metabolic abnormalities caused by increased visceral obesity, including insulin resistance, diabetes mellitus, hypertension, dyslipidemia, atherosclerosis and systemic microinflammation. Therefore, the pathophysiological mechanisms of NAFLD must be clarified to develop new drug treatment strategies. Recently, researchers have conducted numerous studies on the pathogenesis of NAFLD and have identified various important regulatory factors and potential molecular mechanisms, providing new targets and a theoretical basis for the treatment of NAFLD. However, the pathogenesis of NAFLD is extremely complex and involves the interrelationship and influence of multiple organs and systems. Therefore, the condition must be explored further. In the present review, the abnormal metabolic process, including glucose, lipid, amino acid, bile acid and iron metabolism are reviewed. It was concluded that NAFLD is associated with an imbalanced metabolic network that involves glucose, lipids, amino acids, bile acids and iron, and lipid metabolism is the core metabolic process. The current study aimed to provide evidence and hypotheses for research and clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zixiang Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yanhong Qin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
28
|
Yanatori I, Richardson DR, Toyokuni S, Kishi F. The new role of poly (rC)-binding proteins as iron transport chaperones: Proteins that could couple with inter-organelle interactions to safely traffic iron. Biochim Biophys Acta Gen Subj 2020; 1864:129685. [PMID: 32679248 DOI: 10.1016/j.bbagen.2020.129685] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intracellular iron transport is mediated by iron chaperone proteins known as the poly(rC)-binding proteins (PCBPs), which were originally identified as RNA/DNA-binding molecules. SCOPE OF REVIEW PCBPs assume a role as not only as cytosolic iron carriers, but also as regulators of iron transport and recycling. PCBP1 is involved in the iron storage pathway that involves ferritin, while PCBP2 is involved in processes that include: iron transfer from the iron importer, divalent metal ion transporter 1; iron export mediated by ferroportin-1; and heme degradation via heme oxygenase 1. MAJOR CONCLUSIONS Both PCBP1 and PCBP2 possess iron-binding activity and form hetero/homo dimer complexes. These iron chaperones have a subset of non-redundant functions and regulate iron metabolism independently. GENERAL SIGNIFICANCE This intracellular iron chaperone system mediated by PCBPs provide a transport "gateway" of ferrous iron that may potentially link with dynamic, inter-organelle interactions to safely traffic intracellular iron.
Collapse
Affiliation(s)
- Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Des R Richardson
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Centre for Cancer Cell Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Queensland, Australia
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | |
Collapse
|
29
|
Li Y, Liu R, Wu J, Li X. Self-eating: friend or foe? The emerging role of autophagy in fibrotic diseases. Am J Cancer Res 2020; 10:7993-8017. [PMID: 32724454 PMCID: PMC7381749 DOI: 10.7150/thno.47826] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
Fibrosis occurs in most human organs including the liver, lung, heart and kidney, and is crucial for the progression of most chronic diseases. As an indispensable catabolic process for intracellular quality control and homeostasis, autophagy occurs in most mammalian cells and is implicated in many biological processes including fibrogenesis. Although advances have been made in understanding autophagy process, the potential role of autophagy in fibrotic diseases remains controversial and has recently attracted a great deal of attention. In the current review, we summarize the commonalities of autophagy affecting different types of fibrosis in different organs, including the liver, lung, heart, and kidney as well as in cystic fibrosis, systematically outline the contradictory results and highlight the distinct role of autophagy during the various stages of fibrosis. In summary, the exact role autophagy plays in fibrogenesis depends on specific cell types and different stimuli, and identifying and evaluating the pathogenic contribution of autophagy in fibrogenesis will promote the discovery of novel therapeutic strategies for the clinical management of these fibrotic diseases.
Collapse
|
30
|
Li Z, Jiang L, Toyokuni S. Role of carbonic anhydrases in ferroptosis-resistance. Arch Biochem Biophys 2020; 689:108440. [PMID: 32485154 DOI: 10.1016/j.abb.2020.108440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Iron is essential for all the lives on earth but may trigger a switch toward ferroptosis, a novel form of regulated necrosis. Carbonic anhydrases (CAs) are ubiquitous enzymes from microbes to humans. The primary function of CAs is to regulate cellular pH by hydrating carbon dioxide (CO2) to protons (H+) and bicarbonate ions (HCO3-). Furthermore, CAs play roles in biosynthetic reactions, such as gluconeogenesis, lipogenesis, ureagenesis and are also associated with tumor metabolism, suggesting that CAs may be a potential target for the treatment of cancers. We have recently revealed a novel function of CA IX in ferroptosis-resistance by using human malignant mesothelioma cells. Herein, we aim to review the potential molecular association between ferroptosis and CAs, from the viewpoint of iron-metabolism, lipogenesis and signaling pathways both under physiological and pathological contexts.
