1
|
Ding Q, Pi A, Hao L, Xu T, Zhu Q, Shu L, Yu X, Wang W, Si C, Li S. Genistein Protects against Acetaldehyde-Induced Oxidative Stress and Hepatocyte Injury in Chronic Alcohol-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1930-1943. [PMID: 36653166 DOI: 10.1021/acs.jafc.2c05747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Alcohol-related liver disease (ALD) is one of the most prevalent forms of liver disease in the world. Acetaldehyde, an intermediate product of alcohol catabolism, is a cause of liver injury caused by alcohol. This study was designed to evaluate the protective role and mechanism(s) of genistein against acetaldehyde-induced liver injury in the pathological process of ALD. We found that genistein administration significantly ameliorated alcohol-induced hepatic steatosis, injury, and inflammation in mice. Genistein supplementation markedly reversed hepatic oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and hepatocellular apoptosis in both alcohol-fed mice liver and acetaldehyde-treated hepatocytes. The mechanistic experiments revealed that the restoration of genistein administration rescued heme oxygenase-1 (HO-1) reduction at both transcriptional and protein levels in either alcohol-fed mice liver or acetaldehyde-treated hepatocytes, and the beneficial aspects derived from genistein were abolished in antioxidase heme oxygenase-1 (HO-1)-deficient hepatocytes. Moreover, we confirmed that genistein administration-restored hepatic nuclear factor erythroid 2-related factor 2 (NRF2), a key transcriptional regulator of HO-1, was involved in the protective role of genistein in ALD. This study demonstrated that genistein ameliorated acetaldehyde-induced oxidative stress and liver injury by restoring the hepatic NRF2-HO-1 signaling pathway in response to chronic alcohol consumption. Therefore, genistein may serve as a potential therapeutic choice for the treatment of ALD.
Collapse
Affiliation(s)
- Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
- College of Animal Science, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Aiwen Pi
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
| | - Tiantian Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
| | - Qin Zhu
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Long Shu
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Xiaolong Yu
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Weiguang Wang
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Caijuan Si
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| |
Collapse
|
2
|
Shmukler BE, Rivera A, Nishimura K, Hsu A, Wohlgemuth JG, Dlott JS, Michael Snyder L, Brugnara C, Alper SL. Erythroid-specific inactivation of Slc12a6/Kcc3 by EpoR promoter-driven Cre expression reduces K-Cl cotransport activity in mouse erythrocytes. Physiol Rep 2022; 10:e15186. [PMID: 35274823 PMCID: PMC8915159 DOI: 10.14814/phy2.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022] Open
Abstract
Investigation of erythrocytes from spontaneous or engineered germ‐line mutant mice has been instrumental in characterizing the physiological functions of components of the red cell cytoskeleton and membrane. However, the red blood cell expresses some proteins whose germline loss‐of‐function is embryonic‐lethal, perinatal‐lethal, or confers reduced post‐weaning viability. Promoter regions of erythroid‐specific genes have been used to engineer erythroid‐specific expression of Cre recombinase. Through breeding with mice carrying appropriately spaced insertions of loxP sequences, generation of erythroid‐specific knockouts has been carried out for signaling enzymes, transcription factors, peptide hormones, and single transmembrane span signaling receptors. We report here the use of Cre recombinase expression driven by the erythropoietin receptor (EpoR) promoter to generate EpoR‐Cre;Kcc3f/f mice, designed to express erythroid‐specific knockout of the KCC3 K‐Cl cotransporter encoded by Kcc3/Slc12A6. We confirm KCC3 as the predominant K‐Cl cotransporter of adult mouse red cells in mice with better viability than previously exhibited by Kcc3−/− germline knockouts. We demonstrate roughly proportionate preservation of K‐Cl stimulation by hypotonicity, staurosporine, and urea in the context of reduced, but not abrogated, K‐Cl function in EpoR‐Cre;Kcc3f/f mice. We also report functional evidence suggesting incomplete recombinase‐mediated excision of the Kcc3 gene in adult erythroid tissues.
Collapse
Affiliation(s)
- Boris E Shmukler
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Alicia Rivera
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Katherine Nishimura
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ann Hsu
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth L Alper
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Chen D, Wu Z, Wu LN, Jiang J, Hu GN. Theaflavin Attenuates TBHP-Induced Endothelial Cells Oxidative Stress by Activating PI3K/AKT/Nrf2 and Accelerates Wound Healing in Rats. Front Bioeng Biotechnol 2022; 10:830574. [PMID: 35309982 PMCID: PMC8924520 DOI: 10.3389/fbioe.2022.830574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 01/26/2023] Open
Abstract
The treatment of wounds remains a clinical challenge because of poor angiogenesis under the wound bed, and increasingly, the patients’ need for functional and aesthetically pleasing scars. Previous reports have shown that Theaflavin can induce angiogenesis and terminate the progression of ischemic cardiovascular disease, but limited therapy is available for the management of cutaneous wounds. In this study, our in vitro work discovered that human umbilical vein endothelial cells (HUVECs) exposed to Theaflavin can alleviate apoptosis and cell dysfunction induced by tert-butyl hydroperoxide (TBHP). The cellular activity of HUVECs were assessed by cell tube formation, migration and adhesion. Mechanistically, Theaflavin protected HUVECs from TBHP-stimulated cell apoptosis through the activation of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis, so Nrf2 silencing can partly eliminate the cytoprotective effect of Theaflavin treatment. In in vivo experiments, administering Theaflavin orally can enhance vascularization in regenerated tissues and accelerate wound healing. In summary, our data served as a novel evidence for the wound healing treatment with Theaflavin, and certified the potential mechanism of Theaflavin, which can be used as a potential agent for cutaneous wound therapy.