Collapse
Affiliation(s)
- Zan Li
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan; Sydney Medical School, The University of Sydney, NSW, Australia.
| |
Collapse
|
31
|
Li H, Li Z, Pi Y, Chen Y, Mei L, Luo Y, Xie J, Mao X. MicroRNA-375 exacerbates knee osteoarthritis through repressing chondrocyte autophagy by targeting ATG2B. Aging (Albany NY) 2020; 12:7248-7261. [PMID: 32335541 PMCID: PMC7202526 DOI: 10.18632/aging.103073] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Objective: This study aimed to explore the underlying mechanism of miR-375 in exacerbating osteoarthritis (OA). Results: MiR-375 expression were upregulated in OA cartilage tissues, whereas ATG2B expression was decreased. MiR-375 targeted ATG2B 3’ UTR and inhibited its expression in the chondrocytes, and then suppressed autophagy and promoted endoplasmic reticulum stress (ERs). The apoptosis rate of chondrocytes was increased after being transfected with miR-375 mimics. In vivo results further verified that inhibition of miR-375 could relieve OA-related symptoms. Conclusion: miR-375 can inhibit the expression of ATG2B in chondrocytes, suppress autophagy and promote the ERs. It suggests that miR-375 could be considered to be a key therapy target for OA. Methods: Differential expression analyses for mRNA and miRNA microarray datasets from ArrayExpress were performed. MiR-375 and ATG2B expressions in cartilage tissues were detected by qRT-PCR. Dual luciferase assay was applied to verify the targeting relationship between ATG2B and miR-375. In vitro, the role of miR-375 on chondrocyte autophagy and ERs was investigated by western blot and immunofluorescence. The apoptotic rate was quantified by flow cytometry. In vivo, OA mice model was established, HE and Safranin O and Fast Green staining, as well as the OARSI and modified Mankin scores, were applied to measure the OA cartilage damage severity.
Collapse
Affiliation(s)
- Hongxing Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiling Li
- Center of Health Management, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan, China
| | - Yigang Pi
- Department of Orthopedics, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan, China
| | - Yang Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Lin Mei
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yong Luo
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingping Xie
- Department of Orthopedics, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan, China
| | - Xinzhan Mao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
32
|
Peroxiredoxin 5 deficiency exacerbates iron overload-induced neuronal death via ER-mediated mitochondrial fission in mouse hippocampus. Cell Death Dis 2020; 11:204. [PMID: 32205843 PMCID: PMC7090063 DOI: 10.1038/s41419-020-2402-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/01/2023]
Abstract
Iron is an essential element for cellular functions, including those of neuronal cells. However, an imbalance of iron homeostasis, such as iron overload, has been observed in several neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Iron overload causes neuronal toxicity through mitochondrial fission, dysregulation of Ca2+, ER-stress, and ROS production. Nevertheless, the precise mechanisms between iron-induced oxidative stress and iron toxicity related to mitochondria and endoplasmic reticulum (ER) in vivo are not fully understood. Here, we demonstrate the role of peroxiredoxin 5 (Prx5) in iron overload-induced neurotoxicity using Prx5-deficient mice. Iron concentrations and ROS levels in mice fed a high iron diet were significantly higher in Prx5−/− mice than wildtype (WT) mice. Prx5 deficiency also exacerbated ER-stress and ER-mediated mitochondrial fission via Ca2+/calcineurin-mediated dephosphorylation of Drp1 at Serine 637. Moreover, immunoreactive levels of cleaved caspase3 in the CA3 region of the hippocampus were higher in iron-loaded Prx5−/− mice than WT mice. Furthermore, treatment with N-acetyl-cysteine, a reactive oxygen species (ROS) scavenger, attenuated iron overload-induced hippocampal damage by inhibiting ROS production, ER-stress, and mitochondrial fission in iron-loaded Prx5−/− mice. Therefore, we suggest that iron overload-induced oxidative stress and ER-mediated mitochondrial fission may be essential for understanding iron-mediated neuronal cell death in the hippocampus and that Prx5 may be useful as a novel therapeutic target in the treatment of iron overload-mediated diseases and neurodegenerative diseases.
Collapse
|
33
|
Li R, Kassaye H, Pan Y, Shen Y, Li W, Cheng Y, Guo J, Xu Y, Yin H, Yuan Z. A visible and near-infrared dual-fluorescent probe for discrimination between Cys/Hcy and GSH and its application in bioimaging. Biomater Sci 2020; 8:5994-6003. [DOI: 10.1039/d0bm01237h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The probe Cy2 showed high sensitivity and excellent selectivity with a distinct fluorescence off-on response to GSH with NIR emission and Cys/Hcy with green emission, respectively.
Collapse
|
34
|
A comprehensive mechanistic review insight into the effects of micronutrients on toll-like receptors functions. Pharmacol Res 2019; 152:104619. [PMID: 31887355 DOI: 10.1016/j.phrs.2019.104619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/23/2019] [Accepted: 12/26/2019] [Indexed: 12/29/2022]
Abstract
Toll-like receptors (TLRs) are the special proteins receptors for recognition of molecules related to the pathogens. In this way, TLRs and secreted cytokines as a result of TLRs activation are involved in the inflammation pathways. So far, in vivo and in vitro studies have demonstrated that micronutrients (vitamins & minerals) with a broad range of effects on body health, can regulate TLRs signaling pathways. Current review aimed at determining the possible mechanisms of micronutrient effects on TLRs functions. In the aspect of gene expression, micronutrients have inconsistent effects on mRNA level of TLRs which are dependent on time, dose and type of studied TLR. Also, some micronutrients affect gene expression of TLRs signaling mediators namely TLRs adaptors like Myeloid differentiation primary response 88 (MyD88). In the aspect of TLRs signaling pathways, nuclear factor-κB (NF-κB) is an important mediator which is regulated by micronutrients. Also, the regulatory effects of micronutrients on phosphorylation reactions may be effective in the activation/inactivation of TLRs signaling mediators. In addition, zinc can regulate TLRs signaling indirectly via the zinc finger proteins which have contradictory effects on TLRs cascade. In conclusion, the relationship between micronutrients and TLRs signaling is complicated and depends on some known internal, external and genetic factors like form of studied micronutrient, cell type, TLR agonist, dose and time of exposure, inflammation, apoptosis, cell cycle, and environmental factors. Some unknown factors may be effective in TLRs response and as a result additional mechanistic studies are needed to elucidate exact effect of micronutrients on TLRs signaling.
Collapse
|
35
|
Duan M, Yang Y, Peng S, Liu X, Zhong J, Guo Y, Lu M, Nie H, Ren B, Zhang X, Liu L. C/EBP Homologous Protein (CHOP) Activates Macrophages and Promotes Liver Fibrosis in Schistosoma japonicum-Infected Mice. J Immunol Res 2019; 2019:5148575. [PMID: 31886304 PMCID: PMC6914929 DOI: 10.1155/2019/5148575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
CCAAT/enhancer-binding homologous protein (CHOP), a transcriptional regulator induced by endoplasmic reticulum stress (ER stress) is a pivotal factor in the ER stress-mediated apoptosis pathway. Previous studies have shown that CHOP is involved in the formation of fibrosis in a variety of tissues and is associated with alternative macrophage activation. The role of CHOP in the pathologic effects of liver fibrosis in schistosomiasis has not been reported, and underlying mechanisms remain unclear. This study is aimed at understanding the effect of CHOP on liver fibrosis induced by Schistosoma japonicum (S. japonicum) in vivo and clarifying its mechanism. C57BL/6 mice were infected with cercariae of S. japonicum through the abdominal skin. The liver fibrosis was examined. The level of IL-13 was observed. The expressions of CHOP, Krüppel-like factor 4 (KLF4), signal transducer and activator of transcription 6 (STAT6), phosphorylation STAT6, interleukin-13 receptor alpha 1 (IL-13Rα1), and interleukin-4 receptor alpha (IL-4Rα) were analysed. The eosinophilic granuloma and collagen deposition were found around the eggs in mice infected for 6 and 10 weeks. IL-13 in plasma and IL-13Rα1 and IL-4Rα in liver tissue were significantly increased. The phosphorylated STAT6 was enhanced while Krüppel-like factor 4 (KLF4) was decreased in liver tissue. The expression of CHOP and colocalization of CHOP and CD206 were increased. Overall, these results suggest that CHOP plays a critical role in hepatic fibrosis induced by S. japonicum, likely through promoting alternative activation of macrophages.
Collapse
Affiliation(s)
- Mengyun Duan
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuang Peng
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Xiaoqin Liu
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yurong Guo
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Min Lu
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Hao Nie
- Department of Pathogenic Biology, Medical School of Yangtze University, Jingzhou 434023, China
- Clinical Molecular Immunology Center, Medical School of Yangtze University, Jingzhou 434023, China
| | - Boxu Ren
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Xiangzhi Zhang
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434023, China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434023, China
| |
Collapse
|
36
|
Mouse models of hereditary hemochromatosis do not develop early liver fibrosis in response to a high fat diet. PLoS One 2019; 14:e0221455. [PMID: 31442254 PMCID: PMC6707558 DOI: 10.1371/journal.pone.0221455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatic iron overload, a hallmark of hereditary hemochromatosis, triggers progressive liver disease. There is also increasing evidence for a pathogenic role of iron in non-alcoholic fatty liver disease (NAFLD), which may progress to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular cancer. Mouse models of hereditary hemochromatosis and NAFLD can be used to explore potential interactions between iron and lipid metabolic pathways. Hfe-/- mice, a model of moderate iron overload, were reported to develop early liver fibrosis in response to a high fat diet. However, this was not the case with Hjv-/- mice, a model of severe iron overload. These data raised the possibility that the Hfe gene may protect against liver injury independently of its iron regulatory function. Herein, we addressed this hypothesis in a comparative study utilizing wild type, Hfe-/-, Hjv-/- and double Hfe-/-Hjv-/- mice. The animals, all in C57BL/6J background, were fed with high fat diets for 14 weeks and developed hepatic steatosis, associated with iron overload. Hfe co-ablation did not sensitize steatotic Hjv-deficient mice to liver injury. Moreover, we did not observe any signs of liver inflammation or fibrosis even in single steatotic Hfe-/- mice. Ultrastructural studies revealed a reduced lipid and glycogen content in Hjv-/- hepatocytes, indicative of a metabolic defect. Interestingly, glycogen levels were restored in double Hfe-/-Hjv-/- mice, which is consistent with a metabolic function of Hfe. We conclude that hepatocellular iron excess does not aggravate diet-induced steatosis to steatohepatitis or early liver fibrosis in mouse models of hereditary hemochromatosis, irrespectively of the presence or lack of Hfe.