Collapse
Affiliation(s)
- Dalei Chen
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Zhijian Wu
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Lu-Ning Wu
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Jingtao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gui-Nv Hu
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
- *Correspondence: Gui-Nv Hu,
| |
Collapse
|
4
|
Effects of Heme Oxygenase-1 on c-Kit-Positive Cardiac Cells. Int J Mol Sci 2021; 22:ijms222413448. [PMID: 34948245 PMCID: PMC8704354 DOI: 10.3390/ijms222413448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 01/02/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is one of the most powerful cytoprotective proteins known. The goal of this study was to explore the effects of HO-1 in c-kit-positive cardiac cells (CPCs). LinNEG/c-kitPOS CPCs were isolated and expanded from wild-type (WT), HO-1 transgenic (TG), or HO-1 knockout (KO) mouse hearts. Compared with WT CPCs, cell proliferation was significantly increased in HO-1TG CPCs and decreased in HO-1KO CPCs. HO-1TG CPCs also exhibited a marked increase in new DNA synthesis during the S-phase of cell division, not only under normoxia (21% O2) but after severe hypoxia (1% O2 for 16 h). These properties of HO-1TG CPCs were associated with nuclear translocation (and thus activation) of Nrf2, a key transcription factor that regulates antioxidant genes, and increased protein expression of Ec-SOD, the only extracellular antioxidant enzyme. These data demonstrate that HO-1 upregulates Ec-SOD in CPCs and suggest that this occurs via activation of Nrf2, which thus is potentially involved in the crosstalk between two antioxidants, HO-1 in cytoplasm and Ec-SOD in extracellular matrix. Overexpression of HO-1 in CPCs may improve the survival and reparative ability of CPCs after transplantation and thus may have potential clinical application to increase efficacy of cell therapy.
Collapse
|
5
|
Lin J, Shi Y, Miao J, Wu Y, Lin H, Wu J, Zeng W, Qi F, Liu C, Wang X, Jin H. Gastrodin Alleviates Oxidative Stress-Induced Apoptosis and Cellular Dysfunction in Human Umbilical Vein Endothelial Cells via the Nuclear Factor-Erythroid 2-Related Factor 2/Heme Oxygenase-1 Pathway and Accelerates Wound Healing In Vivo. Front Pharmacol 2019; 10:1273. [PMID: 31749701 PMCID: PMC6843024 DOI: 10.3389/fphar.2019.01273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/04/2019] [Indexed: 01/03/2023] Open
Abstract
Aims: To explore the effect and mechanism of gastrodin (GAS) on human umbilical vein endothelial cells (HUVECs) apoptosis induced by oxidative stress and its function in wound healing. Main methods: HUVECs were incubated with tert-butyl hydroperoxide (TBHP) to induce endothelial cell dysfunction and GAS was used as a protector. Cell viability was detected by Counting Kit-8 (CCK-8). HUVECs apoptosis was evaluated by TUNEL assay and western blotting for cleaved caspase3 (C-caspase3) and other apoptosis-related proteins. Transwell migration assay, tube formation assay, and cell-matrix adhesion assay were performed to evaluated cell function of HUVECs. Transfection with nuclear factor-erythroid 2-related factor 2 (Nrf2) small interfering ribonucleic acid and western blotting for Nrf2, HO-1, and apoptosis-related proteins were performed to prove that Nrf2/HO-1 pathway is involved in the protective effects of GAS. The skin wound model of rat was used to assess the protective effects of GAS in vivo. Key Findings: The results show that treating HUVECs with GAS attenuated TBHP-induced apoptosis and cellular dysfunction, including cellular tube formation, migration, and adhesion. Mechanistically, we found that GAS protects HUVECs from TBHP-induced cellular apoptosis by activating the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. An in vivo study illustrated that the oral administration of GAS enhances vascularization in regenerated tissue and facilitates wound healing. Significance: The findings of this study demonstrated that GAS may serve as a potential agent that accelerates wound healing.
Collapse
Affiliation(s)
- Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiansen Miao
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuhao Wu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hao Lin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianwei Wu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weimin Zeng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Fangzhou Qi
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chen Liu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
De Miguel C, Sedaka R, Kasztan M, Lever JM, Sonnenberger M, Abad A, Jin C, Carmines PK, Pollock DM, Pollock JS. Tauroursodeoxycholic acid (TUDCA) abolishes chronic high salt-induced renal injury and inflammation. Acta Physiol (Oxf) 2019; 226:e13227. [PMID: 30501003 DOI: 10.1111/apha.13227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/23/2018] [Accepted: 11/22/2018] [Indexed: 12/23/2022]
Abstract
AIM Chronic high salt intake exaggerates renal injury and inflammation, especially with the loss of functional ETB receptors. Tauroursodeoxycholic acid (TUDCA) is a chemical chaperone and bile salt that is approved for the treatment of hepatic diseases. Our aim was to determine whether TUDCA is reno-protective in a model of ETB receptor deficiency with chronic high salt-induced renal injury and inflammation. METHODS ETB -deficient and transgenic control rats were placed on normal (0.8% NaCl) or high salt (8% NaCl) diet for 3 weeks, receiving TUDCA (400 mg/kg/d; ip) or vehicle. Histological and biochemical markers of kidney injury, renal cell death and renal inflammation were assessed. RESULTS In ETB -deficient rats, high salt diet significantly increased glomerular and proximal tubular histological injury, proteinuria, albuminuria, excretion of tubular injury markers KIM-1 and NGAL, renal cortical cell death and renal CD4+ T cell numbers. TUDCA treatment increased proximal tubule megalin expression as well as prevented high salt diet-induced glomerular and tubular damage in ETB -deficient rats, as indicated by reduced kidney injury markers, decreased glomerular permeability and proximal tubule brush border restoration, as well as reduced renal inflammation. However, TUDCA had no significant effect on blood pressure. CONCLUSIONS TUDCA protects against the development of glomerular and proximal tubular damage, decreases renal cell death and inflammation in the renal cortex in rats with ETB receptor dysfunction on a chronic high salt diet. These results highlight the potential use of TUDCA as a preventive tool against chronic high salt induced renal damage.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Randee Sedaka
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Malgorzata Kasztan
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Jeremie M. Lever
- Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Michelle Sonnenberger
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Andrew Abad
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Chunhua Jin
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Pamela K. Carmines
- Department of Cellular and Integrative Physiology University of Nebraska Medical Center Omaha Nebraska
| | - David M. Pollock
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Jennifer S. Pollock