Collapse
|
37
|
Qi X, Zhang Y, Guo H, Hai Y, Luo Y, Yue T. Mechanism and intervention measures of iron side effects on the intestine. Crit Rev Food Sci Nutr 2019; 60:2113-2125. [PMID: 31232087 DOI: 10.1080/10408398.2019.1630599] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess oral iron in the intestinal tract usually produces reactive oxygen species via Fenton and Haber-Weiss reaction, so oxidative stress is triggered. Lipid peroxidation procedurally appears, ferroptosis, apoptosis and necrosis are often induced, subsequently, mitochondrial damage, endoplasmic reticulum dysfunction and even cell death occur. As a result, the intestinal epithelial cells are destroyed, leading to the incompleteness of intestinal mechanical barrier. Simultaneously, iron supplement can change the compositions and metabolic processes of intestinal microbes, and the intestinal inflammatory may be worsened. In principle, the easier dissociation of Fe2+ from oral iron supplements is, the more serious intestinal inflammation will occur. Fortunately, some interventions have been developed to alleviate these side effects. For instance, some antioxidants e.g. VE and ferulic acid have been used to prevent the formation of free radicals or to neutralize the formed free radicals. Furthermore, some new iron supplements with the ability of slow-releasing Fe2+, e.g. ferrous citrate liposome and EDTA iron sodium, have been successfully prepared. In order to recover the intestinal micro-ecological balance, probiotics and prebiotics, bacterial consortium transplantation, and fecal microbiota transplantation have been developed. This study is meaningful for us to develop safer oral iron supplements and to maintain intestinal micro-ecological health.
Collapse
Affiliation(s)
- Xiao Qi
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China.,School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Yuanxiao Zhang
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Hang Guo
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Yu Hai
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China.,Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Agro-products (Yangling), Beijing, China
| |
Collapse
|
38
|
Murotomi K, Arai S, Suyama A, Harashima A, Nakajima Y. Trehalose attenuates development of nonalcoholic steatohepatitis associated with type 2 diabetes in TSOD mouse. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
39
|
Iron-Induced Liver Injury: A Critical Reappraisal. Int J Mol Sci 2019; 20:ijms20092132. [PMID: 31052166 PMCID: PMC6539962 DOI: 10.3390/ijms20092132] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is implicated in the pathogenesis of a number of human liver diseases. Hereditary hemochromatosis is the classical example of a liver disease caused by iron, but iron is commonly believed to contribute to the progression of other forms of chronic liver disease such as hepatitis C infection and nonalcoholic fatty liver disease. In this review, we present data from cell culture experiments, animal models, and clinical studies that address the hepatotoxicity of iron. These data demonstrate that iron overload is only weakly fibrogenic in animal models and rarely causes serious liver damage in humans, calling into question the concept that iron overload is an important cause of hepatotoxicity. In situations where iron is pathogenic, iron-induced liver damage may be potentiated by coexisting inflammation, with the resulting hepatocyte necrosis an important factor driving the fibrogenic response. Based on the foregoing evidence that iron is less hepatotoxic than is generally assumed, claims that assign a causal role to iron in liver injury in either animal models or human liver disease should be carefully evaluated.