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| |
Collapse
|
7
|
Balkawade RS, Chen C, Crowley MR, Crossman DK, Clapp WL, Verlander JW, Marshall CB. Podocyte-specific expression of Cre recombinase promotes glomerular basement membrane thickening. Am J Physiol Renal Physiol 2019; 316:F1026-F1040. [PMID: 30810063 DOI: 10.1152/ajprenal.00359.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Conditional gene targeting using Cre recombinase has offered a powerful tool to modify gene function precisely in defined cells/tissues and at specific times. However, in mammalian cells, Cre recombinase can be genotoxic. The importance of including Cre-expressing control mice to avoid misinterpretation and to maximize the validity of the experimental results has been increasingly recognized. While studying the role of podocytes in the pathogenesis of glomerular basement membrane (GBM) thickening, we used Cre recombinase driven by the podocyte-specific podocin promoter (NPHS2-Cre) to generate a conditional knockout. By conventional structural and functional measures (histology by periodic acid-Schiff staining, albuminuria, and plasma creatinine), we did not detect significant differences between NPHS2-Cre transgenic and wild-type control mice. However, surprisingly, the group that expressed Cre transgene alone developed signs of podocyte toxicity, including marked GBM thickening, loss of normal foot process morphology, and reduced Wilms tumor 1 expression. GBM thickening was characterized by altered expression of core structural protein laminin isoform α5β2γ1. RNA sequencing analysis of extracted glomeruli identified 230 genes that were significant and differentially expressed (applying a q < 0.05-fold change ≥ ±2 cutoff) in NPHS2-Cre mice compared with wild-type control mice. Many biological processes were reflected in the RNA sequencing data, including regulation of the extracellular matrix and pathways related to apoptosis and cell death. This study highlights the importance of including the appropriate controls for potential Cre-mediated toxicity in conditional gene-targeting experiments. Indeed, omitting the Cre transgene control can result in critical errors during interpretation of experimental data.
Collapse
Affiliation(s)
- Rohan S Balkawade
- Department of Veterans Affairs Medical Center , Birmingham, Alabama.,Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chao Chen
- Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine Electron Microscopy Core, University of Florida , Gainesville, Florida
| | - Michael R Crowley
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - David K Crossman
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - William L Clapp
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine Electron Microscopy Core, University of Florida , Gainesville, Florida
| | - Caroline B Marshall
- Department of Veterans Affairs Medical Center , Birmingham, Alabama.,Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
8
|
Zhang M, Nakamura K, Kageyama S, Lawal AO, Gong KW, Bhetraratana M, Fujii T, Sulaiman D, Hirao H, Bolisetty S, Kupiec-Weglinski JW, Araujo JA. Myeloid HO-1 modulates macrophage polarization and protects against ischemia-reperfusion injury. JCI Insight 2018; 3:120596. [PMID: 30282830 DOI: 10.1172/jci.insight.120596] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/21/2018] [Indexed: 01/23/2023] Open
Abstract
Macrophages polarize into heterogeneous proinflammatory M1 and antiinflammatory M2 subtypes. Heme oxygenase 1 (HO-1) protects against inflammatory processes such as ischemia-reperfusion injury (IRI), organ transplantation, and atherosclerosis. To test our hypothesis that HO-1 regulates macrophage polarization and protects against IRI, we generated myeloid-specific HO-1-knockout (mHO-1-KO) and -transgenic (mHO-1-Tg) mice, with deletion or overexpression of HO-1, in various macrophage populations. Bone marrow-derived macrophages (BMDMs) from mHO-1-KO mice, treated with M1-inducing LPS or M2-inducing IL-4, exhibited increased mRNA expression of M1 (CXCL10, IL-1β, MCP1) and decreased expression of M2 (Arg1 and CD163) markers as compared with controls, while BMDMs from mHO-1-Tg mice displayed the opposite. A similar pattern was observed in the hepatic M1/M2 expression profile in a mouse model of liver IRI. mHO-1-KO mice displayed increased hepatocellular damage, serum AST/ALT levels, Suzuki's histological score of liver IRI, and neutrophil and macrophage infiltration, while mHO-1-Tg mice exhibited the opposite. In human liver transplant biopsies, subjects with higher HO-1 levels showed lower expression of M1 markers together with decreased hepatocellular damage and improved outcomes. In conclusion, myeloid HO-1 expression modulates macrophage polarization, and protects against liver IRI, at least in part by favoring an M2 phenotype.
Collapse
Affiliation(s)
- Min Zhang
- Department of Medicine, Division of Cardiology, and
| | - Kojiro Nakamura
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Shoichi Kageyama
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | - Ke Wei Gong
- Department of Medicine, Division of Cardiology, and
| | | | - Takehiro Fujii
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | - Hirofumi Hirao
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | - Jerzy W Kupiec-Weglinski
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jesus A Araujo
- Department of Medicine, Division of Cardiology, and.,Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California, USA
| |
Collapse
|
9
|
Parabiosis reveals leukocyte dynamics in the kidney. J Transl Med 2018; 98:391-402. [PMID: 29251733 PMCID: PMC5839939 DOI: 10.1038/labinvest.2017.130] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/10/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
The immune cellular compartment of the kidney is involved in organ development and homeostasis, as well as in many pathological conditions. Little is known about the mechanisms that drive intrarenal immune responses in the presence of renal tubular and interstitial cell death. However, it is known that tissue-resident leukocytes have the potential to have distinct roles compared with circulating cells. We used a parabiosis model in C57BL/6 CD45 congenic and green fluorescent protein transgenic mice to better understand the dynamics of immune cells in the kidney. We found F4/80Hi intrarenal macrophages exhibit minimal exchange with the peripheral circulation in two models of parabiosis, whether mice were attached for 4 or 16 weeks. Other intrarenal inflammatory cells demonstrate near total exchange with the circulating immune cell pool in healthy kidneys, indicating that innate and adaptive immune cells extensively traffic through the kidney interstitium during normal physiology. Neutrophils, dendritic cells, F4/80Low macrophages, T cells, B cells, and NK cells are renewed from the circulating immune cell pool. However, a fraction of double-negative T (CD4- CD8-) and NKT cells are long-lived or tissue resident. This study provides direct evidence of leukocyte sub-populations that are resident in the renal tissue, cells which demonstrate minimal to no exchange with the peripheral blood. In addition, the data demonstrate continual exchange of other sub-populations through uninflamed tissue.