Collapse
|
40
|
Gabr SA, Gabr NS, Elsaed WM. Protective Activity of Taurine and Molecular Fibrogenesis in Iron Overloaded Hepatic Tissues. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.418.427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Suzuki M, Kon K, Ikejima K, Arai K, Uchiyama A, Aoyama T, Yamashina S, Ueno T, Watanabe S. The Chemical Chaperone 4-Phenylbutyric Acid Prevents Alcohol-Induced Liver Injury in Obese KK-A y Mice. Alcohol Clin Exp Res 2019; 43:617-627. [PMID: 30748014 DOI: 10.1111/acer.13982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Co-occurrence of metabolic syndrome and chronic alcohol consumption is increasing worldwide. The present study investigated the effect of the chemical chaperone 4-phenylbutyric acid (PBA)-which has been shown to alleviate dietary steatohepatitis caused by endoplasmic reticulum (ER) stress-on chronic-plus-binge ethanol (EtOH)-induced liver injury in a mouse model of obesity. METHODS Male KK-Ay mice (8 weeks old) were fed a Lieber-DeCarli diet (5% EtOH) for 10 days. Some mice were given PBA intraperitoneally (120 mg/kg body weight, daily) during the experimental period. On day 11, mice were gavaged with a single dose of EtOH (4 g/kg body weight). Control mice were given a dextrin gavage after being pair-fed a control diet. All mice were then serially euthanized before or at 9 hours after gavage. RESULTS Chronic-plus-binge EtOH intake induced massive hepatic steatosis along with hepatocyte apoptosis and inflammation, which was reversed by PBA treatment. Administration of PBA also suppressed chronic-plus-binge EtOH-induced up-regulation of ER stress-related genes including binding immunoglobulin protein (Bip), unspliced and spliced forms of X-box-binding protein-1 (uXBP1 and sXBP1, respectively), inositol trisphosphate receptor (IP3R), and C/EBP homologous protein (CHOP). Further, it blocked chronic-plus-binge EtOH-induced expression of the oxidative stress marker heme oxygenase-1 (HO-1) and 4-hydroxynonenal. Chronic EtOH alone (without binge) increased Bip and uXBP1, but it did not affect those of sXBP1, IP3R, CHOP, or HO-1. PBA reversed the prebinge expression of these genes to control levels, but it did not affect chronic EtOH-induced hepatic activity of cytochrome P450 2E1. CONCLUSIONS Binge EtOH intake after chronic consumption induces massive ER stress-related oxidative stress and liver injury in a mouse model of obesity through dysregulation of the unfolded protein response. PBA ameliorated chronic-plus-binge EtOH-induced liver injury by reducing ER and oxidative stress after an EtOH binge.
Collapse
Affiliation(s)
- Maiko Suzuki
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuyoshi Kon
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenichi Ikejima
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kumiko Arai
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Uchiyama
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomonori Aoyama
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shunhei Yamashina
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Laboratory of Proteomics and Medical Science, Research Support Center, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Sumio Watanabe
- Department of Gastroenterology , Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Czaja AJ. Review article: iron disturbances in chronic liver diseases other than haemochromatosis - pathogenic, prognostic, and therapeutic implications. Aliment Pharmacol Ther 2019; 49:681-701. [PMID: 30761559 DOI: 10.1111/apt.15173] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disturbances in iron regulation have been described in diverse chronic liver diseases other than hereditary haemochromatosis, and iron toxicity may worsen liver injury and outcome. AIMS To describe manifestations and consequences of iron dysregulation in chronic liver diseases apart from hereditary haemochromatosis and to encourage investigations that clarify pathogenic mechanisms, define risk thresholds for iron toxicity, and direct management METHODS: English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. RESULTS Hyperferritinemia is present in 4%-65% of patients with non-alcoholic fatty liver disease, autoimmune hepatitis, chronic viral hepatitis, or alcoholic liver disease, and hepatic iron content is increased in 11%-52%. Heterozygosity for the C282Y mutation is present in 17%-48%, but this has not uniformly distinguished patients with adverse outcomes. An inappropriately low serum hepcidin level has characterised most chronic liver diseases with the exception of non-alcoholic fatty liver disease, and the finding has been associated mainly with suppression of transcriptional activity of the hepcidin gene. Iron overload has been associated with oxidative stress, advanced fibrosis and decreased survival, and promising therapies beyond phlebotomy and oral iron chelation have included hepcidin agonists. CONCLUSIONS Iron dysregulation is common in chronic liver diseases other than hereditary haemochromatosis, and has been associated with liver toxicity and poor prognosis. Further evaluation of iron overload as a co-morbid factor should identify the key pathogenic disturbances, establish the risk threshold for iron toxicity, and promote molecular interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
43
|
Miranda MA, St Pierre CL, Macias-Velasco JF, Nguyen HA, Schmidt H, Agnello LT, Wayhart JP, Lawson HA. Dietary iron interacts with genetic background to influence glucose homeostasis. Nutr Metab (Lond) 2019; 16:13. [PMID: 30820238 PMCID: PMC6380031 DOI: 10.1186/s12986-019-0339-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Iron is a critical component of metabolic homeostasis, but consumption of dietary iron has increased dramatically in the last 30 years, corresponding with the rise of metabolic disease. While the link between iron metabolism and metabolic health is well established, the extent to which dietary iron contributes to metabolic disease risk is unexplored. Further, it is unknown how dietary iron interacts with genetic background to modify metabolic disease risk. METHODS LG/J and SM/J inbred mouse strains were used to investigate the relationship between genetic background and metabolic function during an 8-week high iron diet. Glucose tolerance and adiposity were assessed, colorimetric assays determined levels of circulating metabolic markers, and hepatic iron content was measured. RNA sequencing was performed on white adipose tissue to identify genes differentially expressed across strain, diet, and strain X diet cohorts. Hepatic Hamp expression and circulating hepcidin was measured, and small nucleotide variants were identified in the Hamp genic region. RESULTS LG/J mice experienced elevated fasting glucose and glucose intolerance during the high iron diet, corresponding with increased hepatic iron load, increased circulating ferritin, and signs of liver injury. Adipose function was also altered in high iron-fed LG/J mice, including decreased adiposity and leptin production and differential expression of genes involved in iron and glucose homeostasis. LG/J mice failed to upregulate hepatic Hamp expression during the high iron diet, resulting in low circulating hepcidin levels compared to SM/J mice. CONCLUSIONS This study highlights the importance of accounting for genetic variation when assessing the effects of diet on metabolic health, and suggests dietary iron's impact on liver and adipose tissue is an underappreciated component of metabolic disease risk.