Collapse
|
10
|
Nakamura K, Zhang M, Kageyama S, Ke B, Fujii T, Sosa RA, Reed EF, Datta N, Zarrinpar A, Busuttil RW, Araujo JA, Kupiec-Weglinski JW. Macrophage heme oxygenase-1-SIRT1-p53 axis regulates sterile inflammation in liver ischemia-reperfusion injury. J Hepatol 2017; 67:1232-1242. [PMID: 28842295 PMCID: PMC5884687 DOI: 10.1016/j.jhep.2017.08.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Hepatic ischemia-reperfusion injury (IRI), characterized by exogenous antigen-independent local inflammation and hepatocellular death, represents a risk factor for acute and chronic rejection in liver transplantation. We aimed to investigate the molecular communication involved in the mechanism of liver IRI. METHODS We analyzed human liver transplants, primary murine macrophage cell cultures and IR-stressed livers in myeloid-specific heme oxygenase-1 (HO-1) gene mutant mice, for anti-inflammatory and cytoprotective functions of macrophage-specific HO-1/SIRT1 (sirtuin 1)/p53 (tumor suppressor protein) signaling. RESULTS Decreased HO-1 expression in human post-reperfusion liver transplant biopsies correlated with a deterioration in hepatocellular function (serum ALT; p<0.05) and inferior patient survival (p<0.05). In the low HO-1 liver transplant biopsy group, SIRT1/Arf (alternative reading frame)/p53/MDM2 (murine double minute 2) expression levels decreased (p<0.05) while cleaved caspase 3 and frequency of TUNEL+cells simultaneously increased (p<0.05). Immunofluorescence showed macrophages were the principal source of HO-1 in human and mouse IR-stressed livers. In vitro macrophage cultures revealed that HO-1 induction positively regulated SIRT1 signaling, whereas SIRT1-induced Arf inhibited ubiquitinating activity of MDM2 against p53, which in turn attenuated macrophage activation. In a murine model of hepatic warm IRI, myeloid-specific HO-1 deletion lacked SIRT1/p53, exacerbated liver inflammation and IR-hepatocellular death, whereas adjunctive SIRT1 activation restored p53 signaling and rescued livers from IR-damage. CONCLUSION This bench-to-bedside study identifies a new class of macrophages activated via the HO-1-SIRT1-p53 signaling axis in the mechanism of hepatic sterile inflammation. This mechanism could be a target for novel therapeutic strategies in liver transplant recipients. LAY SUMMARY Post-transplant low macrophage HO-1 expression in human liver transplants correlates with reduced hepatocellular function and survival. HO-1 regulates macrophage activation via the SIRT1-p53 signaling network and regulates hepatocellular death in liver ischemia-reperfusion injury. Thus targeting this pathway in liver transplant recipients could be of therapeutic benefit.
Collapse
Affiliation(s)
- Kojiro Nakamura
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Min Zhang
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Shoichi Kageyama
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Bibo Ke
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Takehiro Fujii
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Nakul Datta
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Ali Zarrinpar
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Ronald W. Busuttil
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Jesus A. Araujo
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA,Corresponding authors. Addresses: Dumont-UCLA Transplant Center, 10833 Le Conte Ave, 77-120 CHS, Los Angeles, CA 90095, USA. Tel.: +1 (310) 825 4196; fax: +1 (310) 267 2358 (J.W. Kupiec-Weglinski) and UCLA Division of Cardiology, 10833 Le Conte Ave, CHS 43-264, Los Angeles, CA 90095, USA. Tel.: +1 (310) 825 3222; fax: +1 (310) 206 9133 (J.A. Araujo). (J.A. Araujo), (J.W. Kupiec-Weglinski)
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA,Corresponding authors. Addresses: Dumont-UCLA Transplant Center, 10833 Le Conte Ave, 77-120 CHS, Los Angeles, CA 90095, USA. Tel.: +1 (310) 825 4196; fax: +1 (310) 267 2358 (J.W. Kupiec-Weglinski) and UCLA Division of Cardiology, 10833 Le Conte Ave, CHS 43-264, Los Angeles, CA 90095, USA. Tel.: +1 (310) 825 3222; fax: +1 (310) 206 9133 (J.A. Araujo). (J.A. Araujo), (J.W. Kupiec-Weglinski)
| |
Collapse
|
11
|
Integrated analysis of miRNA and mRNA expression profiles in human endothelial cells exposed to fisetin. BIOCHIP JOURNAL 2017. [DOI: 10.1007/s13206-017-1308-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Dutta RK, Kondeti VK, Sharma I, Chandel NS, Quaggin SE, Kanwar YS. Beneficial Effects of Myo-Inositol Oxygenase Deficiency in Cisplatin-Induced AKI. J Am Soc Nephrol 2017; 28:1421-1436. [PMID: 27895157 PMCID: PMC5407728 DOI: 10.1681/asn.2016070744] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/17/2016] [Indexed: 11/03/2022] Open
Abstract
Overexpression of the proximal tubular enzyme myo-inositol oxygenase (MIOX) induces oxidant stress in vitro However, the relevance of MIOX to tubular pathobiology remains enigmatic. To investigate the role of MIOX in cisplatin-induced tubular AKI, we generated conditional MIOX-overexpressing transgenic (MIOX-TG) mice and MIOX-knockout (MIOX-/-) mice with tubule-specific MIOX overexpression or knockout, respectively. Compared with cisplatin-treated wild-type (WT) mice, cisplatin-treated MIOX-TG mice had even greater increases in urea, creatinine, and KIM-1 levels and more tubular injury and apoptosis, but these effects were attenuated in cisplatin-treated MIOX-/- mice. Similarly, MIOX-TG mice had the highest and MIOX-/- mice had the lowest renal levels of Bax, cleaved caspase-3, and NADPH oxidase-4 expression and reactive oxygen species (ROS) generation after cisplatin treatment. In vitro, cisplatin dose-dependently increased ROS generation in LLC-PK1 cells. Furthermore, MIOX overexpression in these cells accentuated cisplatin-induced ROS generation and perturbations in the ratio of GSH to oxidized GSH, whereas MIOX-siRNA or N-acetyl cysteine treatment attenuated these effects. Additionally, the cisplatin-induced enhancement of p53 activation, NF-κB binding to DNA, and NF-κB nuclear translocation in WT mice was exacerbated in MIOX-TG mice but absent in MIOX-/- mice. In vitro, MIOX-siRNA or NAC treatment reduced the dose-dependent increase in p53 expression induced by cisplatin. We also observed a remarkable influx of inflammatory cells and upregulation of cytokines in kidneys of cisplatin-treated MIOX-TG mice. Finally, analysis of genomic DNA in WT mice revealed cisplatin-induced hypomethylation of the MIOX promoter. These data suggest that MIOX overexpression exacerbates, whereas MIOX gene disruption protects against, cisplatin-induced AKI.
Collapse
Affiliation(s)
| | | | | | | | | | - Yashpal S Kanwar
- Departments of Pathology and
- Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
13
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
14
|
Hull TD, Boddu R, Guo L, Tisher CC, Traylor AM, Patel B, Joseph R, Prabhu SD, Suliman HB, Piantadosi CA, Agarwal A, George JF. Heme oxygenase-1 regulates mitochondrial quality control in the heart. JCI Insight 2016; 1:e85817. [PMID: 27110594 DOI: 10.1172/jci.insight.85817] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The cardioprotective inducible enzyme heme oxygenase-1 (HO-1) degrades prooxidant heme into equimolar quantities of carbon monoxide, biliverdin, and iron. We hypothesized that HO-1 mediates cardiac protection, at least in part, by regulating mitochondrial quality control. We treated WT and HO-1 transgenic mice with the known mitochondrial toxin, doxorubicin (DOX). Relative to WT mice, mice globally overexpressing human HO-1 were protected from DOX-induced dilated cardiomyopathy, cardiac cytoarchitectural derangement, and infiltration of CD11b+ mononuclear phagocytes. Cardiac-specific overexpression of HO-1 ameliorated DOX-mediated dilation of the sarcoplasmic reticulum as well as mitochondrial disorganization in the form of mitochondrial fragmentation and increased numbers of damaged mitochondria in autophagic vacuoles. HO-1 overexpression promotes mitochondrial biogenesis by upregulating protein expression of NRF1, PGC1α, and TFAM, which was inhibited in WT animals treated with DOX. Concomitantly, HO-1 overexpression inhibited the upregulation of the mitochondrial fission mediator Fis1 and resulted in increased expression of the fusion mediators, Mfn1 and Mfn2. It also prevented dynamic changes in the levels of key mediators of the mitophagy pathway, PINK1 and parkin. Therefore, these findings suggest that HO-1 has a novel role in protecting the heart from oxidative injury by regulating mitochondrial quality control.
Collapse
Affiliation(s)
- Travis D Hull
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ravindra Boddu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lingling Guo
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cornelia C Tisher
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amie M Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bindiya Patel
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Reny Joseph
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sumanth D Prabhu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Veterans Affairs, Birmingham, Alabama, USA
| | - Hagir B Suliman
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Claude A Piantadosi
- Department of Pulmonary, Allergy and Critical Care, Duke University School of Medicine, Durham, North Carolina, USA
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Veterans Affairs, Birmingham, Alabama, USA
| | - James F George
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
15
|
Ryter SW, Choi AMK. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 2016; 167:7-34. [PMID: 26166253 PMCID: PMC4857893 DOI: 10.1016/j.trsl.2015.06.011] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The heme oxygenase-1 (HO-1) enzyme system remains an attractive therapeutic target for the treatment of inflammatory conditions. HO-1, a cellular stress protein, serves a vital metabolic function as the rate-limiting step in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin-IXα (BV), the latter which is converted to bilirubin-IXα (BR). HO-1 may function as a pleiotropic regulator of inflammatory signaling programs through the generation of its biologically active end products, namely CO, BV and BR. CO, when applied exogenously, can affect apoptotic, proliferative, and inflammatory cellular programs. Specifically, CO can modulate the production of proinflammatory or anti-inflammatory cytokines and mediators. HO-1 and CO may also have immunomodulatory effects with respect to regulating the functions of antigen-presenting cells, dendritic cells, and regulatory T cells. Therapeutic strategies to modulate HO-1 in disease include the application of natural-inducing compounds and gene therapy approaches for the targeted genetic overexpression or knockdown of HO-1. Several compounds have been used therapeutically to inhibit HO activity, including competitive inhibitors of the metalloporphyrin series or noncompetitive isoform-selective derivatives of imidazole-dioxolanes. The end products of HO activity, CO, BV and BR may be used therapeutically as pharmacologic treatments. CO may be applied by inhalation or through the use of CO-releasing molecules. This review will discuss HO-1 as a therapeutic target in diseases involving inflammation, including lung and vascular injury, sepsis, ischemia-reperfusion injury, and transplant rejection.