Collapse
Affiliation(s)
- Mario A. Miranda
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Celine L. St Pierre
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Juan F. Macias-Velasco
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Huyen Anh Nguyen
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Heather Schmidt
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Lucian T. Agnello
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Jessica P. Wayhart
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| | - Heather A. Lawson
- Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, Saint Louis, MO 63110 USA
| |
Collapse
|
44
|
Lou Y, Wang C, Chi S, Li S, Mao Z, Liu Z. Construction of a two-photon fluorescent probe for ratiometric imaging of hypochlorous acid in alcohol-induced liver injury. Chem Commun (Camb) 2019; 55:12912-12915. [DOI: 10.1039/c9cc06888k] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A ratiometric two-photon fluorescent probe for HClO was deliberately constructed to reveal the generation of HClO in alcohol-induced liver injury.
Collapse
Affiliation(s)
- Yan Lou
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- China
| | - Caixia Wang
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- China
| | - Siyu Chi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Songjiao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Zhiqiang Mao
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| |
Collapse
|
45
|
Lamas-Paz A, Hao F, Nelson LJ, Vázquez MT, Canals S, Gómez del Moral M, Martínez-Naves E, Nevzorova YA, Cubero FJ. Alcoholic liver disease: Utility of animal models. World J Gastroenterol 2018; 24:5063-5075. [PMID: 30568384 PMCID: PMC6288648 DOI: 10.3748/wjg.v24.i45.5063] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of acute and chronic liver injury. Extensive evidence has been accumulated on the pathological process of ALD during the past decades. However, effective treatment options for ALD are very limited due to the lack of suitable in vivo models that recapitulate the full spectrum of ALD. Experimental animal models of ALD, particularly rodents, have been used extensively to mimic human ALD. An ideal animal model should recapitulate all aspects of the ALD process, including significant steatosis, hepatic neutrophil infiltration, and liver injury. A better strategy against ALD depends on clear diagnostic biomarkers, accurate predictor(s) of its progression and new therapeutic approaches to modulate stop or even reverse the disease. Numerous models employing rodent animals have been established in the last decades to investigate the effects of acute and chronic alcohol exposure on the initiation and progression of ALD. Although significant progress has been made in gaining better knowledge on the mechanisms and pathology of ALD, many features of ALD are unknown, and require further investigation, ideally with improved animal models that more effectively mimic human ALD. Although differences in the degree and stages of alcoholic liver injury inevitably exist between animal models and human ALD, the acquisition and translational relevance will be greatly enhanced with the development of new and improved animal models of ALD.
Collapse
Affiliation(s)
- Arantza Lamas-Paz
- Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid 28040, Spain
- Yulia A Nevzovova, Francisco Javier Cubero, 12 de Octubre Health Research Institute (imas12), Madrid 28041, Spain
| | - Fengjie Hao
- Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid 28040, Spain
- Yulia A Nevzovova, Francisco Javier Cubero, 12 de Octubre Health Research Institute (imas12), Madrid 28041, Spain
| | - Leonard J Nelson
- Institute for Bioengineering (IBioE), School of Engineering, Faraday Building, The University of Edinburgh, Edinburgh EH9 3 JL, Scotland, United Kingdom
| | - Maria Teresa Vázquez
- Department of Human Anatomy and Embryology, Complutense University School of Medicine, Madrid 28040, Spain
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante 03550, Spain
| | - Manuel Gómez del Moral
- Department of Cell Biology, Complutense University School of Medicine, Madrid 28040, Spain
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid 28040, Spain
- Yulia A Nevzovova, Francisco Javier Cubero, 12 de Octubre Health Research Institute (imas12), Madrid 28041, Spain
| | - Yulia A Nevzorova
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Universidad Complutense, Madrid 28040, Spain
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen 52062, Germany
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid 28040, Spain
| |
Collapse
|
46
|
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69:927-947. [PMID: 29940269 DOI: 10.1016/j.jhep.2018.06.008] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
The global epidemic of obesity has been accompanied by a rising burden of non-alcoholic fatty liver disease (NAFLD), with manifestations ranging from simple steatosis to non-alcoholic steatohepatitis, potentially developing into hepatocellular carcinoma. Although much attention has focused on NAFLD, its pathogenesis remains largely obscure. The hallmark of NAFLD is the hepatic accumulation of lipids, which subsequently leads to cellular stress and hepatic injury, eventually resulting in chronic liver disease. Abnormal lipid accumulation often coincides with insulin resistance in steatotic livers and is associated with perturbed endoplasmic reticulum (ER) proteostasis in hepatocytes. In response to chronic ER stress, an adaptive signalling pathway known as the unfolded protein response is triggered to restore ER proteostasis. However, the unfolded protein response can cause inflammation, inflammasome activation and, in the case of non-resolvable ER stress, the death of hepatocytes. Experimental data suggest that the unfolded protein response influences hepatic tumour development, aggressiveness and response to treatment, offering novel therapeutic avenues. Herein, we provide an overview of the evidence linking ER stress to NAFLD and discuss possible points of intervention.