Collapse
Affiliation(s)
- Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY.
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| |
Collapse
|
16
|
Canavese M, Dottorini T, Crisanti A. VEGF and LPS synergistically silence inflammatory response to Plasmodium berghei infection and protect against cerebral malaria. Pathog Glob Health 2015; 109:255-65. [PMID: 26392042 DOI: 10.1179/2047773215y.0000000018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Malaria infection induces, alongside endothelial damage and obstruction hypoxia, a potent inflammatory response similar to that observed in other systemic diseases caused by bacteria and viruses. Accordingly, it is increasingly recognised that cerebral malaria (CM), the most severe and life threatening complication of Plasmodium falciparum infection, bears a number of similarities with sepsis, an often fatal condition associated with a misregulated inflammatory response triggered by systemic microbial infections. Using a Plasmodium berghei ANKA mouse model, histology, immunohistochemistry and gene expression analysis, we showed that lipopolysaccharide S (LPS), at doses that normally induce inflammation tolerance, protects P. berghei infected mice against experimental CM (ECM). Vascular endothelial growth factor (VEGF) preserved blood vessel integrity, and the combination with LPS resulted in a strong synergistic effect. Treated mice did not develop ECM, showed a prolonged survival and failed to develop a significant inflammatory response and splenomegaly in spite of normal parasite loads. The protective role of VEGF was further confirmed by the observation that the treatment of P. berghei infected C57BL/6 and Balb/c mice with the VEGF receptor inhibitor axitinib exacerbates cerebral pathology and aggravates the course of infection. Infected mice treated with VEGF and LPS showed an induction of the anti-inflammatory genes Nrf2 and HO-1 and a suppression to basal levels of the genes IFN-γ and TNF-α. These results provide the rationale for developing new therapeutic approaches against CM and shed new light on how the inflammatory process can be modulated in the presence of systemic infectious diseases.
Collapse
|
17
|
Canavese M, Crisanti A. Vascular endothelial growth factor (VEGF) and lovastatin suppress the inflammatory response to Plasmodium berghei infection and protect against experimental cerebral malaria. Pathog Glob Health 2015; 109:266-74. [PMID: 26392164 DOI: 10.1179/2047773215y.0000000021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection, which is associated with high mortality and long-term cognitive impairment even when effective anti-parasitic treatment is administered. (1 , 2) Supportive therapy is needed to improve both morbidity and mortality associated with this condition. In an accompanying paper, we have demonstrated that in the Plasmodium berghei ANKA (PbA) rodent model, CM can be effectively prevented by a treatment combining sub-lethal doses of lipopolysaccharide S (LPS) and vascular endothelial growth factor (VEGF). Since LPS is not suitable for human therapy, we investigated whether lovastatin would represent a suitable substitute. This compound, widely used to lower cholesterol levels in plasma, shares with LPS the ability to elicit an anti-inflammatory response by activating the Nrf-2 gene, and when given to P. berghei-infected mice prevents to some extent the onset of CM. We show here that lovastatin- and VEGF-treated mice did not develop CM and showed few signs, if any, of endothelial damage and systemic inflammation. The combination treatment was much more effective than lovastatin and VEGF alone. Immunohistochemistry and gene expression analysis indicated that VEGF and LPS together overturned the two pathogenic mechanisms responsible for the development of CM: endothelial damage and disregulated activation of the inflammatory response. These findings provide the rationale for investigating the therapeutic potential of these compounds in human CM as well as in other inflammatory pathologies that respond poorly to steroid and non-steroid anti-inflammatory therapy.
Collapse
|
18
|
Wang L, Zhao B, Chen Y, Ma L, Chen EZ, Mao EQ. Biliary tract external drainage increases the expression levels of heme oxygenase-1 in rat livers. Eur J Med Res 2015. [PMID: 26199001 PMCID: PMC4511237 DOI: 10.1186/s40001-015-0152-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Heme oxygenase-1 (HO-1) protects cells by anti-oxidation, maintaining normal microcirculation and anti-inflammatory under stress. This study investigated the effects of biliary tract external drainage (BTED) on the expression levels of HO-1 in rat livers. Methods Biliary tract external drainage was performed by inserting a cannula into the bile duct. Sixty Sprague–Dawley rats were randomized to the following groups: sham 1 h group; BTED 1 h group; bile duct ligation (BDL) 1 h group; sham 6 h group and BTED 6 h group. The expression levels of HO-1 mRNA were analyzed using real-time RT-PCR. The expression levels of HO-1 were analyzed using immunohistochemistry. Results The expression levels of HO-1 mRNA in the liver of the BTED group increased significantly compared with the sham group 1 and 6 h after surgery (p < 0.05).The expression levels of HO-1 in the BTED group increased significantly compared with the sham group 1 and 6 h after surgery. The expression levels of HO-1 mRNA in the liver in the BDL group decreased significantly compared with the sham group 1 h after surgery (p < 0.05).The expression levels of HO-1 in the BDL group decreased significantly compared with the sham group at this time. Conclusion Biliary tract external drainages increase the expression levels of HO-1 in the liver.
Collapse
Affiliation(s)
- Lu Wang
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Bing Zhao
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Ying Chen
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Li Ma
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Er-Zhen Chen
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - En-Qiang Mao
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
19
|
Bolisetty S, Zarjou A, Hull TD, Traylor A, Perianayagam A, Joseph R, Kamal AI, Arosio P, Soares MP, Jeney V, Balla J, George JF, Agarwal A. Macrophage and epithelial cell H-ferritin expression regulates renal inflammation. Kidney Int 2015; 88:95-108. [PMID: 25874599 PMCID: PMC4490000 DOI: 10.1038/ki.2015.102] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 12/14/2022]
Abstract
Inflammation culminating in fibrosis contributes to progressive kidney disease. Cross-talk between the tubular epithelium and interstitial cells regulates inflammation by a coordinated release of cytokines and chemokines. Here we studied the role of heme oxygenase-1 (HO-1) and the heavy subunit of ferritin (FtH) in macrophage polarization and renal inflammation. Deficiency in HO-1 was associated with increased FtH expression, accumulation of macrophages with a dysregulated polarization profile, and increased fibrosis following unilateral ureteral obstruction in mice: a model of renal inflammation and fibrosis. Macrophage polarization in vitro was predominantly dependent on FtH expression in isolated bone marrow-derived mouse monocytes. Using transgenic mice with conditional deletion of FtH in the proximal tubules (FtH(PT-/-)) or myeloid cells (FtH(LysM-/-)), we found that myeloid FtH deficiency did not affect polarization or accumulation of macrophages in the injured kidney compared with wild-type (FtH(+/+)) controls. However, tubular FtH deletion led to a marked increase in proinflammatory macrophages. Furthermore, injured kidneys from FtH(PT-/-) mice expressed significantly higher levels of inflammatory chemokines and fibrosis compared with kidneys from FtH(+/+) and FtH(LysM-/-) mice. Thus, there are differential effects of FtH in macrophages and epithelial cells, which underscore the critical role of FtH in tubular-macrophage cross-talk during kidney injury.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abolfazl Zarjou
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Travis D. Hull
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amie Traylor
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anjana Perianayagam
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Reny Joseph
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ahmed I Kamal
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paolo Arosio
- Dipartimento Materno Infantile e Tecnologie Biomediche, University of Brescia, Brescia, Italy
| | - Miguel P Soares
- Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Viktoria Jeney
- Department of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Jozsef Balla
- Department of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - James F. George
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anupam Agarwal
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Veterans Affairs, Birmingham, Alabama, USA
| |
Collapse
|
20
|
Boddu R, Hull TD, Bolisetty S, Hu X, Moehle MS, Daher JPL, Kamal AI, Joseph R, George JF, Agarwal A, Curtis LM, West AB. Leucine-rich repeat kinase 2 deficiency is protective in rhabdomyolysis-induced kidney injury. Hum Mol Genet 2015; 24:4078-93. [PMID: 25904107 DOI: 10.1093/hmg/ddv147] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/20/2015] [Indexed: 12/16/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common known genetic cause of Parkinson's disease, and LRRK2 is also linked to Crohn's and Hansen's disease. LRRK2 is expressed in many organs in mammals but is particularly abundant in the kidney. We find that LRRK2 protein is predominantly localized to collecting duct cells in the rat kidney, with much lower expression in other kidney cells. While genetic knockout (KO) of LRRK2 expression is well-tolerated in mice and rats, a unique age-dependent pathology develops in the kidney. The cortex and medulla of LRRK2 KO rat kidneys become darkly pigmented in early adulthood, yet aged animals display no overt signs of kidney failure. Accompanying the dark pigment we find substantial macrophage infiltration in LRRK2 KO kidneys, suggesting the presence of chronic inflammation that may predispose to kidney disease. Unexpectedly, the dark kidneys of the LRRK2 KO rats are highly resistant to rhabdomyolysis-induced acute kidney injury compared with wild-type rats. Biochemical profiling of the LRRK2 KO kidneys using immunohistochemistry, proteomic and lipidomic analyses show a massive accumulation of hemoglobin and lipofuscin in renal tubules that account for the pigmentation. The proximal tubules demonstrate a corresponding up-regulation of the cytoprotective protein heme oxygenase-1 (HO-1) which is capable of mitigating acute kidney injury. The unusual kidney pathology of LRRK2 KO rats highlights several novel physiological roles for LRRK2 and provides indirect evidence for HO-1 expression as a protective mechanism in acute kidney injury in LRRK2 deficiency.
Collapse
Affiliation(s)
| | | | | | - Xianzhen Hu
- Department of Neurology, University of Alabama at Birmingham, Birmingham 35294, USA and
| | - Mark S Moehle
- Department of Neurology, University of Alabama at Birmingham, Birmingham 35294, USA and
| | - João Paulo Lima Daher
- Department of Neurology, University of Alabama at Birmingham, Birmingham 35294, USA and
| | | | | | | | - Anupam Agarwal
- Department of Medicine, Birmingham Veterans Administration Medical Center, Birmingham, Birmingham 35294, USA
| | - Lisa M Curtis
- Department of Medicine, Birmingham Veterans Administration Medical Center, Birmingham, Birmingham 35294, USA
| | - Andrew B West
- Department of Neurology, University of Alabama at Birmingham, Birmingham 35294, USA and
| |
Collapse
|
21
|
Hull TD, Kamal AI, Boddu R, Bolisetty S, Guo L, Tisher CC, Rangarajan S, Chen B, Curtis LM, George JF, Agarwal A. Heme Oxygenase-1 Regulates Myeloid Cell Trafficking in AKI. J Am Soc Nephrol 2015; 26:2139-51. [PMID: 25677389 DOI: 10.1681/asn.2014080770] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/22/2014] [Indexed: 11/03/2022] Open
Abstract
Renal ischemia-reperfusion injury is mediated by a complex cascade of events, including the immune response, that occur secondary to injury to renal epithelial cells. We tested the hypothesis that heme oxygenase-1 (HO-1) expression, which is protective in ischemia-reperfusion injury, regulates trafficking of myeloid-derived immune cells in the kidney. Age-matched male wild-type (HO-1(+/+)), HO-1-knockout (HO-1(-/-)), and humanized HO-1-overexpressing (HBAC) mice underwent bilateral renal ischemia for 10 minutes. Ischemia-reperfusion injury resulted in significantly worse renal structure and function and increased mortality in HO-1(-/-) mice. In addition, there were more macrophages (CD45(+) CD11b(hi)F4/80(lo)) and neutrophils (CD45(+) CD11b(hi) MHCII(-) Gr-1(hi)) in HO-1(-/-) kidneys than in sham and HO-1(+/+) control kidneys subjected to ischemia-reperfusion. However, ischemic injury resulted in a significant decrease in the intrarenal resident dendritic cell (DC; CD45(+)MHCII(+)CD11b(lo)F4/80(hi)) population in HO-1(-/-) kidneys compared with controls. Syngeneic transplant experiments utilizing green fluorescent protein-positive HO-1(+/+) or HO-1(-/-) donor kidneys and green fluorescent protein-negative HO-1(+/+) recipients confirmed increased migration of the resident DC population from HO-1(-/-) donor kidneys, compared to HO-1(+/+) donor kidneys, to the peripheral lymphoid organs. This effect on renal DC migration was corroborated in myeloid-specific HO-1(-/-) mice subjected to bilateral ischemia. These mice also displayed impaired renal recovery and increased fibrosis at day 7 after injury. These results highlight an important role for HO-1 in orchestrating the trafficking of myeloid cells in AKI, which may represent a key pathway for therapeutic intervention.