Collapse
Affiliation(s)
| | - Deborah Vallée
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, 02115 Boston, MA, USA
| | - Eric Chevet
- "Chemistry, Oncogenesis, Stress, Signaling", Inserm U1242, Université de Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | |
Collapse
|
47
|
Bedhiafi T, Charradi K, Azaiz MB, Mahmoudi M, Msakni I, Jebari K, Bouziani A, Limam F, Aouani E. Supplementation of grape seed and skin extract to orlistat therapy prevents high-fat diet-induced murine spleen lipotoxicity. Appl Physiol Nutr Metab 2018; 43:782-794. [PMID: 29514007 DOI: 10.1139/apnm-2017-0743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Spleen is the largest lymphoid organ and obesity is related to an elevated risk of immunity dysfunction. The mechanism whereby fat adversely affects the spleen is poorly understood. This study was designed to assess the effectiveness of grape seed and skin extract (GSSE) and orlistat (Xenical, Xe) on high-fat diet (HFD)-induced spleen lipotoxicity. Obese rats were treated either with GSSE (4 g/kg body weight) or Xe (2 mg/kg body weight) or GSSE+Xe and monitored for weight loss for 3 months. Animals were then sacrificed and their spleen used for the evaluation of lipotoxicity-induced oxidative stress and inflammation as well as the putative protection afforded by GSSE and Xe treatment. HFD induced body weight gain and glycogen accumulation into the spleen; ectopic deposition of cholesterol and triglycerides and an oxidative stress characterized by increased lipoperoxidation and carbonylation; inhibition of antioxidant enzyme activities, such as catalase, glutathione peroxidase, and superoxide dismutase; depletion of zinc and copper; and a concomitant increase in calcium. HFD also increased plasma pro-inflammatory cytokines, such as interleukin (IL)-6, IL-17A, tumour necrosis factor alpha, and C-reactive protein, and decreased plasma IL-10 and adiponectin. Importantly, GSSE counteracted all the deleterious effects of HFD on spleen (i.e., lipotoxicity, oxidative stress, and inflammation) and the best protection was obtained when combining Xe+GSSE. Combining GSSE with Xe prevented against fat-induced spleen lipotoxicity, oxidative stress, and inflammation; this combination may be beneficial in other diseases related to the spleen.
Collapse
Affiliation(s)
- Takwa Bedhiafi
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Kamel Charradi
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Mouna Ben Azaiz
- c Immunology Department, Military Hospital of Tunis, Tunis, 1008, Tunisia
| | - Mohamed Mahmoudi
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Issam Msakni
- d Anatomy and Cyto-Pathology Department, Military Hospital, Mont-Fleury, Tunis, 1008, Tunisia
| | - Khawla Jebari
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Ammar Bouziani
- d Anatomy and Cyto-Pathology Department, Military Hospital, Mont-Fleury, Tunis, 1008, Tunisia
| | - Ferid Limam
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Ezzedine Aouani
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| |
Collapse
|
48
|
Lee DG, Kam MK, Kim KM, Kim HS, Kwon OS, Lee HS, Lee DS. Peroxiredoxin 5 prevents iron overload-induced neuronal death by inhibiting mitochondrial fragmentation and endoplasmic reticulum stress in mouse hippocampal HT-22 cells. Int J Biochem Cell Biol 2018; 102:10-19. [PMID: 29906559 DOI: 10.1016/j.biocel.2018.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 01/18/2023]
Abstract
Iron is an essential element for neuronal as well as cellular functions. However, Iron overload has been known to cause neuronal toxicity through mitochondrial fission, dysregulation of Ca2+, endoplasmic reticulum (ER) stress, and reactive oxygen species (ROS) production. Nevertheless, the precise mechanisms of iron-induced oxidative stress and mitochondria- and ER-related iron toxicity in neuronal cells are not fully understood. In this study, we demonstrated that iron overload induces ROS production earlier in the ER than in the mitochondria, and peroxiredoxin 5 (Prx5), which is a kind of antioxidant induced by iron overload, prevents iron overload-induced mitochondrial fragmentation mediated by contact with ER and translocation of Drp1, by inhibiting ROS production and calcium/calcineurin pathway in HT-22 mouse hippocampal neuronal cells. Moreover, Prx5 also prevented iron overload-induced ER-stress and cleavage of caspase-3, which consequently attenuated neuronal cell death. Therefore, we suggested that iron overload induces oxidative stress in the ER earlier than in the mitochondria, thereby increasing ER stress and calcium levels, and consequently causing mitochondrial fragmentation and neuronal cell death. So we thought that this study is essential for understanding iron toxicity in neurons, and Prx5 may serve as a new therapeutic target to prevent iron overload-induced diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
- Dong Gil Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Min Kyoung Kam