Collapse
Affiliation(s)
- Travis D Hull
- Nephrology Research and Training Center, Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | | | | | - Lingling Guo
- Nephrology Research and Training Center, Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | | | - Bo Chen
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, and
| | - Lisa M Curtis
- Nephrology Research and Training Center, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - James F George
- Nephrology Research and Training Center, Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Anupam Agarwal
- Nephrology Research and Training Center, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
22
|
Man W, Ming D, Fang D, Chao L, Jing C. Dimethyl sulfoxide attenuates hydrogen peroxide-induced injury in cardiomyocytes via heme oxygenase-1. J Cell Biochem 2014; 115:1159-65. [PMID: 24415199 DOI: 10.1002/jcb.24761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/07/2014] [Indexed: 12/21/2022]
Abstract
The antioxidant property of dimethyl sulfoxide (DMSO) was formerly attributed to its direct effects. Our former study showed that DMSO is able to induce heme oxygenase-1 (HO-1) expression in endothelial cells, which is a potent antioxidant enzyme. In this study, we hypothesized that the antioxidant effects of DMSO in cardiomyocytes are mediated or partially mediated by increased HO-1 expression. Therefore, we investigated whether DMSO exerts protective effects against H2 O2 -induced oxidative damage in cardiomyocytes, and whether HO-1 is involved in DMSO-imparted protective effects, and we also explore the underlying mechanism of DMSO-induced HO-1 expression. Our study demonstrated that DMSO pretreatment showed a cytoprotective effect against H2 O2 -induced oxidative damage (impaired cell viability, increased apopototic cells rate and caspase-3 level, and increased release of LDH and CK) and this process is partially mediated by HO-1 upregulation. Furthermore, our data showed that the activation of p38 MAPK and Nrf2 translocation are involved in the HO-1 upregulation induced by DMSO. This study reports for the first time that the cytoprotective effect of DMSO in cardiomyocytes is partially mediated by HO-1, which may further explain the mechanisms by which DMSO exerts cardioprotection on H2 O2 injury. J. Cell. Biochem. 115: 1159-1165, 2014. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wang Man
- Department of Gynecology and Obstetrics, Shanghai Minhang District Central Hospital, Shanghai, China
| | | | | | | | | |
Collapse
|
23
|
Inflammation and ER stress downregulate BDH2 expression and dysregulate intracellular iron in macrophages. J Immunol Res 2014; 2014:140728. [PMID: 25762501 PMCID: PMC4267003 DOI: 10.1155/2014/140728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022] Open
Abstract
Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2) protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1) leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.
Collapse
|
24
|
Association of heme oxygenase 1 with the restoration of liver function after damage in murine malaria by Plasmodium yoelii. Infect Immun 2014; 82:3113-26. [PMID: 24818663 DOI: 10.1128/iai.01598-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The liver efficiently restores function after damage induced during malarial infection once the parasites are cleared from the blood. However, the molecular events leading to the restoration of liver function after malaria are still obscure. To study this, we developed a suitable model wherein mice infected with Plasmodium yoelii (45% parasitemia) were treated with the antimalarial α/β-arteether to clear parasites from the blood and, subsequently, restoration of liver function was monitored. Liver function tests clearly indicated that complete recovery of liver function occurred after 25 days of parasite clearance. Analyses of proinflammatory gene expression and neutrophil infiltration further indicated that hepatic inflammation, which was induced immediately after parasite clearance from the blood, was gradually reduced. Moreover, the inflammation in the liver after parasite clearance was found to be correlated positively with oxidative stress and hepatocyte apoptosis. We investigated the role of heme oxygenase 1 (HO-1) in the restoration of liver function after malaria because HO-1 normally renders protection against inflammation, oxidative stress, and apoptosis under various pathological conditions. The expression and activity of HO-1 were found to be increased significantly after parasite clearance. We even found that chemical silencing of HO-1 by use of zinc protoporphyrin enhanced inflammation, oxidative stress, hepatocyte apoptosis, and liver injury. In contrast, stimulation of HO-1 by cobalt protoporphyrin alleviated liver inflammation and reduced oxidative stress, hepatocyte apoptosis, and associated tissue injury. Therefore, we propose that selective induction of HO-1 in the liver would be beneficial for the restoration of liver function after parasite clearance.
Collapse
|
25
|
Wang Y, Wei S, Wang J, Fang Q, Chai Q. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases. Mol Med Rep 2014; 10:543-9. [PMID: 24788892 DOI: 10.3892/mmr.2014.2167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 03/19/2014] [Indexed: 11/06/2022] Open
Abstract
Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.
Collapse
Affiliation(s)
- Yating Wang
- Department of Hematology, First Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Sixi Wei
- Department of Hematology, First Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Jishi Wang
- Department of Hematology, First Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Qin Fang
- Department of Pharmacy, First Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Qixiang Chai
- Department of Hematology, First Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|