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Min Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Han Seop Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Oh-Shin Kwon
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
49
|
Nair SS, Das S S, Nair RP, Indira M. Supplementation of all trans retinoic acid ameliorates ethanol-induced endoplasmic reticulum stress. Arch Physiol Biochem 2018; 124:131-138. [PMID: 28857622 DOI: 10.1080/13813455.2017.1369548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Molecular pathogenesis of chronic alcoholism is linked to increased endoplasmic reticulum stress. Ethanol is a competitive inhibitor of vitamin A metabolism and vitamin A supplementation aggravates existing liver problems. Hence, we probed into the impact of supplementation of all trans retinoic acid (ATRA), the active metabolite of vitamin A on ethanol-induced endoplasmic reticulcum stress. METHODS Male Sprague-Dawley rats were divided into four groups - I: Control; II: Ethanol; III: ATRA; IV: ATRA + Ethanol. After 90 days the animals were sacrificed to study markers of lipid peroxidation in hepatic microsomal fraction and expression of ER stress proteins and apoptosis in liver. RESULTS AND CONCLUSION Ethanol caused hepatic hyperlipidemia, enhanced microsomal lipid peroxidation, upregulated expression of unfolded protein response associated proteins and that of apoptosis. Ethanol also led to downregulation of retinoid receptors. ATRA supplementation reversed all these alterations indicating the decrease in ethanol-induced endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Saritha S Nair
- a Department of Biochemistry , University of Kerala , Thiruvananthapuram , Kerala , India
| | - Syam Das S
- a Department of Biochemistry , University of Kerala , Thiruvananthapuram , Kerala , India
| | - Reshma P Nair
- b Agroprocessing and Technology Division , CSIR-NIIST , Thiruvananthapuram , Kerala , India
| | - M Indira
- a Department of Biochemistry , University of Kerala , Thiruvananthapuram , Kerala , India
| |
Collapse
|
50
|
Wang J, Glaser KJ, Zhang T, Shan Q, He B, Chen J, Yin M, Dzyubak B, Kugel JL, Kruse SA, Grimm RC, Venkatesh SK, Ehman RL. Assessment of advanced hepatic MR elastography methods for susceptibility artifact suppression in clinical patients. J Magn Reson Imaging 2017; 47:976-987. [PMID: 28801939 DOI: 10.1002/jmri.25818] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To assess the success rate, image quality, and the ability to stage liver fibrosis of a standard 2D gradient-recalled echo (GRE) and four different spin-echo (SE) magnetic resonance elastography (MRE) sequences in patients with different liver iron concentrations. MATERIALS AND METHODS A total of 332 patients who underwent 3T MRE examinations that included liver fat and iron quantification were enrolled, including 136 patients with all five MRE techniques. Thirty-four patients had biopsy results for fibrosis staging. The liver stiffness, region of interest area, image quality, and success rate of the five sequences were compared in 115/136 patients. The area under the receiver operating characteristic curves (AUCs) and the accuracies for diagnosing early-stage fibrosis and advanced fibrosis were compared. The effect of BMI (body mass index), the R2* relaxation time, and fat fraction on the image quality and liver stiffness measurements were analyzed. RESULTS The success rates were significantly higher in the four SE sequences (99.1-100%) compared with GRE MRE (85.3%) (all P < 0.001). There were significant differences of the mean ROI area between every pair of sequences (all P < 0.0001). There were no significant differences in the AUC of the five MRE sequences for discriminating advanced fibrosis (10 P-values ranging from 0.2410-0.9171). R2* had a significant effect on the success rate and image quality for the noniron 2D echo-planar imaging (EPI), 3D EPI and 2D GRE (all P < 0.001) sequences. BMI had a significant effect on the iron 2D EPI (P = 0.0230) and iron 2D SE (P = 0.0040) sequences. CONCLUSION All five techniques showed good diagnostic performance in staging liver fibrosis. The SE MRE sequences had higher success rates and better image quality than GRE MRE in 3T clinical hepatic imaging. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018;47:976-987.
Collapse
Affiliation(s)
- Jin Wang
- Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Guangzhou, Guangdong, P.R China.,Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin J Glaser
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tianhui Zhang
- Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Guangzhou, Guangdong, P.R China
| | - Qungang Shan
- Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Guangzhou, Guangdong, P.R China
| | - Bingjun He
- Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Guangzhou, Guangdong, P.R China
| | - Jun Chen
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bogdan Dzyubak
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Scott A Kruse
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Roger C Grimm
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|